|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
* N8 T, U# f ~- y煮酒正熟 发表于 2013-12-20 12:05 D9 u( z$ ?+ \6 u
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
6 `7 t- G0 a, j! w* D* i3 E# i9 J/ L3 O: o
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
P4 j, o7 a* `! h* b
6 V$ f0 U3 P; r' \, m3 S结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
4 ]8 A' A- p. g2 @6 ?8 ]: R# {3 {1 o6 ~
R example:
& n! u% p! ~& {! |; y" j
. w3 a. o$ F: ?% a, Y( F> M<-as.table(rbind(c(1668,5173),c(287,930)))
+ e# d6 }" T( u5 p1 _> chisq.test(M)
! S0 R1 E7 } s) s1 |1 H+ b: j3 S' t- N8 i; c
Pearson's Chi-squared test with Yates' continuity correction
! z6 j; l- {/ i0 Q. C1 V4 J& k+ @. w0 y4 Y7 f) @# z
data: M
* H8 ~. K7 C9 o( M! g+ KX-squared = 0.3175, df = 1, p-value = 0.57313 {. C1 P: b P8 r
4 U1 y6 M- d* R2 v" hPython example:
% Y) j6 ^0 B. Y; ?1 ?8 R. b8 y) b: g+ p8 q2 R
>>> from scipy import stats; b4 S$ a8 L" o& ~$ H0 \( a
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]]): L& |& A$ C4 {/ @( P1 Q
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
" h$ H' J0 y& n, {* \ [ 295.26371308, 921.73628692]])) |
|