|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 ; l2 z$ A( C$ r5 c' P
煮酒正熟 发表于 2013-12-20 12:05 ![]()
: T3 j u, P/ g4 }0 p; X. q; d基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ...
8 h' _6 G- m7 @8 c6 K! f, z! q- q8 Y) B2 {7 r" {5 ~+ R
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
3 a" Y3 F0 g F z. N) N
; e1 z' |/ A3 q$ V结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)
, Y+ P5 R! s5 h) v7 e
" k: ~/ w( E2 p. o _- S! G5 eR example:% A2 i" O0 F \2 `2 p+ R
5 g8 ^# v& `9 e( C4 L5 N
> M<-as.table(rbind(c(1668,5173),c(287,930)))
( N3 r; |$ t) e# z- N; F0 C3 {* E> chisq.test(M)
' F9 E, \' b1 h7 _ W5 j- ^
, W, E7 Z5 U' N3 D+ u: F Pearson's Chi-squared test with Yates' continuity correction' Z7 _7 p1 k2 f- ]& K/ f
- o; r3 t9 v4 R5 V) W$ C$ B5 n
data: M
b* g, C# ^1 gX-squared = 0.3175, df = 1, p-value = 0.5731
2 r M0 p ? C0 S( N9 ~$ L' C$ |8 E) Q r& Y
Python example:
5 O4 N. X! @* }/ F2 r( n/ c9 F7 R4 }
>>> from scipy import stats
5 ~3 P a1 b! s" J3 | Q1 u>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]])0 G- h- F$ [% U- k0 ^0 @
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
% ~7 J$ e6 B: E' Y) \ [ 295.26371308, 921.73628692]])) |
|