TA的每日心情 | 慵懒 2019-4-30 09:37 |
---|
签到天数: 532 天 [LV.9]渡劫
|
从人类学习语言的过程来说,本来就有两种办法:一种是本国人的办法,从小听说读写,没有人去费心学什么语法规则;另外一种是外国人的办法,学语法,背单词,语法学得头头是道,单词背了一堆,真正用起来还是不行。哪种效果好,不言而喻。
+ y8 M( r3 V6 B- Q' c: ]1 r3 s _, y3 L9 q' c
如果换个角度来看,可以说外国人的办法是基于“规则”的办法,这些“规则”就是由语言学家总结的语法;本国人的办法则是基于“统计”的办法,只不过这种”统计“在日常生活中就自动做了,自己都意识不到。“熟读唐诗三百首,不会作诗也会吟”,多接触语言素材,天长日久,自然知道怎么说是对的,怎么说是错的,怎么说更好一些。6 k1 M4 i+ D' E; @" z! l( z
: ?' D/ g) D- `* B9 G3 `$ w6 ^
人的大脑当然和计算机不一样,但用语法规则的办法即使对计算机来说也是走不通的。问题的关键不在于计算机没法处理大的计算量,而在于没有那么多“语言学家”来拟定这些千变万化、日新月异的语法规则。那么用统计的方法呢?处理大数据量,向来是计算机的强项。而且统计方法的好处在于样本少了也能用,样本越多越精确。假如我们想让计算机判断“bush“到底是总统布什还是“小树丛”,当然可以靠制定诸如“布什”应当接着总统之类的规则来实现,但更好的方法应该还是靠上下文:在总统,国会,伊拉克之类的词旁边出现的”bush“,是布什的可能性当然高得多。5 v: ^2 B# ]2 l* y
8 m( J$ R5 y+ n/ u# j8 B( f计算机如何能判断一句话该怎么说?两个词之间的概率关系是可以通过语料库统计出来的,词A和词B的相对频度,就等于AB出现的频度除以B的频度。选取概率最高的方式,这就应该是所能得到的最好的结果。推而广之,一句话中各个词的关系也是可以的。但这是一种条件概率,第二个词的概率依赖于第一个词,而第三个词依赖于第一个、第二个词……问题变得非常复杂,但数学上我们可以假设任意一个词的概率只与它前面一个词相关,问题就大大简化了,而这样的假设得出的结果也是可用的。
/ f0 ~" h% B0 g" ?2 G% H
9 d* Y: b$ B6 S5 D* l( y8 L现实问题当然没那么简单,一个词出现的概率当然与前面的词相关。一般的,假设与前面N-1个词相关,则称为N-1阶马尔可夫假设。N=1时,就是上下文无关的假设,就像高级程序语言一样;N=2时,就像刚才提到的,是只与前面一个词相关的假设,而一般常见的是N=3。# P0 t" ^( l2 [$ X) B# |) E- Y5 ~
# V$ F1 e& K M% V ]实践证明,从N=2到N=3,效果提升明显;N=3到N=4,效果提升并不显著,资源消耗却相对增加很快。目前GOOGLE的翻译系统和语言识别系统做到了N=4。/ v! \' A+ R( Z) p3 B. F5 s
6 H) k( J6 J5 P) ~
有了模型,当然需要训练,而当语料资源不足时,训练出的概率可信度会出现问题。譬如外星人在小镇上数了5分钟,一共数到6个人,就推断人类男女比例是5:1,这显然是有问题的。如果在大城市数一天,结果会可信得多。然而语言是千变万化的,相对于语言的复杂度来说,即使把互联网上所有现存的语料全都纳入进去,理论上讲数据量也是不够的。/ b9 v/ K7 O+ R7 m
5 I1 P4 R! x; w% A' W因此,需要做进一步的估计和处理。原则就是“抓大放小”:高频度出现的,即使换了样本库,它应该还是高频度的,最多频度相对有点变化;但低频度出现的,完全可能和样本的选择有关,没准换些样本,就是另外的事件低频度出现了。因此,对于没有出现过的事件,也不能简单地认为概率为零,而需要给他们分配一定的概率,所分配的概率应当从出现概率较低的那些事件中来。经过这样的处理,整条频度曲线会比较平滑,而不是突然下降为零。这个还需要进行另外的计算来估计。
3 W2 E4 B' q3 i. i
7 e) X/ U( o* l. @5 i7 p( _训练的语料和实际的应用环境也需要相配合,如果两者的领域脱节,模型效果肯定大打折扣。例如选取人民日报或者新华社的稿件作为网页搜索的素材,搜索结果并不好,因为实际网页上的文字并没有那么规范。
" y7 H( ]' t' V, L; O 6 B. s$ m. h/ i+ D! e, T
|
|