设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 3324|回复: 3
打印 上一主题 下一主题

[信息技术] 基于统计的语言处理规则——读吴军“数学之美”(2)

[复制链接]
  • TA的每日心情
    慵懒
    2019-4-30 09:37
  • 签到天数: 532 天

    [LV.9]渡劫

    跳转到指定楼层
    楼主
    发表于 2012-6-26 21:24:36 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    从人类学习语言的过程来说,本来就有两种办法:一种是本国人的办法,从小听说读写,没有人去费心学什么语法规则;另外一种是外国人的办法,学语法,背单词,语法学得头头是道,单词背了一堆,真正用起来还是不行。哪种效果好,不言而喻。
    * ~# K% g% i: R( H( J% r3 c; H& F1 [4 m# f# }- _" h0 C
    如果换个角度来看,可以说外国人的办法是基于“规则”的办法,这些“规则”就是由语言学家总结的语法;本国人的办法则是基于“统计”的办法,只不过这种”统计“在日常生活中就自动做了,自己都意识不到。“熟读唐诗三百首,不会作诗也会吟”,多接触语言素材,天长日久,自然知道怎么说是对的,怎么说是错的,怎么说更好一些。
    / K* r+ y# \$ d" V. q. s1 H/ B9 m2 A' c, x/ y6 W- q4 z9 j
    人的大脑当然和计算机不一样,但用语法规则的办法即使对计算机来说也是走不通的。问题的关键不在于计算机没法处理大的计算量,而在于没有那么多“语言学家”来拟定这些千变万化、日新月异的语法规则。那么用统计的方法呢?处理大数据量,向来是计算机的强项。而且统计方法的好处在于样本少了也能用,样本越多越精确。假如我们想让计算机判断“bush“到底是总统布什还是“小树丛”,当然可以靠制定诸如“布什”应当接着总统之类的规则来实现,但更好的方法应该还是靠上下文:在总统,国会,伊拉克之类的词旁边出现的”bush“,是布什的可能性当然高得多。
      M5 f( _" @1 _3 m, [3 Q8 ~! Z% V1 D: D- q  h( S
    计算机如何能判断一句话该怎么说?两个词之间的概率关系是可以通过语料库统计出来的,词A和词B的相对频度,就等于AB出现的频度除以B的频度。选取概率最高的方式,这就应该是所能得到的最好的结果。推而广之,一句话中各个词的关系也是可以的。但这是一种条件概率,第二个词的概率依赖于第一个词,而第三个词依赖于第一个、第二个词……问题变得非常复杂,但数学上我们可以假设任意一个词的概率只与它前面一个词相关,问题就大大简化了,而这样的假设得出的结果也是可用的。- E: Q6 K8 r* H

    , a, W0 X" {! a, W$ B+ L% f现实问题当然没那么简单,一个词出现的概率当然与前面的词相关。一般的,假设与前面N-1个词相关,则称为N-1阶马尔可夫假设。N=1时,就是上下文无关的假设,就像高级程序语言一样;N=2时,就像刚才提到的,是只与前面一个词相关的假设,而一般常见的是N=3。7 r/ v& C6 X7 Q0 \6 }$ k

    % Q4 P& f6 o! x! E实践证明,从N=2到N=3,效果提升明显;N=3到N=4,效果提升并不显著,资源消耗却相对增加很快。目前GOOGLE的翻译系统和语言识别系统做到了N=4。  p' d# d6 a) U. X9 R

    - I5 \7 h2 q" z+ J  `有了模型,当然需要训练,而当语料资源不足时,训练出的概率可信度会出现问题。譬如外星人在小镇上数了5分钟,一共数到6个人,就推断人类男女比例是5:1,这显然是有问题的。如果在大城市数一天,结果会可信得多。然而语言是千变万化的,相对于语言的复杂度来说,即使把互联网上所有现存的语料全都纳入进去,理论上讲数据量也是不够的。
    ! c1 i6 h2 n" m" k3 C7 P; R# Y& D' I" i  ?$ Z1 X, Y8 F8 d) T
    因此,需要做进一步的估计和处理。原则就是“抓大放小”:高频度出现的,即使换了样本库,它应该还是高频度的,最多频度相对有点变化;但低频度出现的,完全可能和样本的选择有关,没准换些样本,就是另外的事件低频度出现了。因此,对于没有出现过的事件,也不能简单地认为概率为零,而需要给他们分配一定的概率,所分配的概率应当从出现概率较低的那些事件中来。经过这样的处理,整条频度曲线会比较平滑,而不是突然下降为零。这个还需要进行另外的计算来估计。
      w! J% k8 F, z6 S& {' n9 ~, V$ T6 V( O' t7 i
    训练的语料和实际的应用环境也需要相配合,如果两者的领域脱节,模型效果肯定大打折扣。例如选取人民日报或者新华社的稿件作为网页搜索的素材,搜索结果并不好,因为实际网页上的文字并没有那么规范。! g1 k6 ]7 k4 K% N

      J  [6 z# J! J" q- Y$ Y
  • TA的每日心情
    奋斗
    2018-11-21 00:12
  • 签到天数: 283 天

    [LV.8]合体

    沙发
    发表于 2012-6-29 17:26:16 | 只看该作者
    google的翻译对于西方语系,比如英文对法文, 德语等语种, 处理得相当好了, 只要稍微改一下就可以了.
    ! f% B2 V: C; i5 g8 r
    4 `3 b1 ^1 ^* k* `4 `+ l但对中文,效果一般,只能提供些关键词,其他的还不行.
  • TA的每日心情
    慵懒
    2019-4-30 09:37
  • 签到天数: 532 天

    [LV.9]渡劫

    板凳
     楼主| 发表于 2012-6-29 20:28:15 | 只看该作者
    nj_power 发表于 2012-6-29 17:26 ' `1 x0 }& O% J: ^1 G; `- t1 E
    google的翻译对于西方语系,比如英文对法文, 德语等语种, 处理得相当好了, 只要稍微改一下就可以了.( e& G4 b/ L. Y3 Y
    4 U& {) l1 \2 ^7 h& k+ G
    但对中 ...
    ( G3 a1 H& W6 C  H& A
    翻译来说目前确实如此

    该用户从未签到

    地板
    发表于 2012-8-16 16:18:52 | 只看该作者
    最近二十年确实是统计学习大行其道,把基于规则的人工智能系统打得找不着北。

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-6 05:32 , Processed in 0.037121 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表