设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1658|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 h, ^4 g# t! P

    9 J, V" m8 k/ k! ^6 B解释的不错% {4 d* k" `9 i+ V1 F# L

    " |" |0 A7 t" o% _- L7 W6 N- m递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 Y' a/ ]/ l) z) [! _6 a# j9 K4 h' r0 d1 k$ a- K7 Q# G1 b
    关键要素" R1 G& V; m. G; [9 _; M6 G
    1. **基线条件(Base Case)**
    - r2 x; j0 R- D( t! j   - 递归终止的条件,防止无限循环
    , v. ?/ M* D( A) B) L1 n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) X2 E5 w8 w9 I; P
    ! O  I7 ]+ M- U1 r
    2. **递归条件(Recursive Case)**
    " W+ o$ m+ i1 ]& w5 H   - 将原问题分解为更小的子问题2 O& d9 f9 U, o5 g& t+ |# K- h
       - 例如:n! = n × (n-1)!  r9 V  `- K7 m7 m

    , |! Z# O9 U1 F, Z 经典示例:计算阶乘" b$ t5 M1 ~9 a" n
    python9 q, Z  j* X9 F6 J- C* r$ b
    def factorial(n):
    9 d. Y. {4 O% U( j- P* p    if n == 0:        # 基线条件
    ! Q* @& g" }% q4 k        return 1
    7 h; C" L1 I8 U3 a4 D! L( ^    else:             # 递归条件* L7 D4 M4 j9 e1 M$ Q; M$ A! L$ O
            return n * factorial(n-1)! e3 J8 P2 x# E9 h
    执行过程(以计算 3! 为例):7 x9 d9 u7 U( [% V- Q4 Z
    factorial(3)
    6 N9 P3 {0 R/ [. i, f3 * factorial(2)
    ! \; r* \8 w' f, Y! y) y2 b1 M3 * (2 * factorial(1))
    + I7 [, ]6 `, s& U0 J3 W3 * (2 * (1 * factorial(0)))5 s& l- t) q/ U+ ^3 ~' |3 k
    3 * (2 * (1 * 1)) = 6
    7 N. n6 L# `& e+ [* M, B  [
    8 |% |3 m) Z3 `( j# H 递归思维要点) I. A: H9 t+ r; K2 R
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 t' a9 {7 T+ |2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* w/ l, H5 e* g0 `4 ~3 Z
    3. **递推过程**:不断向下分解问题(递)
    0 X! j% R+ P! o' t4 h4. **回溯过程**:组合子问题结果返回(归)
    ) ?7 `8 e  S- a& _0 C: h- \
    % P, }. E% [( M! ^# i& z' _ 注意事项) H2 }2 X& K. Z2 F' I/ S0 \
    必须要有终止条件* @. r8 t+ H& z% ]9 `4 Q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# l5 i4 }* j( r8 X5 s
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - S, z) Q' F1 Q# x. a  z8 C尾递归优化可以提升效率(但Python不支持)
    6 J4 i6 a$ ?0 U, r) B+ @' |" C
    , R3 O. s. \, o" r' J 递归 vs 迭代
    / f4 C& U- a& g# m( F' x: ]|          | 递归                          | 迭代               |3 f/ o- L! z: S, ]
    |----------|-----------------------------|------------------|. j8 z( F; J# c+ G. N) J( ^
    | 实现方式    | 函数自调用                        | 循环结构            |
    % L, V4 R0 g/ _- {+ I# c. J. v4 c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! S- v$ H5 w& ~" N6 ^; J* J4 f2 h
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! o8 R* v( @* o# n8 [5 q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# ~2 N  v8 \9 J7 T' [, I/ U' D4 e
    6 c2 v. P; c4 A9 o" \' `! [% T
    经典递归应用场景$ b3 `, I8 i) P; q, Y
    1. 文件系统遍历(目录树结构)8 W7 U% b$ U& r/ }* Q, B
    2. 快速排序/归并排序算法3 [/ r+ d2 W7 j; M$ }8 `1 N& k3 P
    3. 汉诺塔问题' n5 q* i1 ?+ _+ P! u3 B, F" J
    4. 二叉树遍历(前序/中序/后序)
    : ?+ m% h' p6 P* u% X4 F7 o5. 生成所有可能的组合(回溯算法)$ h  ^' P/ y$ r, f5 @/ r$ i5 H
    1 S% i* C  S- w( r
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    10 小时前
  • 签到天数: 3129 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    7 W1 t& W* N( [+ Q3 O我推理机的核心算法应该是二叉树遍历的变种。
    ' R( r0 X; T, D) I" w1 G  R) j另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. ]* k7 V6 s3 {5 W9 m0 M
    Key Idea of Recursion
    . s8 N$ ]1 }, \- ^$ h4 e  _# W2 x( q! I( ]. b
    A recursive function solves a problem by:
    6 g: p1 y" D5 e  j
    0 C- u. w' g! E5 L) r/ a    Breaking the problem into smaller instances of the same problem.
    ) S' C, E8 f% m6 B2 k3 A
    / k, ?3 ]& A9 C2 w0 O, Z    Solving the smallest instance directly (base case).% i  w. c# }& g
    " o, Q6 ], V5 y8 z  C8 {4 U
        Combining the results of smaller instances to solve the larger problem.
    ! \$ Q2 y8 }, A1 I0 J) a2 X# m
    Components of a Recursive Function. u+ Y3 N# F% t: P, X  Z
    0 E$ v$ R/ k' M' U3 b9 E0 }
        Base Case:
    ' _+ I; J! j$ A/ o" h5 M3 J, P* ^( g8 V1 R
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 z  x7 o2 R. Q& P; y/ |1 e% Z  m+ P" k2 ^$ O7 K
            It acts as the stopping condition to prevent infinite recursion.
    # {, `+ H1 [0 |9 q, h/ G- m) t" T0 z: |4 r. q+ B2 ]" r
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.4 W6 Z# z4 `3 [, m0 Y; }3 J1 d

    4 h8 l  b! h% Q    Recursive Case:
    5 S- j$ D8 J* }, I, E/ b
    % C# T7 n5 E: y, {        This is where the function calls itself with a smaller or simpler version of the problem.0 b* _, N8 P/ m+ M. B
    $ _! U! V  _; z, X
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 ?8 k0 B5 N7 q7 \' q* y

    4 f" D, D. D7 y+ t  r4 c6 F7 J' c( LExample: Factorial Calculation$ q0 X) w' M7 J8 |/ Z
      Y1 ?5 p+ M9 L; ?! {
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 L, \0 s, e2 x1 U$ T! u8 s4 l" l: T0 A/ l# O7 \
        Base case: 0! = 1
    - F; n* I: n6 f) ^' X5 P/ n  V  @2 e# J1 ]8 o# j0 v
        Recursive case: n! = n * (n-1)!( p2 B& c6 c( O! u; j) E
    + J6 M6 G! V( m! ~
    Here’s how it looks in code (Python):3 ~* H; X5 C% J+ d- D# g4 d
    python: g/ o5 {+ c6 w$ I- {

    3 v, @6 A1 V5 A$ n% G8 p# }) H1 l% F* f) N- i9 H
    def factorial(n):
    ) |! L0 |4 ]3 a  ?8 E- ~    # Base case
    $ k1 M% C4 Q1 V6 }2 r    if n == 0:% L+ Q% ^) a8 m% L
            return 1
    5 V) V6 `  h9 b; p    # Recursive case$ }$ E5 `1 x& J) n, M
        else:
    . |+ c/ n- R- g# s5 u' l0 _6 @        return n * factorial(n - 1)
    - J9 Q6 ?; \) D' P5 n$ B9 Q$ N, Z( z# w- x; b' P0 _$ d% E3 }
    # Example usage
    3 r) B, w, s/ L( Q% n# Qprint(factorial(5))  # Output: 120
    ! I, F, v8 H" j" y8 Z+ ~9 J1 J
    , p, Z2 Y+ v/ W' D/ oHow Recursion Works
    2 w" r/ v1 c8 d3 @# s4 |+ Y1 \! ]4 Y0 O* i8 |5 ?- {4 V
        The function keeps calling itself with smaller inputs until it reaches the base case.3 D$ p  ^% ~2 z# T; f7 c/ W

    $ L6 ~  g% y, w  q2 p    Once the base case is reached, the function starts returning values back up the call stack.
    3 ]+ |9 I* q  }" S3 `' \, n8 R, V# N+ ?( r. O+ `& c
        These returned values are combined to produce the final result.
    ) U! k, P5 x, G! }5 i. g% C, V( j3 E+ D
    For factorial(5):' B. w. u& f$ f
    + \% p) o9 ]. R. J4 Y4 G7 Z& o

    6 Q, {  [+ X( k+ lfactorial(5) = 5 * factorial(4)
    4 q. G  G, w8 ?/ u# S% Tfactorial(4) = 4 * factorial(3)
    ' d* g+ W6 ~5 m1 nfactorial(3) = 3 * factorial(2)
    0 Y% T, l' M1 E3 s( z/ @* Afactorial(2) = 2 * factorial(1)
    $ o* N9 @. p5 j9 q5 R0 Wfactorial(1) = 1 * factorial(0)
    4 b9 ~  {  {, w. Mfactorial(0) = 1  # Base case. \0 S. ?: t6 p# i0 c9 C7 T, r
    ! H  g, e) {& v
    Then, the results are combined:0 r7 }9 s, _& b
    ! g" B# C* O8 z* s+ Z" r8 E& g) ~
    $ s/ c* r4 r# u( w) H) }
    factorial(1) = 1 * 1 = 1
    7 ^0 a! C, U5 b2 l2 ~factorial(2) = 2 * 1 = 2
    & T3 v2 S5 q/ V3 @4 Y- qfactorial(3) = 3 * 2 = 6% u9 \. N2 W* M3 a3 v
    factorial(4) = 4 * 6 = 246 |7 k7 o: Z: F# H4 D
    factorial(5) = 5 * 24 = 120
    - T8 f: ]3 T  Y% H, a& |, [" x# h$ C  L" G4 c. W9 _$ Y  c: O: \
    Advantages of Recursion
    # ~8 h/ N4 E/ R6 ]  U$ A3 ~5 y! B- E- V3 \2 }7 n9 y3 V; K8 P* n
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 `- D4 u5 H, }9 g

    - v" q9 e5 [" `4 [    Readability: Recursive code can be more readable and concise compared to iterative solutions.- b* w- j5 E! M5 v

    7 ^7 T0 I) I1 Y8 cDisadvantages of Recursion
    ! n1 x* l) s+ U+ O8 C% o+ z# }& [
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      l; \/ D, f' P' x. I1 Z# e, Z% {8 K/ i* y. X8 h9 i* u
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : _2 G: l( d( J- m
      I3 c0 ]- |8 v* Y; EWhen to Use Recursion
    % [5 X9 V. K- E7 i
    8 s9 k6 b4 |9 C8 Z9 P. I4 w8 k: b9 a    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  q4 @- G/ ?1 H- ?3 }
    9 L1 h4 P0 \2 n# J- S
        Problems with a clear base case and recursive case.
    , n) ?, n. Q, B& H0 `. p6 e* P# A, n, R) \! V: Z$ M2 m
    Example: Fibonacci Sequence& Z2 ~5 d, {. e9 ^6 L/ R* b
    ' w7 N9 u4 B) I4 A
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % M3 e( I# e# X7 v! K
    9 a% J8 \& f1 O  y    Base case: fib(0) = 0, fib(1) = 1
    ! F$ S! X) q3 C
    3 t* ^3 d$ G: Z; U" c3 t    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    - F$ |0 P" D& R6 i0 q5 _0 e& C% q" ~2 @6 l, N
    python" @9 }$ v8 T& S4 O2 ?, N

    ) H. f9 Y, ?- L3 h$ P
    ) N' W- W* n+ [6 F0 ]def fibonacci(n):
    " N& V. S: y& b' o5 g- |. n    # Base cases
    - P4 n6 i, K% }$ A1 q    if n == 0:
    % b* t! \& i# z1 J" d; H        return 0: D/ Z. {0 p' w, v0 `
        elif n == 1:
    2 N4 M+ q- T' o/ `5 @! U; v        return 1
    ) X% I6 `3 R, {' E8 D! g    # Recursive case
    ; B) Y9 |  o. A2 d    else:
    3 J- x$ k# h1 s, r* z  n+ ^        return fibonacci(n - 1) + fibonacci(n - 2)
    , a9 B( P3 O0 Z) h
    4 p: O" V+ C! [. E9 ^. u! i! C# Example usage
    ; Y- _, [, O" }print(fibonacci(6))  # Output: 8  R) d$ R6 ^& a$ X6 M

    : v7 P, W) G* j) V- G& }$ fTail Recursion
    + ]+ G& P, S. p8 N
    , u0 `5 j' }; W4 u6 L2 U! c1 iTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 ^& d( Y4 ]* `/ G  z, |* X1 A$ q+ O1 i! G! @" d
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-27 18:14 , Processed in 0.031090 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表