TA的每日心情 | 郁闷 2022-6-19 00:00 |
---|
签到天数: 2264 天 [LV.Master]无
|
本帖最后由 煮酒正熟 于 2016-3-10 22:00 编辑 8 w& ^+ ^0 B2 _
删除失败 发表于 2016-3-10 20:36
* R" S, b( D# {- x" D# Q0 d* }您的回复让我有了一个想法,2 L1 u' y; R1 L0 e- \
0 B) Y% b% S3 p, k' C# }0 a" k" {阿法狗的深度学习神经网络是不是可以理解为回归分析,基础数据是人类的棋谱 ...
2 i3 i: [& K( ^! Q# L
1 L" g6 e4 Q6 m G" ~阿法狗到底是怎么回事,我也不十分清楚,只根据我的猜测胡乱说两句吧。
, X' n7 r' b# q) u' e传统棋类AI的基础是蒙特卡洛树型搜索 (Monte Carlo Tree Search). 阿法狗自然也有这个。但这个是很低级的计算方法,不是高级算法。阿法狗算法里面的高级部分是价值网络和政策网络,这两个东西合在一起,就是要模仿人类棋手的“棋感"。价值网络和政策网络负责掌控宏观形势,基于对宏观形势的研判,指挥蒙特卡洛做有限的树型搜索。注意有限两个字。如果没有价值网络和政策网络的宏观指导,光靠蒙特卡洛树型搜索去下棋,以围棋10的170次方的近乎无限种的应对方式,阿法狗一步棋会下到地老天荒。9 {8 L5 h- |) @0 r
7 S" \5 x" \& z5 y/ H4 p X价值网络和政策网络的技术基础,是很高端的所谓深度神经网络技术。这个俺不懂,就不乱说了。& j9 T$ E" }$ D- e; z, y
; o2 D+ O" `7 `1 E( D说到底,阿法狗之所以下起棋来比较像人,就是因为它有着相当复杂精妙的价值网络和政策网络。它在实战中的应对之所以屡屡技高一筹,得益于大数据时代的软硬件(比如cloud computing,你说它是硬件还是软件?)
7 U$ n* m0 V3 e7 h* v
- s$ O; r% ?' K7 J; t; e: @至于你说的布局方面要打破常规,我觉得最大的可能是被狗狗直接识破并干翻。狗狗从一出生,喂给它的就是职业高手的应对之法,一开始也许是囫囵吞枣知其然不知其所以然,但训练久了,它就逐渐明白什么是假招儿虚招儿了,也就是说已经知其所以然了。就算你玩儿什么百花错拳,妄图乱拳打死老师傅,最多也就只能赢它一盘,甚至连赢都赢不了,只能暂时抢到一些优势。长久来说,百花错拳完全无用。
8 O: L2 E, v: K3 w% b
" R: a& f9 {0 Z! D) l% E |
|