|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑
+ N1 K2 D# h7 e" v- a煮酒正熟 发表于 2013-12-20 12:05 , g0 S+ O. s* b+ R
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... * a9 F3 `- o {& g2 N
R/ V: Y2 L$ J( _- M% k8 b
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
/ I0 C$ W3 m& ]9 [
1 j/ O' G) [0 |( n" _结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
# d0 G c& g: Z9 ?& J A9 i& ]! T; n0 E* e2 B4 G0 x9 g* C
R example:
& W9 C3 x7 |& x7 n) x: Q3 k
* I+ w- s" x& ~> M<-as.table(rbind(c(1668,5173),c(287,930)))" V1 f% G9 q4 ~+ G" X) g( R. b
> chisq.test(M)
( T, R: e/ C7 D2 @3 z' h' U
. Q' r! G- b _" z) _ Pearson's Chi-squared test with Yates' continuity correction
8 p8 t4 b2 r( U3 f% G
5 N, L( q5 h) D( q5 Y7 E7 ^data: M
& g+ p% q' Q2 b( n ]5 J. e3 wX-squared = 0.3175, df = 1, p-value = 0.5731
+ y( |% { ^- \$ I
4 [ f6 x- H$ O' \Python example:
) ~% G' h9 z1 n; v% d* h
* N3 E D+ U/ {3 Z; B>>> from scipy import stats
) U' ^; D7 W& M9 r" G>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
H5 r- A, u, i' @ S% X1 O$ p(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
7 e9 [% Z$ T5 Q5 x& j [ 295.26371308, 921.73628692]])) |
|