|
|
本帖最后由 晨枫 于 2025-12-1 10:15 编辑 1 D- p2 K- Q: k
& X: z0 v" W6 Y' _0 N/ |把@testjhy T教授、@沉宝 “沉宝”兄和其他爱友(呃,听起来有点油腻?)的指点和自己的理解汇总一下,欢迎各位继续点评指正。1 A1 U4 _8 C: n' D) E. [1 O+ ?8 [
3 l5 B; q( b, \7 e4 }- S/ j/ L中国航母核动力成月经话题了。个人认为,近期最可能的还是批量建造003的改进型:舰体适当拉长,解决1号弹射位与前升降机和2号弹射位与斜甲板冲突的问题。动力方面,需要就增加一点功率,如果电弹足够给力,损失一节两节可能也能接受。如果设计改动控制得好,可能航速损失低于一节两节,那就更没问题了。
/ A. f/ ]% v" _; Q9 L# n) R
' b6 `( H( g7 U) }1 b' n批量方面,可能再造至少3艘常规动力航母,发挥一点规模经济效应,更重要的是迅速形成战斗力,6艘航母就好用多了。干什么用,就发挥想象力吧,这里不多扯。
3 m1 {5 r# M; z' G2 p: o* Z- g C7 K W7 J: e3 a! d9 H2 P
另一方面,近期上马核动力航母,只能是铀堆。中国核电发展很快,但核电铀堆与舰用铀堆是两路不同的技术,好比民航高涵道比涡扇与战斗机低涵道比涡扇是两回事一样。2 O9 Q, t8 [* r3 t
8 I* d9 k3 o: m5 L) R铀堆的使用、维护麻烦一堆,未来有一天退役,无害化的问题更大。苏联核潜艇在冷战结束时大批报废,当年没钱、没心思管无害化问题,现在有害化的危险越来越大。中国不会做这种“拆烂污”的事,但什么铀堆的报废、无害化都是麻烦事,这一点不会改变。
g5 s0 [; v: k" M* |- D, Z% Z+ x
8 q0 ~1 c l$ r& K8 B钍堆现在还在初级阶段。目前的小试堆是2MWt(t指热功率,不是发电后的电功率),正在设计的是10MWt的中试堆,100MWe(e指电功率,这是能送入电网的功率了)什么时候落地还不知道,貌似国家规划也要到2035年。比照福特级,两座350MWt的铀堆,电功率200MWe。钍堆要达到这样的功率还要上舰,没有10-15年不大可能。0 h0 H0 M5 W+ @) h+ h( S* E+ w
* V& n ?3 E* w7 A5 O
钍堆有两个问题。第一个问题是热交换。熔盐的工作温度高,压力低,这是好事。腐蚀性超强,这是坏事,燃料熔盐还带有强烈的放射性,这是坏上加坏。
% r- S8 k: ^9 j$ b4 D
3 x6 e4 o, m2 n" F. P- W在理论上,熔盐堆只需要两个回路,就像压水堆一样,一回路通过堆芯,带放射性,差别是核燃料的形式,铀堆是固体的燃料棒,与一回路水只有肌肤之亲,没有盐水之融,而钍堆是液体燃料,铀钍燃料溶解在熔盐中,但从传热角度来说,两者没有区别;二回路从一回路取热,不带放射性,驱动发电机。事实上,钠冷快堆就是这样的。. v9 E4 e( _1 w; h# B% s
2 p. N) t1 w# _, |' c
1 u( g A! H0 n# x$ i8 F, D4 H C. J) r% c& f
液态钠具有传热速率和热容量特别高的好处,但一怕冷却后凝固,二怕遇水爆炸。这两点熔盐其实也有,只是没有那么极端,爆炸也改成腐蚀。钠冷快堆有游泳池式设计和直接设计两个大路子,熔盐取代液态钠后,大体可以照搬设计。也就是说,可以双回路。差别是,在熔盐钍堆里,钍燃料由流动的熔盐携带进入和离去堆芯,堆芯里除了用作中子发生器的少量铀235,没有“分裂核心”(就是燃料棒),而增殖覆盖(绿色)直接溶解在循环的熔盐里。事实上,钍堆也是增殖堆,只是常规的增殖堆是把铀238吸收中子后增殖到钚239,而钍堆里是把钍232增殖到铀233。
; d: O9 ]% k; _' Q: y \
0 R) v% S* g: W" I但钠冷快堆大部分都停了,因为钠与水太八字不合了,几乎所有钠堆都有过漏水爆炸的问题。现在的重点转向铅冷,这解决了钠堆的很多问题,但带来不同的问题,这里不多扯。$ c. Y" @7 {+ f
9 {4 M% u& S0 c$ i! Z
当然熔盐也有特殊问题。高温熔盐能溶解金属表面的保护性氧化膜,使金属基底暴露出来并被氧化。镍基合金、特种不锈钢、陶瓷涂层的保护作用都不是绝对的。如果一切理想,单从隔离放射性来说,并无必要增加冷却熔盐回路。但考虑到实际的腐蚀和泄漏问题,这又是必要的,所以熔盐堆实际上采用三回路,在燃料熔盐回路和动力水回路之间,增加冷却熔盐回路。' i8 V; O) P' M/ u
9 q5 a- k$ @7 z* X! A
% a' C; ?7 b6 z0 ?; H. y
5 c/ T1 j$ j8 F) e! |9 n/ Z燃料熔盐回路的温度高、压力低(接近常压),水回路的温度低(相对而言)、压力高。加上强腐蚀工质,这使得一回路换热器管壁的压力工作环境很不友好,绝对防漏很难做到。增加的冷却熔盐回路未必采用与燃料熔盐回路相同的熔盐,实际上采用对水和燃料熔盐都化学中性的专用冷却熔盐更好,降低微渗漏的危害。在工作压力上,可能也介于燃料回路和水回路之间,降低压力差,减少开裂和渗漏。
( }/ f8 U$ s4 K2 }
( Q% H4 \% o! j" ?5 S. l这是工程考虑,不是原理上的必须。在高压泵的轴承密封上有时也用类似思路的设计,用中等压力的“液封隔套”在轴承的高压液端和常压环境之间缓冲一下。7 n' f8 o6 s# `. i% ~
6 j# u V e% L( W1 A至于第三回路(相当于压水堆的二回路)是用水还是超临界二氧化碳,这就要看设计了,在理论上都可以。水也是可以超临界的。二氧化碳的化学性质与水截然不同,熔盐与二氧化碳接触会发生什么化学反应不大清楚,是否依然需要冷却熔盐回路现在还说不好,但腐蚀问题依然存在。二氧化碳在7.38MPa和31C就达到超临界,但热工循环的压力和温度会高得多。“超碳一号”示范机组的工作压力达到23MPa,与通常用水的火电系统的22MPa差不多,但超临界水回路的话,压力就高达31MPa以上了。从压力差的角度来看,超临界二氧化碳还是有问题,还是用冷却熔盐回路隔离一下比较有利。
2 x6 ]6 X) u/ t0 R; `9 [# O# p* z8 k9 D: [+ O+ y' Y
三回路肯定增大系统体积和重量,但是否就此排除上舰可能,只有更加详细的工程设计才能确定。毕竟钍堆对防护壳和紧急冷却的要求大大降低,减重不是一点点。
- A4 e0 T8 ? ~- ]) J
% x) E# j P8 I# {: s- r第二个问题是钍232到铀233需要27天半衰期的问题。6 R" z6 t4 @: {) [. X
" E6 {" C6 J5 p2 ~' w& P/ O3 n钍堆以熔盐堆为主。也就是说,钍燃料由熔盐携带,在循环中进入堆芯,受到中子轰击,在两次β衰变后生成铀-233,这才是裂变材料,但需要至少27天的半衰期。成为铀233后,就相对稳定了,半衰期近16万年,实际上就是地老天荒了。
( [7 V) ^; H5 a% W j. g; B* p9 w! Q. x
( y+ `, ^" ?2 ~5 ]
# S1 k4 \: c% N/ D+ l这可以理解为“现在投入的钍燃料需要27天后才能生成铀233,这才是有用的裂变燃料”。这段时间在陆地核电站不是大问题,只要保持长期稳定运行就行,但对于需要随时增减功率的舰用堆很不方便。7 r9 H& B- y+ E0 B. l, O& g
. K9 u" N# ^ }; g# B. G铀可以溶解与氟化物熔盐中的四氟化铀的形式存在,沸点超过1400℃,所以在熔盐里稳定,不会“擅自”气化。四氟化铀通入氟气:
+ P7 P! I) T% N+ G: T
& _+ Q1 P! u/ @5 _6 V" p四氟化铀+氟气 -> 六氟化铀
& L/ B8 H$ z" a/ o% N+ }, |
* b4 \4 P) p# k六氟化铀沸点为56.5℃,三相点温度约64.5~64.8℃,所以常温常压下是固态直接气化(升华)。换句话说,在熔盐堆的工作温度下,六氟化铀会以气体的形式与其它材料分离。7 i0 p/ m, t7 ?: d5 j: P+ [
4 B9 Y0 e" [ h: q& d9 S0 X' B换句话说,在燃料熔盐回路里注入氟气,将四氟化铀转化为六氟化铀,在进入堆芯受热时,六氟化铀气化,脱离燃料熔盐流,这就是在线分离的基础。! q- ?% f( f( _1 F6 c
! x: o8 D! x. ^+ {0 I' }) r; d
回收后的六氟化铀蒸气导入小罐(必须低于临界质量,否则就当场现颜色了),冷却后成为固体,即可长期保存。如前所述,铀233的半衰期长达16万年,对人类来说,理论上几辈子都不用担忧“过期”的问题。需要用的时候,把存放的六氟化铀加热气化,再通入氢气:- t" v- M* u) A. q+ b x. ?
h; _, Y* ]! @* E, u六氟化铀+氢气 -> 四氟化铀+氟化氢+ w8 i2 Z# p0 p9 `* b$ N) j2 v
$ |6 ^9 I5 n) F u& x也就是说,钍堆有卖炭翁和柴禾妞两个角色。从钍232增殖为铀233是卖炭翁的角色,把木头烧成炭备用;从铀233裂变发电是柴禾妞的角色,用炭生活做饭。钍堆凑巧是双体合一了。在连续运行中,一面从钍232生产铀233,并以六氟化铀的形式存放起来;在需要增加反应堆出力的时候,把六氟化铀转化为四氟化铀再添加到燃料熔盐回路里,就好比给反应堆加油门了。, }* y* p7 A( \7 V! u
3 N' `, B& a: E; n8 E3 F当然,氟化氢遇水就成为氢氟酸,这是已知最强酸之一(呃,说“之一”是怕打脸,还有一样强或者更强的酸吗?),腐蚀性惊人。加上熔盐本身的腐蚀性,这是钍堆最大的工程挑战。
2 H; Y* m$ b3 x4 F# P" T) _
7 A, H, B2 Q, b, U; j, ~, T; u0 Y据说江南厂设计的钍堆集装箱船上,钍堆系统需要每15-20年停船翻修,才能在抗腐蚀方面“再管15-20年”。& ?7 w$ l5 l$ z/ O
# n5 ?3 A4 u3 J& U4 w) G0 v) S( O% j但最重要的是:钍堆上舰没有理论上的不可行性,在工程上,江南厂也证明了原理可行性,尽管现在还没有物理打通整个技术路线。 |
评分
-
查看全部评分
|