设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1524|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 U3 {; X+ r! }

    # d% V$ B6 h+ G. F. j  y6 t! L! b解释的不错1 W+ U! @( [6 c: f" T) p' Q
    " H% P  I, B6 M0 ~- U! v
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % Z; X3 G7 q$ B: f% s6 k4 t1 ]+ |3 W- v/ d" s8 S
    关键要素
    , f6 `/ D3 s0 r1. **基线条件(Base Case)**
    0 I$ }/ w- P6 n8 T' ~" m   - 递归终止的条件,防止无限循环
    6 t) v9 i4 ]2 Z9 D9 o& ~& j   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1" c" \1 q: R+ {% D1 Q

    , m$ W6 h. z( q; d% F) ~9 r2. **递归条件(Recursive Case)**
    3 T7 L. x8 Y# E% I& \   - 将原问题分解为更小的子问题
    0 ?; y" P1 z0 W4 d+ A0 I8 x   - 例如:n! = n × (n-1)!) q+ h2 F. v/ x5 \/ V& G
    5 h2 s% _" D, x# F
    经典示例:计算阶乘
    1 [, q+ ?; r7 y# t+ _( Z; ~python) V- ^0 ~% A% ?7 V  z2 T0 [* q
    def factorial(n):
    : g  p& ~& w# K8 Z( ?4 O    if n == 0:        # 基线条件4 r+ s' x! N; ?
            return 1
    ; F/ i  [) k" z1 A0 ^- F    else:             # 递归条件
    $ p" M6 K3 s; {# f! Z* S        return n * factorial(n-1)& d6 d6 P, r; \) U: L
    执行过程(以计算 3! 为例):: }2 b; G; u1 z/ ]; f0 t7 _
    factorial(3)
    : c( ]' d; G" q1 |5 C% o' v/ T+ @' |3 * factorial(2)
    1 K8 g' C$ v: M# \  R* t! e' Q3 * (2 * factorial(1))
    ( |, n' P; v# r  D; U" e3 * (2 * (1 * factorial(0)))
    % b  G; d: I2 a$ }) p, i3 * (2 * (1 * 1)) = 6
    1 ^0 f3 Z( D# Q5 |7 u$ K; Z+ s4 o% a9 U9 s2 U9 q; v
    递归思维要点
    ( c# h* A2 R& Y! Z( y: A( h1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ z  P9 c- D( y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; [8 Y2 `6 F! @2 T8 \- W3. **递推过程**:不断向下分解问题(递)
    " q# _8 |7 o. s# z: ~$ ?4. **回溯过程**:组合子问题结果返回(归)/ Z: u0 ]; O% I2 J. p
    2 R& l0 `% t; r7 y
    注意事项
    % j' x0 a7 \5 W  }1 {必须要有终止条件
    * ~; I3 L/ B/ ]2 i9 {' }递归深度过大可能导致栈溢出(Python默认递归深度约1000层). E9 s  n. O5 x  S8 k
    某些问题用递归更直观(如树遍历),但效率可能不如迭代5 t  k8 J) E0 c
    尾递归优化可以提升效率(但Python不支持)
    ) s; U6 V+ }! m8 C7 o- {  s. a" D8 y
    递归 vs 迭代" u$ x, L& P( w. ?) L
    |          | 递归                          | 迭代               |
    ' }- I! C: z4 I|----------|-----------------------------|------------------|
    ' v' k) k: o" C2 }% J| 实现方式    | 函数自调用                        | 循环结构            |& g+ E) |( F0 O  y! P) c& G
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + v# |" j7 T" q4 b| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ k, j/ n1 ^* z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 L- ]* S) |# \. _1 _  h! w2 H

    6 T  s. \$ m* {6 D3 ^ 经典递归应用场景
    2 U. _6 T0 [0 R, v5 w1. 文件系统遍历(目录树结构)
    ; x& W: G+ ^# ]. P% ]8 _2. 快速排序/归并排序算法
    " ~- n6 A0 s- Y5 `* s5 N4 b3. 汉诺塔问题
    0 }; U8 j( F5 |' h1 i4. 二叉树遍历(前序/中序/后序)$ H; Q( K$ @+ n/ ^3 T3 }1 Y% }2 ~
    5. 生成所有可能的组合(回溯算法)
    ( h8 ^5 V& R- {# c/ F" {
    ! \) F, b% b% u' W* L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    12 小时前
  • 签到天数: 3118 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," f/ X" o" w% ~4 L: v
    我推理机的核心算法应该是二叉树遍历的变种。
    % L; Y* e% {9 g( J$ K. x& D另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" Q5 j- I! |( D' f0 j
    Key Idea of Recursion, p& z4 ?3 ?2 v- a0 {

    : ^0 R7 p3 I  R" {& [A recursive function solves a problem by:6 g8 R5 t* L3 e0 Y

    / S) a# V7 s5 {7 D& x: o3 ^    Breaking the problem into smaller instances of the same problem.7 b6 q. T0 q5 F; I2 ~& [* g+ B
    : d0 |* v, c& f0 v
        Solving the smallest instance directly (base case).
    . Z' Q5 l8 d% e1 n
    3 h! h6 L0 B- T# X' I    Combining the results of smaller instances to solve the larger problem.
    - O% u0 o  q5 a: s/ {) h- F/ s! k& w0 F  _  n; ~2 b1 s% ~3 D
    Components of a Recursive Function
    . f# O% D4 V& j6 Q
    0 r* M/ I! G) P& I& s" V1 o5 s    Base Case:
    * H1 Y4 W0 j8 s- Z! a
    - q7 \: @% f: \/ |7 ?        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    0 G( d6 H/ d6 D# \4 C& F: _. A& ?. q+ H
    9 u4 U7 ~6 O+ q/ v        It acts as the stopping condition to prevent infinite recursion./ B4 ?  `& c# ?) i+ }0 o
    7 f# z1 }; o$ C. c. P  S0 B: w0 r7 t+ S- Q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' O/ I4 ^7 S+ O/ X' `; O! L; k. y2 q& y4 b) z3 B1 z* [% R
        Recursive Case:4 ~  M7 E% |+ i  s, Z" l

    5 M7 l7 e: [. v: b0 J/ j4 o0 j        This is where the function calls itself with a smaller or simpler version of the problem.7 Z5 V+ q) V! q8 T2 H) g
    % z6 R7 u: K6 v' g* i& l1 v1 }5 M9 N
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    + e( U* s% x) D* s2 T
      e9 l' |2 a3 ?9 `' n0 \Example: Factorial Calculation! ]% d9 \/ n& Q7 K
    - B/ D, a5 Q% y. s& D" _( A4 k
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! F( Y6 }% K' H3 B( A
    ) t, m* L4 H8 C0 C  o6 ?
        Base case: 0! = 14 a5 Y0 t% r. ?5 [% C

    - r+ p0 E+ D8 g* i    Recursive case: n! = n * (n-1)!2 C3 c8 y; }% ^8 ~7 H
    9 s" K: T  T: T+ j1 {0 B' M
    Here’s how it looks in code (Python):
    - x) l' m: j" S( l3 j6 V8 {- Wpython0 O1 x$ z* N% _. o, j& n  }

    8 h5 Y4 F% t7 a4 B! Z7 `3 Q: V* [
    , Z& }8 x4 n* u7 `) z  {, ^8 Hdef factorial(n):; u+ T6 K" B, h- [
        # Base case6 ~* ]. k0 O" g2 x; _) v
        if n == 0:
    * C8 c0 b0 u8 ]+ a3 F, V- [        return 1
    " r- C. n0 F  O3 W. h; T  U7 r    # Recursive case6 ]. p: t( i. E) D+ Y/ c0 A
        else:
    7 H1 e- |3 W0 |9 p" O        return n * factorial(n - 1)
    8 S0 L+ F' W' c
    . Z) L, O( r/ Y. t# Example usage1 w. e! c7 M0 |8 @" Z
    print(factorial(5))  # Output: 120
    : W8 V% b8 w) o( A9 p8 y+ g1 E( |! ?$ Q1 e4 z$ n4 }6 c2 X# x$ s  p
    How Recursion Works
    + f! n+ I. o% O" ~9 `2 b% `
    7 P" g; ]' T" Y% d    The function keeps calling itself with smaller inputs until it reaches the base case.
    : ^2 Y8 u, j: g) H$ @  g; w: r
    / R5 @+ h: V7 o* O" u; U    Once the base case is reached, the function starts returning values back up the call stack.
      R# Q  _+ T; t" N; I
    3 C# {$ ^8 W3 \8 s    These returned values are combined to produce the final result.
    : }+ r4 h- M; H5 r/ s
    7 b" f, p9 r1 T- s6 LFor factorial(5):
    - a" _' W$ d( G, b7 s0 |- l% W8 u" N5 w5 m, V; B# Y2 X  Y/ J

    2 Y' v1 }; S' _0 rfactorial(5) = 5 * factorial(4)/ H# V" S" C# f  n- g" ]
    factorial(4) = 4 * factorial(3)
    $ Z2 b- g# M6 J$ H" yfactorial(3) = 3 * factorial(2)) H, ~/ \: H- v9 [' q8 h6 j
    factorial(2) = 2 * factorial(1)2 i# \( l- g8 F# g2 o
    factorial(1) = 1 * factorial(0)
    4 G7 t) k& @9 L! k4 A3 t" g: zfactorial(0) = 1  # Base case
    * M- Q1 c( t. X1 c6 X6 A3 l3 B0 ^5 t# X$ o5 W; \% n
    Then, the results are combined:
    ( `5 O8 `/ U" d4 o6 {/ W/ X+ o) R3 l

    ; o8 ]# k/ l4 s1 b2 M5 _factorial(1) = 1 * 1 = 1
    ' S- W% g2 d& b9 s. Tfactorial(2) = 2 * 1 = 2, h# ^) ]; j& M) O9 {
    factorial(3) = 3 * 2 = 6( r; \# ~' P0 a4 W$ ^
    factorial(4) = 4 * 6 = 24  n$ e  w& A% R( J% `
    factorial(5) = 5 * 24 = 120
    ; O4 S8 g* l3 o1 @% g* l: h
    ; `3 M3 L7 s" C, p5 T7 `3 a" ^Advantages of Recursion; Q" p! U0 I: L) H. }

    1 Z" Q2 P# l' ~- |, i) d! I    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).4 I9 I: Y. N6 t# d& J/ @

    , b9 ~  S6 m2 U# i    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ; S$ S+ W3 Q" S' f8 ?. U$ t$ O, v
    # a7 M$ F$ R4 y1 Q3 F/ C) TDisadvantages of Recursion
    2 V2 c9 {7 F! Z5 u
    0 v5 R2 K) \. [5 g    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* G+ |2 u0 A" r/ [* A! T4 e

    + B8 U" q) m% `! f! q. u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ' I# W& u  G. X/ f/ }+ d4 F  }+ m
    When to Use Recursion$ M+ x! E/ A8 w0 u* E* |2 f

    * C8 k! T# ]6 K, I. o: {    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).0 _; P( d/ s% G" q( U$ B5 r
    / z" u+ y0 {5 g7 D: K
        Problems with a clear base case and recursive case.% V; a* K0 g/ ^8 y; V$ m3 {

    ( ]4 H; {! l( {7 _/ P2 z( }Example: Fibonacci Sequence
    0 I+ }) ^+ }  U, l7 k
    6 D5 }, L" w3 @% u& T; [( J  NThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 I4 e( K4 b( F9 y$ \* O
    # [5 g" E' c; ]  Y8 e! W& C$ g
        Base case: fib(0) = 0, fib(1) = 1% @# R: w( c! h* ~% F

    3 ?: N. m6 D' n) f  Q9 ]/ Q- X    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    + t; p8 ~8 Q9 Z8 e# ]' Z) [* O7 A9 w% J8 O
    python
      |& }  X) m8 J/ b8 P; B! r  c$ U: A4 o: B! ~8 U
    ( G5 C/ B0 X4 k7 C0 {6 F9 @0 |
    def fibonacci(n):
    , r- n2 a0 ]/ f9 u. _& N2 `1 T    # Base cases
    ) k0 v  d1 H  Y$ ^# Z    if n == 0:
    ' S# }: a' B! P3 p7 |& N        return 0: r4 S/ s$ F* B7 G6 n& G
        elif n == 1:# t* P' O  c# X1 \; ^- L& O
            return 1
    / {! f+ `( U0 G    # Recursive case3 D3 d  [0 u' W% |
        else:7 X6 ]& N' p, M
            return fibonacci(n - 1) + fibonacci(n - 2)( v4 o3 ], h6 T
    ; ^- }5 }2 O0 J) R
    # Example usage& Z. B. `4 Z6 _) Y8 _# v0 X" s
    print(fibonacci(6))  # Output: 8
    ' b# u: _0 {- j( }9 c$ z) s# Q  W
    ' K6 }7 Z( ~# D; I# X4 e$ vTail Recursion* V4 l+ K& l- n. G

    # j: P* Y5 {; d+ {# Y$ dTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 i# ^6 a5 h0 R3 g* Z% ^
    5 G+ o, |; D, y1 t9 l7 s: C% q) dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-15 19:23 , Processed in 0.028941 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表