|
|
在MongoDB中,为了提高系统的可用性(availability)和数据的安全性,每一个shard被存储多份,每个备份所在的servers,组成了一个replica set。3 o2 j, t6 l+ r, u2 A
) }( f X/ ~/ I! F
这个replica set包括一个primary DB和多个secondary DBs。Primary DB由replica set中的所有servers,共同选举产生。当这个primaryDB server出错的时候,可以从replica set中重新选举一个新的primaryDB,从而避免了单点故障。
7 G$ @0 w: W" |6 f9 W- ]7 q/ j6 A' r+ Y) X' U% s1 K
因此,了解replica set的运行机制,首先就要了解,在replica set中,primary是如何被选举出来的。
( {" m, f2 L) P# J( O( ?- S8 U" o+ `, v& \: W
假设我们的replica set有三个节点:X,Y和Z。这三个节点每2秒会各自向其它两个节点发送一个心跳检测请求。比如X节点向Y和Z节点各发送了一个心跳检测请求,在正常情况下,Y、Z会做出回复,这个回复包含了Y和Z的自身信息,这个信息主要包括:它们现在是什么角色(primary 还是 secondary),他们是否能够成为 primary,他们当前时钟时间等等。
+ ^8 D0 |# x9 A& m' R8 l5 j0 s3 i. ^
X节点在收到回复后,会更新自己的一个状态映射表,更新的内容包括:是否有新的节点加入或有老的节点宕机了,这个请求的网络传输时间等等。
; ~" [- E2 `! P- x, k9 ~" y
0 I. r v4 C5 F 这个时候,如果X的映射表发生了变化,X会进行如下一些判断:如果X是 primary,而replica set中的某个节点出现了故障,X要确认它是否可以和replica set中的大多数节点通信,如果不能与大多数节点通信,那么存在如下两种可能,一种是绝大多数的servers都出现了故障,比如宕机了;另外一种,就是replica set中网络断开,形成多个节点集群,每个集群都不知道自己被孤立了,这种情况下,每个节点集群,都会选出自己的primary,从而导致整个replica set中,出现数据不一致。为了防止第二种情况的出现,一旦X发现自己不能与大多数节点通信,那么它会把自己从 primary 降级为 secondary。3 [1 e4 B8 g2 V
/ ~7 J$ H b" }降级
\0 h* Z0 _8 _# U+ x7 l) \1 b
& A6 z# ^1 {4 J) ^9 x' w# Z: V2 U' r 在 MongoDB 中,写操作默认是 fire-and-forget 模式,也就是说执行写操作的时候不关心是否写入成功,用户发完写操作的请求后,就认为操作成功了。: \8 K7 q& e0 t) _% e6 J
: r4 C" L0 |6 \/ K 在X节点从 primary 降级为 secondary 的时候,会存在一些问题:如果用户正在执行fire-and-forget 模式下的写操作,这个时候 primary 降级了,但是用户并不知道primary 已经降级成为 secondary 了,继续不停的发送写操作请求给这个primary节点。这个刚刚从primary降级为 secondary 的节点,本来可以发送一个信息给用户,“我是secondary,不能执行写操作了”,但是由于当前的写操作是在fire-and-forget 模式下,用户不会接收回复消息,所以用户不知道这次写入已经失败了。) f5 ]: M, _6 r: k! y! o0 ^' O h
' k& f9 r3 ^$ x" W h 你可能会说,“那我们使用安全写入不就行了”,安全写入意思是说等待服务器返回成功后用户才认为写成功了,但是这对写操作的性能是有损失的。
. z2 @: c3 R, T( ~5 W) r8 {6 X3 y# T# i/ _2 A
所以,在一个 primary 降级成为 secondary 后,它会将和用户之间的所有连接关闭,这样用户在下一次写入的时候就会出现 socket 错误。而客户端在发现这个错误之后,就会重新向replica set获取新的 primary 的地址,并将后续的写操作都往新的primary上写入。
' o3 e6 G9 D3 T# b5 Q5 n7 F$ J$ v6 b4 ?
选举
3 h, J6 a, B# G/ G) n4 L9 f7 j9 [/ p% d
我们回头再来看心跳检测:如果X是一个 secondary节点,就算X上的状态映射表没有发生变化, X也会定时向replica set中的其他节点发消息,检测是否需要选举自己成为 primary。检测的内容包括:replica set集群中,是否有其它节点认为自己是 primary?X节点自己是否已经是 primary?X节点是不是没有资格被选举为 primary?如果以上问题中的任何一个回答是否定的,X节点就不会把自己变成primary,然后隔一段时间继续向replica set中的其他节点发消息,检测上述问题。
3 ^, i3 D4 H. S4 F/ G7 ]# _% j6 |' J( v
当确实需要选举一个primary时,X就会发起选举的第一个步骤,X节点会向Y、Z节点发出一条消息,“我想竞选primary,你们觉得怎么样?”
$ r$ O2 a9 _& G- r( y. P9 U& A, e _
当Y和Z收到X发送的消息时,它们会进行下面几项检测:Y和Z是否已经知道replica set集群中有一个 primary了?Y和Z自己的数据是否比X节点的数据更新?Y和Z是否知道有其它节点的数据比X节点的数据更新?如果每一项检测都不满足,就说明X最适合作为primary,Y和Z暂时回复一条消息,“继续进行”。如果Y和Z发现上述的问题,有任何一条满足,就说明X不能作为primary,它们会回复“停止选举。”" A Q6 x% {8 B5 S& h2 Z
( K: z" l/ p7 \" ]1 S6 P [; | X从Y和Z收到的回复消息,如果其中任何一个节点发送的是“停止选举”,那么X会立刻取消选举,继续作为secondary节点运行。; b: Z f7 Q4 @7 u8 f1 h
$ i- K* y$ |/ Y% y: u+ \/ F" y* Z X从Y和Z收到的回复消息,如果全都是“继续进行”,X就会进入选举的第二阶段(也是最后一个阶段)。
; Y& I- ~! R5 ^2 D1 p$ A: w6 X. C, A1 r
在第二阶段中,X向其它节点发送一条消息,“我正式宣布我当选了,已经是primary了”,这时,Y和Z节点会进行最后一轮确认:之前验证过的所有条件现在还成立么?如果确实如此,Y和Z节点投出赞成票,允许X当选为primary,同时X得到了election lock。Election lock会限制Y和Z在30秒内不会再做其它投票决定。2 G9 T. i# B- x7 Y# }
/ O- ~! w0 T' ~
如果Y或者Z节点的最后一轮确认没有通过,它们会投一个否决票。只要有一个否决票,选举就失败了。/ d% ~# z7 X) n5 r
# h1 T2 U a* ?' q# R$ u 假设Y赞成X成为primary,但是Z投了否决票,那么X就不能当选为primary了。这时,如果Z想发起选举,选自己担任primary,那么Z就必须获得X的赞成票才可以当选。Z必须获得X的赞成票的原因是,Y给X投了赞成票之后,得到了election lock,因此,30秒内Y不能再为其他选举投票了,也就是说30秒内不能为Z发起的选举进行投票。这时,只剩下X能为Z的选举请求进行投票了。3 z! a9 o A! G1 _4 [: Z
( \, q& `( ~. t5 e: O0 S
所以投票的规则是这样的:如果没有人投否决票,并且选举对象获得的赞成票超过半数,那么选举对象就能够成为 primary。
9 I9 m( W0 q) x* j! p1 ]
- o+ [" \6 U: L, Z% f% T
- S. b9 M' l1 k; T8 H& E! SReference,8 Q" M: ~" e# P, ~: g6 e
0 O+ P& Q) o) O. z# J* X/ ~[0] Replica Set Internals Bootcamp: Part I – Elections7 O: Q8 w5 \, a7 h' N7 I) E
http://www.kchodorow.com/blog/20 ... p-part-i-elections/& ~) [' ?) U& r$ [% K/ Q% v. F
|
评分
-
查看全部评分
|