|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 ( Z ]- y. w+ L! x. z h' l# q7 X7 N" n
煮酒正熟 发表于 2013-12-20 12:05 & |) z- `- i$ S5 z, I
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... 0 N9 E- o( A$ c' x z* S
0 ^& O2 k: M6 r/ U& t$ @+ B
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
& n' a$ `+ n2 P$ Y2 T: V
3 h6 ^0 C2 Z" b. t0 W) ]7 k结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
4 d; X. o o0 P# s v1 L: i( q
/ y4 h% L; a" C- Q3 \8 iR example:* Q- N7 H- j/ e; C
6 Q: A" \& d$ U> M<-as.table(rbind(c(1668,5173),c(287,930)))
5 _; ]( C! m0 `% M. ~2 B> chisq.test(M): f4 b# _0 L6 L; q* e) ]8 b" H
, Y# U3 @" y% T5 e
Pearson's Chi-squared test with Yates' continuity correction
7 H1 m+ k$ |- l# o6 ^; J6 ], G: V
2 F+ E. {+ {& A1 X1 Kdata: M
+ D9 Y" y3 F( b7 ]; g0 JX-squared = 0.3175, df = 1, p-value = 0.5731
3 O/ ^+ ]/ s0 j" d7 C( Y: I2 v9 m
Python example:
2 Q! L" v2 c3 l3 D) ~3 [& N( i) B0 n* Q% w" U. j+ F
>>> from scipy import stats. F( D: L/ K' i# g5 N& ?! \/ _
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
' I3 O! V( |& }& i% s7 r(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
0 o# d% B4 a) P8 @ ]) G N% I [ 295.26371308, 921.73628692]])) |
|