设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1246|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 D: p+ j; ~% F2 v& U. C$ p
      X0 N, W1 j" l) Q4 t, r  K' C, K
    解释的不错# B% m- u. s+ k- L+ y0 Y! m3 j

    ! l0 R7 u1 T8 ^1 x" v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& G( T* q2 t" P: \8 j& q

    & G4 D# r1 n7 M, v* D' J% K! ~ 关键要素
      p* p9 T9 y/ u7 m# D; ]1. **基线条件(Base Case)**
    : Q4 z$ h, r4 j* }) F6 l  j   - 递归终止的条件,防止无限循环0 w" ~/ p5 h2 W9 T# I9 |! U. t
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; k3 Q0 `( `- d' i2 R5 x. ]" H" }* j
    2. **递归条件(Recursive Case)**& ]5 ?" H/ i) e; x
       - 将原问题分解为更小的子问题
    0 c7 c4 x6 r, `3 `0 z7 e   - 例如:n! = n × (n-1)!5 t/ P# V* _; I6 T, f8 D& W  l# m
    , @  U, V- W' u$ r2 c- C0 P
    经典示例:计算阶乘0 t0 T( F6 B4 r; |& R( c8 @
    python
    ! t& n: q7 O/ n7 K- x5 T5 {7 ^def factorial(n):1 g, f% I1 [# x
        if n == 0:        # 基线条件
    8 C: B+ ^8 Z* `- B$ M( _" ]        return 1& V8 T; J2 S7 s3 B6 z, H0 |( h8 ]
        else:             # 递归条件* s0 f' y1 j3 i; _
            return n * factorial(n-1)4 B# z& N, U5 p( l( \; S$ X
    执行过程(以计算 3! 为例):
    4 R! A" X! R4 S# f0 n0 L" L) jfactorial(3)
    9 {# p( K% D" t$ s: l3 * factorial(2), t% q# A, j8 N# P; o
    3 * (2 * factorial(1))
    - y; Y6 J/ n7 _+ m3 * (2 * (1 * factorial(0)))
      M2 f* V- Z$ R+ o4 B$ @* [# h3 * (2 * (1 * 1)) = 6
    + U" V8 |  D5 |5 T/ @( c+ F& o5 L" D( E6 j  T, [4 v
    递归思维要点
    5 P2 K% K* A  ]$ T! i$ d1. **信任递归**:假设子问题已经解决,专注当前层逻辑. T7 i5 ~* _9 ?* K6 F" h
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 t( ^% ]0 y' i. _
    3. **递推过程**:不断向下分解问题(递)" T, G  t0 N3 n
    4. **回溯过程**:组合子问题结果返回(归)9 Q$ x8 n- n# X6 r
    ' w  F. c: l' j9 F
    注意事项
    2 i. f' V+ u/ @5 f- ~必须要有终止条件% Z/ ?( h) z# _; C% x/ P
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)7 x! c2 |' o" G# R, g& x
    某些问题用递归更直观(如树遍历),但效率可能不如迭代/ m$ l, s3 d- i. A0 a( s& P
    尾递归优化可以提升效率(但Python不支持)4 d1 ?3 z6 p1 U8 z
    ! {- U, K/ b5 f; l9 J' y# ?
    递归 vs 迭代0 ?) u9 Z* P0 ^7 k  f: ?$ `, ^" g
    |          | 递归                          | 迭代               |
    / L6 g7 J0 N4 x0 k# |* l|----------|-----------------------------|------------------|$ ~7 J9 R6 r, Y: _* v  q8 L: t. k
    | 实现方式    | 函数自调用                        | 循环结构            |) N; \# c0 T6 W1 C
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* `$ w: t; C& G) d! G' L3 A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" a1 b' c" Q2 s( y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + F: M* K$ X7 B$ S, F8 R, f( a  ]  a$ b6 J' j3 S1 q
    经典递归应用场景
    / C( \; X8 h# T! u; g* b! y7 B+ j2 n  t1. 文件系统遍历(目录树结构): F  y1 |% ~. W+ f
    2. 快速排序/归并排序算法6 M$ P8 ~3 f$ d4 `
    3. 汉诺塔问题' D8 k' a$ Y" l( J& w
    4. 二叉树遍历(前序/中序/后序)( y6 d  @, O* y+ C' c6 ~% e
    5. 生成所有可能的组合(回溯算法)2 @- n7 Q6 O  M

    / z$ l7 Z0 M" [" p* [9 [试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    4 小时前
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 K3 {  ]; ]5 l! w5 n- f$ D7 K我推理机的核心算法应该是二叉树遍历的变种。% B) X- v' G2 w8 x
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! |* F. U7 ?5 D
    Key Idea of Recursion
    / J- o$ K( A4 B5 p# l7 y. [  Q" a1 G- T+ q
    A recursive function solves a problem by:
    / h& ]! l1 l4 i) N2 p0 y, U; |9 e7 |, v3 Q8 e
        Breaking the problem into smaller instances of the same problem.! ]  I% `/ |) N, D5 C9 N

    % b' j9 Z$ g/ K" @    Solving the smallest instance directly (base case).
    " a5 v. S5 v5 c) a* i* }7 Q+ F$ F% K, {7 j; M9 w3 U% l
        Combining the results of smaller instances to solve the larger problem.
    - Y, w# l" t: Z  D: N6 M% d" W: @  E4 S* q
    Components of a Recursive Function5 Q( o7 w1 D% L- b2 ~8 D
    1 U) A) T, ]! e
        Base Case:, d( S! g3 n( u8 a& A
    : N8 L3 f& u! R# a9 S  S
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ' f- K8 ?$ c9 w! F7 R) u( f
    ) d& Q3 l4 H6 v( o% y  t        It acts as the stopping condition to prevent infinite recursion.2 ^9 i, j5 w+ N
    4 W4 a* e  h6 W0 D# g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1." s8 |# j1 F& b) a
    ) d. t1 K; R9 L+ ]: u. J( x
        Recursive Case:
    2 ]0 F# L% P7 s( B% `6 A" m2 F4 Z: v0 h1 S
            This is where the function calls itself with a smaller or simpler version of the problem.  V7 T7 y) A. _! u/ M1 c
    + O$ X# L! p% y. a( u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # a( a* y. p7 B+ _3 l
    7 E" |* {: R; }Example: Factorial Calculation
    # @; X+ A& ~2 h- T
    & F+ S: x7 D3 Y+ N/ M  {+ r4 aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - H- x" |7 X3 D
    / D* ?/ n# p! Q9 X9 P    Base case: 0! = 1
    " n. A$ f+ F6 Z( {' k. \! [; d2 f. Y4 p7 m- i  z& j$ U+ J
        Recursive case: n! = n * (n-1)!
    8 C1 p& K4 Y2 y% B/ C- B+ W0 L" G! J3 E& r  H. s
    Here’s how it looks in code (Python):. Y" b  s  U; J3 N
    python6 t* q9 D2 D( _$ W1 l1 E: \

    2 j' t, ]# p( s! n# x( A
    ) i0 p& j6 U4 Vdef factorial(n):% T1 V$ C' g/ f
        # Base case
    ; o( D% \: F# G, b& I7 j    if n == 0:
    9 k* t* K+ a8 V: \        return 1- L* ]# o. P2 r. E
        # Recursive case9 z  s! t' L( G  e* e
        else:$ e! o7 k! ~, _& R& A
            return n * factorial(n - 1)
    0 o, Z7 O+ s, m2 D
    + z& i1 T# X* G# Example usage
    8 p" s4 ?+ Y4 }3 y8 I& sprint(factorial(5))  # Output: 120. o: r4 I) O5 a+ u

    & A, V% C3 \* T- }* U  h3 OHow Recursion Works2 A3 |3 i+ Q; t8 E; I6 j

    & h# ]: m* d/ J7 j    The function keeps calling itself with smaller inputs until it reaches the base case.7 o8 u, ?. I) f' g+ f$ e% d
    " R- r! N* ^1 e; D
        Once the base case is reached, the function starts returning values back up the call stack.
    - I. f$ k. s3 F: ]8 G; z% R, D9 L7 w3 J: I  x7 L% a8 f( a1 q
        These returned values are combined to produce the final result.5 i  C% W  w% r3 @

    , W* T3 T2 t3 u' m, }9 j5 [/ L& Y5 VFor factorial(5):$ U# s$ q8 r9 h( p9 u9 P
    2 v  |7 @/ U  i1 ^
    7 x+ ?7 t% F. K+ y/ P
    factorial(5) = 5 * factorial(4)& V; n7 F+ A& ^+ w
    factorial(4) = 4 * factorial(3); A' y/ K7 ?/ V/ T3 ?
    factorial(3) = 3 * factorial(2)9 y. V6 [! J3 F+ f5 H: V
    factorial(2) = 2 * factorial(1)
    ! c0 C. a3 \, d$ \& h+ Mfactorial(1) = 1 * factorial(0)9 g' e" W; i) I4 }, }$ O. ?2 O* U6 o
    factorial(0) = 1  # Base case. q  ]  O5 \7 b5 S
    # g4 k, p/ c/ _" I0 u
    Then, the results are combined:
    . W1 ~  K9 n% W7 z; H
    , j5 R" {- r# `4 h" p9 P! n
    9 d$ A* v! b3 c: Jfactorial(1) = 1 * 1 = 1+ \+ y: g8 N3 j! A# h7 D
    factorial(2) = 2 * 1 = 2
    # k4 E2 E; J. t2 l8 k, rfactorial(3) = 3 * 2 = 6
    ! {- Z2 X" {7 `' s" qfactorial(4) = 4 * 6 = 246 @3 h4 D. m3 s6 g& }1 ?
    factorial(5) = 5 * 24 = 120
    2 r& N2 z5 B9 v. C6 {: I9 X
    * `9 L0 d* M* z: _( ~2 s7 [- L. yAdvantages of Recursion8 u. p, ?8 [, e" N' [# H
    4 f, x6 l" D5 v$ P9 }
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." e) e1 k+ f; s% B7 J
    / a! U* o9 y* n/ `
        Readability: Recursive code can be more readable and concise compared to iterative solutions.; h1 u( ~6 Q; U( W. S; N
      f& s3 C( h* q" i+ `. h
    Disadvantages of Recursion: S( A+ U, B1 s3 j/ i5 ~
    : y  a3 T* B& r
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.1 s# d. }) N5 X. m

    6 Z5 J+ ^: W9 A# l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 g( p9 ?0 ]% E: s- K9 g
    $ \7 L" ~4 l" ?7 }When to Use Recursion# m  B! z' S( c6 o! t) t

    8 j, B: \' a" m$ ]    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 M; o6 F& N9 q. e6 H% {/ g: j& c# X9 D4 Z" M5 N8 Q% S& x
        Problems with a clear base case and recursive case.
    ; h7 h1 M% I$ @. Z) V$ D' h2 m6 R6 b! K8 _( B# V" d
    Example: Fibonacci Sequence5 ^2 s1 ^3 O9 v6 k0 v& E  {
    % @3 D  t( q7 J: b
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 T$ i8 L+ u  l  s& x! ~
    3 E, F- Z( c3 e3 G$ _    Base case: fib(0) = 0, fib(1) = 15 L- ]2 d2 O8 a) n) k: ?% X
    6 _& B. v+ s( q7 y$ G
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    , _* y/ i7 E5 P4 o. b7 j
    4 l" P2 }8 {2 `8 L9 M( F; t% |3 [python/ J5 _( X* l6 p( z) N& v2 ]
    % o7 Z, D7 Q2 J. Z% H' d4 W

    4 p9 E) o: V/ Z7 rdef fibonacci(n):6 N8 S3 ?6 y  [
        # Base cases
    9 _5 |" v+ e, Y6 o8 s0 I% E: O    if n == 0:
    1 q# V$ q/ f+ C+ Z6 [4 [, J6 ?: f. l        return 0
    ( ^5 ?( R; B/ t/ Z& h# q    elif n == 1:! L9 i! L3 N" C( c  G- g/ ^
            return 1
    - z# d$ m! h! x4 n. b4 i& k$ ?1 P    # Recursive case
    ; W! N# @( x/ _' D    else:9 J" _8 v+ S$ r% ^
            return fibonacci(n - 1) + fibonacci(n - 2)
    7 M/ E( |3 {) \! j' g
    - h$ q- V8 T+ h: q9 D# a# Example usage* i' e% o5 E: e; c: W
    print(fibonacci(6))  # Output: 8$ {0 W8 c! Y- W% L" ?. Y* n

    0 T9 R3 B5 z% _  TTail Recursion' `* H. O3 j( t* d9 k' m
    4 q2 M/ ]: p- r$ f; n
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    " V/ o( I9 p3 y5 ]7 \( w- p  l* I- v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-30 11:19 , Processed in 0.042867 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表