设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1106|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 Q0 W  D# n! ^! \$ p9 d, l+ b. ^$ `; W- s* p
    解释的不错5 A# W4 N  W& Y9 k- h
    # N& ]+ m/ B+ D; X/ F
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& U8 I9 O% x& A  }

      O  o* G/ d3 w/ a& q/ l/ }. ^4 j 关键要素4 ^1 K" j( T! }) r+ F
    1. **基线条件(Base Case)**
    , v- v7 x6 K0 x$ \) ?   - 递归终止的条件,防止无限循环" `0 }3 X$ g& Z  O) N  W- B' a' j
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 v( o5 e6 y( M1 y0 e& z, N9 c

    " L) I# F5 E* `* ?/ r: |2. **递归条件(Recursive Case)**2 {3 ]6 _/ |  i  c2 A
       - 将原问题分解为更小的子问题8 w$ d+ {. u) u7 q2 G2 u( D3 l
       - 例如:n! = n × (n-1)!
    $ H7 b. s# Y- U3 H5 o1 E7 C$ Q8 U3 }, |3 k7 w  c% `! y  _# m8 V' i
    经典示例:计算阶乘
    6 Q. I7 h- m$ a) N/ Z& H4 ]- G5 vpython
    " N3 ?  p& D! q0 Edef factorial(n):9 E0 e6 |- z* ?& ?& L+ U) J; t
        if n == 0:        # 基线条件: f! e  [6 V/ q" }) E
            return 10 b/ t+ v* t- H7 j6 t; i5 W9 D) h
        else:             # 递归条件
    9 }4 u, S# r1 P        return n * factorial(n-1)
    6 K1 G, g, v2 w6 M% i执行过程(以计算 3! 为例):
    # y4 S8 V* Y. Q2 ~$ cfactorial(3)
    / m$ u! b% `* T* K# q+ i8 \3 * factorial(2)
    # e/ c! a& {4 I3 O% q; u& f/ Q3 * (2 * factorial(1))
    # o7 U- O* A3 w3 * (2 * (1 * factorial(0)))4 M) x7 Z2 F0 [! e+ X7 \  b
    3 * (2 * (1 * 1)) = 6( Z( m( s# ]5 z, h" E

    + I& O) `5 c! D7 Q% i3 D2 Z, j, ~ 递归思维要点
      H  N3 ]7 b: T: I1. **信任递归**:假设子问题已经解决,专注当前层逻辑" y  u+ M' F3 n4 Z7 ~5 `
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + I" {, X: H! i3. **递推过程**:不断向下分解问题(递)
    $ C! o! m7 R9 a, t% F4 O4. **回溯过程**:组合子问题结果返回(归)" d* T  K# m6 o# b2 \" t9 ]: h7 j
    ! {+ e. N; s; p
    注意事项* E* x# N  R7 d, y
    必须要有终止条件
    2 ^$ {& e6 }2 H. R( D- Y递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . q6 x: ]1 w% m" s某些问题用递归更直观(如树遍历),但效率可能不如迭代; a8 R6 K" z* K3 C& q( S
    尾递归优化可以提升效率(但Python不支持)
    9 L# b! S! N) h3 b# A
    1 C5 m. |, C0 h2 W. E9 D1 ? 递归 vs 迭代
    4 H; S; ^# \$ K* ~3 ^7 `1 Z! W|          | 递归                          | 迭代               |4 o# [' k. d+ z  y7 e. k
    |----------|-----------------------------|------------------|3 u5 i0 ~8 z  d7 \3 S
    | 实现方式    | 函数自调用                        | 循环结构            |: t' G; i+ e1 N7 q9 ^
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |/ Y$ b7 v% B# A) p6 u8 p5 p, J+ N# J
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# C6 a! Y( w6 H& V" K  h
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( d  y$ y1 F* p! Y4 g

    7 n6 D) k8 l2 S9 r% {( B, W 经典递归应用场景
    1 X, }- ~7 w- l2 A: s1. 文件系统遍历(目录树结构)
    . O" S$ S6 r* W4 |6 t  a! q+ q2. 快速排序/归并排序算法! y$ c- N' n7 o) ^, z
    3. 汉诺塔问题
    . f6 v- {" |8 Z! ~4. 二叉树遍历(前序/中序/后序)7 r9 Z3 R6 }4 O# M/ g5 \" D) c
    5. 生成所有可能的组合(回溯算法)0 ?, ]# B( V0 I6 J3 _  R/ J
    ! h# e# r: A: y7 j) W2 k9 s
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 07:10
  • 签到天数: 3097 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ Y1 V$ S4 p* J! n
    我推理机的核心算法应该是二叉树遍历的变种。" Z: {% V9 ]" u( D
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ D$ W* [+ B; l! n! p( ]& uKey Idea of Recursion
    " H, {, ~8 {- U# f5 E, D) ^
    ! m% E  c- w' E7 R6 J! X$ g/ |8 NA recursive function solves a problem by:- \( [3 ^4 E: K; z) f

    & Q5 y2 Z+ c  ]2 ]    Breaking the problem into smaller instances of the same problem.
    - z( A3 ?5 y! F, i1 d  E* G) ~  w3 I4 X" `4 z! s- A$ V
        Solving the smallest instance directly (base case).% [: n0 @& t6 V$ v8 F+ b" m( W3 H

    # n4 e( ^) [3 U. _. A: Y/ S    Combining the results of smaller instances to solve the larger problem.) g; u) K. O, U/ q5 N( v" X0 u

    ( T1 A5 w6 K2 v/ a% \8 u$ zComponents of a Recursive Function1 E4 u: Y, n7 R0 N$ m. k2 \1 x, n

    8 S8 B7 I6 V1 o3 O  }    Base Case:+ m: K  j& c- y3 e, k* b/ w

    0 L  D" I" K! `0 Q! O        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 U# o& T+ [5 h& V9 t
    6 X0 F& d( S5 c( S
            It acts as the stopping condition to prevent infinite recursion.: K" u  b1 t7 U3 D2 T1 r

    , S9 r* a/ l$ S8 z$ H( f0 W6 ^        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  w& z. X. f& f# e- E3 R
      q# k$ |: @- B% |/ l* O  L5 M
        Recursive Case:
    * |# v* }* I( `6 u5 s! M2 @7 W: G3 C# n4 Z2 {: M, B  r
            This is where the function calls itself with a smaller or simpler version of the problem.* ^) p/ F/ s: p+ j& U
    ! k: M$ ]0 k4 J8 G# S' [/ X7 L
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    1 B5 `* M/ Y# i7 E6 ^  [: |, i3 v2 ~' [! C
    Example: Factorial Calculation
    ! c* }, u3 e& {/ o. i
    6 F( F. o7 c% ~, h3 L% JThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, i$ V0 e- r* _7 `( |
    ( Q6 h9 G; K' o/ I( r+ `, l
        Base case: 0! = 1
    6 C0 ~1 J% X# G4 F
    ' Z! ?6 _# H# N7 ?1 B    Recursive case: n! = n * (n-1)!
    8 q. S  E$ Y' g* R0 Z2 w6 l" Z# q0 j. [. T- h6 v. B
    Here’s how it looks in code (Python):8 ^$ W3 ^' `7 }
    python
    + c7 X' z% V) V% r, u: M8 K2 q/ w6 Q/ U: l
    9 @* p: @' C% v0 C
    def factorial(n):
    7 [/ H0 H2 G% k) e+ E    # Base case
    1 J; y; m/ s; |; S' F    if n == 0:
    " A8 M% F0 Z' c5 [; o        return 1
    % ~7 T. a) S1 a, p    # Recursive case# y* h! T+ J7 b- `) M1 e
        else:6 P8 [1 P7 Z2 ^& t2 {1 n
            return n * factorial(n - 1)
    ( ]6 y! W' q4 k  H9 K* K2 G5 r' Z7 {
    3 J  C& q; _) f; g2 Y1 K: j8 w( k# Example usage
    5 U0 |+ M0 z& @; m  w9 v" h+ @* h+ u/ Dprint(factorial(5))  # Output: 1208 @7 g  e% D8 z$ m% w5 _
    & U! \5 h  g; j* P4 V' _
    How Recursion Works
    4 Z& O( X3 m/ a) l" S; c! R3 N4 u5 w! b9 @* s) I+ s4 Q, c' Z
        The function keeps calling itself with smaller inputs until it reaches the base case.( `( P1 d( u- e0 q- f

    " D0 e8 b# J7 W    Once the base case is reached, the function starts returning values back up the call stack.4 V6 j8 E6 I( b

    9 t3 [+ g: C- U! I, t/ y4 d    These returned values are combined to produce the final result.
    3 {+ r( i5 S4 \% a
    ; D3 R  s4 q4 S% \. WFor factorial(5):
    ) H0 [2 _1 y1 [# H* p* z+ h3 _7 F3 _3 G/ [" ~6 A

      q: J' w# m+ D8 Sfactorial(5) = 5 * factorial(4)+ T& j/ \: _- i0 ^# ?
    factorial(4) = 4 * factorial(3)' W" T* F* U9 [* \9 `9 S& z4 W
    factorial(3) = 3 * factorial(2)
    1 P9 F' _% U6 k5 o7 {factorial(2) = 2 * factorial(1)6 w1 j; L' i% D
    factorial(1) = 1 * factorial(0)8 W/ x# A# o$ I$ B+ D
    factorial(0) = 1  # Base case# [$ \3 S! T2 E) F- a  E6 @  O9 Y. x

    " r/ U( c% X. N1 GThen, the results are combined:6 V* [5 U0 \* H5 \
    8 g8 j+ u8 r: a4 w
    " h% a/ X( J+ s+ g( t7 `
    factorial(1) = 1 * 1 = 1
    3 b3 ?1 J% ]0 `, J6 e9 Afactorial(2) = 2 * 1 = 2
    # H! C- y5 `; g& a6 |) b5 I' Bfactorial(3) = 3 * 2 = 6# y* [4 L: K/ s1 \) ^; q( V
    factorial(4) = 4 * 6 = 24
    5 J2 m9 |$ X/ m0 Q' Sfactorial(5) = 5 * 24 = 120, u7 U) z4 v8 Z( V6 U  j

    ) n% j! m* [$ h6 {; i; j" N8 gAdvantages of Recursion/ f( K6 J* y9 N2 @( ~) H
    ' i. ]9 E' [$ R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
      s& J  x9 c8 f/ F8 ~+ }
    1 l6 |3 E/ {* }    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + T: C+ D$ T) H9 i' U! ?$ _6 [
    1 @$ o+ ^4 F5 Y' x$ C( r( I, Q/ TDisadvantages of Recursion6 `& L5 ^2 \$ _' ]' }1 ?2 k
    & K$ k9 C1 p# n3 n5 }
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 T8 L4 R/ N7 `6 i! g0 e1 o

    # J4 n2 x- d2 \( Q# C# U/ J. A    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - {  R/ b5 x. N6 ~
    ; c. N( e1 M2 |1 hWhen to Use Recursion
    : Z% {/ d7 ?+ t, N( ~
    4 t4 w* q8 `# R6 z, T; t    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 i4 W! _. O& Q2 d$ p1 ]2 l9 V
    / H* f" R" \6 ~4 Z5 [
        Problems with a clear base case and recursive case.% U* t2 |: u1 P/ j  E7 O8 s

    ) a! C9 {1 i( W2 ]1 y7 \$ ]8 y4 h! pExample: Fibonacci Sequence" p) ~9 `8 G) ]3 e! d# _

    - H4 G; q7 @4 ?2 o" qThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 o* s8 I& o; s) O: T# |, c/ h# l) L# k, w. s
        Base case: fib(0) = 0, fib(1) = 1
    : Z. _' G* Q- f. v: P/ R4 H# l% N1 _. i
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
      \# `9 _$ l  k
    ) ]4 [; l4 Y- g7 s4 \3 D4 `python6 l1 Z# Z2 G- I4 U
    5 b0 J- \8 V, c1 J% g4 K
    3 ?$ J3 G) {' P' h! G, n! l
    def fibonacci(n):
    # W$ r0 D4 l9 s    # Base cases* q5 Q) |. E" y+ r3 V
        if n == 0:& N( n, v8 E) p# U! ?% T3 G; M$ r
            return 0
    ) q4 U+ g* r& u, q# c- o- }& V    elif n == 1:
    . s/ B. x% {2 V9 i3 j        return 1) ?6 ], W$ a( X
        # Recursive case
    $ {2 w; a' T5 ^9 ^  w6 W    else:
    & ?& Y/ r  Y% p5 ?8 O+ T3 ~$ Q1 W        return fibonacci(n - 1) + fibonacci(n - 2)
    0 k/ m) A9 f% W5 m( Z4 i- C# L- a
    ; B& ^! K3 O- K# Z# Example usage6 b+ n' H' ^& X) o6 p
    print(fibonacci(6))  # Output: 8# f/ D; s# T/ w2 _& Y. A
    + h$ \  p/ u$ \* K3 s$ ^
    Tail Recursion
    # M1 g, _3 \8 l/ E" D1 `- _
    7 u: U* l1 n. r; xTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& s7 L0 o$ X, ~+ F6 g- s% y+ e
    8 B0 p. t* r4 }0 R7 m4 f, E; D
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-21 00:31 , Processed in 0.031002 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表