设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1813|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ) @3 V. R: l* {) \# M5 ^7 D4 P
    : X! o* s* k* H, Y% i3 m
    解释的不错8 V0 k9 }1 q, B6 U: ]7 J! W
    ! ?' m* U$ r: x( o: X
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - j- R: ]$ p& o0 K& ?1 |' e4 I3 E
    2 a" Z9 u) L" z1 a9 O# } 关键要素
    * z  r7 `& Q+ {/ m1. **基线条件(Base Case)**5 H& ^6 \3 O$ F) Q1 k% d! T. i
       - 递归终止的条件,防止无限循环8 i$ D: J9 C3 x" Z; `
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    & ~* j( h  y: P# E1 q
    8 |& M+ _. r6 J6 s2. **递归条件(Recursive Case)**" t; ^$ k0 y6 X. b; f6 r
       - 将原问题分解为更小的子问题
    ! \6 w6 K, E/ u* C2 k! R   - 例如:n! = n × (n-1)!7 R0 t' f" {, h: z" B! j1 d; U# p1 B

    7 i" M5 S& k  N- Z, c) ~, K$ c 经典示例:计算阶乘* j2 U2 B! `: `1 ^
    python
    8 i; r2 x/ S. `* C# L4 Xdef factorial(n):% u+ B- G& k- B
        if n == 0:        # 基线条件' D& X! F: m& W
            return 1; {( R  f* K' c1 ^
        else:             # 递归条件
    0 v/ G2 |" K8 ^        return n * factorial(n-1)
    # V8 ]3 ]/ g0 ^% h! n9 Z& z执行过程(以计算 3! 为例):; O& U- c3 _; M% J5 ?* B. R) W* X1 B
    factorial(3)0 p- ^, d6 H8 m9 _* O3 D
    3 * factorial(2). p# D. s, z! L: w. p9 ]3 Z$ B8 E3 T
    3 * (2 * factorial(1))2 v: v0 _. n) P: {) i7 D1 Z
    3 * (2 * (1 * factorial(0)))9 g+ C1 P7 t) z# r6 \8 I: |7 \
    3 * (2 * (1 * 1)) = 6( L, j$ F$ A. t3 b2 G8 M9 ?

    & V. J( C+ L0 Q6 k' h: b, C 递归思维要点
    / m# D6 R. k$ G1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ' i" P' D9 j% s0 r0 T7 h2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 H: U' a: m: r2 O: p, {; C
    3. **递推过程**:不断向下分解问题(递)
    . t! H/ F5 i# ]" c$ B4 E9 _4. **回溯过程**:组合子问题结果返回(归)
    ( t6 E! ^  ^7 K4 i
    8 G; z* \, V3 _: z 注意事项
    , \" ~' B- j2 ^* p+ K必须要有终止条件
    0 Q' V/ j5 J8 I递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 w: s  p+ j/ L- R( e6 }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代, H/ G# X: S0 D; y; u
    尾递归优化可以提升效率(但Python不支持)
    ( F0 O$ }9 G" G: R* ~! n$ S" x" T# |" Y* S
    递归 vs 迭代+ z  t3 h1 v* y# o) L" ~
    |          | 递归                          | 迭代               |+ b, O/ e2 B3 e4 ]; r
    |----------|-----------------------------|------------------|
    3 m* ]8 v- b% C. m6 o2 H| 实现方式    | 函数自调用                        | 循环结构            |4 k: I; U4 ~+ n  c* j
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % m- u% T9 r5 F5 s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- z9 f& N/ W0 b3 _
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 M' ?* G1 `% j4 ~3 o
    ; ?2 E" n% X' h4 X) S# \, U 经典递归应用场景
    $ y" c8 d2 ]8 E0 C+ J, G1. 文件系统遍历(目录树结构)3 u/ E& Q. r* w- B* l+ Y; L  O
    2. 快速排序/归并排序算法
    - T! }( y, X4 C$ r0 ~; C3. 汉诺塔问题# m- T( z7 g5 V* j
    4. 二叉树遍历(前序/中序/后序). g& U4 n1 P+ I) W$ J7 ]
    5. 生成所有可能的组合(回溯算法)
    ( e% L7 g( a5 X# v, ^! Z
    ' g; G' q4 [5 e/ W试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    8 小时前
  • 签到天数: 3145 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,6 a% Q5 `  l  Z  P# h7 x
    我推理机的核心算法应该是二叉树遍历的变种。
    ! e6 M7 P$ c$ C6 h# q0 Z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: U" |" }3 m0 `: ?
    Key Idea of Recursion7 i' W/ h- d! H% E# @

    1 X! W4 a5 o" c% K7 zA recursive function solves a problem by:
    ' K  t, B' a5 E/ d8 j; x( v; l
    6 T7 y/ M: D/ j# }1 b8 B    Breaking the problem into smaller instances of the same problem.
    ' |& L8 D" Z# C
    8 @0 H0 {  }- c2 S* \) `6 P& i    Solving the smallest instance directly (base case).! `  _+ u) `" B  u' \# v
    ) {: y4 }! A+ K" S5 C4 ?
        Combining the results of smaller instances to solve the larger problem.
    2 J, [! @' P. Z5 ^+ B! v" I- ^; o9 j, Y, Z7 P+ X% u: f, ]
    Components of a Recursive Function
    ! O6 X; y6 ]( a9 q& Y
    + l4 d4 [  a3 k    Base Case:+ r7 N, R7 K9 h, X2 g# H& R' O

    : j% |3 [! F" E/ H$ q, n! X        This is the simplest, smallest instance of the problem that can be solved directly without further recursion., f& q% W/ w* b' `' q

    1 e9 p' _& j! E0 `4 q! K        It acts as the stopping condition to prevent infinite recursion.
    $ x" ~& V3 g2 N0 W# _4 E
    2 ?  Q! V9 g: P# r7 q! D% u        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; B8 E* c! v$ h# D) n& Q" G) C7 i

    # l" C$ j' y: D7 f* h8 p! S7 M2 V! r    Recursive Case:
    1 S! Y2 N6 m/ v2 [( y# g9 W+ r* e8 ]) L6 h8 _
            This is where the function calls itself with a smaller or simpler version of the problem.' |5 {- b4 D/ G# p
    & n7 M0 S: A; j+ v3 k
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ {4 {% F9 y' ^& t$ e

    # i3 h" q2 |5 }# vExample: Factorial Calculation- E0 `2 ~6 O. H

    0 \# @" J3 i% `. nThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 K) E8 }* i7 J, J6 ^
    / n/ w. `8 }9 W* q7 e
        Base case: 0! = 1* ^+ F; f" W( v, M0 X& t$ U
    1 Y9 p; p6 L1 T4 _! z
        Recursive case: n! = n * (n-1)!
    & E' W+ w! s0 N" w& G# M
    2 \2 M' b/ Y0 Y* I7 {" hHere’s how it looks in code (Python):2 R$ [  Y( a% c$ I8 j5 M
    python5 s" h! b0 {2 ?1 X9 f0 f

    $ p" N$ ]% I0 G2 I& T2 x
      n7 U# C% H# bdef factorial(n):( F( }+ Y$ a2 h. U
        # Base case: P0 t2 S, L9 n: N
        if n == 0:, C( H8 R) |1 @% ?0 H
            return 1
    ' T: n2 C3 [7 q    # Recursive case/ s! p. Q1 }) E: S! B6 B
        else:# M1 k# i2 n: Q, h1 s6 U
            return n * factorial(n - 1)* h" E% q+ M5 ~
    ! @& \$ l+ R* q  e  V
    # Example usage
    + [3 n( N: ]% S, Hprint(factorial(5))  # Output: 120/ k0 j* C" B9 a3 k4 p, Z/ j

    + S; b/ u% p" D5 t0 lHow Recursion Works' G2 u- X8 e1 [
    3 r7 i/ Q; b( p# F
        The function keeps calling itself with smaller inputs until it reaches the base case.5 {6 \" Z# C- A( u- ]
    5 D  U% Z0 p" D$ X
        Once the base case is reached, the function starts returning values back up the call stack.
    9 B& m- h" _  s; p8 e4 Q( }2 h$ N8 }
        These returned values are combined to produce the final result.
    7 M0 K9 r- f1 z. S6 U) j) p! q$ X- j! F
    For factorial(5):1 T" ]0 D$ o( e1 o9 c3 `
    " L" |( [2 P$ V0 v
    3 a. k: v" p, W, E
    factorial(5) = 5 * factorial(4)% G; ]9 @+ x7 T7 z5 q9 s
    factorial(4) = 4 * factorial(3)
    ; y, R& b, J$ z% A' I4 X, l2 v5 n1 {  Zfactorial(3) = 3 * factorial(2)
      y3 k; `4 h- R+ r  y4 {; \4 n  [factorial(2) = 2 * factorial(1)
    6 r* o0 G" p8 R9 _" tfactorial(1) = 1 * factorial(0)
    " X4 W: I6 Y; K) Jfactorial(0) = 1  # Base case; {7 \/ g) N$ o2 ^
    , p6 u. K" X% y0 R* q! o/ m5 v5 p
    Then, the results are combined:1 O# e: i/ t% a9 i2 D/ g7 m
    4 x- R: N) M' o+ J' P

    # T, {0 u$ \: ~; ifactorial(1) = 1 * 1 = 1
    + }% i& }7 ]% [& W2 \0 A( Ffactorial(2) = 2 * 1 = 2  X% ^( l. l0 R+ G1 P
    factorial(3) = 3 * 2 = 6
      I3 j3 x% i" z2 i$ Gfactorial(4) = 4 * 6 = 24
    2 Z1 L8 ?+ t" [6 Bfactorial(5) = 5 * 24 = 120
    ( k% h& L( W6 v+ P( g8 f% c  E9 L
    Advantages of Recursion" p9 U. L& O; {# H* v) h0 R7 t
    ! n: K+ c1 ^3 L$ `9 D7 E- l
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( n. Z8 N7 d0 z" c3 ~7 ]: n% s4 w! s7 I9 x; \
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 `* q  n/ A, d: p2 D( n  k! Q
    0 s5 g) o6 ^9 {/ Z/ N# o3 `  SDisadvantages of Recursion
    # \& X! p" t' Y! {3 g/ P8 e7 l4 Z4 B% e8 e7 [6 K
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& }# e# u0 g( E* p( {

    9 V, c1 i; G7 D    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).' x. F) ?# s8 Z3 Q( d
    - S: B$ `0 l2 c
    When to Use Recursion
    $ u" \% n5 X% j$ t0 V
    # m$ \( ]6 |1 k    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).0 a6 ~  V: K0 {) j5 P' E

    2 {9 @; \, p6 y3 l    Problems with a clear base case and recursive case.
    : ?! N' A# V' ]: R3 k5 @6 J1 ^" b
    ! ?  e' u4 m7 y, l5 F, LExample: Fibonacci Sequence& K+ z6 {" J. W* s' N# s6 i

      ~+ L2 H9 f0 Q4 ~! m1 gThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, ^8 P$ p5 U9 l4 `: H# x1 A

    ! ?7 D- U) f: K- R% L6 K1 H0 W    Base case: fib(0) = 0, fib(1) = 1
    ; l1 [; W) e' l; r8 v* c4 F. b# i$ v( d- c' X& C2 r% u; |9 M- t
        Recursive case: fib(n) = fib(n-1) + fib(n-2)) x/ d! C) v" C/ ~1 K# N) S
      o: F* o$ Y6 b4 l4 G
    python
    % p# g$ F# ^+ Y# ^% B  a  A; H+ U0 S. f0 S6 c7 x* n

    ( F; ]. _; Y) k) x( F, Idef fibonacci(n):
    , G1 v. k7 X4 t! w( T- V) n    # Base cases" `8 y% |7 A3 C) ^  ~* A
        if n == 0:
    7 Z! S+ L: r, z. X$ U8 J0 B        return 0: ~7 F2 ?0 R. ~  E6 R
        elif n == 1:6 a0 e( l! z; I. ?, c/ V
            return 1
    # P4 o; a0 x7 b% E6 ^; [    # Recursive case& B5 Y; |" _3 d% j! V8 @+ Q0 k
        else:
    : {  Z$ S" `" @7 F4 n# V        return fibonacci(n - 1) + fibonacci(n - 2)7 Q% w# K0 X0 W0 \0 f
    " |' T- D3 J# q% n7 q
    # Example usage, v; L5 d7 u/ k6 ?; {; B
    print(fibonacci(6))  # Output: 85 m% p% u* I5 y' f; {* O2 ~
    % a# b+ @% O& P5 Z9 ?3 X8 M
    Tail Recursion; Z4 c+ A9 z  W& k5 U* b
    ! o) ]& |+ F# C$ d% N* v* V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  V+ ^+ G: T8 Q/ p% c! h  S
    + F+ `0 W, s' Q3 C% K5 s( k
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-13 16:10 , Processed in 0.033871 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表