|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
' ^& }8 Q# T* h8 x- U+ R9 ?煮酒正熟 发表于 2013-12-20 12:05 5 P! Z' Z0 m. \+ w
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
9 A& U+ D5 N: L, }7 Z* A
, h5 g# P3 P/ M5 q- M3 {6 n# v F这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 , Z4 X8 R Y' v6 ]( R1 \
1 Y3 F- \8 C b* f) z( `8 @
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)4 q# X* z9 _ C0 N5 K5 W x
$ i6 d$ P0 a$ N0 L& tR example:1 B0 L! y: @: w' a6 @# R2 m$ [
- h h9 b5 c$ i2 e
> M<-as.table(rbind(c(1668,5173),c(287,930)))
. i# ?; q( P+ G; ^; H3 k> chisq.test(M)
" {4 J% b4 O z4 U, \" y i3 B; ^* d
Pearson's Chi-squared test with Yates' continuity correction- a0 D4 u* @1 E3 N
7 d2 s* O6 B2 A- V9 t
data: M
4 c; E' s/ q1 R* ]5 sX-squared = 0.3175, df = 1, p-value = 0.57310 z+ _0 h3 L9 i) q. E8 }
5 T% w# A' G1 l" }3 m. _* P
Python example:+ q. p& O% v d m6 F9 M3 J
" j" @$ e: {! q>>> from scipy import stats
$ \3 m" Q7 U/ B" e! y>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
; }* T0 [8 U% |5 @3 z" C0 x(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],4 @# u$ B- J" R1 }5 T! Y! s i) _
[ 295.26371308, 921.73628692]])) |
|