|
本帖最后由 晨枫 于 2015-2-7 00:50 编辑
6 u3 Y, I' {4 v* F
( H' G) H" Y7 y6 E. r# }" ]1 C看到日本电饭煲贴里说起模糊控制和PID控制,忍不住要插话了。遗憾的是,诸君关于PID和模糊控制的概念都不正确。PID控制和模糊控制是两个范畴的东西,思路决然不同,但两者的差别不是哪个比哪个更加精确。
; {3 ^& L( d) }5 r3 y
) t- E' z- x7 @; p. @0 P9 HPID全称是比例-积分-微分控制,具体的控制律是
2 x: [" {& f, e0 f O, o! V
( l: e9 i7 m- s3 Gu(t)=kp*e(t)+ki*int(e(t))+kd*de(t)/dt2 M) {' P8 T& h6 z- j" z& j
3 K# e9 E: k1 e: `
其中u(t)是控制输出,e(t)是闭环误差,也就是设定值(set point)与测量值(process variable或者measurement)之差,int指积分,这里没法写那个弯弯的积分符号。这是PID控制律的“学院派”表述,工业上还有其他表述,但最后都是等效的。上述是连续时间域的表述,在离散时间域里,就是/ x, J1 S3 l. L8 Q) z
$ d$ b: z( B8 H1 Y' ]1 n( U. {3 f" j) Fu(k)=kp*e(k)+ki*cumsum(e(j))+kd*(e(k)-e(k-1))/ts/ n. a8 _. u, u+ _! n+ @
- b: K% a. e- @6 u
其中cumsum为cumulative sum,高数里就是大写sigma(级数和),ts为采样时间。这是位置式PID,工业上常用增量式PID,两者之间也是完全等价的。
0 D- n9 T! ], V! ~ |7 O
! e- P& q1 n% `2 N! U SPID的理论基础是微分方程稳定性。对于二阶一下线性定常系统,可以理论计算出保证稳定性的kp(比例增益)、ki(积分增益)和kd(微分增益),但工业上一般用凑试法凭经验和观察来整定。+ m1 X2 I. N' |9 }# g1 X
3 A, S% P- ~: u7 K+ J$ i
PID的整定可以稳定为主,或者以快速回位为主。前者慢慢逼近设定值,可以做到无超调(overshoot),也称过阻尼响应(overdamped response);后者快速逼近设定值,但通常要振荡几下,所以也称欠阻尼响应(underdamped response)。相邻的两个波峰值之比为阻尼比(damping ratio)或者衰减比(decay ratio),经典整定以4:1衰减比为最优,实际上这对跟踪系统不错,但对过程系统还是超调太多,过程工业偏好无超调。电饭锅温控实际上是一个过程控制问题,而不是一个伺服控制问题。换句话说,温度超调就要造成焦糊;但温度慢慢上升到设定值,顶多多煮一会儿,不会煮夹生饭。
2 Z' h! W' J7 _4 M9 H9 h/ n/ `8 A% F/ b: ?8 Y, t1 |1 y. c
模糊控制则是完全不同的概念,这是从模糊集合来的。用控制术语来说,这来自于开关控制。简易型电饭锅正是开关控制。温度不到100度(实际上可能是102度),电火力全开;煮沸的时候,沸腾过程由于相变,温度自动稳定在100度,只要没有烧干,怎么烧也不可能超过100度。这个说起来比较费劲,要不让村长解释吧。另一方面,一旦烧干了,也就是饭焖好了,继续烧温度就上去了,所以温控设定在102度的话,超过了就自动关火,接下来就是小火保温的问题了。+ ]5 R. E" ` b6 r( @% I# ~
+ }5 u0 I% y" H: S3 t, R但这样的开关控制很生猛,也不精确,对于要求精确的时间-温度曲线控制不利。用PID加程序升温控制可以精确控制,但实现起来比较复杂,而且要受米量、水量、水温等的影响。于是就有了模糊控制。2 G+ ?; s* |7 T* @/ ]( R
u7 q. {2 A' r5 H A: X# S! o模糊控制的关键在于在开关控制的TRUE和FALSE状态之间引入一个过渡状态,在过渡阶段里,既非TRUE,也非FALSE,而是介于两者之间,或则偏向其中一边。比如说,以身高为例,成年男子1.6米以下算矮的,1.8米以上算高的,期间就不能简单地高或者矮来界定,而出现了“较矮”、“中等”、“较高”等过渡状态。事实上,在1.6和1.8米之间,可以斜线连接,这就是所谓membership function,定义在高和矮之间的连续变化。当然,membership function可以不是线性的,而是其他复杂形状,这就是不同口味的模糊集合,有不同特性。) {$ A Y, P+ e- I6 h* c
# g- X; [; S! e7 y' u9 @0 _0 g3 P单一变量的模糊控制没有多少意义,但多个变量后,模糊控制就有意义了,尤其在输入变量至少有几个不在“清晰值”而在过渡值上。这时,有一套集合论的规则计算合成的输出,比如计算membership function下的面积在计算重心什么的。说起来比较罗嗦,实施起来也挺罗嗦的。* u8 X2 D# `7 L$ }
+ U9 q( L1 [. I说了那么多,模糊控制的好处就是可以把语言描述的规则数字化,而不是真正建立解析的模型,因此对于传统的模型误差不敏感,用控制术语来说,就是robustness较好。坏处是这东西无法做稳定性分析,也无法与最优控制、自适应控制、预估控制等基于解析模型的现代控制理论结合起来,完全是就事论事的rule based system,或者称heuristic system。当然,有人在做把两者凑起来的事情,但土豆和西瓜杂交,总是不伦不类,大多不了了之。
K- ~0 \, a+ r
5 H' a/ P+ l/ b; E- n' a模糊系统在80年代流行过一阵,后来就销声匿迹了,只有日本例外。日本人对模糊系统情有独钟,在洗衣机、微波炉、电饭煲、照相机等广泛使用,并且喜欢标明,以示先进。这东西比PID更先进吗?不见得;比PID更加不精确吗?也不见得。在某种意义上,模糊与神经元(neural net)一样,在理念和事实上与传统手段有所不同,但说到底并没有革命性的改变,是意大利面与上海粗炒面的差别,而不是牛排与豆腐煲的差别。
5 S4 W5 \* j+ l$ Q0 s0 K* Y' {5 K, ~, V5 F {
================) U" I( n: o2 l' G# s
模糊控制几句话说不清楚,这也是可以唬人的道理之一。要是有人有兴趣,我可以贴一些图,附加一点例子。事实上,维基里的解释不错,可以看看。5 Y- r5 r0 [8 E# P
http://en.wikipedia.org/wiki/Fuzzy_control_system$ s( p, X- N- N
7 @3 i8 P- Z+ ` z
@隧道 @Sichuluanhuang @橡树村 |
评分
-
查看全部评分
|