设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1876|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    % v0 @+ P" `* p) j* |1 C
    0 S9 G0 o$ P. h" W7 M3 o  e+ _解释的不错
    5 m9 u5 F8 X* s8 ^" U+ p
      R- Y4 Y0 ~4 k6 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 S# V! W: N5 r( l# b% a* s& s3 G1 F& G/ Z( v- L( W5 r
    关键要素6 L) U8 T+ k) h# `7 w) U4 \
    1. **基线条件(Base Case)**
    9 Z) e+ G& i# y5 s( ?   - 递归终止的条件,防止无限循环$ p* K9 H5 ]! w
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- ~. f' v2 |) C

    # s1 i* n! ^- h& ~1 F2. **递归条件(Recursive Case)**9 }* G) e+ Q) W2 s8 }2 d1 e, V
       - 将原问题分解为更小的子问题
    $ o3 {8 E! v5 Q6 S1 ]0 `, @3 X9 s# K  u   - 例如:n! = n × (n-1)!8 U8 ]) Y. n- f
    ! P; q0 u8 y9 ?4 Y
    经典示例:计算阶乘
    + _7 L% Q/ M; s' [' H; ~( Lpython
    5 o* o" C; \( \) n+ K( \def factorial(n):' w/ G5 ~2 f& I. p
        if n == 0:        # 基线条件. A; v& Y. M" Y6 X  L" Y2 W
            return 19 S. x( z& b$ g( p
        else:             # 递归条件
    ( m" S. J" L% T7 m( |9 @% n        return n * factorial(n-1): M  d0 W+ ]' w% T; t6 z
    执行过程(以计算 3! 为例):
    ) k, @. q* q# `+ K* p; Dfactorial(3)  _$ W2 J$ T0 K$ A4 Y, x, i8 S
    3 * factorial(2)
    9 f; {* ~1 D2 Y5 m3 * (2 * factorial(1))0 K) a8 u4 b6 |% k" t
    3 * (2 * (1 * factorial(0)))
    " m) ]2 G, o6 n# F3 r3 * (2 * (1 * 1)) = 6
    6 X3 W2 H9 B& R8 _, Z# d( D# J; a; B( T) z) L
    递归思维要点
    3 n5 y: [2 S. D6 g( g2 ]$ H2 ^( K, j/ D1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    5 T3 C; N! l5 S; ^3 A2 k; J# g- d2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' h5 \& ?2 M- |) R! R/ j3. **递推过程**:不断向下分解问题(递)
    6 X& c" I4 z* D1 V4. **回溯过程**:组合子问题结果返回(归)
    ( P. ~6 ]3 C/ J  H
    1 D8 s( D! @- f$ W9 Y4 o 注意事项5 T  \2 I! E5 n$ c% m
    必须要有终止条件
    7 g7 K% H) D) t9 ], ?递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / e* I0 p0 k. k! T, r- B( Q某些问题用递归更直观(如树遍历),但效率可能不如迭代
    8 k9 q) U+ B* D! B8 J尾递归优化可以提升效率(但Python不支持)5 g6 p* ^( ]/ b8 r! @/ @

    # j' V( [& k+ K& V9 ]2 S* Z 递归 vs 迭代9 z2 `8 N! ]! V: ^6 j
    |          | 递归                          | 迭代               |) P3 {5 h. v7 L
    |----------|-----------------------------|------------------|3 v, T) g0 y" X- ]8 d. D
    | 实现方式    | 函数自调用                        | 循环结构            |3 ^& I' A; {) Y& M- |7 u
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : b4 ~$ [3 ~* }# v: {: Q: z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 ]3 L% N% I. p: K| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |' Z* j4 F! N% i) u) \2 E. b$ D- t' E
    5 `2 Q! j- P9 O
    经典递归应用场景8 I: b* @& I) Y3 ?
    1. 文件系统遍历(目录树结构)7 z& h7 G4 `9 u  u$ f' }8 j6 ?0 U
    2. 快速排序/归并排序算法
    7 u( F8 ^, N, a3. 汉诺塔问题
    + c- F1 M! Y6 f' m) `8 c) H# V4 o4. 二叉树遍历(前序/中序/后序); F$ z- j6 v9 @
    5. 生成所有可能的组合(回溯算法)% ]' s& u2 N) M' ^% ~4 J- A
    8 X2 e+ v. x. c
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:27
  • 签到天数: 3147 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 C0 t4 o# J$ e- L5 b: |$ `9 _2 ^我推理机的核心算法应该是二叉树遍历的变种。
    5 \& ~+ G, ^# G8 o另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 d, e% \3 c+ W4 l; Y
    Key Idea of Recursion5 P. B  y2 i+ W. d& j8 L$ Q' D
    " r& X& x, @4 i) ^3 P
    A recursive function solves a problem by:
    5 G, {$ R& |" s; o3 d( u" B- e8 @. p- r
    , t7 c* m2 P% }    Breaking the problem into smaller instances of the same problem.
    8 s/ A& E0 j5 H
    2 ~( M8 I8 H# i% c" @* T- |0 E7 b, D    Solving the smallest instance directly (base case).
    + x, [% Y# v  C
    - K9 Z) ^( z# Z! z: F    Combining the results of smaller instances to solve the larger problem.
    + Q7 s3 e0 R5 Q( l6 P& w4 j& y7 X5 G$ A( N6 T* V8 a
    Components of a Recursive Function8 Z+ T: R4 ^) {

    9 O& }, e, ]3 z/ l7 z: N    Base Case:
    ( L0 j. B  q6 |! z
    ! I+ _, H* r. Z& Y8 L! Q% W5 ~2 G$ @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 p; D  X/ e# l: L0 T1 Y% z+ S; R8 H/ u
            It acts as the stopping condition to prevent infinite recursion.& z: {5 o! T- `- k- S

    . x- }, ~1 @1 G4 r; ~" V        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 M2 _" I6 z3 r3 P; R' h' m: U/ N& c7 b8 ?) p
        Recursive Case:9 Y' `0 M* N1 v# O3 M- c* ~# p3 M& K

    : ?5 t; b2 P' g' ^        This is where the function calls itself with a smaller or simpler version of the problem.4 ^) P* ?7 T6 l* q

    & R! H+ {* ~# J4 A# s2 |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    . A% i% m" `6 @7 z( I' ^, [( t5 h; I6 v$ N
    Example: Factorial Calculation
    ; Y0 k& y, }; t% O# \5 k* }# g! U. e2 B, Z; w  K: C
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! E2 m, H# `, v. a. j

    3 j6 K. {+ z6 N  n; u' ^    Base case: 0! = 1
    + k# @9 w: h5 R( z+ V, P$ k& n1 v- ]" `
        Recursive case: n! = n * (n-1)!
    ; F- Q) u. N& E* W1 u  X' B/ J  W8 [: @
    Here’s how it looks in code (Python):
    & ~# H. Q  @3 J6 jpython
    2 h  H) x& ?6 k5 o+ d! w5 b! ~. j% P1 [2 `3 O
    / B  c& G% M8 P# O: c4 J
    def factorial(n):
    % |+ A5 M  ~6 ~! X8 Q* Z7 H6 W    # Base case
    : T) Y5 j, g& e1 q- d, J$ n& V    if n == 0:) K* d$ C' Y, {' G( }
            return 1) W! y0 {6 c; N5 o; q9 R9 ]
        # Recursive case
    1 O, s' s7 I( v0 t$ U8 Z    else:
    . j' k  z, C* _* ]8 u/ j: l6 {        return n * factorial(n - 1)9 ^2 C3 a1 p+ J) f' I$ _
    * Y# W1 A6 V8 [
    # Example usage
    4 v& t" w' ?5 g; v1 qprint(factorial(5))  # Output: 120- N8 X9 V9 D0 ~" T5 d) W8 x5 O
    8 R7 o, T5 g8 p' `3 K) j# X
    How Recursion Works
    9 D0 ?& N) X* c! e. d2 f: X- x* z( x1 u
        The function keeps calling itself with smaller inputs until it reaches the base case.
    " n8 W% ?2 F  C- E9 z) D; w
    + H  f9 Z4 w8 A# ^# ^: L    Once the base case is reached, the function starts returning values back up the call stack.; ]4 H7 [" J9 x1 v. X1 N
    * c! C1 `; Y+ U
        These returned values are combined to produce the final result.! j5 S: w9 z; U* o
    4 R; P- J% a8 k6 P
    For factorial(5):0 G2 Q- m8 n' B: G5 P7 U7 b

    $ j: \) J. X# c4 V- s5 z! [4 R$ U0 d: G6 w8 [) v, }  H
    factorial(5) = 5 * factorial(4)
    % B2 z1 t9 Z# Z# W; yfactorial(4) = 4 * factorial(3)( s( s( [6 f6 s9 c
    factorial(3) = 3 * factorial(2)
    - F; `) W5 h' G/ lfactorial(2) = 2 * factorial(1)* F4 y. m4 F+ l/ {2 B
    factorial(1) = 1 * factorial(0)- L  R0 x, O* O6 j0 N
    factorial(0) = 1  # Base case4 G3 r% ~. T5 ?3 y* j
    1 p( B5 L* m; g4 S9 c* L
    Then, the results are combined:$ Z* H9 B% [; t1 U& U4 Q( {2 ]$ A

    8 p" U- ~/ b9 W* B8 C7 O, T' h3 D7 k6 l7 j7 V7 C: [
    factorial(1) = 1 * 1 = 1
    3 u9 Y$ q$ G3 O! pfactorial(2) = 2 * 1 = 2& Q5 u7 i& V" n* S2 e& V
    factorial(3) = 3 * 2 = 69 I' }. b) t/ [
    factorial(4) = 4 * 6 = 24. d2 m) }  S( a! n% T. i
    factorial(5) = 5 * 24 = 120$ k4 {% y* A- m2 L- N7 k5 ]2 \7 |
    ' E6 L+ r% u7 [
    Advantages of Recursion
    . w. [/ R. P3 D: L+ `' N; y& _( m. X1 @7 B& {7 h/ B' w
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! c; W: W% z& l; ~8 V+ }9 P- L
    6 J9 f0 |  @; V2 d$ i6 X* Z    Readability: Recursive code can be more readable and concise compared to iterative solutions.' ]1 R( Z: o- @

    - {: F+ M$ S- v$ @: ADisadvantages of Recursion& i* _& ?+ {5 ~  D
    # n  J: C8 @9 U4 H
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    , P- ?/ g; l- v/ s5 S5 p4 A5 P4 }. a) N) C3 _$ e+ B5 O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ x- F6 x' q, E
    4 e! {" W% Z$ T3 \9 ?7 |& a
    When to Use Recursion0 C$ v7 p# X! t7 o: D( E
    ! _: l9 R; E* x, |
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 q/ P* T- _( L4 A
    - _5 }( O0 `& D+ K1 {; y; E4 z
        Problems with a clear base case and recursive case.
    ( o9 S( j- j" a6 a. K4 \
    . C" l$ u$ `; P8 f% `; t$ ~4 k. S5 fExample: Fibonacci Sequence
    ; ?1 N0 _. W7 R2 y# {" L
    4 B  ?* v2 a1 p  D4 D- e$ f5 S  ?The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) y: T$ [; t* y) ^0 f" G/ x. D. @2 \# W2 p( L
        Base case: fib(0) = 0, fib(1) = 1
    " n2 s# U. D7 Y4 u
    7 F! ]  o. N6 I8 X4 q# i    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    / u5 z4 c* B% n; ]) M; a: ?; m! v/ S: b% ]
    python% m. _5 a+ U7 u( j! K" H
    : b  G! |9 C2 K" }, v- k
    - a+ Q9 t- z2 E. S& B2 c
    def fibonacci(n):! s8 B0 l( `# p9 C
        # Base cases
    ' N  `: B+ D* g    if n == 0:: ?# q; p4 ~6 X2 b1 x5 c
            return 0' i* n. d7 x2 }" i7 i
        elif n == 1:; R) ^" o) q1 d2 e) {  i: I* X. _
            return 1
    / i( J. c+ a0 _  F/ I! ]; K    # Recursive case- a1 S# z* ~% X& T* ]
        else:
    . P9 I$ Z6 o* U4 f7 ]8 w        return fibonacci(n - 1) + fibonacci(n - 2)
    - y* l) K" e  O) y# g
    0 o2 c8 U1 i: U9 M# Example usage
    5 x! D! z9 a/ V/ |2 bprint(fibonacci(6))  # Output: 8# N; R1 ^7 K% [7 [. N/ e1 K/ m

    8 R, a! r  c; r7 u4 o) p; _' w9 dTail Recursion, m- n0 o6 Z7 E  a

    ; e! I- I4 Y' `5 E4 X% c& Y. hTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 E" j/ K; \: x0 E
    1 r( R% d6 ^( t6 {  E$ [In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-18 08:07 , Processed in 0.042137 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表