设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1897|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 H3 y: c; @6 e; z" U

    8 H& k5 ?2 e' x3 [% T# p解释的不错) f: d3 x% O# `2 N* ^" o

    / F/ s! `- B1 v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。/ q; |  e- D4 t3 s  D1 ]- Y5 i, ^
    , |9 ~1 Z, m+ O! A' J* n- O; p* F
    关键要素
    * b$ Y+ J( |4 q  Y! ~4 U. y. B1. **基线条件(Base Case)**
    # E9 S) `6 P/ n( I- |3 x   - 递归终止的条件,防止无限循环
    0 O6 f* Y, F1 N9 ~$ q9 p* N6 M8 d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) [  X5 N; b5 g( M# I! i
    + b1 @* [3 a7 a/ @% C. `2. **递归条件(Recursive Case)**
    1 n* i8 P& d  A& ~/ c* Y   - 将原问题分解为更小的子问题
    , I5 M4 S6 v. X% f* E0 E6 i& z, C   - 例如:n! = n × (n-1)!
    ' u2 r+ a5 P4 j' W8 \2 E: H+ B1 x) r. P0 l6 I; v" r# j
    经典示例:计算阶乘
    0 r: C, O" j) Q9 F3 O6 E( ?* opython
    1 w+ g! ?; g; gdef factorial(n):% d9 u; z" q6 G! A
        if n == 0:        # 基线条件; f" D" v* u6 E
            return 1
    ! P& R" I. _1 L* w! t* e% r    else:             # 递归条件
    * v" g( l) n$ b  u, k( l        return n * factorial(n-1)
    4 K. J& y8 a" {; U1 L. m执行过程(以计算 3! 为例):
    5 t2 m: T2 [; `: t$ pfactorial(3)1 K+ q- w& q0 b. J# B. f, J" y
    3 * factorial(2)
    + H4 A1 A8 ]6 b6 Y' u3 * (2 * factorial(1))) h4 Z+ u0 X1 c0 n
    3 * (2 * (1 * factorial(0)))6 v+ r! ?: c' }3 a3 W1 d3 J0 S
    3 * (2 * (1 * 1)) = 6
    . G4 J: x- u' h& D7 s+ n2 T; T5 R4 Y2 y' @
    递归思维要点5 @3 u3 I6 h" F  Q; y. a/ o1 O
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 i4 e: A, S# f2. **栈结构**:每次调用都会创建新的栈帧(内存空间)' ]% Y8 D( _8 e0 |
    3. **递推过程**:不断向下分解问题(递)* R, e8 w: E- [" g' A6 R* B
    4. **回溯过程**:组合子问题结果返回(归)
    % P$ {) o) `9 B5 L, p0 f) Y( v3 [$ E& W, m% _' Q$ S: O
    注意事项4 Z3 M2 _; C4 a. T2 C% [) q6 _* ^
    必须要有终止条件/ Z" _3 U; R/ v. x$ Q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 y( j% p  W( g# X
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    / C, d2 Y( Q" C4 X  t2 [尾递归优化可以提升效率(但Python不支持)) O' b# [; u  h/ ^/ r1 i8 V
    / o5 C& H0 B7 R& P5 f
    递归 vs 迭代# y3 I. C9 J( G8 N
    |          | 递归                          | 迭代               |
    2 L; J( w, _) X+ V, t|----------|-----------------------------|------------------|1 R5 i0 C7 z8 _0 S
    | 实现方式    | 函数自调用                        | 循环结构            |. i/ j5 V+ q/ |7 M! C1 M
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |/ s$ f0 h9 _6 f! N$ W: y" |) N. l5 F
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" j% W( f+ q8 U! C; ?7 T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( q" _0 E4 O/ W4 }$ g( Y3 t
    . U' S+ N4 t: K6 s. @ 经典递归应用场景
    * z# U( ]4 a" x9 T. p, ?+ K1. 文件系统遍历(目录树结构)
    1 x5 K& W' D9 ]9 F: w* K( O3 Y2. 快速排序/归并排序算法; ^* Q3 {* ]  a
    3. 汉诺塔问题
    7 g! L0 i/ j+ M4 Z* x4. 二叉树遍历(前序/中序/后序)
    : E8 f. c) b) `8 i5. 生成所有可能的组合(回溯算法)8 B5 T3 _. l6 @$ c) K9 M0 [0 J
    & Z8 B1 z/ O; q9 k8 K; }
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    7 小时前
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, m5 x9 p0 i) b( o; L
    我推理机的核心算法应该是二叉树遍历的变种。( q% U  {, ~, T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    2 ?4 [8 c8 y/ L0 X% O/ HKey Idea of Recursion& @0 N% [8 @: r

    # \: x; ^7 j) J9 i, A9 gA recursive function solves a problem by:
    0 J0 b9 m/ Y+ Y+ i. w6 L
    " q: g  x9 z: v' T$ M    Breaking the problem into smaller instances of the same problem.
      V* Z" R7 Y5 a0 d" v' x) X9 _% R& x& m2 x2 f5 f2 x& U
        Solving the smallest instance directly (base case).
    , A' \% J+ L* L8 g! m7 n  _' A: Q9 [  F. K( |
        Combining the results of smaller instances to solve the larger problem.; p  l, M% J6 O% S7 k3 b

    5 z/ U0 q! Y" ~- W* iComponents of a Recursive Function
    $ W+ O- h' j7 O1 R& ?& g
    # v! y9 X/ Z0 Y7 V; J0 i    Base Case:% `9 A! P. D7 i0 j( Q9 g4 f# n" @

    # ~3 J0 T* Q. [        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% P2 ]$ b6 P7 l" d' ]8 p, J' E
    ) w4 o6 t6 y* K. o
            It acts as the stopping condition to prevent infinite recursion., l# N2 l+ a+ i9 W2 ^: _  W
    2 @' d* m6 Z5 @3 {
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    " X4 f8 ^+ l, U: y; s) s
    # L4 V& H4 ^0 f: r6 P    Recursive Case:
    ) U. ~: T' E  r, Q/ S+ H2 i3 n& _- R- G2 G$ R6 d$ w# @) ]
            This is where the function calls itself with a smaller or simpler version of the problem.
    ' e& `  f8 j8 L; X
    : j5 E  A7 M8 l6 i; s7 A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    5 D: |  M3 d  ~" ^
    4 t% Z- w, R. {0 B0 m: v  N0 e6 t& _Example: Factorial Calculation( N, T" M5 X3 o. t* T6 O: o0 P& n

    - V2 A# V9 R* e& n' }8 wThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:) u$ L; O* F% {9 H4 l

    - `. m6 g  Y6 s8 b& q2 l: d5 o    Base case: 0! = 1, Y% E( J' {& Q8 d, Q2 |7 D/ j
    7 A& q+ Y4 O3 ^1 V
        Recursive case: n! = n * (n-1)!' r- F# i' k# W3 F
    2 T8 X( A5 L- M0 W& X% }! g- @0 X
    Here’s how it looks in code (Python):
    # Z/ R1 N! a* }/ b, ~( p5 ~: _: Vpython: f5 x# e$ F9 |' x: ]5 ^+ h- i
    - Y) [5 R% Q& i- L/ ]

    / T+ G% `  U3 W& a* Vdef factorial(n):: r" C! n3 Y( I0 s$ j3 H1 I' K. k! Q
        # Base case
    1 \; q5 l2 `' v1 t    if n == 0:
    , C& f7 q! q% i3 K+ u        return 1& x$ k8 U+ d! P* I! U
        # Recursive case
    . f" ~/ C* b  a' y3 d    else:. @5 |$ W* K1 }4 ]1 q
            return n * factorial(n - 1)
    & b/ G5 V( [! ], X
    6 M+ N* x+ J! P2 \$ e8 _" K# Example usage
    $ p( }3 S1 h" nprint(factorial(5))  # Output: 120
    7 S9 `. R: e) T1 V6 @5 G" F& z
    How Recursion Works! O& |# c/ {6 l/ C  j6 H% O

    2 e9 U" R. ]% f# {    The function keeps calling itself with smaller inputs until it reaches the base case.* y/ l, `3 [" J, s2 @, ]7 `6 h

    5 }. j; o1 n8 X: p* t7 f    Once the base case is reached, the function starts returning values back up the call stack.) e  |6 f' e  [) a/ E1 i

    : r+ y. o, |. k2 s& J0 v0 k- l' Q    These returned values are combined to produce the final result.
    " b3 }, y% B, s7 W( h1 n- b9 M4 Y, a3 M; @/ q* O9 Z" _- N6 o8 Q
    For factorial(5):
    ) n- ~. N% E5 O: s1 X2 ]5 G- A
    $ R8 J+ t% n9 y9 u8 U# z# I" M5 i: ?
    factorial(5) = 5 * factorial(4)
    / g5 q8 D  T$ W- v  Dfactorial(4) = 4 * factorial(3)
    . U# V- ~. W4 a( u5 ^+ }" B+ gfactorial(3) = 3 * factorial(2)" A$ g4 i% c5 O8 v
    factorial(2) = 2 * factorial(1)5 N5 Q) V% ?+ T" @1 \
    factorial(1) = 1 * factorial(0)
    8 K  R- _# A+ X( K/ F; z) h6 zfactorial(0) = 1  # Base case! e) ~6 `6 s9 k2 V' s. t

    % y: H2 l7 t$ X! b# AThen, the results are combined:
    5 E; Y  v# D5 T  l" u# z2 G5 m6 a# P4 q

      |; o2 q7 q' m/ a' h2 _0 @factorial(1) = 1 * 1 = 1! v1 F" r, g. p7 }3 w0 k: s" z) U
    factorial(2) = 2 * 1 = 2/ o+ i. t# N8 u& E( H' q
    factorial(3) = 3 * 2 = 67 q, C! I3 {" g0 ^, m6 ]* p
    factorial(4) = 4 * 6 = 24. ]( F2 n5 V  A2 q1 H5 Q9 Y
    factorial(5) = 5 * 24 = 1202 n( R( E# p' C( q1 l6 g
    9 Q# }8 a% I: @6 J/ V2 _% p
    Advantages of Recursion5 l5 \8 z1 V0 q8 L/ ]. s/ q5 R, I! K) \
    5 y6 t8 |' T" e
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , L  T; u; F- q/ V0 i' W' ]  P# O# f5 u2 f3 @" z- ^; n% z
        Readability: Recursive code can be more readable and concise compared to iterative solutions.4 t$ k# ]4 n. P" B/ ?9 p6 q

    # {6 E) `$ u% R; w9 @- B! G5 [/ i4 _- N, hDisadvantages of Recursion+ q: f' {" O1 X4 s

    ) D* A9 J' M5 o2 |    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    , ~3 M9 G( _) d3 A, s* F5 a! C
    % i5 b2 o6 E" A2 K    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).2 i' r+ ]- X9 y/ f
    & Z- I# w5 w1 Z8 _
    When to Use Recursion
    ' V( F, E0 X  {0 T
    . S( r9 B# p7 w$ P: K    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    - j+ j+ o, ~5 h2 U! n" ]( n3 J  |/ G+ I& U
        Problems with a clear base case and recursive case.
    , ]% |  Y8 h- f' J( H5 ^  t$ a4 ^, f# B
    Example: Fibonacci Sequence! M2 o2 }5 x# }. o

    - W" p0 S% e, m* S7 WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    & m: z7 b: g% Q1 H' p5 O; g" u5 c1 q1 Z
        Base case: fib(0) = 0, fib(1) = 1
      @* D/ e7 @" Q" F  `! a2 ]3 R! W2 f8 R: S4 F
        Recursive case: fib(n) = fib(n-1) + fib(n-2)& i+ V) J" U+ T; R
    " Y% ~$ ]7 f' w8 c. b- _
    python
    ( b+ e5 x1 ~7 }8 t$ i. l: {; ^/ s* C

    6 x3 _) M' k" odef fibonacci(n):
    1 Z- m: u5 n4 I" F/ |  e    # Base cases2 T; }' i8 h% G4 B! ?; d# }
        if n == 0:% Q' u! {# M, @5 @/ r
            return 0
    * K6 g, s5 R- N+ h    elif n == 1:/ z+ ^2 Y* u) Z- l
            return 1
    & j% J4 q6 R+ B6 q  L! A    # Recursive case1 R2 c+ n2 x: [7 _* {! H
        else:) v4 {/ H" d# i2 h' }4 w$ C
            return fibonacci(n - 1) + fibonacci(n - 2)) k* N7 d4 C6 f2 u) O; a

    6 L$ g0 ]; M$ r# Example usage$ I3 t! q& S+ Y% a/ j) Z/ H" H. f
    print(fibonacci(6))  # Output: 8+ y: p+ C/ K: e  b6 G* Y
    * J7 S9 x: i( i# n; p+ [
    Tail Recursion. S. r5 }; h+ {+ I( [/ W
    % K5 }6 O7 L+ a5 ]5 w, q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    : v  r; ]  U% i- F. M0 W5 J  n* p
    ; w4 H3 z$ l2 V) o9 G% X6 RIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-20 14:40 , Processed in 0.062870 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表