|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
5 x; b. A. t3 w9 w* c煮酒正熟 发表于 2013-12-20 12:05 + Z; G; e$ M8 Z7 z4 \$ }2 l* T
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... ! a4 P7 ?4 J6 b2 s7 L% j9 }/ V) R
. G8 | z! T% B. \( c! Q
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 ( h; z6 y6 T, a3 Q" v0 e$ l; s
1 `' l) E' [+ \* W
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
' R8 K9 a6 B8 A: O" a/ W1 q1 N" B3 N1 m
R example:, E V) Y2 b2 V7 b- x- b( [
! z5 f; @9 c9 e$ f D7 D> M<-as.table(rbind(c(1668,5173),c(287,930)))
0 u+ K& z$ S) h+ ?3 h> chisq.test(M)
8 \9 Q2 f( ~4 h0 j9 d1 y" G3 g$ L6 H2 G/ m
Pearson's Chi-squared test with Yates' continuity correction
2 l' Y! o# W4 T8 f8 e0 P# y) F- I& |* P1 K q; L, K6 k: D
data: M
- q0 @: v! s& YX-squared = 0.3175, df = 1, p-value = 0.5731
' H" M& q* D( C6 W* m! K) k) i1 [
Python example:/ [2 Y) k3 f6 \. N* C
* Y8 n2 r# W$ ^' K: Y, R) R
>>> from scipy import stats
! p/ G) @5 @$ k8 k+ J>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
) ~0 G, @% |- E3 r5 E% I(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],9 {7 |7 l4 [3 c3 W! O
[ 295.26371308, 921.73628692]])) |
|