设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1275|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 2 |- k- i2 [% v7 f) f, Z4 @$ I
    / f- P  _5 w. I* {* Y
    解释的不错! |5 D: b! Z3 H; W7 y% O

    ; a# H" {- q" Q' ]递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . D# i  n0 _) U
    ) Q/ h& o/ T4 @6 u9 I8 [ 关键要素
    # U* a1 `3 ~% d  y, O1. **基线条件(Base Case)**
    " Q/ h) W% v1 {, h   - 递归终止的条件,防止无限循环) m) O, f! _( A7 V* A, S
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- J3 c' K$ }( ?; r! N, K4 |

    2 Z* X* t9 Q& r7 ?$ N2 P2. **递归条件(Recursive Case)**
    9 M$ k1 G+ g3 P& c+ }   - 将原问题分解为更小的子问题
    5 z: X. v6 m' K! k! c5 T   - 例如:n! = n × (n-1)!
    4 Q) o$ e1 i( L9 v6 }7 `5 _4 N' @# W
    经典示例:计算阶乘
    5 |' X8 x; ]5 r/ Upython# r8 a7 F) k, G5 R
    def factorial(n):4 M3 a7 K& m& O5 Y5 h
        if n == 0:        # 基线条件% G- y3 W! `  ]! y! m& p
            return 10 B+ K1 i6 E3 [: `$ @
        else:             # 递归条件
    : u7 X& N1 j& w( ^% ~* l) O        return n * factorial(n-1)
    % l, r, S, t" y" @: m4 u执行过程(以计算 3! 为例):' R! b) [4 c/ P' }
    factorial(3)
    * ?. j$ M6 [& i6 V) V) P; T. H* ?0 q, o3 * factorial(2)
    5 J6 U- k* F' d; X& g+ r3 * (2 * factorial(1))
    6 f& O' J7 L& Z& _# M4 Z# ^$ s3 * (2 * (1 * factorial(0)))$ D% e4 U! C: U; Z
    3 * (2 * (1 * 1)) = 60 F9 o$ K9 A4 ?

    : b/ d! E8 r0 ?2 E- v4 C; U$ \5 a  I6 K# v 递归思维要点8 R) M% z4 w9 \2 f
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑& U5 V- Q+ P) q9 [8 g0 T3 J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( A/ E- D0 f$ B& O6 E' J3. **递推过程**:不断向下分解问题(递)
    / Q' J# ?0 S! N) e4. **回溯过程**:组合子问题结果返回(归)
    ( G1 ~* Z0 I0 Y7 r! S& J) g: K; \) [4 D7 w2 E# J: z* K) `
    注意事项' y+ l4 I7 Q6 Q' w7 p( R3 A
    必须要有终止条件3 [* j4 z' z! a6 J/ u/ M
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' s- ]6 |' b5 R# y$ y7 i某些问题用递归更直观(如树遍历),但效率可能不如迭代
    5 v! C* F* {1 S尾递归优化可以提升效率(但Python不支持)
    $ e  e! }! }7 ^- O
    % v7 j( B) ]+ X8 V1 Y" |  p' ] 递归 vs 迭代' M; g6 _3 }% v: t2 r
    |          | 递归                          | 迭代               |
    6 C4 A" |( _- h8 E3 L|----------|-----------------------------|------------------|* L3 }; n; A, w6 d# @" O" C5 D
    | 实现方式    | 函数自调用                        | 循环结构            |* Y$ i6 ~, R# V0 M* E. O- f0 @8 J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 g& U: G2 P9 ^" K' B- ]| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |1 @0 B9 U3 p  z  y0 N6 v. }9 j
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 W9 R5 V* Z0 ^: O

    ( u% B9 m" z1 J; h5 L& J 经典递归应用场景( I" z  _: G5 j2 y. k1 B- M% s
    1. 文件系统遍历(目录树结构)- ~5 [: x' N% ^) G
    2. 快速排序/归并排序算法7 p' ]- n: _" d' V9 T( h( {" @
    3. 汉诺塔问题
    , G, A8 ?: C; A4. 二叉树遍历(前序/中序/后序)
    8 ^5 c' m% U0 ^; @5. 生成所有可能的组合(回溯算法)/ }1 b2 u6 e2 g8 s/ x9 n  _$ {

    ' C. Y4 h% [0 M/ X" y试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    前天 06:39
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 X. t" U. S3 i9 f5 I8 w& z- v
    我推理机的核心算法应该是二叉树遍历的变种。
    ; J* U7 |- j! o' [% w& ]另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* Y6 J  E, B2 h
    Key Idea of Recursion
    2 n: a: e: z% p# ?* D( O4 U4 u
    4 t7 @" f( H0 S0 a; i8 n+ S+ lA recursive function solves a problem by:# |% N' ]0 @: t% M2 m1 K
    6 t! M" G' ^* J- z1 L
        Breaking the problem into smaller instances of the same problem.
    ( @' p; v) ?- e/ i' e; J) Y% |* s5 j* Z
        Solving the smallest instance directly (base case).
    % y7 S5 X) n# k' c
    / a; y# m: i9 k  D% ?    Combining the results of smaller instances to solve the larger problem.7 x' O+ L" F7 P

    8 G$ L9 R4 M+ VComponents of a Recursive Function) x1 O+ o' M% Y2 F) g

    ( Y. ?1 `3 Z; G( m# b    Base Case:6 \' v& d7 C; g
    7 {: \  v) _) I3 T) y3 q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: H, j0 _2 ]! A6 i. M
    8 p7 ^" l+ D. d9 E# r2 c) H
            It acts as the stopping condition to prevent infinite recursion.
    ) l( |+ k7 i! h/ n2 T6 O  ~
    ' \7 w, h! B: P" r        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 \2 P. Y; n$ d! U, |

    1 o( i6 I; U6 a4 _$ {- B! s5 |3 ?! q    Recursive Case:5 O1 s5 g/ L- L: O0 x

    3 n* s6 T; U: _9 }/ v# t1 A        This is where the function calls itself with a smaller or simpler version of the problem." `0 R5 i& s5 M* v: a3 C

    5 @$ I* H5 A( G        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 ~; G# t! j& y* H$ i& I
    - n% L* B3 b5 e+ [8 {Example: Factorial Calculation
    $ h! P: ?2 U% h9 [& ?3 O' ], {
    7 |* D' i- ^. v7 @: TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 k6 V2 }( e* _7 b3 J, g" s% l$ d

    . _* N# V' ?& J" T& E& M    Base case: 0! = 16 d7 p0 V* a! \3 D6 T

    + i' }5 j9 B# t( F& A9 ~    Recursive case: n! = n * (n-1)!
    ) w$ p$ B) ]- W2 Q/ |9 I' U* L% v1 g1 }2 Y2 q. K8 w
    Here’s how it looks in code (Python):% i0 O, C& A* R4 O
    python
    7 H! ~7 J! D8 a" }( j$ D9 M" s% u1 B2 u! ~- `

    * i5 K' F& |! }' t5 }% K# n2 }& v: Jdef factorial(n):( H5 ^% d/ C2 h! d* A+ A
        # Base case
    ( X2 v2 ?* p: X7 K6 L. E8 y: W5 R( f    if n == 0:
    1 u- p  v2 x* C! @: P! Z; G        return 1
      B1 B- c1 R' E9 o2 \$ d! R    # Recursive case
    5 {: g, I4 r2 p7 g! w0 E    else:
    . p& t" `! ^& L        return n * factorial(n - 1)* q; o) W% x( X1 i% m; M5 y% |

    # Z0 ^* }* \; D7 i, X3 G# Example usage
    : c5 f7 j* f4 K# C( ]print(factorial(5))  # Output: 1202 F! A  H& w' B& K, l5 m$ C
    4 x; E0 L; p& O6 A
    How Recursion Works: ]8 `0 l9 l& d8 X* ?1 M

    8 _' p* L* _& q  Z    The function keeps calling itself with smaller inputs until it reaches the base case.
    & u( W$ }# n5 ^4 X8 v3 g4 R6 E, T
    $ J3 S: g# x, U0 e    Once the base case is reached, the function starts returning values back up the call stack.
    9 p+ L- k$ _0 u( O# f" C
    - M8 {, p7 T! R# H4 i& x/ w: ]. Y    These returned values are combined to produce the final result.
    9 \; m* H. w2 W! K: Z6 \3 }& H  t8 X9 r) `* z; g' r5 b4 F
    For factorial(5):  A) W. M6 Y( x1 I. Z- w7 t

    ! @, g% `8 i, O7 g  d0 l# G- r8 _
      X5 K8 i8 h& x' {3 S9 lfactorial(5) = 5 * factorial(4)( V( L$ e3 E: g6 v" V* j. f6 M
    factorial(4) = 4 * factorial(3)
    7 p5 x' m* G0 v$ o5 Xfactorial(3) = 3 * factorial(2)' [6 h) [. ]0 a  ^8 u
    factorial(2) = 2 * factorial(1)
      R. @5 u6 w% S. v4 C% }4 B- X" gfactorial(1) = 1 * factorial(0)
    ) W0 \' q5 |, v8 o/ r0 `( Zfactorial(0) = 1  # Base case' k# A. `2 u5 y* R' w/ o5 t
    6 \3 P, E3 w6 i
    Then, the results are combined:
      o5 m$ i. R& Q7 i$ D1 n6 z
    4 k& Z; e' g: u/ l# v) o8 s& N% @) t! N0 ~5 }" s) Z( S) I5 A
    factorial(1) = 1 * 1 = 1
    * X9 y* ~8 O+ C. G. S# mfactorial(2) = 2 * 1 = 2
    & Z0 e) p3 W. n( e5 sfactorial(3) = 3 * 2 = 6! W4 b6 H3 o. \: a# \. x. q
    factorial(4) = 4 * 6 = 24
    , C( z6 g; B4 a" ?) j" q# Afactorial(5) = 5 * 24 = 120& T* b- ^1 M/ p; T) |( G$ \& @" {

    1 s' P7 }; u- ?% vAdvantages of Recursion
    $ u. r) b: e! V( H9 ]" B) J9 p' H2 q+ U7 L3 b) ^$ a7 j
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' w/ K3 {: b! q
    ; l/ r! U) _; Y6 U5 S6 O8 l& h    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ; n8 J% T- N" h% Y4 r9 M! I) R( i9 T- H6 y8 S/ w
    Disadvantages of Recursion  ~- r$ t1 R& @4 O5 {

    7 V9 j4 B8 o' V* ^1 J1 N3 y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / B0 a' ~8 ?+ ]1 u, B2 [. M: ]: i, z6 q% N
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    & ^9 t9 ?, w) h/ y, B) A+ K3 D% W+ u8 s
    When to Use Recursion2 }" ?( S" L$ R: c

    + F: C7 P& A8 c& W3 f    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    9 X! }7 f4 g- R* N8 h2 \0 N% i2 C  f; Z" k3 `
        Problems with a clear base case and recursive case.+ J. ]3 d' J' Y, d
    + N- N3 V2 M& }4 s- B6 v
    Example: Fibonacci Sequence
    ( x/ f* ]+ N( \- N' r0 y! G8 y7 x. n0 u. o% K( D, j
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    : M& }1 Z( l8 q+ d. j1 ~% X7 S7 R* u0 q7 g" u2 V7 A
        Base case: fib(0) = 0, fib(1) = 1& V% W# `; T- m9 ~4 k+ u* t/ @4 ^& _

    1 N3 [+ K2 [6 H! _& F+ S+ k    Recursive case: fib(n) = fib(n-1) + fib(n-2)' O$ T; B' s9 j" Z' J

    ) k- ~5 D- {2 A6 j+ P; vpython
    / k5 e; r, \" b- w6 Q1 b7 r3 Q' d" R) p, T7 L! ?1 M
    " I* z2 N, r' j% k0 ~7 X. @
    def fibonacci(n):
    " m6 z; s# N3 ]    # Base cases
    # l0 {/ P8 b  l" W2 E; O+ H    if n == 0:
    $ {& Y9 h+ j$ [. i6 X        return 0) a) v5 R: z0 R' w2 L" G. a
        elif n == 1:
    $ X% W% F8 C. t( D7 b        return 1
    ( n! w0 G3 o0 a6 [    # Recursive case( N' m3 H9 z% }' R# _3 R/ B) o" m& }
        else:# a- H+ v# [) t; S( Z$ H. [( ]% C
            return fibonacci(n - 1) + fibonacci(n - 2)
    / q" ^/ I1 c9 f5 z/ X1 U: }2 ]
    + ]1 H# J5 a' q, n: _, I" t: |# Example usage
    7 w. N5 \6 b; q% s; |print(fibonacci(6))  # Output: 8) D1 j% q( S7 z7 A7 ^0 e/ n9 u

    9 o% y# F  c" R6 H0 Z6 k6 @2 u  bTail Recursion
    4 I0 I/ I" Q) X! A; Q  g
    0 |; z, c  A' i, D1 u* gTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ Q& L& L) t8 @/ a4 q* D, w
    7 F4 L; Y6 D; \* v# J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-2 00:52 , Processed in 0.030126 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表