设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1853|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / G. M% t4 }5 u- H
    ! {# _. Q2 M* Z9 L5 r# y. F% h  |5 t: w解释的不错3 R# R" w6 \( M* Y5 W

    * I) H8 Y- U/ h4 x+ A0 g递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 ?! ]7 `, f; U# I+ U

    2 L6 O5 N2 o6 I4 P$ v 关键要素- J; z  u1 q- q9 f
    1. **基线条件(Base Case)**5 U/ h% |/ V/ h& F3 v6 I& y
       - 递归终止的条件,防止无限循环
    " }( V# g8 I/ h/ }2 D' B  r   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) i% V# I. j% p& }# L
    / V8 S, y6 _! r# R( |/ k2. **递归条件(Recursive Case)**
    / l( i+ n+ \8 ~# v. S8 q+ ?& s   - 将原问题分解为更小的子问题
    ! b8 @  X+ f' u$ a   - 例如:n! = n × (n-1)!
    + V& s2 f( N# U; x% l0 ^, \& I4 W* q9 c
    经典示例:计算阶乘
    . _& q0 J# t5 ]$ s2 W1 H! Rpython. E. u! W& N& m6 t6 `& Q
    def factorial(n):
    ; L- ^( y1 J0 S4 \' @4 l  v    if n == 0:        # 基线条件
    6 [% F7 P; |" I( u% C$ n2 }$ j        return 1
    - m  m& v6 Q- T6 B! _) E4 o    else:             # 递归条件. p$ M7 k( q+ M
            return n * factorial(n-1)
    6 I5 u5 W& |1 M# f执行过程(以计算 3! 为例):
    & m; Q/ e0 j3 R0 ]factorial(3)
    $ J6 L: I5 B1 w+ y! i+ }3 * factorial(2)
    : U* Y( V/ o, D3 F& S4 F2 X  C9 T: e3 K3 * (2 * factorial(1))0 Q7 S. \. C/ J# w' U2 ^
    3 * (2 * (1 * factorial(0))), Y' W2 Q  }+ V, I( b1 ?( d
    3 * (2 * (1 * 1)) = 6
    . N7 p% ?2 d- {4 [
    0 q6 I: w( x, J5 o0 ~ 递归思维要点
    # R4 |# j' c$ J. Z, N1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ B. T4 j, p/ Y7 H+ d7 X+ G/ j2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 `% {, H. V6 |, @% V( A7 D3. **递推过程**:不断向下分解问题(递)- ~, ]2 G% m7 Z; W; ]0 t. F, e# J$ p
    4. **回溯过程**:组合子问题结果返回(归)' P0 D! M4 x6 B7 w

    : L) h' T9 e, g1 @0 q" n 注意事项+ _' @3 B4 C1 m# E$ L+ y
    必须要有终止条件0 W, m3 @6 v& }5 g( @
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) d( e4 u8 \2 F2 T( D; T
    某些问题用递归更直观(如树遍历),但效率可能不如迭代% n4 a) s  K4 \( V( Q5 a) k
    尾递归优化可以提升效率(但Python不支持)
    . m& n. |9 X2 ~( F. N4 i7 U* x
    , z0 h& \$ F4 Z; [+ ^9 t. |* C 递归 vs 迭代" @% I; W/ ~7 I2 c: `$ g
    |          | 递归                          | 迭代               |
    3 F: Y- h& C: g|----------|-----------------------------|------------------|
    & e& l; o2 X6 r( Y8 A| 实现方式    | 函数自调用                        | 循环结构            |4 a, T( l  h1 Z5 F! @) i7 N
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ E' ^6 ~, {: F: q# Y1 O8 e+ c
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 X$ d- E9 @, T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: S% E5 N, E( R9 y: J( J; k

    9 \' ~5 A6 q& }; v7 f9 O* A 经典递归应用场景
    ( X( w$ k2 a6 X. n7 E1. 文件系统遍历(目录树结构)8 w( i8 X! I5 m* h
    2. 快速排序/归并排序算法
    + p5 S9 N  c1 s" `9 I3. 汉诺塔问题, w% }0 |! t6 W9 P# ]
    4. 二叉树遍历(前序/中序/后序)
    8 o0 Q* S  P& w, `5. 生成所有可能的组合(回溯算法)
    + n9 U$ M$ Z% h4 R/ Y) U* \2 r
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,6 D+ g" X2 U( b
    我推理机的核心算法应该是二叉树遍历的变种。
    . e: Y" c6 y" e9 P1 _另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , f1 Y1 b$ r6 v' n5 g( V0 b, CKey Idea of Recursion
    3 e( q. c7 A1 I* j% n: [- Y( W9 B) F8 d; T6 ^
    A recursive function solves a problem by:
    ( n( [% D# w; P# R1 c) X  j6 j
    - J) _1 ?' h# k# J8 K5 ~8 R    Breaking the problem into smaller instances of the same problem.: r' {/ e, l2 c# y* w6 m

    - F+ z" R" n. E7 s) Z$ @    Solving the smallest instance directly (base case)., b/ [% n+ h7 f+ N( ^! @8 P
    ) e8 J4 s$ R* S, y. z
        Combining the results of smaller instances to solve the larger problem.  J; Q% n- N6 T  }2 C# [) z

    5 z# u/ y! J) h7 [2 H1 p% q4 nComponents of a Recursive Function* p  w6 K2 G& l; W* W6 z

    " n  {3 ]6 z6 L' n6 z    Base Case:, l% P8 {  z# ^! v, `1 l
    4 E) y! T4 E" W+ {9 [
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# R; `( S. F3 o; K
    ! Z1 y& L; x7 [: J
            It acts as the stopping condition to prevent infinite recursion.
    # U1 d' ^5 O$ s; o' H/ t$ G( S7 i, y) T0 u+ T* L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 G3 g6 K9 F: D3 B1 t; \$ t, _8 s# I+ K0 b( D' {9 h
        Recursive Case:$ f0 ]5 h3 T% ^/ f! G; c6 w

    & g! T* u5 M* J2 p# E9 [0 V( k8 c+ ]7 }        This is where the function calls itself with a smaller or simpler version of the problem.
    * r% C2 i' n- s* z4 w- H
      F! f* ?, j; G: z" s; Q- S        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * x& G; w' g5 h+ ~2 f
    " ^- E+ U. R  ^% g. a' ?Example: Factorial Calculation
    3 ]: G( P, B: f& m. Q+ p3 H' e& x% @5 V! m
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    , l( v; g+ I9 ]2 Z
    3 ^  C2 Z9 b6 D) B# B    Base case: 0! = 1
    $ E( x3 w) M4 H  \* j$ i  [) q) b
        Recursive case: n! = n * (n-1)!
    + C0 f+ \7 R0 p7 M) N2 h% ^% o, W2 Y* o4 o) V" O
    Here’s how it looks in code (Python):$ I) ~  R% Q. \# e; `( i/ m8 ?
    python7 ~1 ]6 y/ `. L, s8 h
    / I2 X) U/ g- |

    ( r- a5 i  `* s7 {% Vdef factorial(n):
    ; q% Q) A" }7 h3 |# S    # Base case4 s% o% c2 f6 ~4 S" H
        if n == 0:
    + w, u3 R# N- D. Q0 P3 A# z        return 18 k. ~$ [, h: M( k. u6 @; }( Z
        # Recursive case1 S1 K' s4 L- C9 i4 h
        else:+ z1 J" c- [) Z( a8 V- x, }
            return n * factorial(n - 1)
    4 [, w3 [! B2 e% B9 Q, s: @8 k, O; z7 X- z6 F: x+ H
    # Example usage
    $ q! V( U% F+ ]5 I. f& b% {$ f: gprint(factorial(5))  # Output: 1204 D! u! h* `# q6 t0 ^9 n0 v

    4 y8 E# _! S4 h' iHow Recursion Works- F9 `0 P* p0 Q. S7 A  ]3 W
    ) y' I, V# a5 c3 V4 A2 k9 M# N
        The function keeps calling itself with smaller inputs until it reaches the base case.
    & k0 c% A6 q2 k, ?
      e2 D) }6 w( N0 z$ T9 \    Once the base case is reached, the function starts returning values back up the call stack.
    ! k; p4 l: J+ S  f) z1 T
    : \- r; u" c. L2 T5 _( u    These returned values are combined to produce the final result.6 _0 }1 B1 w7 N) @* g

    / q5 B% h& O/ zFor factorial(5):
    ) v  C9 `2 _3 b, u7 j5 y
    $ M$ W3 Y6 F5 v' E# ]# J" D4 M; Y; e2 y$ e
    factorial(5) = 5 * factorial(4)+ j: D9 Z. y! N5 l5 T
    factorial(4) = 4 * factorial(3)" Y3 R1 X9 o, R
    factorial(3) = 3 * factorial(2)
    $ U; z3 \9 l& b+ e6 I) t( zfactorial(2) = 2 * factorial(1), }+ c& h5 ~, h6 p0 D
    factorial(1) = 1 * factorial(0), O; Q! l4 r3 t7 |  Q+ `6 |$ f
    factorial(0) = 1  # Base case
    9 \' O0 f0 ~1 `4 V  J! J' C0 ]$ ^& j" [  l
    Then, the results are combined:8 h, Z8 N+ B9 [% ]/ {' Y, w6 D
    , [$ ]" C& B4 F4 h5 n

    2 T+ J) B5 [3 C& O: ]factorial(1) = 1 * 1 = 1, \- Q8 [/ n/ x  o; A
    factorial(2) = 2 * 1 = 2, |) j- B& U4 N- b+ @" O5 F' n
    factorial(3) = 3 * 2 = 6& w) {5 v* A* H9 e4 ~( _6 j. W. x
    factorial(4) = 4 * 6 = 24
    9 ?9 L3 U- Q# f" U; l& zfactorial(5) = 5 * 24 = 120
      d' f& b" E9 B- c  D) c' C* l( t0 V4 w1 s3 J6 t1 T. a4 P7 }  _
    Advantages of Recursion. I5 u' o0 ]1 J+ b+ Q8 Q8 P
    : X' _: V0 b, C3 {- t. r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  ]6 y1 B) ?4 L) Y! |
    ) h" @$ U- A0 S, L  u5 i) ?
        Readability: Recursive code can be more readable and concise compared to iterative solutions.7 y; Y" T. x2 [% M4 H, Z: ~2 i5 h
    5 ?9 }. ^' l5 w3 `
    Disadvantages of Recursion: [- m& ]! D! e% _7 Z% R

    ! E. d# t7 o3 l7 a    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 h' [  \6 t7 F0 L5 ~: o- l, f/ D$ T8 M7 T' G
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    7 C$ j3 U. X) V. t. o5 ~, N2 R
    9 ~3 f& b2 ^" Y, E0 `+ ~When to Use Recursion
    * ^! a% L* Q8 h1 c! x) I: R4 B: h+ B; d/ E* ?
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) d3 P5 F1 G; ]5 G

    ; Q, m4 Y( ~: g- k6 f, Z( R    Problems with a clear base case and recursive case.
    ; `+ N7 P' t' u7 V% P, ~1 d8 R& O+ `& d8 c
    Example: Fibonacci Sequence+ z0 _& {* G; ~+ j; f( E& F' R* {
    : |5 M4 t: L. [3 \" U
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 c- `4 P! I5 `. B
    + }( A1 D0 y9 y+ w4 I  C    Base case: fib(0) = 0, fib(1) = 1
    * G) F/ i/ I! n. m0 m. u) {1 P5 F* S) \4 r" A& ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! ^6 X  k* E1 U
    9 E. [. I$ c* J1 |) ^8 h7 Vpython" l3 v3 e7 ]" o

    $ u8 U. j: J' c* z$ y6 Y4 |& T# {# s4 K6 H. Y, W
    def fibonacci(n):
    / |8 T4 N* h9 x5 D4 \6 @    # Base cases
    7 J6 o& {/ ]$ X: w0 V    if n == 0:0 A- S  Z. T" T' B+ h1 y- \! R
            return 0
    " n( v4 O+ e) V( l    elif n == 1:4 i9 E1 l8 ^! @, K, G; j$ L
            return 17 \+ {6 z) F2 |- |) Y! D
        # Recursive case
    ' f1 T" w# T) \! \7 U  o. N' J4 Z    else:
    8 z! J  }$ O/ J1 e! d/ h5 Q7 l# L        return fibonacci(n - 1) + fibonacci(n - 2)) @* G2 v9 i) q& Q3 d( H
    1 h$ D" U# B" E. d1 M! K' I" P$ N
    # Example usage
    ( h9 R+ k. c  P# G+ ^7 pprint(fibonacci(6))  # Output: 8
    0 ~6 b  E* ~9 ^+ f5 g" I$ q- D. U! ~% g6 V. r% Y6 [. h
    Tail Recursion
    6 _4 m. g/ E, g  s: W" y/ k5 o3 m
    # \$ E  ]/ o) P# v* B) h! t2 pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 Y; U8 T" z- N0 U" Q
    $ v6 N' f, g; N, W
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 18:51 , Processed in 0.030813 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表