|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
% U3 g! b y: Z/ T6 q6 j; l煮酒正熟 发表于 2013-12-20 12:05 ![]()
/ {8 p4 u$ {6 @( b6 U9 u基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
; n: K8 N- C2 r& e) R: `# G0 Z5 Z$ d% f# c" D9 I4 g" z* J
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
3 Y( S. E& ]. Z1 J2 m0 ~& C( C
( n! R. A6 s: H结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)0 a+ ]% ?% l5 e% y! x5 x
$ Q) _' o9 U' b2 Y! d' dR example:
) v, q4 [ l, E2 K$ k/ J2 W0 Z& |% H: V4 c, O* p7 A0 o/ D
> M<-as.table(rbind(c(1668,5173),c(287,930)))( i- y/ n% k" g& E' c
> chisq.test(M)
3 B! D8 p, V) E) Q5 @# H
* Y# v; Z& `+ k! p# n Pearson's Chi-squared test with Yates' continuity correction# s9 Q7 F; m' ?& ]- }/ y; m
+ _1 a/ R% \" w. M Fdata: M- M( O1 w- `9 B( U! H7 z9 z
X-squared = 0.3175, df = 1, p-value = 0.5731
" k4 B5 R& \; @9 X7 k7 `. `5 _! c" L& ^+ U
Python example:+ F n+ t$ F3 P+ N
% y3 K6 l" V& s+ h
>>> from scipy import stats% s" L! q2 I J
>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])' P# O$ M" a% d7 _; _( N1 k+ \/ Z
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],1 O* @3 y, Z( Z1 Q7 a- F
[ 295.26371308, 921.73628692]])) |
|