在上一篇文章“MongoDB架构概览”中,我们简单介绍了一下MongoDB中的shard,接下来,我们详细的讲解一下MongoDB的sharding model。3 h' x# l6 L, e1 l$ f! i& ^+ f
7 z$ ]/ q2 C( S. {! V& s: t p 当MongoDB的一个 collection 数据量太大时,我们按照shard key,把该collection分成多个chunks,多个chunks聚集在一起,组成了一个shard。8 q% P5 @8 J1 v2 G
2 s6 m$ E$ S( Y5 s2 R5 t1 i
每一个 document 的shard key 的值,决定了这条document应该存放在哪个chunk中。如果两条 documents 的 shard keys 的值很接近,这两条 documents 很可能被存放在同一个 chunk 中。如图2-1所示。
! M; @6 w$ y, Q
! T9 y9 U I- q: X* |: R! |% b
) y/ S5 n/ [3 f! P! U5 z+ v2 h
# X5 d9 K' ^+ h
图2-1 shard key、chunk和shard的关系
) Q5 Y4 e& M# @6 _ 通过图2-1我们可以看到,数据在整个key space上的分布是不均匀的,这就导致了chunk中存储的数据量会不均匀。如果一个chunk中存储的数据太多了怎么办?多个chunks构成了一个shard,因此shard中的数据量也会不均匀,如果一个shard中存储的数据太多了怎么办?
1 K! L, {+ {0 E; c8 n& G7 R! x+ M* n; c
上一篇文章中,我们提到了解决办法。一个 chunk最多能够存储64MB的数据。当某个chunk存储的 documents包含的数据量,接近这个阈值时,一个chunk会被切分成两个新的chunks。当一个shard存储了过多的chunks,这个shard中的某些chunks会被迁移到其它 shard中。
0 Y5 K U I( U0 `; k6 X
1 Z' \$ D9 I& X1 z 当用户产生存储数据的需求时,把插入数据的请求发送给mongos,mongos先查询 config server,找到存放相应数据的shard servers。然后把用户请求,转发到这些 shard servers,同时,mongos会根据历史上插入的每条数据的平均大小,判断这条数据插入到这个shard server的某个chunk后,是否会导致这个chunk的大小近似达到或者超过64M。: z: ]$ |, n2 P
' u( C0 @0 m" _6 C
如果mongos经过判断,发现chunk在插入这条数据之后,会近似达到或者超过64M,那么就说明这个chunk需要进行切分。Mongos就要和这个chunk所在的shard server联系,并发送一个切分chunk的请求。8 Y3 |! h4 e& m: G: T7 c
+ ~2 J/ a. Q% r Shard server接收到mongos发送的请求之后,首先查询这个chunk的shard key range,然后根据这个key range,计算一个midpoint,然后把chunk从midpoint处分为两部分。同时,把这个变化通知到config server。
/ ?6 F. u# b2 U% Z9 v" S( _& {/ {1 y% L/ W1 g0 X4 Q
请注意,这里只是切分chunk,切分后的chunk仍然在这个shard中。随着系统的运行,chunk中的数据量在增长,虽然通过切分操作,保持每个chunk中的数据不超过64M,但是, shard 中包含的 chunk 数量在增长。如果 shard server中的数据太多了怎么办?MongoDB通过chunk的迁移,来均衡shard servers之间的数据量。
" @% y/ f9 c0 y
7 T: k1 @- \" V 在mongos上运行着一个“balancer”进程,这个进程的任务是确保每个shard servers上的数据规模大致相同。当数据规模不均衡的状态被检测到之后,这个balancer会联系那个数据较多的shard,发出一个chunk迁移的命令。
% C ]. M1 c1 e6 {
# J& S. e2 h' E/ w( u1 t3 Y# U 如何界定什么是数据规模不均衡呢?如果存储chunks最多的shard server,比存储chunks最少的shard server,chunks的个数之差超过预定的一个阈值n,balancer就向这个 shard server,发起chunk迁移指令。3 C/ g: x) w( K3 Y' {
5 J5 o8 @2 [1 j
在MongoDB中,n的值,与一个collection可以分成多少个chunks有关系,chunks的个数越多,n就越大,但是至少n要大于2。当shard servers中chunks个数的差值小于等于2的时候,迁移就可以结束了。
/ E. a% S5 {& O* T6 ^
7 s' F8 ]) d/ g0 S Chunk的迁移是在线进行的,也就是说所有的shard server都处于工作状态。Mongos从数据多的shard server中,选择一个chunk,迁移到一个数据少的shard server中。 为了方便理解,下文中,我们把数据多的shard server叫做orig server,数据少的shard server叫做dest server。
+ B8 r" [5 Y0 q( A5 K
. W4 Z7 T3 N2 x 迁移的过程中,首先 orig server向 dest server联系,成功建立数据通道之后,chunk数据会被从orig server拷贝到dest server。这个过程会持续一段时间,时间长短,取决于数据的大小,如图2-2中的过程A。8 E9 b3 D" _/ M) z: o) T
5 C! }, Y6 m8 a, _ 在这期间,orig server可能会不断接收到mongos转发来的用户请求,包括insert、update等等,导致这个chunk包含的数据发生变化。这些新增的数据变更会被记录下来,不妨称之为 delta update。当过程 A 结束后,orig server 将向 dest server传输delta update,如图2-2中的过程B。
& q$ s: |# M; `6 k6 o, Y% J1 u1 i) \1 G& l9 E6 o: |. i
在执行过程 B 期间,orig server很可能继续接收到mongos转发来的用户请求,导致这个chunk包含的数据进一步发生变化。当 orig server向 dest server,传输完第一轮 delta update以后,紧接着开始传第二轮 delta update,然后传第三轮 delta update。如此反复更新 delta,理论上可能会永久地持续下去。. p$ u) _% D7 G! b, B! [% w
) B G" _ F$ q, P- U/ S0 E: U 为杜绝这个可能,我们可以设置一个最大的传输轮次,当进行到最后一轮传输时,orig server会停止接受来自mongos的所有更新请求,并把这些请求记录下来。- Y* |' c$ ~: v2 K7 n
0 ^1 z2 E8 x0 X. Z0 k0 }6 K4 Z
# F" o I8 M- ^ ~" J% m( ?9 ]图2-2 chunk的迁移过程 当最后一轮传输结束之后,会经过如下的几个步骤来结束chunk迁移的操作。 1. Dest server会通知config server,该chunk已经从orig server迁移到了dest server中。Config server更新这个chunk的映射信息,如图2-2中的过程1。 2. Dest server通知orig server,数据传输已经结束,让orig server向 Mongos,提交一个StaleConfigException,如图2-2中的过程2.1和2.2。 3. Mongos会从config server查询到 dest server 的地址,如图2-2中的过程3.1。 接着,从orig server获取到最后一轮传输时,orig server尚未执行的,来自用户的数据更新请求,如图2-2中的过程3.2。 最后,Mongos 从orig server 获得这些尚未处理的请求后,把它们转发给dest server处理,如图2-2中的过程3.3。 4. 以上的过程结束之后,在未来的某个时间,orig server会把这份数据物理删除。 在迁移的过程中,存在着一种特殊情况。假如这个被迁移的chunk,正面临着高频率的更新请求,那么在传输delta update的时候,会发现delta update越来越大,以至于delta update的增长速度,大于从orig server到dest server的传输速度。 在这种情况下,整个迁移过程要中断,之前所传输的所有数据都被放弃,也就是图2-2中的过程A和B,以及过程 1-3,通通被放弃,相当于这个迁移操作没有发生过。Mongos会从 orig server 中,选择另外的一个chunk,重新开始迁移操作。选择的标准,是这个chunk 的数据更新的频率不高。
1 O1 G. c0 K% T6 ~' }4 S/ D Reference, [0] MongoDb Architecture |