设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1842|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' S" C; g4 `2 u  s) [5 K
    2 p, B* X2 C0 O0 i8 m3 P! o, U
    解释的不错& D* `3 V& D) Y6 c; L/ |9 D
    7 i7 I1 @" f+ h( b5 T
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* |7 P% t! ^* ~1 h

    1 x8 |( T! U& I" D! n 关键要素! t9 F3 T- l  n+ A+ u1 W
    1. **基线条件(Base Case)**7 W: o' {* Z& P+ T  u
       - 递归终止的条件,防止无限循环
      U2 }4 s4 \! y. h   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & {( Z, P) J& x* c  n0 T
    $ X0 F- \9 b: Z4 k# D2. **递归条件(Recursive Case)**& ?9 P  r; F6 c) q
       - 将原问题分解为更小的子问题8 p& T* ~7 n  ?( a" A. Q
       - 例如:n! = n × (n-1)!
    , }% v* u6 b& j# X. @9 m
    7 V! U& s( a9 N) T+ s$ p 经典示例:计算阶乘% R# f0 l. S3 V# X
    python2 O; A0 E- T- m  G
    def factorial(n):
    8 v6 h' ~7 V7 V    if n == 0:        # 基线条件# n4 x: z7 S" @: _6 {1 w
            return 1) a6 c& T$ q$ P# x" y& m) `
        else:             # 递归条件9 z( z5 q% [8 w0 l* }8 X
            return n * factorial(n-1)
    ! D7 B& s/ e  [( `4 F执行过程(以计算 3! 为例):* C2 \" f0 E. v( w, A: \' O
    factorial(3); z  \; _0 Y  r2 I& b
    3 * factorial(2)
    - U) F  w& u/ T& S/ G" F6 \3 * (2 * factorial(1))* P( H( {3 m6 b6 ]0 {( ~
    3 * (2 * (1 * factorial(0)))1 ]' o+ x- ?' w9 w5 I* s
    3 * (2 * (1 * 1)) = 6$ r2 D% k& i' ~3 `' v8 K; g, P0 X& x
    ' v# b8 N: e+ R1 m0 ?, \
    递归思维要点9 Y0 k% k. k" G
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 Q: n+ F6 ?9 @5 w5 U
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' [* U1 [, ^* p2 \3. **递推过程**:不断向下分解问题(递)
    % L3 j- ^8 k7 Q5 r3 C) _4. **回溯过程**:组合子问题结果返回(归)) ]: R- z9 ~8 Z0 X
    3 l& _6 D( L7 }4 j9 \# a
    注意事项- x' `: U" m1 {& ]$ l6 R
    必须要有终止条件
    9 m# z4 B( h" V" A8 D递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 {1 U' h9 u( j4 p% f% b某些问题用递归更直观(如树遍历),但效率可能不如迭代% l- |+ Z2 a0 [% V/ z% t+ F
    尾递归优化可以提升效率(但Python不支持): @  f' Q3 G' e1 S& y( @# n
    , S8 _: g5 p0 u9 N4 R# N) G
    递归 vs 迭代' h4 Y( L9 i6 M9 ]5 R
    |          | 递归                          | 迭代               |  D4 L. X: z; B
    |----------|-----------------------------|------------------|* l: c, ~! m4 [( {: a0 H& @
    | 实现方式    | 函数自调用                        | 循环结构            |( b; Z9 }& D' L. _
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , l) b" J  y8 j1 Q& S9 d  G| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: k6 ?1 D; n- Y4 N5 u
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |; i- c* Q+ ]9 W& o4 }: u
    & {1 }$ ~9 N0 s, ~6 z; O
    经典递归应用场景2 F% A7 Q  N/ c2 P% s; X6 i
    1. 文件系统遍历(目录树结构)" u; X/ u2 o4 n1 l- D
    2. 快速排序/归并排序算法* {7 B$ y" g3 G. T0 K( K) _$ s
    3. 汉诺塔问题: G8 `: f# {1 T, b+ K
    4. 二叉树遍历(前序/中序/后序)
      a2 ^" N' d# E* L% S: a8 j" H5. 生成所有可能的组合(回溯算法)* m5 v2 ?+ y3 q7 k  _
    2 X* w% y! [( \, L. k2 h
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , P9 F% t+ C8 ?0 B, S) z我推理机的核心算法应该是二叉树遍历的变种。
    , N8 i7 W: M3 ]: V  \6 ]另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 E( r* m! K; @5 e% M/ E/ A( y, vKey Idea of Recursion5 P! J8 ~& ^) r5 H

    ' W4 T& I$ z- x" @/ mA recursive function solves a problem by:( B' v3 i& y$ c% k! c3 R

    - E- h4 ^# f( C! {, g" |    Breaking the problem into smaller instances of the same problem.
    # L; y  p7 w* i2 `7 G! p( ]! K( f4 i" B6 `+ R! i3 q7 E1 [9 `
        Solving the smallest instance directly (base case).
    , n) W! Q. i" |# y. {4 C( a1 v1 Z9 Q- p2 {) |6 o* ^2 s
        Combining the results of smaller instances to solve the larger problem.
    - |9 q* ]$ g5 n" c$ v1 T) u$ l( ^+ H/ i. a
    Components of a Recursive Function0 M6 N, W/ I: i: p* @- O

    8 L" n+ A+ X0 K3 x, [/ k    Base Case:
    : ^) n& A2 J& I3 i( H: R/ p, [
    ' Z- Y8 P+ L2 ^; z7 w/ o        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : \6 T3 y4 k) B, I
    # B3 L% r! i) i/ X# c! r3 u        It acts as the stopping condition to prevent infinite recursion.  P  C! u6 ~! ^" F+ ^& G) K& `
    ( N* ^+ K9 `- A: s2 j7 S/ c
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( b; g9 K9 O& h$ h+ j* [* v0 ~6 u9 G# R. \) f0 Y
        Recursive Case:: Q' {7 H9 k7 ~% e8 P( U
    # I/ u) |% J! ^# m
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ D, m. g" {% P$ H  e! N/ l2 P5 `) [! Q, Y8 N2 f7 x  ~
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 O0 t- ?9 H% b0 }$ Q  V5 a) i/ v5 f$ ?7 v$ U9 d. F# X* }% l( {
    Example: Factorial Calculation
    6 ]7 ]* V  \1 a# I
    % U! Q: i3 Q* ^, F4 ~% m1 P  hThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 R/ r  B5 n" L, E! T

    3 z, Z) \  F  W* f+ Y% k    Base case: 0! = 19 K, N: }+ T) X7 s5 \
    7 S6 S  c% o% E, }* M* t2 X  |
        Recursive case: n! = n * (n-1)!
    ( Y% B5 x' X! |# f
    ; }) y. i7 w( m0 L' ^Here’s how it looks in code (Python):
    * U7 _7 Y* O; F  cpython
    : z8 m  A. Y/ H: m, d  ]7 o/ Y+ ?' w' ]5 X/ B
    & y* p0 S# _. M; {9 }
    def factorial(n):; X' u. S1 V$ V( ~5 R. S# K. a/ u
        # Base case
    $ `5 _6 L5 y6 r' h    if n == 0:
    2 F: W/ A3 c7 H2 n* N" a4 O- X/ T9 M        return 1
    " S5 A! W* g$ K5 ^; F    # Recursive case
    " o4 }) V+ N; j7 k    else:
    ' P* a/ _3 H4 v5 V" j2 |0 r        return n * factorial(n - 1)
    4 N9 b% Z( }# p1 O: O2 @9 y
    6 b- y3 a/ x1 Y6 z/ J% _7 Z# Example usage
    0 i- x" K0 y7 K5 p; bprint(factorial(5))  # Output: 120; R3 \7 ?6 w- K; e

    2 q2 k/ P( C5 w  f2 a( f. |How Recursion Works- A/ j, @6 g& W

    . `' S- y  y, A    The function keeps calling itself with smaller inputs until it reaches the base case.
    $ Z( j) V" n# J! B' S. K0 t
    8 q4 s0 S: U) A- j# b) J8 _    Once the base case is reached, the function starts returning values back up the call stack." A6 k3 e; x0 q! ?- R

    " u$ P3 O/ o) ^) o& l$ W    These returned values are combined to produce the final result.
    2 L9 z  g2 V( c3 y6 v0 v( X- g5 d; G" T# s
    For factorial(5):1 K5 [- U% q8 B) K& m

    ! a! l& V  |: v3 y8 t- l6 Q+ H
    7 A' B3 r  f( Z9 v. ?) vfactorial(5) = 5 * factorial(4)
    , a( O; f; K$ `9 o& `% bfactorial(4) = 4 * factorial(3)9 e/ X. Q, b1 E2 Q% c/ u
    factorial(3) = 3 * factorial(2)
    , v$ C, s( F, w. C/ Gfactorial(2) = 2 * factorial(1); |- A% t' |) p' T5 n, T' B5 c
    factorial(1) = 1 * factorial(0)2 i  F$ U9 @( u' E9 d
    factorial(0) = 1  # Base case
    ' L7 R, h- l0 }: Y0 `/ Q9 f; D8 a  w: s$ u
    Then, the results are combined:
    3 g0 Z% p7 n% _% G- m
    $ X$ o' \- |" r
    . r' d! {  |" ?0 g8 `$ C' kfactorial(1) = 1 * 1 = 1" r" k6 T- K) J- e( u1 M
    factorial(2) = 2 * 1 = 2
    3 V8 E2 K+ L6 V! E$ _factorial(3) = 3 * 2 = 6/ ]' o2 g/ X. z, i
    factorial(4) = 4 * 6 = 24
    ' R; K0 c/ @5 i& Y2 b3 R6 Yfactorial(5) = 5 * 24 = 120, D7 B$ D2 q  Z' m) j5 x! M  k
    . ~4 f* C+ `4 H7 Z9 {) E
    Advantages of Recursion! f0 o# F5 Y3 G' W
    0 s, m9 K; Z- ?2 A
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& I# N! J' I- Z$ T& f
      u, d+ t0 l2 [, g/ C
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % Z+ X: W6 @5 p9 L+ Y' k
    5 t: `( p1 h! B7 @1 t/ ~Disadvantages of Recursion0 z3 A* c* ?0 N7 \; D* O- {% v

    6 P3 B) F  N6 A3 ^% l/ {    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* C+ O7 L8 @. O( k: M  ^& e4 g
    ; b, _* d/ g9 v3 r7 U
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 {; t3 O2 g* d' ^: v/ ^
    , R' l# }- _2 L5 C' ~: s: W* y- ZWhen to Use Recursion5 x( Y: j  }* u2 W6 x' s$ L  u

    2 z1 c1 Y+ y: t; Z* t    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      n8 g: y# U2 h( {) d8 ]9 \% j$ G4 g
        Problems with a clear base case and recursive case.! c+ \( o; w" ~3 R( g, X  Y- C
    1 A7 U9 P/ F  {6 w. y1 w
    Example: Fibonacci Sequence: X! Z' h0 b( ?' N
    ; @6 I3 F) d# G3 U9 i6 O
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) ^4 ~/ s9 R! H3 N& ~
    1 _8 N1 b. B# ~: |- ?6 D7 C; ^
        Base case: fib(0) = 0, fib(1) = 1/ y; j2 ^7 V8 x4 o4 x; K
    ! t( a( g/ H" J' X6 g: p, u
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    4 g, b0 s: B  I, k  ]% b3 f. t
    . ~  Q1 e( G8 E( U6 s; o  L4 Epython3 N  k+ y/ p" h" i- F1 x
    , X  a& l2 |& g; M

    0 X! L- c$ K: J6 [$ R, ?+ xdef fibonacci(n):
    ! ^( A' f" p3 E0 B% r    # Base cases$ Y# \% I$ v6 G" |8 S* |
        if n == 0:
    5 L, O$ u; L- O0 Y. ?: ^        return 0: D% F+ Y2 @; h8 q9 T
        elif n == 1:  s/ k- k( `: J  w! w
            return 1+ y+ L6 j% o, [& l: E+ z' B  `* f' V  t
        # Recursive case
    - b! q0 ]* ~; ^7 [7 D    else:2 T3 X6 c/ B7 y* U9 W0 X7 b9 v
            return fibonacci(n - 1) + fibonacci(n - 2)
    4 o' {! a$ c- y9 H! j. b) K
    & Z9 \+ {' g. c7 S4 j  i4 I! s# Example usage
    , Y# d& ?7 I% Z( m' J3 zprint(fibonacci(6))  # Output: 8
    . {) I# F, V1 M( R; R/ o9 H! L2 \+ n0 w
    Tail Recursion
    / n, j$ B- r% s) ]0 i' e; @0 x# H* P8 ?" z4 E
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* Z# E1 M3 {  k: K

      Z2 _8 g' e) \. Q$ P" y  tIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 04:09 , Processed in 0.031329 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表