设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1344|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 3 h  l7 [; j" U# T8 F( H

    0 Q- i; M+ }4 r, Z8 k解释的不错
    # t- i2 q0 \0 }3 v1 z. k% X% E* L3 a" J2 Q6 }6 \
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 [; f! ~9 a& G* ^$ E
    0 `2 I+ u$ I7 a% z( m" j
    关键要素
    & I" i& a$ \2 H/ \1. **基线条件(Base Case)**7 F2 i8 D9 V3 |, j. g% B. \
       - 递归终止的条件,防止无限循环  J1 d- R# C% k6 P+ g1 B
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    6 m% ?  g& Q( K6 ?1 E: y/ U+ c2 _7 n2 I# ^6 I; [7 [. G1 X
    2. **递归条件(Recursive Case)**$ K7 d! }$ _+ z  Q
       - 将原问题分解为更小的子问题
    7 z0 L( d# }6 N   - 例如:n! = n × (n-1)!5 e' f! _) s% G7 g7 x
    ) Q$ `6 G+ Q0 a$ A2 u% Q' h
    经典示例:计算阶乘1 C- M. z& h/ \# M1 R& a' i( M9 O
    python7 z7 k! l+ n$ j& P, v
    def factorial(n):( T  a% D6 Z+ Y+ f/ b
        if n == 0:        # 基线条件8 `* \/ [1 ^$ @
            return 1
    ! @' s# j; E4 G5 N% W7 V    else:             # 递归条件; G; [0 ^* {" N) E
            return n * factorial(n-1)# r  t' W( a" }2 V8 c5 O: _- S4 G
    执行过程(以计算 3! 为例):
    3 S5 b8 n- x2 z- [& x+ L0 Bfactorial(3)
    % F. Y& R- J% L" f$ v/ M! r3 * factorial(2)# ^# b' m2 g  @: K+ `
    3 * (2 * factorial(1))) D# s6 e/ O. P: v7 y
    3 * (2 * (1 * factorial(0)))+ [* d3 X1 ^) Y7 M% q
    3 * (2 * (1 * 1)) = 6
    6 c- O) f8 M1 Q. b* y$ v, o
    " D8 ]( {' W) U8 V5 j: \! h 递归思维要点. U8 o; a4 e8 L& p$ L. L( F
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ; `5 J, I4 L; u  d2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- ~3 s* ^, b2 k' S: _
    3. **递推过程**:不断向下分解问题(递)5 U0 ?& x, c# @8 |. \! ~1 d9 w
    4. **回溯过程**:组合子问题结果返回(归)! V, Z  |1 }6 }( e' Y
    + J* h. U. ~& |  m
    注意事项
    * x; L/ c9 d7 k+ t必须要有终止条件
    . `  z0 w3 R( P递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) w9 v5 [2 ~5 ~" I) s6 n6 f
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & ^* n8 N! ]4 g/ [6 O$ D% {尾递归优化可以提升效率(但Python不支持)
    $ S  a' S# V, s$ A( e
    , \8 V& `# ~! E* d% U( c 递归 vs 迭代
    " g$ _; r* X6 l9 O; G|          | 递归                          | 迭代               |
    / v( ^; D) Q) H% X( |; I|----------|-----------------------------|------------------|
    6 q; g0 W; f) p* E) l| 实现方式    | 函数自调用                        | 循环结构            |
    " Q  o: n* |0 I+ O| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      T. k/ P. ^0 u5 O| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' l5 O. w6 I8 g" a: H" || 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |* k6 |# c) R  @7 q, q
    * o" r: t9 T! W1 [9 [( a3 x. F
    经典递归应用场景
    4 K) D- n$ q) e: ]# ]1. 文件系统遍历(目录树结构)" u3 U. c: W& v
    2. 快速排序/归并排序算法+ w7 g% s5 C( o& p8 e. Q9 D
    3. 汉诺塔问题
    ; X& w2 J" ?1 k5 F% w8 h4. 二叉树遍历(前序/中序/后序)
    7 s3 b  b8 O* d7 F. Q* M4 f; V5. 生成所有可能的组合(回溯算法)
    3 d4 {. _- r" b3 Q
    3 t9 D* N8 _% U. C; V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    2 小时前
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ j  v1 R6 J6 A. U  |) W9 B4 Y% V8 `
    我推理机的核心算法应该是二叉树遍历的变种。
    2 [( x, K8 `: |! M. c, `+ S4 s) d! q; n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    % ~  D# V" ?( L# ^Key Idea of Recursion) l& l5 i1 u' m5 i) G1 j
    & N/ @0 [* M$ X8 k6 D" M
    A recursive function solves a problem by:
    2 L: ^1 P  p! |7 i  o7 V7 @# q  H8 _5 h5 s
        Breaking the problem into smaller instances of the same problem.' B/ P1 B* d# A& d% `
    4 a, I, S4 r2 m; n
        Solving the smallest instance directly (base case).
    9 D+ M* K2 D. h  R
    5 V+ V6 |; c; T- C    Combining the results of smaller instances to solve the larger problem.  S6 S4 G5 d1 }! Q" a$ l7 O

    % ^' X: a' I+ I. A5 D2 _& X& eComponents of a Recursive Function
    . \5 e" F- {1 j1 z; Z" @& h0 P3 c4 B* S: E( J
        Base Case:6 }5 z4 L5 X8 `" l5 ^

    ( L5 I4 ^: r2 R% W$ Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    . k; }( h1 a6 t3 Y" {; e+ |- H: h' s! {6 |% L0 q' p$ F
            It acts as the stopping condition to prevent infinite recursion.% B9 \$ c( r0 n; y

    4 a9 ^4 T  O/ w; r. H) @        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * Q9 F; b- u+ h. I! s3 \7 |- Z* t' f+ c/ F" u
        Recursive Case:
    ) [, d& `3 h; |
    9 _4 x6 ?# C- s) x) C        This is where the function calls itself with a smaller or simpler version of the problem.
    , L( l/ s# i' Q& N0 p! q: D1 r2 j$ x3 l+ \- @4 a* U" Y7 K, U
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 \7 g' @) O1 p  F: i$ `
    * R# q7 p5 N0 R. Z# [
    Example: Factorial Calculation% Z7 ]) V; W3 k! f
    3 c& m$ o: l1 M  U% Q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 B) d6 v4 P2 D9 q& Q! B; H1 r6 r
        Base case: 0! = 1
    , H0 B% p9 T& X, ?: Q% l* ^0 |
    0 U4 n, [* [5 {8 f# Z  |0 Y) ?& \; v    Recursive case: n! = n * (n-1)!
    + D' G1 [1 g: F2 q0 {  F5 C3 P% Q) x
    Here’s how it looks in code (Python):
      w( Z' m9 C$ R" Npython2 |/ @9 D7 e4 E; h- t$ O, R& J

    ! ?1 B. g& j% T5 ?
    ! B  B* K1 ]) {def factorial(n):
    ( d* b5 Z, p7 m' c9 G7 G) j    # Base case' ?9 I2 k: O% g( m- x/ g2 J) o
        if n == 0:
    2 e4 a, A  B$ J4 V( Z; f: j3 f        return 1/ m! x6 n  ^' E# J) B+ l; A
        # Recursive case! A7 D( S* L" M( w1 F  z+ M; }: |( m
        else:' |0 s& G3 z7 d2 ]% ~; v3 u+ U# A
            return n * factorial(n - 1)
    2 C5 T* v1 e7 Q# m4 `& J+ f/ @. G& t( _9 T& `2 x* t; s
    # Example usage$ i# _% X4 R# l$ O: H
    print(factorial(5))  # Output: 120
    ( O: T7 [8 ?$ V$ `
    7 o( M+ X& P) ~7 XHow Recursion Works" _* a+ D0 D' W1 K( u( Y

    4 }- t: h- K5 H3 ?, H/ I+ h1 W    The function keeps calling itself with smaller inputs until it reaches the base case.
    1 H: o' D! a) t6 O( s/ D# @/ s% T* U; O: r- J; r
        Once the base case is reached, the function starts returning values back up the call stack.
    # X, w3 K! J1 r' r7 n3 c% z. w) A* k7 D/ k5 P, l
        These returned values are combined to produce the final result.5 a3 A; w: }, f( K0 t2 I8 ~
    ! _. q% K7 w$ E
    For factorial(5):2 D0 J' ?* F) `% `; \% A0 h; {# ^; e
    5 H( R6 m9 J6 ]: {3 H

    + S* N9 T$ t: i7 Efactorial(5) = 5 * factorial(4)
    / C  S4 S1 |4 n. ~8 ufactorial(4) = 4 * factorial(3)
    % A  C! b8 E; K  S8 l3 y4 efactorial(3) = 3 * factorial(2)4 {% K8 D4 \8 @, Q% H
    factorial(2) = 2 * factorial(1)/ o: Q% q/ c# Q6 n9 @" @- {
    factorial(1) = 1 * factorial(0)' ?& |4 Y8 y4 q8 X: ^
    factorial(0) = 1  # Base case4 `, O  e- }8 z- M5 G5 s0 {+ a
    2 u4 C  f# `3 J4 ~( ~! r. V
    Then, the results are combined:
    , W. S. [5 v6 m& I3 k
    ' Z0 v( J8 l+ M( P+ J5 _0 p
    / a5 A2 V( n0 U2 X9 y1 r8 I/ jfactorial(1) = 1 * 1 = 1# W- o2 d5 i' f0 O) Y
    factorial(2) = 2 * 1 = 2
    8 w2 W0 }, }/ {factorial(3) = 3 * 2 = 6
    , w! o, _+ K8 u' Kfactorial(4) = 4 * 6 = 247 n. K9 M1 M" m3 K" ~
    factorial(5) = 5 * 24 = 120
    & R* p3 N0 P7 y1 ^; [9 f! c5 X( }# }0 P# ^
    Advantages of Recursion0 z& W2 ~" ?/ n: |2 R

    9 u$ \6 Q% }- u- q1 R2 b    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 g2 {# b8 {1 i* ]3 x' e8 B9 ~! f& j: i; ~9 c1 ^' D+ s6 r
        Readability: Recursive code can be more readable and concise compared to iterative solutions., D) P1 H0 t6 Q( @5 @# Q7 t
    # }4 l! _/ V% x$ V+ h# N7 s
    Disadvantages of Recursion4 I0 J" g8 s+ o9 k6 s8 `& V

    9 d2 }" W" K! ^6 |3 N: M) O    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! S: k2 p7 y9 o& X$ |

      I$ j% r3 S" t( A9 ^7 Z, W" `    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& |+ k' j! Q+ H" s4 n; [

    $ n6 d) i/ b  l: R* o* T6 h  e+ B9 jWhen to Use Recursion& {0 Z7 V( ]( S" z
    % f  e8 x6 @7 H+ `$ r, F; t" [1 S( M
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% v$ ]- K* d  A& \, M7 R

    - t2 a3 H/ y  \/ u5 i3 ?% K- t/ J7 w    Problems with a clear base case and recursive case.# ]+ h* u( [% C0 W+ v5 o
    2 T# r2 V" U) r5 R
    Example: Fibonacci Sequence# `/ p5 Y/ B/ p: _& A9 B* n6 d9 f

    ) N+ A/ `9 E3 X( w* _$ b1 NThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    & J5 T* b. S: X# c2 N2 B2 d4 E, O# j% T( }& q& Z' A5 k
        Base case: fib(0) = 0, fib(1) = 1
    # z: \/ W( y  e) c; @$ P/ N4 M: O8 W1 {
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 s2 j* M: i; d) m7 V( }7 O* m7 k! _- i' A' P
    python% {4 A( C6 v9 d
    5 S; c9 Z2 ]' B( C7 x2 R4 |

    + M* J9 o; H, @( N" W  Odef fibonacci(n):4 k" m% S% v- T7 f$ a# I
        # Base cases
    7 z  G" h8 z5 i: Z% E  O, k. q7 x    if n == 0:
      N! a) b0 `" C7 P) n: o        return 0
    2 Q( J+ j5 Q2 q    elif n == 1:
    # }! {5 I  s3 X+ T9 \        return 1/ e7 H8 c$ ?1 z& S! c5 y+ l
        # Recursive case
    $ x3 Y1 O  y0 M( ^    else:
    # N; H4 W( t, E' ]7 c) J: d        return fibonacci(n - 1) + fibonacci(n - 2)
    * V' F3 y- R: h& k
    3 B- T: m0 z" t2 z( L+ C! B( a$ f# Example usage* U$ p' e- t. x
    print(fibonacci(6))  # Output: 86 ?$ L5 ]* |2 X, E

    / t* s/ d. r: PTail Recursion
    , T4 _2 A4 \8 X7 g- m' L1 m" F4 I) N" t, C' c
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / @2 E+ z, ^6 H5 ^& K( X8 b
    , }) u: O7 W( G& q) f6 ]) s: TIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 11:00 , Processed in 0.031161 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表