|
|
本帖最后由 Menuett 于 2013-12-22 15:59 编辑 : U, F' f, P$ K- {& v% G% W
煮酒正熟 发表于 2013-12-20 12:05 7 w& ]7 H) _, r. {7 }7 c5 _( t$ W0 {
基本可以说是显著的。总的来说,在商界做统计学分析,95%信心水平是用得最多的,当95%上不显著时,都会去 ... ; H2 j% o# B1 f* Z
6 S( S% b! K% ]: A) o
这个其实是一种binomial response,应该用Contigency Table或者Logisitic Regression(In case there are cofactors)来做。只记比率丢弃了Number of trial的信息(6841和1217个客户)。
2 D" {* T# H" [( i; M; U* x- I0 o" A3 H. L4 v. _% ~; {" f' g' r
结果p=0.5731。 远远不显著。要在alpha level 0.05的水平上检验出76.42%和75.62%的区别,即使实验组和对照组各自样本大小相同,各自尚需44735个样本(At power level 80%)。see: Statistical Methods for Rates and Proportions by Joseph L. Fleiss (1981)7 n& R' n, O; y& C- S7 F
0 D) R, b4 I' r. w! P1 H: ]) f
R example:
. R/ U6 M7 y. ~! ]
2 ], M# b1 Z( H: q1 l> M<-as.table(rbind(c(1668,5173),c(287,930)))( o$ p8 @! ^# X: S3 u
> chisq.test(M)3 I; W8 b! i1 x' D# g0 b& j
9 l9 z% b5 u2 D, e9 ^" o8 [( y. Q
Pearson's Chi-squared test with Yates' continuity correction
( d5 g# o/ r" z5 L* z2 b+ S, n6 O4 v: m- d8 S9 s7 H
data: M
# P1 {; p+ q/ H9 T; q3 m5 m) QX-squared = 0.3175, df = 1, p-value = 0.5731
0 u! l7 U9 C$ K8 N
9 V! ~+ _0 Y: |6 L* WPython example:
4 J7 a1 h0 s6 `* K; T$ I; t
f* M# p# U! B. v$ i: d* j>>> from scipy import stats
( a) d4 ~- `7 @5 t>>> stats.chi2_contingency([[6841-5173,5173],[1217-930,930]]); f3 q' Z$ S! B6 ^( ~" X/ o( [
(0.31748297614660292, 0.57312422493552839, 1, array([[ 1659.73628692, 5181.26371308],
- \; R5 W2 f6 v% z, x5 P7 v4 v5 l [ 295.26371308, 921.73628692]])) |
|