设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1985|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 X1 S9 u" y( A% \6 p* J/ i7 `' U% v& [) V( @+ r3 `; ]
    解释的不错$ q! \9 d, d! u( z

    0 X2 `1 p" ~; N- w' L; y6 y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : C5 @6 D1 V) G+ R5 A
    6 a* v0 J. X/ g( B& G: U 关键要素
    . k/ c- r# G' Z9 s8 R/ g1. **基线条件(Base Case)**  p4 w2 B$ L( F! M& u: J2 n
       - 递归终止的条件,防止无限循环# u" C  L9 f% _# [4 Z& p
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 H3 _8 K$ `7 I+ d6 F. z/ k7 D4 ], J# h/ A4 |5 b9 Y
    2. **递归条件(Recursive Case)**1 i! ~: @+ d6 Z1 \& E2 E% n, B
       - 将原问题分解为更小的子问题' @; U, ?* s2 `( A6 E( ?* j) }
       - 例如:n! = n × (n-1)!
    % q  |& h& ?7 K( i2 D1 h
    . @6 \( b, y. `. x# S0 d 经典示例:计算阶乘
    - Z8 @6 t2 K" e5 O" xpython
    ( j  U' b7 R9 k( {& Qdef factorial(n):" w$ I6 |' P9 _
        if n == 0:        # 基线条件% [+ d% t0 F+ q' ]' ^& D
            return 1
    6 r) [0 q7 h5 m( a( O    else:             # 递归条件
    - {0 ?4 N% q, H7 |) C        return n * factorial(n-1)0 A8 e6 d0 `0 ~+ q& Z
    执行过程(以计算 3! 为例):
    : c6 g0 y* @$ X/ h, B& m8 X* \/ yfactorial(3)
    ! s( V( h" p% G; f, k( O3 * factorial(2)
    . Q. K/ `" ^' i4 r2 K3 B' h3 * (2 * factorial(1))$ p, W8 w" S3 ^' X# [6 b
    3 * (2 * (1 * factorial(0))); O# V( Y0 E  u5 d* N
    3 * (2 * (1 * 1)) = 6
    5 F, P0 v; Z! R) l/ a
    - x+ Q9 v1 D8 ~ 递归思维要点
    5 @3 b6 _7 ^- X( ~3 b/ g. J3 q1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 Q7 F/ M9 {3 X  e5 n8 Q/ m2. **栈结构**:每次调用都会创建新的栈帧(内存空间)' g" l! A6 o* u1 ~
    3. **递推过程**:不断向下分解问题(递)
    $ V! Z3 O, Z/ ]! N8 C5 y4. **回溯过程**:组合子问题结果返回(归)2 ^# q2 _4 L4 c

    ! B" k5 |* d+ _; h- p+ } 注意事项4 S* P9 o/ n" j! l9 X9 i( o
    必须要有终止条件
    + K$ i8 R: D. [2 |1 E递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * D& Z# W; E/ F* f: e& d某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % l5 U0 h: Z+ |+ c- h+ ^尾递归优化可以提升效率(但Python不支持)" J1 K' _) M: p& m# u, {
    1 O5 W  l! F* x, }! @0 V: l
    递归 vs 迭代, l4 s# h9 [! k, g% x
    |          | 递归                          | 迭代               |$ G" I1 v) S4 F0 A! y/ m: ?1 s
    |----------|-----------------------------|------------------|* O) y8 V9 L" h5 r" a( v: Q( u2 H% s" X) u
    | 实现方式    | 函数自调用                        | 循环结构            |9 M( {. X4 T8 |$ H( H+ D8 S7 \
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 H0 W3 \3 {5 f+ E: F7 E1 d| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * n" |) }$ V0 o| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( |. O: C/ U( |  a; w9 v7 M
    5 f  P4 F" E$ u! h
    经典递归应用场景
      t/ a' ^* [# G; j1. 文件系统遍历(目录树结构)- N* r/ A! ?& Y% l. m; m
    2. 快速排序/归并排序算法3 t  s3 g6 M- v8 X6 V- b7 T4 S
    3. 汉诺塔问题8 h  p% |& F$ u
    4. 二叉树遍历(前序/中序/后序), q! G" z* h9 q; B0 ?. }' u7 `9 ]
    5. 生成所有可能的组合(回溯算法)
    3 {# _) G& K2 S% C, i& X9 h0 ^; g6 Z: r$ V. c( G" S9 ?
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    6 小时前
  • 签到天数: 3159 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 F& X, t" v  E- Z( k
    我推理机的核心算法应该是二叉树遍历的变种。1 Z6 W' O6 l1 r/ z5 W2 E
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- z  M* p4 K/ \1 O! H- z+ {0 o
    Key Idea of Recursion
    + p5 H1 l. }0 P6 g' t  A$ a5 {! @& p: Z: e. i" T, p
    A recursive function solves a problem by:* Z  h2 _8 o& _; H4 S2 p' h

    8 R) x3 a+ }8 O; v* Q    Breaking the problem into smaller instances of the same problem.
    ; \# W7 r2 p; M9 \1 J2 [, @5 [" r2 x) v- @1 `
        Solving the smallest instance directly (base case).& z7 g: L2 ^" o1 j* \+ L

    & H4 ?- k+ b. ^1 `( \    Combining the results of smaller instances to solve the larger problem.
    0 K  ^( K8 Y) x8 l
    ( C7 M3 j1 ]8 P9 KComponents of a Recursive Function/ Z4 A  ^& h" W# m
    - J* ]2 _) k2 I( k- A
        Base Case:
    5 T+ P& I4 e: ~6 m+ U7 Z) k# d3 g1 M- P$ z  n% I
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# H! h% E- n6 x$ l$ m5 i

    2 p7 E  J1 `: F/ D$ b        It acts as the stopping condition to prevent infinite recursion.+ g" e4 ~, Q' f4 q  j0 i

    6 p5 N6 H' W% \' W  j5 x5 N* [* @        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ l" ^' g4 _' q) [
    % L5 m3 q8 {8 @& ]4 u( m- h2 A    Recursive Case:0 e- d9 ?, E2 ]4 Z5 I9 M

    1 t9 w; P  ]. R2 S6 |        This is where the function calls itself with a smaller or simpler version of the problem.
    5 M' H9 h% J% c6 c; L& M
    , ]. y4 A' y) B3 W; l/ a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 g7 c5 ~9 q. U- d
    . i0 a, w% C5 m5 m: x, V$ x
    Example: Factorial Calculation
    ! _% r" @' a  W1 Q/ G& |
    : \4 U4 f4 ?2 X; P/ m6 OThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:  J" {, A" L+ o

    9 E# E+ U! ?; `  H    Base case: 0! = 1
    * H% z# ^: V  G8 o) M4 b& k2 Z# b
    # f2 V8 I8 w$ _( {  N    Recursive case: n! = n * (n-1)!$ u$ a# P7 n, n5 b
    - K+ k4 H. S& P% y# B
    Here’s how it looks in code (Python):: S. U* Q  |- m8 E
    python- c( Y9 q  F6 R  H" y# ?. K
    $ T4 a: P: t+ o$ ~
    $ W, S1 b' r7 x+ I+ d
    def factorial(n):
    / D) k$ r7 n& F1 u; E    # Base case+ h% j7 X) E. v) s
        if n == 0:$ o  g" N: {; \  C# B7 j, c* m
            return 1
    + C7 Z( W" N& M' i/ t    # Recursive case
    * Z2 p$ q2 w( t    else:$ a. f% m+ t9 F2 ~% k
            return n * factorial(n - 1); z8 N: N3 N3 m# |2 [
    ! R1 {' D* ]# I+ W' R/ p4 g
    # Example usage
    0 E* \7 g. P3 \% f- y4 Yprint(factorial(5))  # Output: 120; y8 H! B0 }0 U) K, Q
    # w* y# r; [1 p5 L1 v! @
    How Recursion Works9 A7 g6 i. f& w+ O1 i/ F1 n/ N
    8 l. p! H/ T9 h% r- ?
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ) s* i- U: W6 W% M/ }! Z7 \: ^
    + P4 O# ]' U' _, _    Once the base case is reached, the function starts returning values back up the call stack.
    - P# n# i$ V$ z' w9 s7 o6 c% ^- G; A1 H4 r) f! X% _% [; y
        These returned values are combined to produce the final result.
    5 u# j  {$ x3 a1 s3 t
    ; L# O: |9 P: D+ y; b2 x# OFor factorial(5):
    # T% D* B" O, R9 Q0 w) t3 ~) P; N$ e& e9 w8 Y$ S  M. l8 e

    * r5 u  l- E5 J% p; Ufactorial(5) = 5 * factorial(4)
    - U" Z! o; R- o  M: e+ ofactorial(4) = 4 * factorial(3)
    6 c. E  b  ~0 R3 G9 a% g: ufactorial(3) = 3 * factorial(2)1 W2 q6 ^! m+ ?2 X
    factorial(2) = 2 * factorial(1)
    4 f/ O8 ^6 B" D  Z7 A* Wfactorial(1) = 1 * factorial(0)
    4 m8 |, |2 z6 B$ t$ U+ Cfactorial(0) = 1  # Base case- J' c! k/ N5 r  E, H

    $ _: w% l" y2 z( j1 lThen, the results are combined:. A/ A1 l) {. _5 m, {

    & R' @- p8 y0 u& u1 W- R& \3 s# c* c! l: }2 [6 [: C
    factorial(1) = 1 * 1 = 1; `3 \0 X9 ?* @( `
    factorial(2) = 2 * 1 = 2; k4 E" x# }9 P6 v
    factorial(3) = 3 * 2 = 6
      t& ?/ r1 b% x7 i, ]: b5 ]factorial(4) = 4 * 6 = 24
    # I) S5 `$ ~6 o5 qfactorial(5) = 5 * 24 = 1208 K% V& a4 t+ ?
    7 u0 \2 w( J, B7 V7 _* i5 A: I/ T
    Advantages of Recursion
    5 b% }) h9 B1 l% ?4 q
    : m! h; c0 h6 Y& v6 |$ r    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) x+ P; q1 Z- K0 L3 R; ^0 `9 P. {
        Readability: Recursive code can be more readable and concise compared to iterative solutions.- n- R1 [" V! i3 _( m
    ! S8 R. P- v) E  ]
    Disadvantages of Recursion
    : \* q5 k  e/ S+ V% k/ n( o
    9 M  k  ]* |7 U+ Y1 Z4 ^2 o    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 R5 a  B$ u4 N) b/ S5 D& G# U! @7 E

    1 X7 a( W( t- J% \    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 n! ], h; d! f) a! e5 e
    5 M) @) k$ g; U+ c
    When to Use Recursion/ o# F# T  @0 W$ B1 k

    * V& `4 O0 P- T2 K( k8 z    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    6 ^: S1 s$ L9 e! U1 M) I. c, u3 l1 `$ O5 ?5 ^( ]/ _! a
        Problems with a clear base case and recursive case.
    / y$ {# k$ V: ~" g, b% m- R
    2 u' P/ S! I' D+ K- E# M# A4 rExample: Fibonacci Sequence$ I9 f( ]7 s+ n9 t$ Q4 I
    2 F9 L# e, D, F0 }  W- C
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ W2 ~6 {9 z; H+ c5 p) B
    # H2 `) g$ r! V/ w; q' z/ V    Base case: fib(0) = 0, fib(1) = 1
    3 v  l# q+ g9 B+ s& j- ?4 M9 y' K' e+ P: g$ A  t
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! ?8 {! _* i9 C0 ?* H! h
    ! M# |) n2 |$ |: W1 wpython
    / R+ i9 `! E5 ]1 y4 C1 T" i
    4 T+ t  ^- f% E+ z
    : N/ \. ^' V! ?' l9 a* ^def fibonacci(n):; c1 k! p2 D3 r1 e& h2 o1 F
        # Base cases
    : h9 @, {5 r  V    if n == 0:
    ( o0 n) L: f2 ]        return 01 F& _- c- f% y9 ]$ _
        elif n == 1:
    . v/ x( N$ R9 h        return 1
    4 ~# z' t' c- w% q+ {9 T3 K$ a0 o    # Recursive case" \6 @/ L/ z1 x
        else:3 R& i* M. \+ O5 x3 u9 L
            return fibonacci(n - 1) + fibonacci(n - 2): G( F2 R; N3 L
    * i4 l6 l1 @7 Y6 }. D0 u0 c9 t
    # Example usage' {5 j: R  ]4 u7 h
    print(fibonacci(6))  # Output: 8
    4 c  I2 G. k" V, d9 X) Q! C" B/ f2 u0 S
    Tail Recursion: W1 X% R/ s5 }( b8 M
    4 X9 _+ ~. d4 Z5 e2 X  o( M: h
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 L' d+ ^2 v; P$ A. x7 d  {0 K' Y) l$ ~
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-31 13:44 , Processed in 0.057658 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表