设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1949|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : `6 b8 |: k/ a/ H# e6 [9 _
    $ Z1 W) U& n, l6 N% [
    解释的不错* s$ A! j. S, x9 `9 Z- h9 g9 {% I

    8 s  f# S8 C8 ]% O% t* d8 |递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: G1 y1 j) [5 i. o, E
    . Q1 m8 ^& p6 C" Y( c7 S# u* i
    关键要素
    . m& _( O8 a, |  w5 v% }4 l8 Y9 X1. **基线条件(Base Case)**9 B9 @% l( u! h
       - 递归终止的条件,防止无限循环2 R; Z/ j7 ~# ~$ ^0 ^
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& a' ~6 V! N/ \" {( y$ v, l
    / w' z& [$ N+ s" [& w
    2. **递归条件(Recursive Case)**9 j) U9 w2 \6 f* B
       - 将原问题分解为更小的子问题$ Q8 B' J$ q( `! ]
       - 例如:n! = n × (n-1)!
    9 I3 a. H( d5 w2 v  n- T6 G
      B- Y- t# x3 O& Z: U 经典示例:计算阶乘
      Q. u1 Q* O9 f# l, }$ X, qpython. D5 a9 n9 n  {
    def factorial(n):
    1 ~3 o2 u$ a% `) M4 }$ C    if n == 0:        # 基线条件1 K2 {% W5 N$ E0 L1 q
            return 12 i" L8 c5 E( V' G7 r5 u
        else:             # 递归条件
    1 e* E3 U- Q' f! y# V, B0 ~1 X5 e        return n * factorial(n-1)
      E& P9 D, D$ i7 C2 V; U8 Z执行过程(以计算 3! 为例):
    - j" W2 w% [' |. G0 m& R6 S5 Mfactorial(3)
    1 O5 S) w; G- y) y3 * factorial(2)! Q& Y) \' p3 K9 o/ ~  B6 a
    3 * (2 * factorial(1))
    8 a2 Z2 O2 \: J4 p' [$ t8 x  C3 * (2 * (1 * factorial(0)))" p: ~0 z, ~7 w  j9 N- n9 F
    3 * (2 * (1 * 1)) = 6+ `7 c5 d) q( u' N
    ! o. L; s( @5 H: R  D# x7 j8 M
    递归思维要点
    3 r8 p6 C) m* Y* ~) D1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 q" d. ~. D. m& k5 \
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 f  w; [3 e9 i" k; {; o/ S3. **递推过程**:不断向下分解问题(递)
    ' T) y* O2 j2 r4 l4. **回溯过程**:组合子问题结果返回(归)3 S7 k' @* V& Z' v$ q4 V
    / r  f; K+ Z& K* Z
    注意事项1 m4 C$ V" f! v5 b) @
    必须要有终止条件$ i1 a- g, g, O' o
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - V' ]' Q) i: X# v: r' {; N某些问题用递归更直观(如树遍历),但效率可能不如迭代/ F5 S0 g4 d: r0 Q! ?- @. Y
    尾递归优化可以提升效率(但Python不支持)
    % p- S- H5 K8 c. T5 v2 C
    # z. C# O8 D9 r 递归 vs 迭代) p/ Q, o! g3 X, U
    |          | 递归                          | 迭代               |2 K* \) g: H1 x
    |----------|-----------------------------|------------------|& c0 u5 @. j5 v. c' I0 `, E9 i
    | 实现方式    | 函数自调用                        | 循环结构            |
      i/ \  b  P6 H1 y- q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) |/ L+ Y$ K  A3 m8 q5 n
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; d& M2 Y0 t" L9 r
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : s4 n7 j8 H5 T% \$ d% }& o$ d* P8 }% d9 }
    经典递归应用场景7 j  o( O! H; f
    1. 文件系统遍历(目录树结构)
    6 X& Q0 R; N! {3 C2. 快速排序/归并排序算法
    8 V" L) v/ {+ J& s; |! g3. 汉诺塔问题1 ^: ~! j) o' J
    4. 二叉树遍历(前序/中序/后序)
    " `3 n" k3 M7 f& T5. 生成所有可能的组合(回溯算法); \) Z6 V: @& }" |5 M

    7 M. m0 D) o2 e- p# e. T  t6 t7 m试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    5 小时前
  • 签到天数: 3154 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ! l: i7 I0 o5 H4 o; ?6 M我推理机的核心算法应该是二叉树遍历的变种。5 v5 {# v$ ^7 }( e- k
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; i$ }* I( c8 P- j/ x" jKey Idea of Recursion
    9 Y8 n: q. A. b1 k, c3 U) t. w4 M& p
    6 z5 v( A2 m( ~2 w. d- h% J+ Q# YA recursive function solves a problem by:5 f) l0 k) ?& [* V5 w) o$ B5 {+ j" }( e

    9 w# ?9 L6 d: _: W    Breaking the problem into smaller instances of the same problem.$ J. n7 I1 O4 P; |; {
    * _1 d/ b: C7 ~! \
        Solving the smallest instance directly (base case).
    & E- n/ ~% b9 `0 |; w' T' c* Q* G9 F# o( E- I8 L/ w( x
        Combining the results of smaller instances to solve the larger problem.$ Y. n" V7 G6 x
    $ X3 t9 ]6 x3 P% O! w7 h& B3 a
    Components of a Recursive Function$ m) o# z+ @3 o1 e
    9 n' H# \% U0 k) \
        Base Case:. T- Q3 S; x# u$ W" F2 ?: m! K

    8 ~- U; s+ q3 A  f2 V* `$ O4 o        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # A% N- l- u( b; W! F5 e; p$ S2 `$ A
            It acts as the stopping condition to prevent infinite recursion.
    - r, T3 D5 F/ I4 r/ \0 K& u: q+ Q5 J% P' v5 i4 G* c
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    7 w9 Q  q( U9 M* k* B" f: g1 c# n  L9 E- {! J% b* _
        Recursive Case:
    # [3 T6 D+ T) K
    $ m) d# ?; t, C" M; ~# n% {        This is where the function calls itself with a smaller or simpler version of the problem.3 e1 {5 G, a( [

    ; \+ q' o0 K! D        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 Y0 G' [$ K  w: I( R' c

    ' A! C8 t2 i. o' i9 Q& mExample: Factorial Calculation- l" o+ |& ^3 h" R1 N

      U5 ~4 H; B" O$ ~+ l1 J3 r4 c/ vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ! m& i9 e) ~6 [  m( x( e' A- n# z" O$ o
        Base case: 0! = 15 o' p# g6 T; x0 u4 k% U! [( S

    3 E8 Z  ^* t7 c6 x  H. C    Recursive case: n! = n * (n-1)!
    6 w: [% V  a3 V( g: @9 A2 L6 U9 @7 M: S- `9 ~
    Here’s how it looks in code (Python):
    ! S/ s* e* T( g9 c: Y% I. U8 K8 Qpython
    # `3 {% m" Z6 Z6 W$ F, Z4 H4 K) L$ q. l8 q

    " h) K! U" Y8 z" K8 N  Sdef factorial(n):
    " }4 U$ w) {% {3 a$ f( v* w    # Base case
    8 O6 W  m: }( ]  }/ t5 n    if n == 0:
    3 k$ q- t3 N% I' e        return 1
    6 U2 t$ C) E1 Z3 v    # Recursive case
    ) G& f$ X) }: A# |- I    else:
    3 i( W0 y8 {% d        return n * factorial(n - 1)4 ^' n0 p/ ]' N3 x, `
    & A  \, B1 f- x& I4 n
    # Example usage
    8 E% o3 X* W% I. Hprint(factorial(5))  # Output: 1201 g6 Q% v4 f/ v8 O/ e6 P1 {% B4 H

    " ^# }& l, ~7 d$ R1 CHow Recursion Works6 I' x5 L% ~2 U& N/ D
    0 t. R1 r1 V3 _9 I
        The function keeps calling itself with smaller inputs until it reaches the base case.# ^" U4 I# K# b6 B7 `4 p

    / L9 h/ r( ^4 e' p$ @- R# y    Once the base case is reached, the function starts returning values back up the call stack.
    5 L/ A' F  K( c" M$ l3 q% I4 j+ X" L' m! B- `8 a, S
        These returned values are combined to produce the final result.
    " ^: s3 o3 V: N7 Q7 Z; s  [! V* s9 g) c) Q0 A
    For factorial(5):
    ' ~- P: ?: P# x- {/ P) p9 g. w, S2 o# Z$ ?% E. @/ m
    % }# q' u' T4 z1 i5 o. |+ s
    factorial(5) = 5 * factorial(4)
    / R( M& ^4 W* G0 B5 W4 ~3 X+ Yfactorial(4) = 4 * factorial(3)
    7 w4 S7 V$ t. W9 pfactorial(3) = 3 * factorial(2)
    4 f+ V* f4 V. @) ~factorial(2) = 2 * factorial(1)' k& ~; [& P! m
    factorial(1) = 1 * factorial(0)
    ) N9 ?( F+ b( M) k# ~  K& \factorial(0) = 1  # Base case) r6 }2 U7 J- |) I7 T3 B- L( o

    ) y/ j5 f6 _  a* pThen, the results are combined:
    ; e$ R1 r. ]; m) H1 h
    % F2 k1 l$ y1 g* w. s9 S
    - `  z' p, Y6 ^4 {+ @! Lfactorial(1) = 1 * 1 = 1
    * x, Y- `, f9 g" J8 g6 O  E. Z9 @7 Afactorial(2) = 2 * 1 = 2
    / u9 p5 [# B$ Q6 X: n. w; I/ [5 Kfactorial(3) = 3 * 2 = 63 z+ R2 q6 O4 {4 j% N' q" j# k
    factorial(4) = 4 * 6 = 24
    ! K8 J8 e: P  P- S" L5 afactorial(5) = 5 * 24 = 1209 s3 Q9 Y0 T5 x1 ?0 h/ l
    2 L& n* l* |3 V% S; v, b
    Advantages of Recursion) a( f6 I2 k0 Y! N% Y% h
    , L& K  J9 y& R. e4 A
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    / G$ r4 p  Z( N9 H* k+ x& p! r) |% C& u4 X6 ]6 w0 @
        Readability: Recursive code can be more readable and concise compared to iterative solutions.' L) S" y# C. r9 {8 u
    ) k) e6 K" y& u2 E
    Disadvantages of Recursion
    ; i- D/ G7 w( H! p0 V: i4 }) B& }
    : R( Y2 j+ \" w* ~( U6 `; T    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 l1 i. V; P2 X( w$ U& d* Y( U3 I; l6 v9 h# {' ]% f* Q2 w, K
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! n/ C$ n2 q& G, Z: J7 C" s) p2 R

    ( l! s. _8 X  E) z! y) [% c& k' x7 M8 lWhen to Use Recursion2 y" I1 y2 r, V) H" K2 |

    7 F6 m) A. k4 d* y/ t# g  F( X    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ G# }; ]2 U, ]0 R
    ; w- \! k1 M  ?. g6 f: f3 v5 X/ Q
        Problems with a clear base case and recursive case.
    0 c& g3 J8 P+ v5 B8 C
    9 Y! |* D+ x" C; ~" @' g$ T2 R4 I; |Example: Fibonacci Sequence
    ! c$ `7 e5 v& t8 Z
    5 A4 {& }9 y; L8 S7 XThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& C5 P6 Z; c* e  S# e6 ?! v0 a
    2 ^7 Q( J3 X% ]* W8 S6 e! [
        Base case: fib(0) = 0, fib(1) = 1- m; s+ D' H. v+ |- W. y# ~
    8 n1 |+ }' b* C" P
        Recursive case: fib(n) = fib(n-1) + fib(n-2)6 }; x1 g; v0 |& u2 r
    * R" t3 E' S9 C" k9 b) X+ H2 E
    python
    " D2 K  z7 c1 I7 C7 L# k) F3 |3 E# q& ?+ \, r4 {+ I+ h  n- o
    $ X1 q9 `7 ~1 C# c0 V( L' s
    def fibonacci(n):; V& s" U* s. R! {; n( _
        # Base cases
    5 B0 [9 T# v2 b+ w+ J/ G9 L/ S9 x& q- X. [    if n == 0:
    * n# V# q) \- k+ x* g2 W% Q        return 0
    ; _+ e- }% M6 r! G$ n4 T- k" N+ m    elif n == 1:0 {$ b; [( e% d! N' p8 D& H2 L
            return 15 l! H' r8 u3 S6 O4 y
        # Recursive case
    * n/ v, D6 m5 J& D. ~  ~$ d    else:
    & {( e: o' _2 t7 w" A        return fibonacci(n - 1) + fibonacci(n - 2)
    5 G: K1 E4 ?) Y6 r/ X
    " ?2 p  ]; L5 R( g6 Y# Example usage
    ) a. p# ^) m9 C# Z7 j& Q3 l& Y4 I- nprint(fibonacci(6))  # Output: 87 {# H; }7 j" O0 x: E
    ) `4 F0 p% i) x" x3 r
    Tail Recursion5 y. v+ @; O3 r: s; v

    ! u$ Y  P2 Y, R; _Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. Y0 g2 U, o: `3 X: z5 }

    0 D1 ]2 v  o, h. ]8 v. i' Y" d6 BIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-25 13:16 , Processed in 0.059925 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表