设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1467|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' z5 h# n5 c) b6 @9 l

    0 @) x1 _+ W" @' A$ X! N; ~3 Z解释的不错
    ) ?6 q% c' O* I5 V# F- ?! u! M! R) X6 M6 N. m# W2 O
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( ?0 @- ^$ g) }1 a& M

    - z" Q, L# S* p+ |" N# {5 ? 关键要素0 f# A5 e# w) M& @
    1. **基线条件(Base Case)**+ B: k. k+ k$ j2 _' U+ H7 f6 |
       - 递归终止的条件,防止无限循环
    8 p0 ]/ [& c! u; M/ z   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 u8 E( I' t8 ^1 A
    - c/ E& w! i# D' U1 J
    2. **递归条件(Recursive Case)**
    : r5 t# W+ v5 G1 Q& G7 o5 L   - 将原问题分解为更小的子问题) g8 r% z. y3 {  C9 J; o
       - 例如:n! = n × (n-1)!! c2 C  e/ @, M% K. G9 ?

    ; _7 M; G3 z$ g! p- d 经典示例:计算阶乘
    * H7 A- \4 [+ \6 e0 D% lpython8 B1 Z  O/ a- f# U7 t
    def factorial(n):
    & }2 E4 I9 H. b' k! v    if n == 0:        # 基线条件
    8 d5 f' p8 x6 W: f        return 1
    * b) J8 P8 I$ ^2 V) p    else:             # 递归条件* Y8 Y" P9 V  L0 g0 w, U8 C2 g
            return n * factorial(n-1)- F1 W9 ^3 r7 y- Q
    执行过程(以计算 3! 为例):
    & U' t3 t' R9 e) \. i$ K8 J7 lfactorial(3)# k; u% d6 z2 f! H- U6 l8 V8 T
    3 * factorial(2)$ x, x& _+ P5 b5 b) M: H
    3 * (2 * factorial(1))2 e- d3 d, f: S* C1 b- P
    3 * (2 * (1 * factorial(0)))
    1 R0 F+ f. p+ R7 N3 * (2 * (1 * 1)) = 64 C2 f; I& z0 h5 R) e# R
    # `2 D6 k. p4 A. P
    递归思维要点
    . |7 s" f( \. z: W2 w- f4 @; s1. **信任递归**:假设子问题已经解决,专注当前层逻辑: G7 ^! e4 q/ @
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)2 Z5 w. g: y/ E, {3 G! `4 Y+ c/ R
    3. **递推过程**:不断向下分解问题(递)- |; Z) }, j/ f: v6 @  o$ m
    4. **回溯过程**:组合子问题结果返回(归)
    2 i. @. s7 F. P# a0 ^  Z7 |- W. @
    " s9 S! G2 k' ]0 \2 i; c" K0 a  [ 注意事项& V- \& ~; w+ G$ p$ r, \" S
    必须要有终止条件
    & l" K* B+ v" }9 {# I递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ {3 t$ N1 w# L' \" K* @! V' n+ S
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ' D# q" T/ t. R" V尾递归优化可以提升效率(但Python不支持): x6 k5 B& t- {, o( s8 n, ~

    $ q, A1 {" {" T9 u3 w1 @ 递归 vs 迭代
    : r# Z) v+ ^/ I5 \8 J4 ^|          | 递归                          | 迭代               |
    , I8 y: H4 M3 m) u8 E|----------|-----------------------------|------------------|0 E0 S; p4 p& B' W8 q' n
    | 实现方式    | 函数自调用                        | 循环结构            |! |+ ?2 ~- U6 G6 B! F
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 w. o, C  @2 v" x; n" ?| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 J, E# U6 z. Y: i| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |; n0 o; r! E) T! R$ u
    - H; R* L3 f2 B# v: K3 s( H
    经典递归应用场景( n& ^  ^" R; o2 N+ \! D
    1. 文件系统遍历(目录树结构)! R+ Y% C1 f3 M4 _  [/ C) k7 e: z6 r1 a
    2. 快速排序/归并排序算法
    & F+ j8 k8 Q# f: |& W( D3. 汉诺塔问题0 k5 d4 u2 d$ v
    4. 二叉树遍历(前序/中序/后序)
    3 e. ~5 o# R5 e/ i3 r" q2 N5. 生成所有可能的组合(回溯算法)
    % r4 ]! {8 a2 C8 T; S. X% N0 _) S
    2 _( g# m5 [5 l5 J8 U7 i7 J: A试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    10 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ P8 q* [+ g3 l6 D$ H% Z
    我推理机的核心算法应该是二叉树遍历的变种。
    ; T: L( e" k: L! B/ q4 z8 {% O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . P. M. i' a/ }& }Key Idea of Recursion
    : ^( M! ~4 w  a$ W8 a, B5 A
    & ]5 u4 T6 D; a0 |% MA recursive function solves a problem by:
    1 ^6 A5 ~/ n% l# X" M# E$ r2 B" o$ V  k
        Breaking the problem into smaller instances of the same problem.2 y! d) y# R6 d& q9 M
    : Q! A' f7 p. e' ~/ T3 p0 J
        Solving the smallest instance directly (base case).6 z% L) A% ~) r& D% F
    , V+ g( X; r1 V
        Combining the results of smaller instances to solve the larger problem.
    6 S# a8 O. i5 B3 k4 D7 T- E$ L: I: D+ [$ A
    Components of a Recursive Function
    - f# I: W- X5 u6 t1 M' _. U" O! u' f2 u6 d: P4 X) y
        Base Case:  @# C1 C& d$ M2 V, `) [3 E
    % T( t( _. V  j4 d/ U6 U
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 E. P3 w" M  S% A# @" W. g- U
    & z% a; N0 g* J4 D' f
            It acts as the stopping condition to prevent infinite recursion.
    $ X( A" @1 @) B- B6 B
    6 d6 h  d9 c8 S! w+ q        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( J; U. f) N4 `# B5 W% I
    4 z4 d* j: N0 d: p
        Recursive Case:4 ]& U" e6 P, v6 k1 c

    + \3 j- ?$ z) R+ b3 H! Q        This is where the function calls itself with a smaller or simpler version of the problem.
    7 f6 ?, Z$ V$ Y4 L. V2 _" B( z9 ^$ M
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 b9 m& k* `2 F: h" G% @( F2 p' @4 j: C! S' v  C
    Example: Factorial Calculation4 ~# n8 A3 A5 e

    - p: H; y0 \3 t; o  D4 nThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 M3 r- g& M1 B* x3 p
    9 m& L. a! S$ |, m; C    Base case: 0! = 15 {, Z5 V5 c0 I3 |

    6 n9 c1 s6 K  C8 H& W  S2 K    Recursive case: n! = n * (n-1)!" n) x7 O+ Z: H( ?- a: t

      A" Z1 k) N4 J" o% _Here’s how it looks in code (Python):
    . _' Y; a' f5 A+ @: rpython
    / [( p# X' ^5 o4 U  K1 c: |# J! m$ p/ `6 v7 L. e- i# N3 h* C

    - w- d  U3 G$ q! |- Ydef factorial(n):% e. v) `0 o( l, `- S" V
        # Base case8 V. @8 A! F9 f
        if n == 0:
      O1 q& m$ k, i# o! g5 n        return 1- n. U: ^' w" [# V( w* H( ~
        # Recursive case' v0 W  ?. s4 P  @; F
        else:
    0 v- C1 J+ X; O) h9 O4 {" W6 V2 a# t        return n * factorial(n - 1)0 m* g0 d( i+ F+ y* Q5 |
    ) ?4 B- `1 L7 X9 Y. R
    # Example usage
    0 O5 q" E' b- ]: [; Uprint(factorial(5))  # Output: 120
    1 X. ?6 D( P/ H. O6 ]
    ( r! t2 ?" u$ y2 X  }& `How Recursion Works
    ( c$ Q/ t1 S& k7 t* C
    / r+ z; ]9 f* @7 j6 N* A7 j    The function keeps calling itself with smaller inputs until it reaches the base case.& l% q3 t1 H4 `' C# P. _7 R( D

    $ O" i, K! _- K    Once the base case is reached, the function starts returning values back up the call stack.
    & d8 I0 u% }$ h; H
    + ?# A, W9 v. |3 l* T/ }. v    These returned values are combined to produce the final result., z* C) r6 ?# H: m" v6 U) f' y" H0 W
    7 D* B! x" {1 T" E9 }) {8 f9 A
    For factorial(5):  M# r5 G7 m; \& n/ [

    5 s! D( a7 r9 F% q" L, O  J7 A
    8 \( g% i3 Z+ z9 P) y/ H5 v9 ufactorial(5) = 5 * factorial(4)
    . h( @3 ~. b6 c6 @# x0 dfactorial(4) = 4 * factorial(3)! _3 J! ^8 I7 b7 r
    factorial(3) = 3 * factorial(2)6 u! n2 C# p% p
    factorial(2) = 2 * factorial(1)3 G7 @3 y% S1 W2 g% S( i
    factorial(1) = 1 * factorial(0)
    4 _, r" y% F5 ~8 [# w# F- X  _factorial(0) = 1  # Base case1 j% Y- z) o- X9 H; @7 ^7 L8 C
    % @- a0 n( ?" |$ x5 g' M# e
    Then, the results are combined:
    & j5 J* Y- M! C
    % L; b6 B, |8 Q5 w, D7 d
    4 B& d% J* a% N! B: L$ v1 c# a- wfactorial(1) = 1 * 1 = 1* a. x2 h. ]. x. L% w
    factorial(2) = 2 * 1 = 23 [3 G8 A+ c: u# s( j
    factorial(3) = 3 * 2 = 6
    / b! h$ [1 _- d  R+ Z  Pfactorial(4) = 4 * 6 = 24# F% Q/ q% [" f) U, ]1 H5 m
    factorial(5) = 5 * 24 = 120$ Q# G$ G' ?" N8 S5 j  {' c2 P
    7 B, C& l7 J$ R5 D
    Advantages of Recursion$ i4 {9 W& T, D- _$ J

    ! C: o: C. Z0 }) I: j. |    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( `9 O5 q& Q! k" y& H" A# S7 q+ |+ z
    8 x$ V) N: c$ N& c; V: |4 M    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 M! f& |! R# ^4 K, i, Y
    7 d7 a( U$ V: t& [! M1 dDisadvantages of Recursion/ _  P; U0 Y: c- r& I! W% y
    ) r$ z9 K  H$ c# w  d2 H" h
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 h. K. s8 l7 G/ o, c* y) X. K

    # c! H$ K; c4 k  P7 I) F) @    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! [3 b* U6 R1 z
    , k; {1 ?  z7 ^* ?/ {
    When to Use Recursion0 I, `- s' v& S; L
    $ G6 C5 l6 ?1 c
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      I; w' \0 V8 T& F; b& p3 C& `# F: t$ _! U" X& A! l
        Problems with a clear base case and recursive case.. P) x. h) e( q9 g! [! y

    9 ~0 l; x4 @& R9 b" l7 {Example: Fibonacci Sequence7 Q& ?5 T( V& W% S8 q
    8 j4 ]7 p, C. u& i& h' A- I
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:  v) e" Y# M: x

    1 V; o1 y' c, T; d: P    Base case: fib(0) = 0, fib(1) = 1
    * c$ u7 d5 S: {- B8 o) @4 }1 T2 U7 T2 h4 z" Z: y% {4 j
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    + r/ C2 S* f7 a& }3 Y% w8 Z4 V' y" F1 y9 b  H0 W3 V
    python# \" c# D) r( ?) `
    " G5 T+ G$ I; `+ t6 e
    " f& N2 D( A6 \& M: `# `
    def fibonacci(n):
    ( V& `3 j: a/ H% K    # Base cases1 s! f9 z# B# F/ u: W$ v
        if n == 0:
    9 \4 \* W7 t4 z$ i  `) ~        return 0
    " q# p4 `/ |% \* s' X$ h! a5 U9 \& U    elif n == 1:
    . E/ F- v% P7 N- X0 {$ K1 }/ b        return 1
    & o' A. T$ W( w+ ~; \    # Recursive case0 F9 ^6 R7 ~6 a* A- Q. F
        else:3 s3 D1 D) L- {( [7 H# ~! I8 j/ {
            return fibonacci(n - 1) + fibonacci(n - 2)
    : L: D1 c0 H+ Y( F% t7 T3 N2 b2 J
    ! V* \- ^, U( i* @7 _4 ^, c# Example usage
    # t8 z3 ]  }4 F! U- {print(fibonacci(6))  # Output: 8* \5 A( \" f6 W1 G

    : p& c  }+ x, P) u3 dTail Recursion
    7 P% d: s% [$ A1 [  N  D) v5 }5 q& g8 i0 A" ?
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    5 ]' D+ k5 b" O+ `3 `7 g" t1 s( U/ y  H& Z$ U
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 12:17 , Processed in 0.030127 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表