设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1824|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; M  n; H4 W) t) f" {( t% Q! G4 Y7 ^
    8 J( t. H7 N8 f: V9 s! G- E
    解释的不错* x4 Y6 @9 k0 X

    3 K% U% D, |0 r) C3 ~; r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 F8 z8 i* z% V5 ~9 p. E
    1 b+ B% U, J4 {% W7 a$ _' e) i9 m 关键要素
    8 ]8 s- L3 C1 f2 T0 M) p1. **基线条件(Base Case)**
      m; ?3 l% G4 G2 g* ?+ }2 M   - 递归终止的条件,防止无限循环
    2 M! {6 N; I6 l2 x$ z( t   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    # g  ~7 p8 q, G! n8 t) C; S% A" Z& _9 @) P
    2. **递归条件(Recursive Case)**
    $ H  t6 C; ], p, Z" b   - 将原问题分解为更小的子问题
    " j/ {! p, i! H9 ^, h   - 例如:n! = n × (n-1)!
    ( L+ n2 [; Q6 u# j5 G
    5 P1 n* @! d$ O 经典示例:计算阶乘
    + ^0 C! f8 F% R+ V9 q6 dpython1 N; b; w7 I9 n2 z& {4 R
    def factorial(n):
    3 F6 x2 }) T. H% o0 x    if n == 0:        # 基线条件
    1 u0 d  i- d5 _8 H5 H- g        return 16 e" J- l0 y# N, z
        else:             # 递归条件
    ' U/ x& u, p4 o; |        return n * factorial(n-1)
    + w* i6 e: d$ X8 i( D( t( m0 M执行过程(以计算 3! 为例):
    8 [. k% E% Z5 U0 Zfactorial(3). O5 c) z" V2 h8 K! Z5 o9 Q
    3 * factorial(2)( q) x/ g8 e, Y) C, R
    3 * (2 * factorial(1))
    3 Z& U5 A/ v' h6 }5 P* x4 m  s3 * (2 * (1 * factorial(0)))
    5 [9 A7 ?' _/ s4 H2 n( s3 * (2 * (1 * 1)) = 6" C- s' g* N+ v. H/ M1 w

    4 r2 l8 N/ ^( ^ 递归思维要点
    9 n' ~- H+ J6 r7 N( f2 b1 I; `0 K1. **信任递归**:假设子问题已经解决,专注当前层逻辑* D6 w/ ~& W9 Q4 O+ V* ?4 _
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 K1 l6 K( e" c1 j2 I; l# Y3. **递推过程**:不断向下分解问题(递)
    $ X$ J# _0 E+ z" R2 S4. **回溯过程**:组合子问题结果返回(归)
    ) b; Z* r, I3 Q$ s) c+ W; B
    2 t1 p7 r/ D) j* ]! |1 J9 P 注意事项: X! H( n3 V0 Z! D$ ]
    必须要有终止条件2 u' }: h: c* }1 a" `5 ]) \
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 p8 W) u% P9 {5 }某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + w9 K7 S- I; C1 Z3 j尾递归优化可以提升效率(但Python不支持)  L: V1 V& s. U5 Q
    $ [, }; V# z: X) k7 d, G1 ~/ Y
    递归 vs 迭代( h5 w$ e+ z6 i! {$ M/ h
    |          | 递归                          | 迭代               |
    : M8 H' [% v* }7 `, \' N% L|----------|-----------------------------|------------------|) W  }9 A9 m: J; w+ R, x
    | 实现方式    | 函数自调用                        | 循环结构            |
    8 x( k$ {, z3 F- || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ ^2 u) ?$ ]( ]3 q1 {| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 V4 c6 S' s: O5 ]+ h) G
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
      O! q7 y; g( P: k
    / q* o  c4 f, f2 g# Y8 Y 经典递归应用场景" Z' u& Z+ @, v
    1. 文件系统遍历(目录树结构)9 `9 e# R; v2 A# w( p5 t2 X4 T, L% I
    2. 快速排序/归并排序算法+ y$ P9 p' z9 v& o0 L  I3 n
    3. 汉诺塔问题
    . r* q; R/ M! p4 I* p4. 二叉树遍历(前序/中序/后序)* }: |* p9 i% X! T" |4 K0 @# e
    5. 生成所有可能的组合(回溯算法)% D$ b; a9 `- k) S. X

    - d* A9 ~$ V! W2 [试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    1 分钟前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 R* s! I( t: @我推理机的核心算法应该是二叉树遍历的变种。
    9 m  t, Y" m4 L* a5 E另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:( H5 `. u! v! n& H
    Key Idea of Recursion4 T2 [" U2 Z. o

    * ?3 h: U4 ?1 t( X  J1 I% G, _  bA recursive function solves a problem by:4 \5 s3 [$ ]4 q, `- z7 p

    8 y  {4 j; J5 J$ U6 m& \1 j9 H) E    Breaking the problem into smaller instances of the same problem.( i6 K0 k+ \- a* t8 S* q0 D3 W
    8 @& p& R# i) {+ D
        Solving the smallest instance directly (base case).( J5 l, S* H/ M( X
    ; h) t: `/ h" y) a0 H; ^4 z
        Combining the results of smaller instances to solve the larger problem.9 o  k8 J) G# d, ~# }2 W1 @
    1 _4 d3 B+ m6 F! S9 m
    Components of a Recursive Function
    & i. [  l! ?% L8 b; q  p) K
    . \# i" ]- D* ]: H" L. A3 @    Base Case:4 x: ]  U' G4 }& n- z/ q. T6 M3 A

    ) p/ Z- M5 l$ H        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % W# g. z/ g, Y" d
    ; l/ L9 `# \% P9 b4 i. k9 ?        It acts as the stopping condition to prevent infinite recursion.
    4 E/ Q. v' A3 x& U+ a5 w3 @; n( v* b  C# s# D
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 s/ ~; W6 _/ c) {, \4 E: P+ v9 K% i; E) |
        Recursive Case:* U5 z  m" \8 ]4 A  O9 {- ]
    - B8 G2 P( x$ Z: g
            This is where the function calls itself with a smaller or simpler version of the problem.0 Y8 C, ^! ?8 U( S% w+ |. g
    & A4 W6 d( g8 _8 w& [8 y9 f
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    5 s+ F4 B: {; g/ _6 ?# U, F: k) ^
    Example: Factorial Calculation- B. N: i0 _, o: i. s" i
    ' i- z6 D% i$ P2 U" n' D- X! v- f4 Z
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & [2 K! \# I9 B, Z
    " q, Y6 {' \! }( L9 P    Base case: 0! = 1: i! \. k6 o' v. R/ a& S

    ) g* ?. e. y! o0 b+ G    Recursive case: n! = n * (n-1)!
    & g: N, A% O, M% w% B7 c* p6 N
    ! _2 B- n0 o0 U4 B/ }* hHere’s how it looks in code (Python):
    9 m# {& [9 Q6 ]9 T+ f- Y% \" ^python4 y) a9 }% o* O. V0 ~! t- a

    5 f( N5 B3 J% L$ P
    2 z( h) L6 j5 b, sdef factorial(n):
    ! H4 s) y+ p; B6 F* W- W    # Base case
    9 q- n) V- K7 X+ N  p+ k0 b    if n == 0:
    ( p  x1 t" U) [/ K  U        return 1& W, A" K& K) e5 Y2 K% _# c
        # Recursive case
    , G' z9 }& s1 Q' G6 G& P0 M    else:
    + ?4 C; ^& l5 ^4 U# D) r        return n * factorial(n - 1). ^& D8 @: l& Z# w1 |7 Y

    9 c. S& A8 B8 Q; i# Example usage
    . y$ s% R/ m1 w& S: C+ Iprint(factorial(5))  # Output: 1205 @& b5 _9 w7 F8 z+ e$ P9 O' x) W

    ) J0 Z9 K4 B4 o& Q: KHow Recursion Works1 B+ @' r% T: Q, [- [
    , U/ \9 i, N# A! Q/ V" {" M
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , m2 L7 u3 `# s  P) ?0 a0 [: n
    8 n) P* K6 i; M0 H( M    Once the base case is reached, the function starts returning values back up the call stack.1 Z2 `* q  _( \% o; s8 S
    5 @+ p/ ?* i9 F' P
        These returned values are combined to produce the final result.( Y# {5 {1 s, m( M# q$ D
    9 L/ E5 r% h0 {6 O+ @& }' ]
    For factorial(5):
    4 L: N# q( N  i6 x) I5 n& q' P* J+ ?
    7 e8 k& t$ P" Y+ [$ C# e
    factorial(5) = 5 * factorial(4)
    ! x  ?: J; k. K9 J" J7 ]/ z0 S  Afactorial(4) = 4 * factorial(3)
    ' @$ X4 a# Z: X3 U* Cfactorial(3) = 3 * factorial(2)" O2 O7 S7 K/ U% L/ ]
    factorial(2) = 2 * factorial(1)
    # |+ t9 q2 x: L- p: wfactorial(1) = 1 * factorial(0)2 B0 O. k# D* `0 d% k
    factorial(0) = 1  # Base case. L- g4 n. w: r9 H- ~& X/ ~' r# u

    , [2 w/ }/ l# O4 z; KThen, the results are combined:! V( w4 R" {( q% y% w* g
    % Q! x3 ?/ M( U( ^0 B/ \

    0 ]6 ~! ^3 x. X2 j/ Q& K9 {' xfactorial(1) = 1 * 1 = 1
    6 U1 e8 H& |  F+ K# ^# U! z8 @/ ~  b4 Xfactorial(2) = 2 * 1 = 2
    / v  O( N. ~7 W" Q. k: j+ zfactorial(3) = 3 * 2 = 68 Z) ~- B; H3 k9 v0 f
    factorial(4) = 4 * 6 = 24; l: ^, x) Z/ X. b
    factorial(5) = 5 * 24 = 120
    7 [$ N) K2 s5 a- O6 H2 I# C4 O  s& B+ J  u9 i% G
    Advantages of Recursion
    * |# O8 ?7 N0 q! M2 ~4 T% h, w2 |' M7 W, p* R& U
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., V; D2 x6 A# C: S6 E. }5 {

    0 S1 ^& P% g6 U3 X1 \8 q    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) V. K3 n- R3 ^7 Q" C6 P
    5 R: u2 m+ ]0 T0 `3 |; E# m9 t8 LDisadvantages of Recursion0 w. b0 \- Y" U& V0 w

    + Z4 @# j) {& Y2 w* g0 d& L    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* A, O3 C+ W) L& u  @' v

    0 w0 y" h! Q" |/ T    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: R2 o0 k  |3 T# c6 A

    / l1 o7 E/ b( f4 t3 v7 WWhen to Use Recursion
    ; d; j3 b. u* L2 m0 y; W: ^6 i$ O2 L! o
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& b& c( L8 Z2 _' F: |# R* ?% K

    6 \9 |2 G3 a, ^: f    Problems with a clear base case and recursive case.
    - J- ~/ o% H! ^. k/ A$ {6 u8 T1 T/ i: f4 F' O' V) ^: V. p
    Example: Fibonacci Sequence. |- s, E; y) H( U

    7 ~7 t- ]9 v/ s! \The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' I- ~, Z; w$ p( X* `& V/ b5 N# x
    ! A& P5 \0 E( z9 x& o/ [    Base case: fib(0) = 0, fib(1) = 1
    . G9 G8 Q+ l, }; c) e: s; I; i/ c! `% r, W5 U3 R( F1 o6 }
        Recursive case: fib(n) = fib(n-1) + fib(n-2)8 p/ K8 w" p% @- b  u9 Y

    9 C" p% y: _6 p2 ppython9 @1 q9 h! X! e/ m7 X
    6 h8 t/ a; [1 e8 f1 e' z+ \

    1 p5 `8 V: J2 E& f6 Sdef fibonacci(n):' Z% S# ~+ o9 S6 X$ M6 X- v
        # Base cases
    ! `, B/ C2 k! o# F    if n == 0:, k) X! i. a0 Z6 p& {, q9 I
            return 0
    - h4 p1 |4 M! l  y) R  C2 \& @    elif n == 1:
    , D9 `7 v0 V( W! K        return 1
    4 ^, A+ s$ w" f' i$ }& h* {, K    # Recursive case7 u& P1 A: U! q5 z- W
        else:
    0 m! [: Q$ |9 _. M4 [3 m# ^        return fibonacci(n - 1) + fibonacci(n - 2)! ?4 }6 S" R/ p8 E% M# F. U
    % Z, k* ?! T/ N) w/ C. i
    # Example usage
    6 {2 Q- G3 }5 Q" t4 N- [print(fibonacci(6))  # Output: 8
    5 {" a  X% I& Z. v" o4 |: v# |  H9 J* X1 }/ @$ k: f; _" A+ s
    Tail Recursion7 y) d! D# {, U, A
    ; J7 [, v; K% a, y0 D! G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 o. l* w5 N+ j0 y# ?

    $ ]' r* G+ g5 E/ s: jIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 06:33 , Processed in 0.029083 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表