|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 # P8 o. L6 m, q/ k! I
煮酒正熟 发表于 2013-12-20 12:05 ![]()
& G. |3 S/ N$ L5 l+ s7 x# w _基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 7 K4 b% f2 W. ^$ ?
; F* _, s7 t7 W' b0 ?: U, Z. b这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
: s$ S/ c" {, g% i- y
. F: d: u) }! k9 @$ n结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
. L* J/ M& Y. M) D& t) q7 B7 Y. I. N0 B
R example:
0 k4 w5 T$ U" l& i9 x
, h! [; I2 s8 j4 v7 u> M<-as.table(rbind(c(1668,5173),c(287,930)))6 q# {5 w/ p1 }3 y" k e! ~5 _
> chisq.test(M)/ I" Q V5 T, P0 p8 n
) J3 T& Y- i8 [9 u
Pearson's Chi-squared test with Yates' continuity correction
& i" R, M% U6 b. F/ @; m0 `" f a0 M8 u2 {$ r( o D
data: M
. ?( K2 A6 l1 x7 ~X-squared = 0.3175, df = 1, p-value = 0.5731
3 c8 ?1 `+ |& K# p7 o6 b9 }: _ }" e% E
Python example:
3 A7 S9 b+ o' s0 c. H5 @
" g3 u) J, f; w" h9 C5 e. t; p>>> from scipy import stats( \# C* Z1 H; |# ~3 v
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]]), Y% F; S2 [$ p
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
4 H1 b' z5 M- D9 x [ 295.26371308, 921.73628692]])) |
|