设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2053|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   ^  a, r* P) {2 a2 u0 U
    $ b3 z3 M- p4 c2 H* d* z9 y
    解释的不错% [) z' Q6 W. p. ?1 V: {
    % i1 P/ h* g- _- {
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 l2 ]' I7 \0 n0 d, `$ t. }

    , j. t! J, a8 ~; k1 y1 I9 D% ~ 关键要素5 _! P& Y- U$ J5 d  b& v
    1. **基线条件(Base Case)**2 Q" a9 J( u6 F$ K$ b- F# V# R
       - 递归终止的条件,防止无限循环
    ; t7 {3 @* {; M) U   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " |6 m5 b  H; q* d( n5 U( ^+ i6 O
    9 Q8 U0 E! f- [$ L# ]% o: c2. **递归条件(Recursive Case)**
    / J( B- j# l1 D- E8 t% _   - 将原问题分解为更小的子问题0 T  I1 J1 r4 m. c) Q( F
       - 例如:n! = n × (n-1)!1 w2 o; ^1 N' w8 Y9 {+ P, I

    : f5 Q1 S. u$ k& ]8 Z: l+ J 经典示例:计算阶乘
    ! |8 E3 ^' U2 j7 R: Apython
    + f# N" |5 s2 W6 X% h2 S+ Ndef factorial(n):
    . o! h* T* _5 u5 w9 `6 h    if n == 0:        # 基线条件0 V( N$ ^# @: S$ a' z+ e  ^
            return 1
    ( j6 N+ I8 ]( ~# o- H& ~: S  i    else:             # 递归条件9 I- `3 H# F8 P/ P) u
            return n * factorial(n-1)* \# F. [, X$ g7 Z2 G
    执行过程(以计算 3! 为例):1 [* I7 G; r( A" a# m
    factorial(3)! c4 h1 ], {. O. A9 y7 \* n
    3 * factorial(2)
    9 M! s9 W4 `8 Y# p& u3 * (2 * factorial(1))
    1 f; M# I" ~) l! p$ Y3 l3 * (2 * (1 * factorial(0)))) g2 P8 E( F5 _, C# Z3 \' u
    3 * (2 * (1 * 1)) = 6$ r3 s8 _) c, [, F9 _
    ! m; u7 F% x( o0 I8 |# o8 P9 {  A
    递归思维要点
    3 o2 o/ Y7 ^; @! `9 h+ F. l1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # e( o  o1 L; ^, r# f3 y' X( X7 m! I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    $ |2 q4 }# t/ M. m- m: x6 |3. **递推过程**:不断向下分解问题(递)
    3 {7 C" V  D: Z/ |4. **回溯过程**:组合子问题结果返回(归)
    * X6 k, v0 C: `
    % _7 a0 M7 X* w. i. O. ^  F 注意事项
    % X8 N5 E5 M0 }" X% K. F必须要有终止条件
    , f; h0 ^+ O5 f( v9 a$ a递归深度过大可能导致栈溢出(Python默认递归深度约1000层), i4 J$ T( [1 B$ t" R
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # C& x4 {8 ?0 v1 Q4 e3 D8 k尾递归优化可以提升效率(但Python不支持)2 j6 D! @/ l3 ]8 s
    " s5 X$ D2 h0 `8 g
    递归 vs 迭代
    ; `- u& t: |/ M- G) d1 V' o|          | 递归                          | 迭代               |
    : ]8 y$ o3 ^# |) \1 H$ N* p|----------|-----------------------------|------------------|
    1 v6 I0 c& m& J  k( p2 X" D) T$ g- y| 实现方式    | 函数自调用                        | 循环结构            |
    ) j3 t! }1 l" L' w+ A3 t7 ~1 i| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* ?9 V) M' E4 w- H- _3 ~  T
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    3 k) ?' O) h: i9 V- H& ~, K9 q1 F| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 E' s' S' \! O* O* j. t
    & [! |' _$ y5 z$ G* P- B5 C& b
    经典递归应用场景. V" C; H; H" Q* C& u
    1. 文件系统遍历(目录树结构)
    6 x- l, }- k  @2. 快速排序/归并排序算法
    # m+ D  q7 H/ Q4 m6 d3. 汉诺塔问题
    8 Q9 \( l% d+ ~4 Y" g" y5 w2 _4. 二叉树遍历(前序/中序/后序)$ t/ o, z5 h5 E" ?& p2 m5 \
    5. 生成所有可能的组合(回溯算法)% s) L! _! I9 M/ F" @
    5 T. I; S6 c  x9 b; C3 g$ U- z
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    4 小时前
  • 签到天数: 3168 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! e! G( p5 o/ c2 c
    我推理机的核心算法应该是二叉树遍历的变种。
    / p% {% u6 t8 J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . z9 K& w" R7 x" G7 m+ ?# MKey Idea of Recursion5 ]+ `3 \1 A: D5 T

    % X" \9 u5 p* q6 _) eA recursive function solves a problem by:6 Z8 m9 S0 _- t  x% `! F
    % _! Q$ X# [6 C  v! P5 k) M" Q: T  c
        Breaking the problem into smaller instances of the same problem.
    ! c$ @* b/ n% Y* N) Y. |& |0 |9 E" \; w) Z4 r# e& l
        Solving the smallest instance directly (base case).3 o- @1 Q, s4 P( D, t- P4 U

    ; c% c- x2 i* ~3 \7 S    Combining the results of smaller instances to solve the larger problem.
    9 z; s$ M( F; h7 P5 `
    7 \% V. K6 N0 M- E/ m. c* _Components of a Recursive Function7 f1 B$ Z6 L% {
    # V! W5 D2 G+ e) @8 U+ }
        Base Case:
    # }7 R: Q+ k7 X: H& U& k: y
    9 L+ n* `8 j) W) p* k0 J( W" d+ V        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 v! [  F$ W. \. W: W3 K! ^* P
    9 |# z" Z3 M/ K% J
            It acts as the stopping condition to prevent infinite recursion.: c: p: S( ^+ L1 g4 P8 T3 B

    6 y2 q- l# N+ i- K' Z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( P) [+ [# G( T5 ~4 [+ ^

    ! c1 }1 U9 y: i8 P  o7 H    Recursive Case:
    * c5 R0 M" i: l/ k  `
    " _8 ?& ]$ G& B% e. A8 \7 M% Q        This is where the function calls itself with a smaller or simpler version of the problem.) F& I2 V. v# d

    9 b( [& `5 ^6 A9 y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; y/ D( Z3 L6 W/ w0 V
    ' W6 H' u0 l" ], q* D2 dExample: Factorial Calculation* l* j* \9 y$ v5 F, }- Y' I+ n0 o

    9 b$ \7 B" R$ A& jThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 P! {6 s, X& T8 Y3 O  n7 C- H
    + I1 ]1 a: Q0 }% {( U) N    Base case: 0! = 12 s" @& D/ A) T7 M

    8 Z, Q3 B! n# W. w2 ?' u    Recursive case: n! = n * (n-1)!0 Q# g: A: z8 `' D% z
    % f( S$ U4 O4 j8 Z; |5 f
    Here’s how it looks in code (Python):
    . g! z1 L. R+ |* U: Rpython& x8 {* ~2 n- O, [5 P

      J9 b- }, [1 x* z4 ]& T" o8 J9 q1 E& [8 c: G3 H0 i% D+ p, F
    def factorial(n):* C. r" x' h5 k0 @- I. C4 Q
        # Base case& h2 z: y! T/ Q3 f5 _. n. [! L
        if n == 0:
    ; q9 j6 K$ m9 {' y        return 1- U  w% p% l# C2 o' k& @
        # Recursive case
    - v1 q9 D6 Z8 N# V4 N$ [    else:% P! z# b  X9 Z8 X) N6 v
            return n * factorial(n - 1)
    % v/ K1 o0 M! p% U. T9 g  k. Y
    ( G/ c3 ^; Z9 T: P4 F7 S% z6 l2 Y# Example usage, j/ l' O# a( e  m( w
    print(factorial(5))  # Output: 120+ O  R8 F/ B( t' E. T* p+ A- f

    4 i2 T- V0 n* ^/ u; q# u3 FHow Recursion Works; [5 L/ q7 J1 n  A: e" Y% p
    & z* J8 O8 m6 A- e, y) i8 m  _) G
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + x/ q5 S& G- i' F' Y+ k- f: |# @& _7 \* \* r
        Once the base case is reached, the function starts returning values back up the call stack.
    : |( Y& h; O2 D4 S  K5 w5 C* B6 U5 e( n7 p' z* L
        These returned values are combined to produce the final result.) p& g( j4 g3 O; n% U) q
    & H4 p/ G6 R' M; ?# f
    For factorial(5):. `7 s+ k3 b- e5 I

    1 {0 v) {3 F" R% ~$ \, S/ x3 |5 n, c: G' u) e/ N; h  c( n' I
    factorial(5) = 5 * factorial(4)
    & S: @% k$ I( `; z9 Qfactorial(4) = 4 * factorial(3)3 i- E( K4 k8 o& N
    factorial(3) = 3 * factorial(2)6 ~2 U4 x- ]! [6 |, j
    factorial(2) = 2 * factorial(1)
    8 ^6 C6 H+ H! R+ `, G0 rfactorial(1) = 1 * factorial(0)
    $ @, R$ ?3 u3 K) P, m( Kfactorial(0) = 1  # Base case
    , J  H5 z$ t0 G9 i
    1 @- O# A" f% R* w1 u. YThen, the results are combined:
    $ c1 h1 K; u8 W' k* l; `1 f0 N' Z. c

    . t+ ^7 J9 {3 h9 J& N! Dfactorial(1) = 1 * 1 = 1
    6 c/ C' k) W% Y. O, Ofactorial(2) = 2 * 1 = 2
    " z$ w. i, t) T+ z( p5 |factorial(3) = 3 * 2 = 6
    ! \4 L$ ~3 r, S. K+ E5 Z7 `factorial(4) = 4 * 6 = 245 U9 c' C5 u( w" ]* ]
    factorial(5) = 5 * 24 = 120
    * k1 U% G$ v9 A: W$ c* z
    ' _0 b" [. K' EAdvantages of Recursion
    1 m2 _# x& h8 a" P# q3 j
    4 o8 u" K: t. R5 P% v5 w4 n    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).: L$ F4 P8 u& U  D* ]+ @: j

    # i1 N3 G5 C7 g& g3 n    Readability: Recursive code can be more readable and concise compared to iterative solutions." x* W. a9 P' ?' b& S) Z+ d, U

      t# M5 o) p) a. CDisadvantages of Recursion
      O& B( c9 }& D7 N7 E( R/ L
    & p: z3 [. Z: c8 Y3 ~    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# D7 T) z5 x2 o( h- y" o1 _
    ; S- I4 a8 ?! f8 D  |1 A5 `
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . a, Q8 J8 [4 Q3 j5 Y. s8 S) z9 l) E: p4 `
    When to Use Recursion% E2 L7 G# J; F) E3 z) H
    5 `) @7 a, i: O2 k
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).3 K1 E" \5 ^2 H
    & q2 K! N- n) u/ M$ q4 a! d
        Problems with a clear base case and recursive case.
    ( ]/ O: U  u* G/ L7 `  K6 I7 `- {3 o( ]
    Example: Fibonacci Sequence
    2 i% P6 r4 q8 Y+ W2 \9 M% r4 [  a
    % w5 {) Y0 T& K4 T, G" Q0 K; `& rThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 _4 ~% M; l  c+ _' k) E  o9 ?% M
    " n1 a0 J: i0 B+ I8 y7 v) r    Base case: fib(0) = 0, fib(1) = 18 x% i2 m9 _( H$ @) y% Z* Q
    , V9 L$ a6 T* R
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % f6 q  R! a5 N3 N5 n0 p, D5 H" V( v' \: K# x
    python
    ; d8 }- q2 X" E1 M- y; u) K) _3 t6 a/ i% t) ]
    8 A, y  s% V  m1 |
    def fibonacci(n):" ]' b" H/ c6 N+ I: _0 u
        # Base cases6 A" ~+ v/ X4 m" I+ j, Z' n
        if n == 0:8 i# i' k1 Q& n- K% Q
            return 05 l/ @2 e+ |6 _0 v8 e9 k: M
        elif n == 1:' j0 F  P9 j7 j- C8 F# g2 \' f! r
            return 1* K, R4 s  _# k
        # Recursive case1 Y. N$ k$ x2 P
        else:( |8 m! Y% a2 Y
            return fibonacci(n - 1) + fibonacci(n - 2)) z3 G" A  |0 N! B% W, D
    " o# j6 I7 X& W4 Q0 Q' p5 l
    # Example usage; @" w, I/ n$ l' t/ z
    print(fibonacci(6))  # Output: 8
    6 Z3 T) A# o0 n1 g0 |% r( ~8 g- {- I* c8 n: s
    Tail Recursion
    * ?, }' U+ w( ]- |" R' F- T2 K
    $ `7 Y% }7 N' a6 A4 p" M7 \) ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( C" J# q2 a3 |0 m* O0 i1 y. ?

    : }  \8 u2 \# Q8 G  a, G& J) F, |In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-9 13:59 , Processed in 0.054418 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表