设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1809|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & Z0 W# ~8 W8 a' U" g
    0 Y. w/ N4 a; a& \8 p
    解释的不错2 P. c# R. x8 {( D" n

    4 R# x( l- d5 n' }8 W! x递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 k" h. o1 G5 }2 X3 r9 [

    : z2 C# Y2 j4 z7 ]3 F  l 关键要素) Y$ M: R* ~  H1 U
    1. **基线条件(Base Case)*** D! N- v- L! O
       - 递归终止的条件,防止无限循环
    " C% v5 a! F8 }( A' v( s0 I   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ b4 d* \8 h, d1 `: |7 a' h9 ^; I3 ?. Q) S$ W+ g0 D
    2. **递归条件(Recursive Case)**
    5 I0 W2 [) t$ F) Q! h5 A   - 将原问题分解为更小的子问题
    ' [9 n: d& w/ w  z2 u   - 例如:n! = n × (n-1)!
    4 `3 G1 R$ p  I& S1 s9 u$ j
    5 D8 O; I; ?4 t" y; v; l 经典示例:计算阶乘
    ' _5 {% K! z4 npython: e* Q9 l+ G" E( \8 i2 p% }# j  ^
    def factorial(n):
    % N" ~* A7 z( T8 C% v    if n == 0:        # 基线条件
    : y- Y+ q. E9 M# u# w( f        return 1  \. s7 O" O, O2 ?4 Z) N
        else:             # 递归条件
    + q+ O! H: w9 L% S9 l5 w        return n * factorial(n-1)# x2 ~# K* m3 {! r# R
    执行过程(以计算 3! 为例):
    , v) K: E$ w' q5 h) cfactorial(3)' Z! I% m7 K% [" D
    3 * factorial(2)
    / F: P# o. X( f4 H- S) a6 W3 * (2 * factorial(1))
    6 y% f- [+ \8 I) s8 M. k! t3 * (2 * (1 * factorial(0)))
    * O0 o" C  c" v* i! s$ B3 * (2 * (1 * 1)) = 6
    ; J5 l; {8 h9 M# }1 ^8 ]
    ; _0 U4 X' L! `* r& `# e- } 递归思维要点6 T: e+ D* R! y
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 S" O4 V$ {! E1 D
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 B( V6 s8 t6 L- R
    3. **递推过程**:不断向下分解问题(递)+ j3 z% i, P) l1 T+ m7 x1 P( G
    4. **回溯过程**:组合子问题结果返回(归)( H7 Y& Y; }! m$ f% I

    ! g2 w% j( E& `8 A4 S- n 注意事项0 J) d* r; r8 d" Z! P; g- p
    必须要有终止条件
    9 q$ u1 L7 A; S4 p递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ G& Q8 N( x8 c& f) n4 b1 J/ g
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * k9 f1 p& I( W! k% p( M尾递归优化可以提升效率(但Python不支持)& O! r& U5 w3 ?9 J. |# a( T! T

    % ]& b9 r6 w! `" I1 R, f, b; I 递归 vs 迭代
    " i* p% e$ w; J1 w% i" W8 L0 t|          | 递归                          | 迭代               |6 n, q- ^- a! c
    |----------|-----------------------------|------------------|4 L2 r) z5 e7 o$ k$ i
    | 实现方式    | 函数自调用                        | 循环结构            |
    # c3 I5 k8 T5 M| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |0 z( i, Q9 \# h% G: p6 G
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 R1 j3 R1 e: T/ L% M
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - h/ k9 ^4 u( m0 i1 n
    ' n" n- J5 H8 F% A7 b, l4 m3 ?' j 经典递归应用场景1 q8 q" U' w9 T5 m2 i: q2 }/ b
    1. 文件系统遍历(目录树结构)& J5 N8 Y/ {  p9 t5 I
    2. 快速排序/归并排序算法
    4 i' {7 X; T1 l! _$ g9 ^4 u( k2 j3. 汉诺塔问题
    4 m$ ]  T# }+ {0 R' `! E4. 二叉树遍历(前序/中序/后序)
    & Q3 ^) u+ `9 @; v- q7 _+ F- n9 S5. 生成所有可能的组合(回溯算法)$ \5 b2 o/ U* [* w7 y/ O) T

    , U- _" K8 {. V- Y) H( f: Y. d  g  z试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    3 小时前
  • 签到天数: 3145 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 x  O% }" P, m; W6 E0 v+ E7 U9 F我推理机的核心算法应该是二叉树遍历的变种。3 E" I1 ^/ \+ w, i" o6 _, _- x/ @. y
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; ]+ O0 l' W& T7 A% y$ A7 A
    Key Idea of Recursion: y7 o7 f* f# N
    % H9 _. ]- j4 \
    A recursive function solves a problem by:
    : d! }8 L' J9 U# ^6 x( T; \7 k$ i- T* g" U, {3 X5 M# \; L: f
        Breaking the problem into smaller instances of the same problem.
    & ~3 A" o* S# A  I9 b0 r
    2 H0 F6 Y$ p2 |    Solving the smallest instance directly (base case).
    % |4 V7 K/ y9 R  _- M, D8 q3 c1 u* o; Q. j3 X; y) R
        Combining the results of smaller instances to solve the larger problem.
    6 M; R7 c- F; ~
    % _0 P& _# p8 e# w; k/ hComponents of a Recursive Function
    - q8 h7 O5 N7 H7 o! O0 d! G8 l
    . |( ]! G- F4 v, @1 q2 s    Base Case:
    $ ~& R2 o  A$ W, I+ K$ L* a/ Q# B+ ]# Z# ]
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.! S7 o! u" v5 c; |3 n
    2 r/ M. I6 R- |3 v
            It acts as the stopping condition to prevent infinite recursion.
    + E* D, Q0 T2 {, Q: u' S1 _- s0 w, s0 o
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' t+ ]* t2 Z) n! a' P; u* \2 ~3 n
    / A0 l7 s" a: P0 ]7 M    Recursive Case:9 y+ s7 N1 o# {' J. }6 q7 p* g& m# w1 }

    / f( s' U9 y$ G9 H& J; T; c        This is where the function calls itself with a smaller or simpler version of the problem.
    ! ?! g/ U( j9 \% K! i" b( V9 _* k4 Y' E9 a9 V4 w: F6 o- c
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! T2 [% v( v% U, k$ G" G  s# t$ h2 F# v
    Example: Factorial Calculation
    . n! s# e9 S  X& F+ L, q/ A9 \! E( t/ a' M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    " [- |" ?8 z" ]" _- o/ D. H/ }" q0 [$ [  U0 Y# t8 F8 A
        Base case: 0! = 11 ~/ k8 r3 Q9 E2 J

    : T6 p+ e8 o4 T; a1 l9 @8 d4 T    Recursive case: n! = n * (n-1)!0 |2 \( a, ?& X
    ' p# g0 ?: E! }2 u
    Here’s how it looks in code (Python):
    . j% s. q7 S) G% [: q0 T$ \0 epython. l6 @( m1 [& c( n% g1 G

    * R' J$ V/ d- T9 F6 [( b) K; j: w3 e) q+ \4 j7 F- w
    def factorial(n):
    3 T! G5 n5 _4 s    # Base case" d7 a$ X4 Y% W- G7 U
        if n == 0:
    " O- \. v. ^8 ]        return 13 {+ n7 s; ?$ r2 `
        # Recursive case( H4 m: \9 s+ `6 t$ s
        else:
    0 j) U9 y7 b; u" H5 N        return n * factorial(n - 1)
    8 K# B% P9 d" N! L7 H( {& V+ h( N9 O/ Q
    # Example usage
    0 U  M* X8 C9 {# u$ _& Yprint(factorial(5))  # Output: 120
    0 M4 v" m; C+ _! V/ H" X5 w% W6 h( M( E! R; p' H7 D6 D2 ~& L) O, Y- v
    How Recursion Works8 M2 _. a6 g3 V3 h4 r

    * K7 v% T+ f: M    The function keeps calling itself with smaller inputs until it reaches the base case.4 @- K# c4 |, _9 S3 Z) z9 @. g

    9 i9 `' S; f" V7 q. I( j  r    Once the base case is reached, the function starts returning values back up the call stack./ p9 [7 i: u7 s6 l! [

    ( g* M+ J' s8 ]# p3 |$ }( A    These returned values are combined to produce the final result.
    / w! W. t3 Q5 v! I* C
    2 j" E0 h0 F1 ?' K* P9 qFor factorial(5):
    3 d4 H; y. V4 L2 ~& s5 g8 w4 }  A" |: ]# w1 l1 J0 A
    $ p  y- r( l4 k# L# R. Y
    factorial(5) = 5 * factorial(4)
    4 k9 U1 @+ s# H$ C8 Z8 Tfactorial(4) = 4 * factorial(3)
    $ @( U9 _3 g6 p  Lfactorial(3) = 3 * factorial(2)
    % Q9 p& W( y* O& Kfactorial(2) = 2 * factorial(1)  l& l! U6 M& o) c0 Z# {
    factorial(1) = 1 * factorial(0)$ e9 _' N* M1 G
    factorial(0) = 1  # Base case
    * t* O0 J+ B  [/ W' Q" Q. x0 A3 n0 w5 _9 f3 O6 r8 [" p1 r" J
    Then, the results are combined:/ r& |0 J# m, C$ T8 s7 A- w6 }
    " X( ~$ a0 v4 g2 J8 m: [

    , t7 |1 I6 K5 Pfactorial(1) = 1 * 1 = 1) V) s; Q3 z" J% W
    factorial(2) = 2 * 1 = 2( B0 J; J8 Q  `
    factorial(3) = 3 * 2 = 68 Q+ R. S* a9 }1 m3 w0 J) v; M
    factorial(4) = 4 * 6 = 24
    ' x# H& P* R6 pfactorial(5) = 5 * 24 = 120  a- O+ t( }: P* h/ A% V5 g

    6 X/ L5 F9 N- i, O% w7 [) d2 yAdvantages of Recursion
    3 d7 f" A' ?: L  l
    # O& h& M( w: n0 N7 B* i4 r/ {    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * v9 C6 k! V" W* R
    0 O/ Y% i4 A; L2 }6 x    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    / D+ K2 C) P- A7 ?) t5 z- H9 Y( X& L$ W, X# `
    Disadvantages of Recursion
    . |- B# l- y. a3 }! k; X
    7 O% l# [) H8 _' L    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! z% N6 B! m% R5 |) U& O8 _/ [5 m' q+ a
    - s, r. o' G8 p9 U    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 h5 V7 p1 Q, l  L) _, `5 X  {4 [2 c. H" D0 p
    When to Use Recursion& h1 I+ G9 k. x% K7 f- F# G+ s/ q
    ! d4 |- N* g5 \2 f! k1 b8 _  h
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 ^3 N$ x4 C3 `8 n
    & E) R  O9 |0 }$ w' j+ h. m    Problems with a clear base case and recursive case.
      P% d+ ]% W* Q% a0 [/ }3 O
    + V2 f+ _) [3 ~& T* t9 w2 \0 L- PExample: Fibonacci Sequence
    ) w% H. k# ?% x( ~, Y, K$ a0 }% V' _8 z( J/ }# i" P  Z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 |6 Y0 G$ t& d% e; o$ N  N
      w% r7 k( w5 C. i
        Base case: fib(0) = 0, fib(1) = 1( V' k' M) s" B

    $ ?7 B8 Q* Z6 ~) H    Recursive case: fib(n) = fib(n-1) + fib(n-2): V1 Y( J4 p! v3 n
    2 Q9 O& g$ c$ }5 o4 S" W5 X5 D
    python% C2 S% L6 ~- H7 l# }. u- o

    3 \2 S1 [8 Y0 K' l8 m1 h7 ]/ l# }) |. o# z% ~
    def fibonacci(n):$ F& M6 Y, }$ f+ X/ ?+ a
        # Base cases
    1 t0 h1 G" E2 F# Y4 a    if n == 0:- \6 ]" I. u& a0 J4 m, G
            return 0
    ; H7 S  r1 Q5 Y* d* q    elif n == 1:- o7 k# @5 T* q! ]' w
            return 1: i! I4 o4 T% _
        # Recursive case
    & l; [$ J' o9 X: b    else:
    ( ~) T7 M6 d( P" s' T; l        return fibonacci(n - 1) + fibonacci(n - 2)
    % j' s& K; d, }
    # [0 H5 `8 |9 K4 p/ w- w( w# Example usage% |: ~5 p, ]% b3 d: K
    print(fibonacci(6))  # Output: 8* i% s* I; ^! X

    # p. V& {; v0 n5 r' z# o0 p" XTail Recursion7 H% C; l7 U  r& \. a

    % p8 b. Q' P5 c0 v+ M& h7 b' ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& B' A9 F1 ~4 T2 g6 }6 E
    . H7 w; f, U0 l; E) S5 r
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-13 10:24 , Processed in 0.033269 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表