设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1766|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   k3 A: [4 [, ^+ r0 A/ N. E
    * \- D! L# \; `  K
    解释的不错* n; v: D8 b2 J9 R2 E$ y' b

    ; y+ E, L9 P( H( \( S5 r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * G, v" u* U2 `4 M# E9 w3 j* T
    8 ]  K* Y- W; u$ B 关键要素
    4 @3 J8 [5 [0 u9 i! x5 a' {1. **基线条件(Base Case)**
    1 D6 K' m4 p: x8 W# d- }. v   - 递归终止的条件,防止无限循环3 J5 B! \- k) F8 O! L' |  V
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) `- b! p0 V7 e" \* u- n5 [+ L  M' |. u7 A3 O: i: ~4 b4 |: K: z/ [
    2. **递归条件(Recursive Case)**
    4 ~: P: E- c3 L. b# h   - 将原问题分解为更小的子问题
    8 {1 _/ f7 Q, m( h7 o   - 例如:n! = n × (n-1)!
    2 m+ b, V' M  ^& B# z- p9 t9 `- ?% K
    / _5 d9 j% M9 L' ~3 z1 N4 M  L' i 经典示例:计算阶乘# K$ p6 R; e( u/ H
    python
    : k: t5 y' z7 H; t! Bdef factorial(n):* E5 D& U3 V) ~* z8 R" d& s' h  N; q
        if n == 0:        # 基线条件. W; o- G9 V. x% |3 |
            return 1
    ; ?4 h% p# i1 i: v  ]    else:             # 递归条件( t' D2 p1 w: x3 x! `+ C
            return n * factorial(n-1)
    + m9 f- }5 J5 W; C9 _; k执行过程(以计算 3! 为例):. C% I( E) Y' J/ f! J+ O
    factorial(3)
    " M% R, T, a  E" }2 U6 K) f! t5 ?3 * factorial(2)" b- c1 S2 g6 C& U4 w) g
    3 * (2 * factorial(1))
    + [" ?$ Z" M5 P7 r3 * (2 * (1 * factorial(0)))
    5 G  k" u( `; T2 ~/ r! U2 a3 * (2 * (1 * 1)) = 6
    8 D! h2 X9 [  g
    5 L' b, B7 t* ]# q5 D+ v 递归思维要点/ `( c9 @' V4 }* U/ {, R
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 E% `: ?" x* c3 |' x* ]2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 g3 Q* u$ ?) @- t& I3. **递推过程**:不断向下分解问题(递)8 c- b( s- q+ a8 A0 o
    4. **回溯过程**:组合子问题结果返回(归): I" W# |% b! P1 Z
    , k5 Y* ]- s7 |2 p& u2 v
    注意事项3 r4 I/ M" F- \: X; q4 y! N1 A8 R
    必须要有终止条件+ v) D9 F  ]  U! }3 b/ e
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    8 v6 u  w! ?2 k8 r2 s! V. V某些问题用递归更直观(如树遍历),但效率可能不如迭代
    6 O& J# }- e, U2 W5 u7 ]! Q0 L% ?尾递归优化可以提升效率(但Python不支持)
    ' z7 I# X4 s" a0 L; k2 J* t+ z' S1 ^2 D6 g; T" X' p# }
    递归 vs 迭代! h) W9 P  o& x# w" u1 @
    |          | 递归                          | 迭代               |
    3 Q  I% n) I% M  d3 `1 e3 a|----------|-----------------------------|------------------|/ F4 C; t7 w9 p& S; w
    | 实现方式    | 函数自调用                        | 循环结构            |$ `- [; }% Q6 O9 V. Y8 F4 c* n
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 u, y; K7 u# j| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 n+ j4 u! @7 r3 _| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / a9 C4 ^% x4 p9 K+ M5 d, }" r2 D% R5 ?; V2 D
    经典递归应用场景3 G8 a" \" e$ n/ R
    1. 文件系统遍历(目录树结构)7 Y+ o0 O, o+ j4 y
    2. 快速排序/归并排序算法
    " U. o* E8 T2 a3 m, ?3. 汉诺塔问题
    & v- k' n, |  Z4. 二叉树遍历(前序/中序/后序)# v6 f; ^& @4 H% N0 S, s
    5. 生成所有可能的组合(回溯算法)
    0 {. v$ @; h# K& ?; T6 a9 L1 {7 }- k  K& m0 }( p1 j( q" ~
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    4 小时前
  • 签到天数: 3141 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 a6 a' G8 [2 I0 g& W4 s6 A我推理机的核心算法应该是二叉树遍历的变种。
    7 T2 X, i% m& l0 {! X另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 l- v5 l. g9 b0 ?7 s& @6 t; {+ U
    Key Idea of Recursion  K1 h9 j' w/ H  x& [

    & o: z% Q2 g' gA recursive function solves a problem by:
    , j, t3 ?" o( q! n" m+ b/ {: @8 r/ i$ U
        Breaking the problem into smaller instances of the same problem.
    - Y/ c. I& R0 v  Z+ T1 [) c& H- K1 c8 U0 l  Q$ K. K3 I# K' \
        Solving the smallest instance directly (base case).3 \( `7 E+ Y: [* r/ ^/ l' b# R  c

    " D( {! `: `) @0 N5 }    Combining the results of smaller instances to solve the larger problem.
    , y- j/ {( @0 B' W; Z# ?
    1 [7 x8 v$ x- _0 N! Y- M; OComponents of a Recursive Function
    * r! I" P, f- t) o5 N) u
    $ K% x8 {1 n. F! V* C. o    Base Case:- b1 E& @- |9 k& U% G9 U* i
    ! h, [$ K/ H/ A0 E: Y
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 f& r* \# u/ D& Y) x. R# J2 t/ J1 Q- n, ^0 e# m; z1 m
            It acts as the stopping condition to prevent infinite recursion.. \* y% }" p% X

    % I$ d; J% I, n  H: T# ?        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 c7 G3 x( Z# {8 z( P1 R
    ) ^  O8 J7 u$ S6 d' s4 o& j( p
        Recursive Case:
    1 |0 Q! v$ u6 d0 E2 N/ v1 |6 v+ Y; L/ t, k  n1 U) X: G, u/ H
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ Z4 K/ _2 m" M" D) {
    + Y. l5 Y- n5 r4 s; e- T" ^# B0 Q        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : |4 a+ T7 P  j4 S5 e4 s: K0 }; q+ o- X* z5 Y" r0 Y# I4 ~7 g: K5 \9 y0 v
    Example: Factorial Calculation
      N' @6 B: K4 C. h6 _" n, q0 w$ z! q! b, n$ `9 Y5 |: p2 G
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# N% S+ ]: J+ J2 X) j& F2 m

    + n' q1 w* o: w$ a: q1 t* h    Base case: 0! = 1* W: J! t* n% h" w

    $ N2 z- _4 c7 |5 e) E1 ]    Recursive case: n! = n * (n-1)!1 b( M9 L- g. i% G" Z$ u+ Z* b7 F
    & M8 N: M% V# Z9 [
    Here’s how it looks in code (Python):
    * f6 I9 |! x  x( P) Xpython
    8 i% }4 m( u1 [! ^# ?
    , t3 I9 X) a' J0 j  O% z8 T3 S. Q* i$ Z; d5 w8 G! H
    def factorial(n):
    . R& v5 T) ^, j& F9 P. k    # Base case( d; K" M$ T( B
        if n == 0:# \; W6 D. I6 k
            return 1
    4 Z5 U8 O% l/ `! y; s    # Recursive case
    + V% S& W; E0 X5 Z; r! x! f    else:
    7 U! Q6 x- H5 B2 I  t        return n * factorial(n - 1)
    ' [1 ?! A8 T( d2 D& h* ]* w  B9 Q* M
    # Example usage* y% P  D  c: [2 `3 }7 B( M( ^
    print(factorial(5))  # Output: 120  A- p; l  |) L* j* A

    0 r! D/ L) n# THow Recursion Works
    0 f9 M: B: @8 z2 X) y$ |+ P7 h% ^% A  Y
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 G6 F) v' }4 S% f; i
    & C2 N+ a7 k4 C6 ?8 e    Once the base case is reached, the function starts returning values back up the call stack.1 L. V1 h/ l' m1 y
    , o9 N( O6 B. P+ `2 O
        These returned values are combined to produce the final result.
    5 {( Q- j+ }5 k2 n. I$ p- r5 W& D1 G; t
    . l: g$ j& T7 SFor factorial(5):* h/ d0 p- |  h  ^4 Z

    / Y* Z) E4 V2 q! D# h8 F
    5 k' N$ i% w* efactorial(5) = 5 * factorial(4)
    : G) j2 B" v/ i/ S6 Yfactorial(4) = 4 * factorial(3)- f7 p% A6 x# E/ d! m& G9 r
    factorial(3) = 3 * factorial(2). T2 f1 m4 D3 v
    factorial(2) = 2 * factorial(1)4 L* J0 d* `5 s
    factorial(1) = 1 * factorial(0)& m' I6 h2 G& l3 I
    factorial(0) = 1  # Base case
    ; s8 R; K7 E3 o2 s' O
    + L" o7 o* b5 r9 ?7 BThen, the results are combined:7 g" ]3 g7 G! E* j, i6 e
    ! a: m& [# n- W( Y6 J
    6 Y& D6 n+ K# I# s$ ^
    factorial(1) = 1 * 1 = 1
    * l; A# O8 W+ k; M$ D* xfactorial(2) = 2 * 1 = 21 j" I; y- C$ {  A
    factorial(3) = 3 * 2 = 6; S9 l2 E& ^2 s, ]% P; w" X
    factorial(4) = 4 * 6 = 24
    / j0 {8 j9 o8 o3 A( J) u# Vfactorial(5) = 5 * 24 = 120
    " R* V" c- q2 H1 q
    3 o& Z" K' f( Z6 S7 k" k9 [Advantages of Recursion. h- y& s6 O, i# B* r1 m

    & X5 w) o$ v$ e" B    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 f) H- L0 f! `+ E# h$ d

    8 ~7 _4 M2 u$ o+ K) r    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 F. ~7 K3 O+ d( ?9 G' M: r# h. Q
    . x0 g, i& l2 N  \1 Y0 ZDisadvantages of Recursion) |& X& L6 d- o( Y7 e' n

    ' W8 B* b  q. _. X7 ~    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 X7 L8 r# k' {' C0 F% k: E1 `2 ?

    2 g! ^" G  O: R0 s$ T    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! h' L1 R5 p, r9 P
    ' m7 F9 I$ o  X2 ?6 z8 dWhen to Use Recursion" l* [( d! }6 G% @
    # A( }5 L$ Q0 v
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) F8 ~9 T0 n0 B5 G( K) j
    . i# U0 N0 ]# W% j- F% w% Q
        Problems with a clear base case and recursive case.
    ! ?  L. t9 Y& y5 Y7 R8 s6 {: ]
    # l2 g- I) v) l1 x4 gExample: Fibonacci Sequence
    - u( `7 [) {2 f6 e  O* ^+ V- o: F" _& x8 V
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 ]; d: ]) A# V1 [

    " u, K/ U( C8 d3 a) ?1 O7 B9 u    Base case: fib(0) = 0, fib(1) = 1* j2 B1 H0 J7 e
    3 f3 q7 z4 I  n
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; z/ b; I) U0 z
    : v, I; n2 I9 |+ {! I& Ypython# m9 Y* |1 P. E! |
    - O2 r" t. o) d

    5 k  P/ {% [# v8 Cdef fibonacci(n):
    - t. Z% r( [. D( }, Z$ r    # Base cases
    " M" X- W: d" T+ p    if n == 0:
    1 B3 J# X* M" ^6 w: r        return 0
    ) ?2 i- ]/ p- h% G+ x7 z$ L    elif n == 1:
    ( }8 E  x6 g; A        return 1
    1 L# s0 I0 {. s6 S1 }! t$ q    # Recursive case3 U  `/ b) o( k( T
        else:% ^" V  u/ L( u1 l+ f0 G* g" g' _$ d
            return fibonacci(n - 1) + fibonacci(n - 2)
    3 g! o, L* v0 M# m/ [
    3 l& w' `" e$ U& Z1 T7 y# Example usage
    $ q- X' J: i7 P' `print(fibonacci(6))  # Output: 8
    2 L$ f- X" m9 Z- ?2 ~2 O) q+ q( P" x$ j: A" Y. N3 p: x
    Tail Recursion& p" I) z0 g! N6 G

    ' l# \9 Z2 c  y: QTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- ?! p7 z- p' e* @. d6 @* }7 E
    # H' z4 T: z( R- V" q% d
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-9 10:09 , Processed in 0.031448 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表