TA的每日心情 | 慵懒 2020-7-26 05:11 |
---|
签到天数: 1017 天 [LV.10]大乘
|
过去30年里,经济学的研究重点明显偏移到经验研究,30年前顶尖杂志大多数文章都是理论模型,但是现在经验研究明显占优势。相对应的经济学内对经验研究方法的争论也变得非常激烈。对于行外人来说,这方面的争论由于不涉及具体的经济政策,因此远不象淡水,咸水之间的争论有吸引力。但是对搞经济学研究的,包括我个人来说,这些争论直接涉及到写文章、发文章的问题,因此更重要,也更有意思的多。我今天挺闲,又不想写有争议性的题目,就写写structural和reduced-form经验研究方法的争论,不过这个题目对大多数人来说可能太枯燥了。+ d2 i8 w0 J+ G; w4 L% W' o8 Q) r
7 w' k. o; a# Q$ Y自然科学和社会科学的主要区别就在于在社会科学里很难做真正的randomized experiment,存在endogeneity的问题。照我经济计量学教授的说法,经济学和其他社会科学的区别就是经济学家理解,而其他学科不懂endogeneity的问题。举几个例子,说明一下什么是endogeneity。
! ?4 c9 m. E, @
" I$ t) }+ Z4 w. Z; N7 v比如我们想研究政治制度(比如一个国家是否民主)和经济增长速度关系的问题。最简单的方法就是将经济增长速度和政治制度作回归,看民主国家是否经济增长更快。抛开其他统计问题,比如怎么来量化政治制度,经济增长速度的统计误差等等,这个方法最严重的问题就是endogeneity。如果我们用医学实验作为研究的蓝本,那么最理想的情况就是将世界上接近200个国家随机分为好几组,每组实行不同的政治制度,30年之后统计比较它们经济增长速度的不同。这种理想情况当然不可能出现,但是用来对比就可以发现简单回归分析的问题所在。现实世界中一个国家的政治制度并不是被随机的,而是由一个国家的历史,地理,经济,文化等各种因素决定的。而这些因素很明显也对经济增长速度有很大的影响,因此如果简单的回归分析结果发现民主国家经济增长快,我们并不清楚到底是政治制度本身影响经济增长,还是导致一个国家选择民主制度的这些因素促进经济增长,政治制度本身没有任何影响。用统计学的语言就是是否有我们没有观测到的因素和政治制度及经济增长制度都相关,这样的话用回归方法估计出的结果是biased,不可靠。
( N' Q: f* T/ N( O. y4 c Y" ?
) u b* n$ w! Y5 W1 X3 i8 U7 ^* W劳动经济学里最重要的一个研究课题就是估计教育对一个人一生收入的影响。但是直接将收入和教育程度作回归,会遇到endogeneity的问题。因为一个人的教育程度并不是被随机决定的,一个人的能力,家庭环境有极大的影响。能力高,父母重视教育的人教育程度也高,但是能力,家庭环境明显对一个人的收入有很大的影响。因此直接回归的结果很可能高估教育对收入的作用。6 v% ~# s& Z/ Y; J+ T8 Q
! _$ c% b0 l/ @ k
教育经济学里一个领域是研究班级人数对学生成绩的影响。直觉上,班级人数如果小的话,老师对每一个学生会投入更多的精力,学生的成绩会提高。但是一个学校的资源有限,要做收益-成本分析,决定最优的班级人数,需要知道确定的数值。美国的中小学教育是分散制,教育政策包括班级人数由各个校区自己决定。有钱人居住的校区,资源多,老师多,班级人数少,穷人校区相反。因此直接将学生成绩和班级人数作回归得出的结果有很大的bias,也就是说有endogeneity的问题。! t* a0 N7 j, C* H3 }8 ~3 L& a+ [0 H! O
, [( W) h0 T$ L; Q4 o H
如果仔细考虑一下,几乎所有经济学包括其它社会科学研究的问题都面对endogeneity的问题。因此几乎所有社会科学的经验研究都可能不可靠。即使回归分析的p-value小于0.001,我们也不能确定的参数到底是不是0。因此过去几十年,经济学家想出各种方法来解决endogeneity的问题。3 Y" [% X" f' Y( ~. _
z- W2 o% H, y. W+ l. `/ w( D: J
一种最明显的方法是将这些其他变量直接加入回归方程,作为控制变量。这样回归分析结果就去除了其他因素的影响。但是这种方法在大多数情况下并不能完全解决问题。比如对于政治制度和经济增长的研究,本来数据就不多。而这些其他影响经济增长的因素到底是什么我们不是很清楚。加控制变量太少,不解决问题,加太多了,statistical power会大幅度降低。比如有的因素可能被政治制度决定,但是不影响经济增长速度。如果我们把它加入回归方程,会出现multilinearity的问题。即使事实上政治制度确实影响经济增长,但结果可能显示统计不显著,。$ v0 N2 e8 x, K! s
& R. G5 N# ^. V6 O& E6 K* _5 U
关于收入和教育关系的研究。如果我们加入很多家庭背景的变量,这样的回归其实就是比较一个家庭里兄弟姐妹收入差别和教育程度差别的关系。如果我们再加上出生时间作为控制变量,结果就是比较双胞胎收入差别和他们教育程度差别的关系。从表面上看,双胞胎DNA是一样的,因此能力是一样的,家庭背景也完全一样,因此用他们的收入差别和教育差别作回归,就避免了endogeneity的问题。可是仔细考虑一下,我们就会提出疑问。既然他们各种情况一样,为什么教育程度不同呢?可能其中一个人小时候得了重病,影响了学业,可能是父母对其中之一特别偏爱,或者其他许多可能。但是这些因素比如身体情况对收入也会有影响。因此连双胞胎研究也无法避免endogeneity的影响,其它研究加控制变量结果的可靠性更成问题。# `% b; O8 {% t) F5 _, L
- ], V# }( e3 A7 { Q80年代后期,经济学的经验研究走了两个不同的方向。有的经济学家基本上放弃了经济理论对经验研究的指导。他们的方法是寻找最大程度接近randomized experiment的数据,从而解决endogeneity的问题。这一派被称为reduced form。他们的统计方法一般比较简单,普通人没有什么数学和统计学的训练也可以弄懂。由于经济学家要对实际的政策制定发生影响,必须要说服议员,市长等政客。因此reduced-form在这方面有很大的优势。
: E9 ^4 c- y8 H. q5 X* A ]$ K& I7 _, b2 e7 l4 @) u
Structural派的经济研究则是完全从经济理论出发。比如研究教育同收入的关系,就直接从效用最大化来直接model教育程度的确定。Structural的统计方法一般很复杂,一个估计的程序电脑运行经常就要好几个月。这一派具体的模型细节和估计方法不要说普通人,就是研究其他领域的经济学家要搞懂也要花很多时间,因此对政策制定影响要小。但是structural的方法也有它的优点。我们可以用structural模型估计的参数作预测,对不同的政策选择作分析,reduced-form结果应用的局限性要大一些。
8 _3 d5 t1 v e) [1 [
2 {/ {% R# \: _/ |8 z9 I接下来我就介绍一下reduced-form和structural两派的具体方法。由于reduced-form方法比较好懂,我就写得详细一些,structural那一派就简略一些。 r- Z" d5 }; C& _+ q
- s/ K M s$ K, U( l9 V, |$ u5 _0 o |
评分
-
查看全部评分
|