设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2117|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 @- t% l9 W/ `$ E0 {! X# C

    ' }5 P5 m; }: {/ n2 W* _* q* R解释的不错
    8 j2 {6 ]3 m' o! p: v6 ?" u; c, I/ @% Z  G5 S
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - T$ d2 j' L# Z# y4 n) W$ R+ d3 p
    " r3 L* F1 v, O. J' V 关键要素- `$ ~' o; [- ^% y! X, \
    1. **基线条件(Base Case)**
    % O: \" ?6 X, p2 e   - 递归终止的条件,防止无限循环
    3 b8 P0 q& \3 x) K   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ! x' ~- M! ^5 K) C
    : ]* G7 P& ?. x" a' _$ c: u  V2. **递归条件(Recursive Case)**! C" k( Q/ o5 }. x7 u  E7 e
       - 将原问题分解为更小的子问题
    , k+ u5 O0 H$ _! h  O2 E$ i   - 例如:n! = n × (n-1)!8 W% T3 g1 I, y& B

    & c9 F: ^/ t; t2 B+ _  O' P5 j4 J 经典示例:计算阶乘
    & S. @5 ]* ~$ y3 H+ Q" S/ Rpython8 {. r6 H- i* x, \! d) [) `
    def factorial(n):( j) x/ i; Y+ F/ ]. n& j7 o: S
        if n == 0:        # 基线条件: ^  B2 W" b% A/ Y
            return 1
    * r8 W( U. ~0 q( a* W9 g7 p; U    else:             # 递归条件
    5 q3 C0 Z6 ?- H5 f. n: }6 s6 N: r        return n * factorial(n-1)
    0 M% T6 \  L/ G6 _( t1 ^执行过程(以计算 3! 为例):
    3 Q6 y# c' t# e0 p- g  }$ q7 Efactorial(3)
    . H5 R7 m9 }; `4 J3 * factorial(2)# m& ]! D' q% y0 e+ Q$ U. y" `
    3 * (2 * factorial(1))# J$ V" n4 {* h" T: A' R% `
    3 * (2 * (1 * factorial(0)))6 q+ w9 d1 M% z7 P; z% {, H9 Q
    3 * (2 * (1 * 1)) = 6' B* S( D1 n- e1 g" U+ M5 T
    % R- |/ S4 p. K4 o* Y
    递归思维要点
    - O7 T1 T* f3 {8 ^( T1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 c3 s, x% g" _7 H
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; K$ K; N6 ?) |5 k3. **递推过程**:不断向下分解问题(递)
    ; \- w2 i! A1 v9 l4. **回溯过程**:组合子问题结果返回(归)
    $ L+ G3 }# u. ?: T& u; x6 b
    ( J7 v* y; @7 ^" B8 w) \ 注意事项
    ! m6 Q' N- F  Z. A/ ~! K必须要有终止条件6 `) D9 B! ^0 Y# J
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    : U6 R  e. D5 O某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # ~, g. F4 }, r5 f9 @尾递归优化可以提升效率(但Python不支持)
    $ Y+ K( _/ w5 H; ?; [" t5 B# T' i* Z( L6 Q! v  r' j9 k
    递归 vs 迭代) `/ b; \7 U7 h6 S( j' c4 }
    |          | 递归                          | 迭代               |
    - Q. k9 n/ O0 x% Q: r5 J1 D|----------|-----------------------------|------------------|
    " ]7 j: o+ y/ @4 I' y; b' S) N| 实现方式    | 函数自调用                        | 循环结构            |0 n1 m8 D: p$ u- A% X
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 ?$ h9 K; R. q  J; N| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 F7 `5 v* I* D: D2 m" J6 k6 q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ l$ b. Z, d* V# a/ {. S8 p4 b
    4 f8 z5 x% _' k3 c
    经典递归应用场景
    8 Y2 ~9 _: M9 n. f0 O9 T1. 文件系统遍历(目录树结构)
    1 u0 k3 z3 _% S5 y: w& n& B2. 快速排序/归并排序算法
    ' w; b, ~! w6 H0 X3 M# G3. 汉诺塔问题- p  |2 O/ r" E" A9 ^/ f2 u  i
    4. 二叉树遍历(前序/中序/后序)
    * f7 f; ~. g9 k3 K6 C5. 生成所有可能的组合(回溯算法)
    - {. r' ?9 O' V/ }2 O. M2 {. E3 l
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    4 小时前
  • 签到天数: 3179 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,9 @! r( A5 w4 Z/ Q; I- ~
    我推理机的核心算法应该是二叉树遍历的变种。* B& o$ w  R2 ^# r6 J+ f; L
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% p. o6 c3 H* `/ r# a& w4 E
    Key Idea of Recursion
    5 S, m; L+ m+ d6 f9 Q% i, y- k6 }" K& }. ~, Z9 t) N0 a6 b* c& f; [9 C0 M
    A recursive function solves a problem by:
    + R, m. E& `+ Y0 M' t; x* x( L
    8 s, Q! |+ X% q% v    Breaking the problem into smaller instances of the same problem.' o3 k9 {3 Y( O  }4 ^3 x
    3 R+ I. }  T  F% b
        Solving the smallest instance directly (base case).
    & B2 H+ V7 b3 ~" y/ r& u: f/ Y! C/ i& y5 d* Z
        Combining the results of smaller instances to solve the larger problem.  @# O$ I$ a$ G5 S" Q! ^( t
    $ ~: @6 S$ W6 x; o) l. g  S
    Components of a Recursive Function
    5 @% |% p+ z, d4 S- Y& Y
    0 Y$ ^2 I. ?* R4 P. T2 M( h4 X    Base Case:& A. a/ J) ]3 K' V9 P- q

      @2 {8 p0 A, ^# N/ ]1 d        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- C$ c; {* ^2 ?( y8 O0 x
    : d1 T; f& |3 T) \( [5 e  C2 V" J
            It acts as the stopping condition to prevent infinite recursion.8 {% m3 I0 b5 J) B2 z- R
    " a, _0 G2 s! @9 C( [. Y. [0 z* k* e
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * y/ p& q4 C, W9 W  D" x1 e. o/ f# H- R- l8 e
        Recursive Case:6 L8 Q. n% W! O- H
    5 _( f6 [6 J7 h2 f% H# {% a0 S
            This is where the function calls itself with a smaller or simpler version of the problem.
    & j. M2 D$ y4 o$ c1 W# p) A2 O  m. w: L$ z
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).! l7 z6 T4 _8 s7 A6 w# A4 f" j( K

    / O- k( @8 |7 U/ q* m" BExample: Factorial Calculation  M9 q- N1 B7 l
    & d* ^. e! m" I: E7 Y. ^* `; S
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) t5 B+ E6 `( z' [6 i/ [9 g: q% d+ M4 K" V0 s5 j5 s& x
        Base case: 0! = 1" s1 z9 L/ y9 C

    ; ~3 k# I* v' c( F5 [# L) y, ^    Recursive case: n! = n * (n-1)!2 D5 q- n' a) G! d/ A8 D
    $ u4 O; D* N: d; W' n; y$ P  U
    Here’s how it looks in code (Python):2 a: h/ n, B% Z0 K# e# C# x0 F! h5 I7 k
    python
      [; n( _7 o# |) R9 x; A- [& R
    2 ~6 s3 V0 j. T6 f. A* w0 m8 M, U1 ^7 z, I9 [  ~! |
    def factorial(n):
    0 S( `; o1 E3 D1 `" P1 {    # Base case, s/ J" @6 r  Z( p  G) u
        if n == 0:
    ! d1 L  C, F; i: n+ A8 Q9 R* `        return 1
    8 f2 A/ @7 V1 C2 O5 H    # Recursive case1 v+ r  s' Q) A. @7 [& n) X0 O5 p
        else:
    : G1 C8 Q' ]% `4 y! s  p) A* P        return n * factorial(n - 1)' d; S  f$ M3 \9 v7 h4 A
    * u  j7 ?& [; i& s: N; T
    # Example usage7 u  ~0 t; t/ g8 d' y
    print(factorial(5))  # Output: 120
    8 j! t- c# i# r( H& \! `# L; ]  r' ]$ [0 ?/ x
    How Recursion Works! _3 }  M( n- ]

    . c3 \' _. a; t! J$ E    The function keeps calling itself with smaller inputs until it reaches the base case.7 X% b# T; ?' Z  a

    / W  ~( N6 O5 A9 {    Once the base case is reached, the function starts returning values back up the call stack.9 s# K" A/ M/ W$ E* j& f8 @: c9 A! T, W

    # g6 g; m+ M+ q# r2 P" ^    These returned values are combined to produce the final result.
    8 W8 S+ q7 Q7 u: ~; o" }
    ' M) j& n) O5 v0 l7 m+ NFor factorial(5):
    4 L" B. L8 H3 `- `/ i5 G, V" B0 c; e- J. b6 ]3 \8 I- C  b

    5 J, C) x) a6 P8 P& ~' X6 Afactorial(5) = 5 * factorial(4)
    $ \& A2 }6 l' Z6 j3 `factorial(4) = 4 * factorial(3)
    / v' g" @) K# S: S# a- Kfactorial(3) = 3 * factorial(2)
    * ^: Q% |  k) yfactorial(2) = 2 * factorial(1)
    : @7 h# s$ o5 a. i; `factorial(1) = 1 * factorial(0)
    + w& b& W7 \6 B4 D) V/ r% ?factorial(0) = 1  # Base case6 ^% w3 X* y1 c  p3 l7 J

    8 u! o; I& d; @" }( H7 c( PThen, the results are combined:
    8 v3 I# @7 X' w& N$ w" V  J7 q
    ; q/ d) g" n5 T) l
    - k. ?4 `8 |+ v8 @, Ifactorial(1) = 1 * 1 = 1" `9 K% G/ z& L8 X+ b& S
    factorial(2) = 2 * 1 = 2% M% U1 P: G! r; l0 c
    factorial(3) = 3 * 2 = 6; }3 b* |5 C$ r3 j" [3 q
    factorial(4) = 4 * 6 = 24) u% y2 D$ F! V! v
    factorial(5) = 5 * 24 = 120
    * r  K% n  m9 {. c9 ]) j5 R# h1 E
      F' r0 N. g/ D9 I+ I, oAdvantages of Recursion
    $ D% u: G( P* m/ M/ \
    2 l& K6 [" |. K7 \8 g; P, E# y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 l) P; J# B7 t: @( I3 I" v
    ' q& h/ D. D5 O' O( b7 m9 c    Readability: Recursive code can be more readable and concise compared to iterative solutions.; s3 X/ r8 ]% T( X. z3 l, i  [  o
    $ Q+ H( M; K& L  J2 h# I- o. U
    Disadvantages of Recursion" w2 x: {9 C; \2 _9 j( r( B1 t
    + h) a! U- B/ `* H
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " [4 @8 G3 A5 Q; i% s- \3 u$ h& {9 Q* g4 x( Q' Y/ }
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 l2 c8 n/ n! l8 ^# n

    * m# C# H( ?/ T4 F, w) l) LWhen to Use Recursion
    ! [/ ]* w' z1 T6 ~
    % y7 w2 G0 m  `    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    - E4 n/ }( X9 X$ \! u! t# J
    # x8 K4 [! Y& ^/ j( a5 ]  i    Problems with a clear base case and recursive case.- B- Z2 ~+ ~$ ^

    7 U4 c  i- F' I6 e5 YExample: Fibonacci Sequence
    7 w: _* e  \. q$ F; M! a
    3 s% u) w7 c% Q9 f2 B8 mThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ Q5 l9 k; M8 d3 t
    7 B, \$ F$ p* Q( y- {& F& a
        Base case: fib(0) = 0, fib(1) = 1+ X) O9 z# [+ T
    8 ]$ q  E, _4 f4 F
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ q3 V+ x, o  T- r: L! L- ^; [+ e% l! q5 P8 y
    python) T6 D  k9 c/ M. a5 N
    % ]" R% g3 @) D1 d/ P, m( v4 R$ T' J
    . {2 B- F8 o( [  ~# x/ C
    def fibonacci(n):2 N& C* U0 }9 t3 _+ g! T
        # Base cases% I9 o4 ~4 W! E; H& j, ~
        if n == 0:# j: K6 l4 O& H' _5 \2 ~# J6 y
            return 0% T! J# K1 A( l3 |& m
        elif n == 1:
    0 X! F. X7 e1 W; P2 Y3 L( f        return 1
    8 K/ z. K" @7 G$ B6 I    # Recursive case
    8 `7 j/ z; t/ O4 f5 b* _: G    else:% L: d, C: Q( B
            return fibonacci(n - 1) + fibonacci(n - 2)
    ) Q6 h$ w" H' S0 A9 Q3 u
    / |+ e$ C& {. d, c# Example usage
    3 j! g; q( }7 I. S1 Zprint(fibonacci(6))  # Output: 8
    , J. Z. z6 T0 S! ^2 Y8 D# D! `  ?4 {' B3 K, Z4 X2 q8 k8 E; t
    Tail Recursion
    1 x4 [8 W- J6 n% A3 K. L6 z. B% d$ T3 b- {! i* X4 V( F& x
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    0 ~# N* K, j* S+ D( c! Y- y6 x: m
    - g) O5 R  ^" r. h- HIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-20 10:33 , Processed in 0.062100 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表