设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1478|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 {" k# A% w) H0 J9 z2 e
    0 t# [4 H: @; w3 O2 l! Z. n: S
    解释的不错
    4 v) _1 P/ z8 X/ ^' n! m6 T7 h/ g! s* I) w9 k
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。6 Y: @# Y9 o2 l/ s5 Y4 I
    ! O- R$ i6 {4 Z; d+ H  J9 M
    关键要素
    5 U9 P; q2 f' y/ c. l# @' {1. **基线条件(Base Case)**/ B0 r1 [7 p" ]9 I( S9 R
       - 递归终止的条件,防止无限循环
    & @$ C7 a6 X1 r+ P$ d' }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 n1 w) R* [9 S
    6 G# }' Z" O  k2. **递归条件(Recursive Case)**5 h7 J% W- P# t# C* j
       - 将原问题分解为更小的子问题& Q, L- B9 C" \5 g6 ^5 r
       - 例如:n! = n × (n-1)!/ E% c) g5 x* `& }

    & }5 b2 C6 Y( T4 K% } 经典示例:计算阶乘
    $ ~, g( J; O. w6 e' t" l2 O) P5 Apython) r6 P2 I/ b7 Q% Z. \# X4 \
    def factorial(n):
    ( V& M  d/ c7 @2 O# P  u- F2 Q, i    if n == 0:        # 基线条件4 U- D- `, d9 t' y3 t
            return 1' V+ a* F3 p9 A; p
        else:             # 递归条件+ K# D! s% L& s# J
            return n * factorial(n-1)7 J0 A; O- e3 K  w8 N2 h! q( D" ~) U
    执行过程(以计算 3! 为例):
    / a( o6 P/ v6 s% V7 b9 V: e# j! zfactorial(3)1 u- l  p5 h; O, K( F3 Q& w
    3 * factorial(2)5 {2 f" R" n4 @2 Y
    3 * (2 * factorial(1))) |& B) @0 |* W# v+ U! Q9 I
    3 * (2 * (1 * factorial(0)))
    0 l) E; u7 }' ~5 {) a3 s( E# y3 * (2 * (1 * 1)) = 6' [* \0 O, W: g8 l* l0 J

    2 F0 H& o9 q0 [8 M' x 递归思维要点  \1 n. m1 _. K3 D* r  k0 Y8 ]
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑" D6 ~0 ^. S% R7 I* p
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; c# F: A7 v8 V6 |1 H; W3. **递推过程**:不断向下分解问题(递)
    ! Q( ]: X5 s8 F7 X$ F4. **回溯过程**:组合子问题结果返回(归)
    0 v, D& P5 H& \; S" B4 L
      F' z8 A( V  k) H( ^9 b4 c8 o 注意事项
    ! Q0 \5 w6 @& t1 T  B3 \( i必须要有终止条件; `! ]; v0 M6 w6 K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) S0 F' a2 X7 e某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % P3 s6 Y# d7 J- U) s* K尾递归优化可以提升效率(但Python不支持)& c' k2 d+ W5 Q9 H- o0 u) Y
    9 o$ w5 w) |8 ]  k1 ~' J+ ]
    递归 vs 迭代  h1 ]% {/ z/ E( H, N) a
    |          | 递归                          | 迭代               |
    2 B, c8 `: T8 }3 U|----------|-----------------------------|------------------|
    & P; s/ M$ T8 b- u+ S& U| 实现方式    | 函数自调用                        | 循环结构            |
    ; d0 b( f) G! c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( r5 ^4 T4 P5 v8 u4 z# Z! z5 k
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ A7 X6 g. o" a. O5 e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . i. G; L6 p8 L* r' Z
    # ]( k$ z4 \7 L* A) I& {2 m 经典递归应用场景6 a% i  [4 |# T
    1. 文件系统遍历(目录树结构)
    8 _/ h! B  I8 [5 M$ x4 K2. 快速排序/归并排序算法1 B: X1 V: k2 Q' K  C  w
    3. 汉诺塔问题
    + B9 s1 B# \8 m6 r4. 二叉树遍历(前序/中序/后序)
    6 U7 k. k/ r. A6 G, H5. 生成所有可能的组合(回溯算法)
    9 y. h: b, e# l# [' f" n! ~' j2 X6 ~& |( e
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: S* {$ L8 s9 i6 I' L0 W
    我推理机的核心算法应该是二叉树遍历的变种。
    1 E2 e0 \: r; S& F6 c% t2 H. P另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 P/ S2 i) w7 Y  `# g6 u& i
    Key Idea of Recursion# h6 h0 h: g# B: N1 S+ e
    8 d0 E$ l) d' n2 m
    A recursive function solves a problem by:
    3 `2 V- R$ A+ N4 T8 x3 Y" j- D7 U1 Z, Y1 s$ y
        Breaking the problem into smaller instances of the same problem.
    # n# [3 B7 E: c% ?) w# H5 M
    ! L( ]( o# w- n, S    Solving the smallest instance directly (base case).
    3 W+ T+ J% e& [7 L
    . n$ a2 z  N' l$ H+ S    Combining the results of smaller instances to solve the larger problem.  s: o  d+ i. m( z$ Q* v; g; E
    : R1 n+ p; I9 Z% i! I+ P1 m9 R( [
    Components of a Recursive Function
    9 U* s& M8 A' u
    ( A0 T, A$ D! ~$ J# s7 J    Base Case:
    ( }7 Z5 Q4 f1 y0 r- Q
    $ V& r% C& d. G8 L* O5 h        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' o/ j4 K& J6 Z5 W  G& W* b
    " P+ U. J1 F; S+ T& U8 p        It acts as the stopping condition to prevent infinite recursion.
    6 p' j1 W! s/ q- S0 @2 ^& b' H0 u% Z/ }6 ?' C5 B
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 R3 `  ]/ O& C* d
      u9 |9 I1 d( _! }5 k! |6 Z7 p    Recursive Case:( g4 k- S) y3 y7 f4 W

    1 @  B$ X+ \1 B2 n1 M        This is where the function calls itself with a smaller or simpler version of the problem.
    6 F  h: x5 S( K/ y* b, K, V8 f, L) M" H
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 h! ^8 n6 g3 W# N' n
    6 t8 Q2 m" ]4 @$ U  |1 q8 v
    Example: Factorial Calculation
    1 ^4 B9 `( ]% F, H2 m& a
    ! L& b  o( G- Q4 U9 @The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: ?( h4 b. F3 |0 w( B+ R4 m5 d- r
    $ G5 z* b% I  q& r6 w3 M
        Base case: 0! = 1
    ( L" N2 n8 a, F3 P! Q) b3 ]: U2 ]  L1 D( [
        Recursive case: n! = n * (n-1)!. y) Z5 t, o/ P

    ! {( l: o( q* G' {8 \" oHere’s how it looks in code (Python):; o" m9 N3 h, Q3 g# ]/ @
    python
      C) H5 G% @: r
    + h6 V3 p* L/ B; T
    7 n, N% U( G; h! B& d+ Udef factorial(n):9 g7 A8 c4 I/ N. B
        # Base case& k6 r3 }  A; c( `( x/ B
        if n == 0:
    # V7 t: Y5 U" ^+ y' Q        return 1: p2 t3 Q; o* Q; T% I4 e; w
        # Recursive case2 _" M- O; I" n+ x1 Z* }* l4 f/ Y
        else:
    3 J: ]5 v7 l# R1 N        return n * factorial(n - 1)
    5 C/ @. I9 T6 T1 ?" e5 H/ M1 a2 f7 J, v6 N+ l: d/ _1 N1 E
    # Example usage/ ~7 [) G: S1 R9 ?) Q% _
    print(factorial(5))  # Output: 120/ A$ Q, t2 w' h' M3 v& w
    ' A. d- i* I- g; m* V8 h# O
    How Recursion Works
    ) ?  i. D! e8 m$ y" r1 V8 w& b2 e6 Y: B* p. ?
        The function keeps calling itself with smaller inputs until it reaches the base case.$ S9 u) X2 i0 [

    # @$ ?5 u; I# c1 X4 M: _* s    Once the base case is reached, the function starts returning values back up the call stack.
    ) S3 W2 }/ x1 E7 q9 z- Y
    3 l* `0 m4 `5 W# [: G) I- e    These returned values are combined to produce the final result.
    4 a3 X6 G3 ~  R5 O( v4 Z9 o" U  R8 F/ l. h, q0 r. N; D
    For factorial(5):
    5 m5 B+ ~7 ]/ N8 p& O% w
    ! w4 D( r( k8 T9 @/ b
    3 Y1 A* {" d9 A, U- Bfactorial(5) = 5 * factorial(4)
    , n. z- P5 h: \9 J1 D, [& [factorial(4) = 4 * factorial(3)/ Y- n1 q3 V# {: P8 s$ d- ~4 ^8 [
    factorial(3) = 3 * factorial(2)
    9 E/ q8 A, H8 U) r, gfactorial(2) = 2 * factorial(1). Y+ W( K: E9 }* J: s% a' B
    factorial(1) = 1 * factorial(0)
    2 n% [, G  y: Z) Ufactorial(0) = 1  # Base case+ v; r8 |# F" K- ^

      |% X  F3 V8 P' D& XThen, the results are combined:
    * B7 \) y0 `( L+ r8 e
    - m/ H9 g/ ^$ x' g9 C+ W' W5 J* g8 Y  N$ H8 z* y: J1 w
    factorial(1) = 1 * 1 = 1
    & \9 f4 S) }7 `factorial(2) = 2 * 1 = 25 I0 W% b) p' M
    factorial(3) = 3 * 2 = 6$ d& x! A9 Q  o4 Q; e
    factorial(4) = 4 * 6 = 24
    9 @' U, D. q7 R4 ]) D) Y- tfactorial(5) = 5 * 24 = 1203 v4 H& m. i8 t+ [% }, T# H9 j

    6 {6 v0 W. @1 y- r+ A( z# j- _' R  GAdvantages of Recursion
    ! _7 l! k+ `; p% J
    9 C. X5 G; T2 H. J    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) c1 X2 k$ L3 X! j/ M2 g- ^

    . b5 N+ L4 B5 D: U6 L% h    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 S% M8 v6 q3 f+ b" c- C5 i' j- ]" P
    Disadvantages of Recursion
    ( ]+ R8 _  Q0 A9 j' O2 d: W3 |: G# }) x2 T: b
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) V$ p2 E. s' U" K# Z2 k/ ]" r
    : V8 K0 [) Z1 b/ |% h5 @! [4 N1 o
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ x& E- m$ M$ }2 ]: s5 ~8 `! G

    ' r1 P. p  M5 {  m  s7 yWhen to Use Recursion7 b6 m, F+ c1 I1 W
    0 I; j0 l  T. e* j# e9 K1 C, Y  i
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* o% A( ?% m1 c5 n
    1 M8 x! [8 Y9 M
        Problems with a clear base case and recursive case.+ m. E' l% N3 U- J8 {
    ; _/ W. G- ~' g
    Example: Fibonacci Sequence& I4 z$ X+ n9 V1 M0 `- u
    2 C! B6 c7 ?' Y
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% e, l6 L+ o9 h
    : M" K  c. L5 P5 c
        Base case: fib(0) = 0, fib(1) = 1
    - I8 h( s, H5 ?1 A2 s7 {0 U
      ?& n6 T$ u( h    Recursive case: fib(n) = fib(n-1) + fib(n-2). O  |/ C9 \6 m8 g

    5 a/ Y, ~3 q8 `# _; z5 jpython
    , l+ w9 N* Y  u7 Y1 Y6 Y( u: A
    ! N& M- k% V% r3 Y6 d& Y
    ; D0 `& r$ p- x3 K& U, `3 U  `% S- pdef fibonacci(n):& [3 J* \$ _; C4 r& r+ m
        # Base cases
    2 ]& a  G6 J9 _( E7 \5 D3 ?    if n == 0:" [9 P; G' Y2 ~6 f- p' g
            return 04 Q4 e- m5 a) Z4 m5 v% Y0 q% b, c
        elif n == 1:
    - {6 d$ @: a) W) Y/ ?        return 1
    8 X* @5 m: A, o2 _! ?7 {, E* ]    # Recursive case
    # V* K9 P" {+ j4 G    else:
    " \! n7 @4 ~- |% J- z$ d# P        return fibonacci(n - 1) + fibonacci(n - 2)& Q4 F8 _2 \; X
    6 a) ^& l* V+ E- [
    # Example usage
      G, j4 _% n; u1 Xprint(fibonacci(6))  # Output: 8# w1 \( H8 ~1 C* p* x  m$ v' k  C
    $ e+ s% }  O$ q1 e! b( Q
    Tail Recursion
    , A  s/ K" k& E, e6 {5 K! I0 U; L; H3 O0 T$ o: E7 t
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ \' m, `& W2 q9 K6 ~" B6 R  s2 z# p2 O8 i0 r8 O
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-12 05:28 , Processed in 0.036361 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表