|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 - w' w1 N0 T9 ?, r2 l' V1 M# u
煮酒正熟 发表于 2013-12-20 12:05 " Y0 X. k- H, C" ^. y
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
- ]% b- | ]- e7 p: E9 {& O" |1 Y' l# E8 g
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 - X. f' I* b! H# L) I7 W+ j4 W
7 V. d2 G1 w, R2 H6 Y! G8 w
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)6 B$ y) e& K+ I% e$ O
! \0 o4 |1 p& U+ [ P
R example:: \$ _+ S: } K4 r
8 ~' a+ S" A5 o% |> M<-as.table(rbind(c(1668,5173),c(287,930)))! w. d$ q* R& x6 P, e# }7 C
> chisq.test(M)3 z- I& @- {# z- K5 }1 M9 K9 c! p
1 S7 a N0 H9 K9 j3 Z: \
Pearson's Chi-squared test with Yates' continuity correction
( t0 d4 l& P3 u( b$ \
t1 C& \7 x" i7 }1 y& e: H& L3 r! `! Sdata: M7 t% w, R* L) @" r0 ]$ E$ I' p
X-squared = 0.3175, df = 1, p-value = 0.5731; D. k5 R- j# A$ K
$ `. b+ }6 k1 m8 X) `- h: ]Python example:
: R8 z* [! J/ c- J5 x0 ~# v! G5 P5 Q/ I% ~
>>> from scipy import stats
$ ?2 Z7 [9 j! @+ w$ k' _# O5 x>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])) h& b/ a; K5 d: F9 H$ T4 O* n u
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],5 Q: Z& _5 B. H/ P% [8 f
[ 295.26371308, 921.73628692]])) |
|