|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
/ C- n }( b, Y) C1 _8 c" k煮酒正熟 发表于 2013-12-20 12:05 / w9 A% e, T9 w
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... " R& O# O* I1 r3 @8 p
4 d7 K4 I, P0 a
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
% T) n* @% Z. B+ v! r
. H9 v9 |: f D h1 ?9 `1 f+ ~: w8 t结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)9 O6 |: a+ ?; j; T
& m- b2 R% c. d* j1 N; R
R example:
- @9 [& t' I0 `4 G, z( A& N: R( D% K3 ~( q* E( z
> M<-as.table(rbind(c(1668,5173),c(287,930)))
. z f2 y: |# Z! h> chisq.test(M)
! f$ _; R; z. L9 u3 L7 b ^/ x3 a5 ~7 \. `% C* r, v Y
Pearson's Chi-squared test with Yates' continuity correction
* u: m8 q* H, u8 L* l+ o' X# H i( H B# C: R
data: M
& e2 C7 x* N3 Q NX-squared = 0.3175, df = 1, p-value = 0.5731; R6 I* B# ~ }5 c
$ ^% l: b! U( G) J
Python example:
. H" C5 g0 i) G9 L$ M% f+ Y1 d: H
; O5 e$ L$ D# {6 ]9 [>>> from scipy import stats; h0 ~% d0 n' h+ F6 T/ ?4 i7 M+ h
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])/ x: ~4 E& R# ~7 u) _
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],0 D' q/ g" M7 Y
[ 295.26371308, 921.73628692]])) |
|