设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1568|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 w& j& W4 I$ D5 P! {
    + W! c& X( Z7 ?  |解释的不错
    * G) v, u# a+ G4 V2 Z. O
    2 a' e% Z7 i0 ?3 R( G递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 V, \" ?& W& {6 K3 U  b/ I) a" k! q* V+ j
    关键要素5 U8 F& V' [& m5 U' u. d- Q" Y
    1. **基线条件(Base Case)**1 X6 e- {- O- x/ s3 Z. H
       - 递归终止的条件,防止无限循环
    2 e" Q; j; \9 V0 m   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: ?( F- [  \& z# M; C8 l
    0 u* X) P/ f1 P4 k8 g
    2. **递归条件(Recursive Case)**
    * g* ?; H- [: y; U7 D   - 将原问题分解为更小的子问题
    + s# \- c9 V8 M2 {4 z% }' X& ?   - 例如:n! = n × (n-1)!5 M; l' @2 g, e% _7 K! M

      A& p: h5 E* n4 L. M+ V* t- o 经典示例:计算阶乘7 d5 j4 D) c/ N( t7 P8 T3 V
    python
    $ Z8 V* X- S$ o- [def factorial(n):) u- p' f& \8 c' h$ {
        if n == 0:        # 基线条件8 o- J$ B6 v) V5 _. Z! A( }: f
            return 1
    ; v1 h8 @( d+ x' E6 n    else:             # 递归条件# a% B  r$ k3 a9 ~' [
            return n * factorial(n-1)
    2 r4 s- t. o3 k" s执行过程(以计算 3! 为例):
    , w. Z( N3 W6 [; ufactorial(3); v" n! f2 Q1 B+ D
    3 * factorial(2)
    & e7 t- ^% g) @% O3 * (2 * factorial(1))  E, w7 B- q* |4 E! t/ c( S: p- u6 W
    3 * (2 * (1 * factorial(0)))
    & a9 V" N7 i9 X7 ~5 N- v. Q- S& u3 * (2 * (1 * 1)) = 69 y5 r0 \+ Y# {( Y/ A0 ?; w% O
    0 M/ B/ X; F- @; Q+ v1 ?
    递归思维要点- b. S; }; }" w; {) I$ g/ O+ z- U3 o7 X0 i
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑* y; K( e; d# m  [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . U4 q: O+ j7 q3 m- O& ?' v1 O% ^3. **递推过程**:不断向下分解问题(递)
    : l/ a; W3 a" C5 s/ M2 g4. **回溯过程**:组合子问题结果返回(归)2 i. H: T/ }  G! r% |- r" A5 T
    6 Y3 q+ h9 I2 P
    注意事项
    3 Z3 `* O) H2 ~9 t# @必须要有终止条件
    + R/ [3 {* O+ O7 N1 H递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      r* }7 w! B/ t; M1 A某些问题用递归更直观(如树遍历),但效率可能不如迭代: ^6 N/ r5 `& m: }* I
    尾递归优化可以提升效率(但Python不支持)
    5 a3 A8 u$ p& G3 [$ M7 q0 M6 ^0 u( b# }
    递归 vs 迭代
    ! o5 y( G1 g+ J|          | 递归                          | 迭代               |
    1 J, h% Z& U: K; p|----------|-----------------------------|------------------|
    , [! @6 p* Q  G. m0 Z/ @, _| 实现方式    | 函数自调用                        | 循环结构            |
    . d7 V) J$ ?/ b2 E8 C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    * ?9 g4 P. A$ y! z. P$ b5 `| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 @4 O% I2 Y2 A/ f4 p7 g| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; x2 @* P5 k7 D1 X8 W8 F  v3 {; N
    经典递归应用场景
    , ^$ Q! ~) d, m1. 文件系统遍历(目录树结构)
    8 N" }* O9 |# c8 O) x' m; o$ H2. 快速排序/归并排序算法
    0 d4 {' X( @( l: M3. 汉诺塔问题* r3 Y2 Q  s7 |8 h
    4. 二叉树遍历(前序/中序/后序)# k) ]& R$ P8 }# y+ j
    5. 生成所有可能的组合(回溯算法)/ g& j% K0 v' c" u
    1 t6 |( O! H) s$ M- t3 Q
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 09:21
  • 签到天数: 3121 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( X1 b* w  Q0 C& N* t4 y! G
    我推理机的核心算法应该是二叉树遍历的变种。3 j; {( P' h0 R! n4 \4 }7 B
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 m6 u* O0 c$ x, ~$ q
    Key Idea of Recursion; U5 F" p' T* S+ A9 f
    , @' m# L9 a  Z1 w" A/ o
    A recursive function solves a problem by:
    3 n: ]% @# y6 S& M9 R5 W3 r; s/ T. V& G; O) P7 j( I
        Breaking the problem into smaller instances of the same problem.7 o# k9 N) T9 d" H5 B, ]

    4 T* d( ]7 G1 X8 h0 M9 O    Solving the smallest instance directly (base case).
    1 h# j, Y+ O  o/ s7 |
      t# r2 u; V+ h, ~- z6 X    Combining the results of smaller instances to solve the larger problem.
    ; w$ e4 S- Z5 I) K3 U2 ^' Y: B& n% `& k2 {7 K+ }
    Components of a Recursive Function
    1 R2 l: h7 [/ l$ M" \& Y
    3 \* A+ E8 t- y9 v% J! j    Base Case:# \) i3 L* d. g/ R) l0 B0 |
    ! b$ b8 C+ A) d8 d
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 c  d( \0 a3 i: Y* Q6 q! l% O$ q$ F
            It acts as the stopping condition to prevent infinite recursion.. a1 S' f+ o, J
    * R- z  g2 R, _
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 m2 y1 i; s  e2 s/ k& K

    7 L6 V6 r7 _) [7 {    Recursive Case:
    - G" O. y, k& {7 p5 e( F; ]2 T& V8 v; J( U
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) g4 ^: E$ t% A( ?1 V9 D9 C
    & I- O0 T+ l7 D' s* a" k; h        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).4 J9 k7 a1 t+ N, y" m
    " t+ U& d* r" O. n& }% a2 a! E
    Example: Factorial Calculation9 E& U! h+ a8 h$ y2 f& C, r7 L) b; h

    , K, v& L7 d/ a% rThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    3 I# h3 L- w9 F; f2 U/ W, W
    ) s8 V& {1 x" N9 ^    Base case: 0! = 1' d- F) s$ x* ?/ h9 l4 z

    ' X- w8 C9 g7 S& T+ c4 u$ T! J    Recursive case: n! = n * (n-1)!( e# _* Z+ p$ J7 O
    % x+ Q+ P0 D) J1 Y
    Here’s how it looks in code (Python):
    ' b, k; P* W. y$ @& ?  g6 epython
    9 g& w% i. G9 W9 Q# R4 N# Y, \/ Q6 K: b3 i9 p& b2 Z

    : C3 s0 g/ L9 ndef factorial(n):; O; D; Z, G! m
        # Base case
    ! D/ {7 ]* @) O* l  z0 L    if n == 0:
    / B/ R% l# v  @6 S        return 1
    : S, I$ j) o9 e    # Recursive case
    2 S" ?: \, j: S    else:
    + f& k. m4 Z% @        return n * factorial(n - 1)
    ; g3 R2 f  ^( M+ g; Q3 U1 G3 ]9 m6 b* M5 F, R7 M
    # Example usage. E8 `+ {* `; R& ?/ w: S
    print(factorial(5))  # Output: 120
    0 }& f0 E2 \6 c9 U! E) R# E2 o0 k7 f8 K
    How Recursion Works" E; c) _' O1 C/ b5 b
    + |: k1 c8 M7 E8 g
        The function keeps calling itself with smaller inputs until it reaches the base case.% @1 m, X$ D& a+ C# X( R# {

    ! m( [; M" y  K2 ^& E$ F    Once the base case is reached, the function starts returning values back up the call stack.9 L; o/ v2 k# L' E' B5 ^1 q$ I  H
    / I/ e  p2 d" C9 p
        These returned values are combined to produce the final result.! m, o9 L, }0 O' S, ~

    # x* f6 x1 M8 KFor factorial(5):9 q2 Q, l! h" R) Y, I0 ~5 r# Y
    / h% e, Z& \% d/ a' S: D; m
    % t7 D/ q  e* Y$ G; d
    factorial(5) = 5 * factorial(4)- {' P# g% Z/ P2 r, w
    factorial(4) = 4 * factorial(3)
    2 l5 z' m/ o- i7 u, d2 n7 z# y8 bfactorial(3) = 3 * factorial(2)) z8 ?& S) s# O: T% K; K
    factorial(2) = 2 * factorial(1)& \0 Y* N2 C4 M! x
    factorial(1) = 1 * factorial(0)
    + `/ \8 M9 R7 vfactorial(0) = 1  # Base case4 V; H  r7 m2 s) |9 ^
    ' e6 z* L+ C$ y7 T0 _0 P: D9 h
    Then, the results are combined:$ F9 s7 m9 b2 G- w9 |

    # ~5 z8 P1 M. m2 g! v' y) v6 t, {) \9 x0 C8 K
    factorial(1) = 1 * 1 = 1  w* Y- v0 T% A, O0 |6 r7 f
    factorial(2) = 2 * 1 = 2
    ) Q& ^5 T. A: W/ z  j6 C: d* z2 ]- `factorial(3) = 3 * 2 = 6
    - T% ]7 I" _2 y* Z2 i1 Pfactorial(4) = 4 * 6 = 249 D6 l1 H$ c5 H6 o) O
    factorial(5) = 5 * 24 = 120
    9 `0 b8 \5 S( \" k5 s" E) p' U: b( i# L* s8 H$ q
    Advantages of Recursion
    * `. D/ @0 @; G( R. G5 X. g
    & j, S* z3 V+ T+ R1 C0 I    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 \4 H: k' i, n1 C: g

    5 p. L3 P! @* K1 a% X    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * `# t# K# Y+ E* ]7 E/ {5 U# X2 I5 T7 s* A$ _% x9 ^9 W
    Disadvantages of Recursion% |7 B0 q+ |4 c& z
    1 s% {& z* h" I# w
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. }) l5 Z" M* v; s8 U
    , l$ P2 x. b8 S8 o4 x( T
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 P1 f8 h4 L  F0 `. I

    # \) L. Z+ p# _- U- U+ j9 V5 R3 PWhen to Use Recursion
    4 S$ H2 R6 c2 M+ o- \
    ) }" _; u) J( \+ m    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)., H- n% h& X9 D

    # L8 _" P5 S3 \0 i    Problems with a clear base case and recursive case.' m* u. o0 x  t8 o" p( Z0 R( f: _
    , ]4 A8 o: a! ^8 N5 V
    Example: Fibonacci Sequence3 a: J) I& D, X  U9 k. U

    5 ?& [! @& R- K% {8 SThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % Y! y: d  \1 o7 V# A5 h
    5 T9 E; Q* U/ ?4 o    Base case: fib(0) = 0, fib(1) = 1$ L; g; H0 q5 t1 C
    7 p4 ^; g! }3 g/ V
        Recursive case: fib(n) = fib(n-1) + fib(n-2)6 z( }2 d; r; l9 K1 e( j  r4 w# b
    6 J! f) j8 e1 c* K1 M% B
    python
    5 t7 l* R3 r  H8 U  a( |
    0 A" o6 ]* _/ p+ R# f- d
    2 p4 N) q7 h/ Ddef fibonacci(n):
    / I) A( U1 `$ C# G5 B9 Q) l% I    # Base cases  N4 B& V3 z# Z) X, V7 r5 _
        if n == 0:2 h! u: @4 _; a3 e4 J  b$ W( g  h
            return 0
    - d& k7 U) g- Y- O1 ?. O) y    elif n == 1:
    ; l  i+ w" [. a        return 1
    * `8 F# j4 v7 h    # Recursive case
    2 {7 v4 R0 u, j4 Q4 O9 t    else:) L8 j% e: r- h+ ?
            return fibonacci(n - 1) + fibonacci(n - 2)
    9 r+ N8 D3 S- ^% i
    0 [) |4 M* c+ b2 D5 `& e# Example usage
      c5 I# ]1 v$ ]8 t0 yprint(fibonacci(6))  # Output: 8* L9 f2 E) G# ?4 G2 }. V0 h
    + c2 i; A; z; F6 ^. D& t. B9 M$ `2 H
    Tail Recursion
    6 P4 W% R0 F& |' q4 o1 M6 X  f  X+ E0 v& m5 D7 J( I: X
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 g9 k, c# b6 x2 m3 k6 P+ `+ z
    7 ]/ @7 [" I. }: ]In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-19 15:51 , Processed in 0.031111 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表