|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 # z0 p3 j* z/ K
煮酒正熟 发表于 2013-12-20 12:05 ![]()
1 T0 s% L9 H* u0 P基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... - h9 C- t) B$ w
6 z0 q0 b% ~2 [0 ~" r) Z$ @) Z! Z
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。 3 T4 h% y+ f( @( ~: f$ s
0 L4 S0 ?% _6 {# b+ Z
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
, S: `8 ~% j8 \ ?7 C5 [2 n. ^; s; e; n# c
R example:
3 A# b4 f; h3 I9 ]: M; Y' @: `1 X8 j) @& e5 H
> M<-as.table(rbind(c(1668,5173),c(287,930))): z1 W0 M7 d6 N. B" b
> chisq.test(M) X; X: k) h: Y9 a. D9 w$ p2 @
9 I( `0 F4 p% {3 ^" D5 j Pearson's Chi-squared test with Yates' continuity correction. E" W7 s7 t5 W! ^* h9 `
: I6 U2 S- a: X, J- ?: \' ndata: M
1 S- \6 u1 z) f/ {X-squared = 0.3175, df = 1, p-value = 0.5731
/ m% X# s( u' K, } u" K5 W* p/ B, u" t8 | m d2 V
Python example:( D4 F7 q9 r- V6 x. Z
' B4 W( W$ b- h* p>>> from scipy import stats
3 N! k9 m* ?+ e6 G( ~; s>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])
8 j' ]& u ^4 ^; k- ^8 h7 I& H! |(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],) }! E/ [; n9 t ^# L
[ 295.26371308, 921.73628692]])) |
|