设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2020|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - {% J% U; B* |. ^3 q0 l

      I; q! y+ Y3 g( j6 I解释的不错
    5 t( w+ c7 r! D  E8 ~$ W& C
    . c6 _- u7 m6 _8 D# ^- p递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * j, o8 N( V) \; c* D5 X* {
    ; R$ K% V" d1 w9 P5 S9 [9 L% f8 r 关键要素& ~/ q; W% q+ ?7 w+ z9 s. Q: o, h
    1. **基线条件(Base Case)**
    ! A( x' ]- Y# k3 U' |/ F" k' @5 P   - 递归终止的条件,防止无限循环
    1 s( Q* L9 h; f9 R& k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 \! t5 ^; Y0 H5 M0 U, f3 g0 E1 p9 J8 F5 L0 E- |
    2. **递归条件(Recursive Case)**
    $ y; ~1 z; i. N) B   - 将原问题分解为更小的子问题; M) l/ f6 C- P) ^
       - 例如:n! = n × (n-1)!
    / |4 S( i9 M3 h- S  E  \2 v/ J  R3 G  k
    经典示例:计算阶乘% E! U; T, N  k
    python
    * m' B  k! r/ Tdef factorial(n):  L: @) d8 y$ U' G: Y
        if n == 0:        # 基线条件
    - v- q7 B6 H. ^; C        return 14 [- _3 g1 n9 ?, m
        else:             # 递归条件7 D. D! i5 V* E
            return n * factorial(n-1)
    ( ]0 ^9 e% A% F0 U执行过程(以计算 3! 为例):
    ( a8 G0 @  A( O' @/ t2 o9 K" nfactorial(3)$ I7 d, Y: ^' V5 i! @: Z, e
    3 * factorial(2)( B: y3 x- S) C; Q
    3 * (2 * factorial(1))
    ' Z3 R( [3 p! I3 * (2 * (1 * factorial(0)))
    ) n+ F! `9 [. X" }. ~( {& z" x3 * (2 * (1 * 1)) = 6
    : I' V$ m. \4 J. E( `) D: J  I8 C% e  e$ ^& a' q
    递归思维要点
    7 n. X* V& _7 m- ~8 l3 l1 w1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 n; R9 s( Q7 y9 W1 q# @
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 O) x# E% g+ F$ L4 Z* J6 V3. **递推过程**:不断向下分解问题(递)0 m+ i4 c7 J+ b. T; ~
    4. **回溯过程**:组合子问题结果返回(归)  ]( |+ n, t2 S. U5 ]3 g" Z

    : @9 |  S3 h1 k/ u. [ 注意事项
    * @+ v5 J5 X' ]0 D必须要有终止条件
    . Y# i& B# p' B. a递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# r# k0 L, J( S' y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
      S- b+ L) x  I* w8 k% i. s% H尾递归优化可以提升效率(但Python不支持)- I, z$ I& p+ e' p# \

    5 U3 j% |( [  L7 J) g% i1 V 递归 vs 迭代
    1 f  S. ~* }2 Z! x( u$ X: M|          | 递归                          | 迭代               |4 |9 H& f- P: h0 j0 A( R- C
    |----------|-----------------------------|------------------|' F" X. k$ W; X! L- d* M
    | 实现方式    | 函数自调用                        | 循环结构            |
    3 d) R% W' _! j6 @| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* M/ h9 D+ U  J/ {# n4 r
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; B; b7 e3 D+ e
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ [  r6 b2 _2 }# n, o, v% N4 C5 f0 ?$ Z4 o; S2 x
    经典递归应用场景
    : Z* }3 o2 o5 a# E1. 文件系统遍历(目录树结构), {$ f/ [) Y. s4 L' i: l1 O2 T
    2. 快速排序/归并排序算法
    . F$ L& V0 d" T1 k  `3. 汉诺塔问题& T9 d  P: o" \; k  W$ u0 g8 \
    4. 二叉树遍历(前序/中序/后序)
    . x: E7 d  g+ H5 C5 A  }5. 生成所有可能的组合(回溯算法)6 O2 p6 x' J/ b' l0 t0 I
    1 G2 n( e' @3 M
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    28 分钟前
  • 签到天数: 3165 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    & z5 ^3 T9 v# G2 y( o0 C我推理机的核心算法应该是二叉树遍历的变种。
    $ C5 ~& {! c- b& i, W$ c另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 P6 X  D+ i2 K( U( @7 M2 f; fKey Idea of Recursion/ ]' j0 ?0 Z/ M3 N* ~0 k7 z- S

    * m. l) u4 O! |; {A recursive function solves a problem by:: `3 t+ t0 @. Y% w5 I& ?; Q* C

    7 Q3 Y/ Y* x0 Q  J    Breaking the problem into smaller instances of the same problem.6 c0 Y7 E! r. p0 a- V  @
    % Q7 B/ r4 t8 z: D+ s) L3 Z( S
        Solving the smallest instance directly (base case).
    ! b/ S9 r( p. i7 T4 y+ p: R: @2 h4 e7 R+ O& ^' X
        Combining the results of smaller instances to solve the larger problem.
    & L5 ]# W" \( A& c  k# p( T3 j# M. Z9 }; q
    Components of a Recursive Function6 A7 E( ?# r1 E/ i7 z# F

    ! _+ ?8 h7 w; o% }* s( w; L" b/ q3 d$ ?    Base Case:
    ) o; v& Y' }& M0 f9 e% l$ _
    , U. y: a' r8 c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' i8 x6 w7 E" I4 v+ g+ W

    3 p- {9 {6 b/ k1 W# ^. o& V        It acts as the stopping condition to prevent infinite recursion.
    % U0 S9 b1 M9 m: k/ `: K; q5 x9 a
    . g) R; C: Q8 T$ A9 k* d9 S) E8 I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 b3 u8 l5 M9 n" ^! `4 {5 d& Q( e6 ~1 U% Q
        Recursive Case:! X$ |: T0 {" C* F6 H: z

    ( \* s! L" j& F2 h        This is where the function calls itself with a smaller or simpler version of the problem., f% v- @5 ], b; L$ [7 l/ }

    5 k; Q: u3 `: T- P- A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 }& e" d7 w+ N) F

    1 h1 r; W  G) g# iExample: Factorial Calculation
    ; k9 U8 @3 E$ d" F. P; G- V  @, e0 a# v! f; @2 O4 C5 [5 t
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ Y7 A% t8 b) c
    : f4 h( j* x* z7 P    Base case: 0! = 1
    1 K/ p* j+ Y5 W  i; Y- E" {& R9 N# e- i* M5 k1 T6 `# V; g1 v
        Recursive case: n! = n * (n-1)!
    , P* ^2 N* h) u/ o1 K
    - x0 e) m1 c3 s$ O! S2 d4 {. g, _4 p- KHere’s how it looks in code (Python):
    . W# J8 u0 {$ [; z4 G) ^7 z. Vpython
    : ?  n, |' G- @( Q
      S2 o! f8 ~" }- R! D, S/ V  s( o7 a: ~
    def factorial(n):7 B! |! n, D4 J) u8 b: p
        # Base case! l) @1 g" p% }0 D+ G5 d
        if n == 0:
    / C/ y2 o: n5 A: D        return 1( N' Y! D9 A" G9 F3 H/ Z
        # Recursive case2 \' B4 m+ D' G- e& K1 b% q
        else:
    ) e2 R4 A" ]" W& I' k0 |9 `( K        return n * factorial(n - 1)9 R) E1 ]4 }  k+ d3 O3 O

    7 X* x! A  e: ^. e- |1 `7 m2 r# Example usage* m. e1 `5 o# |& S1 ^
    print(factorial(5))  # Output: 120
    - H/ `, L/ l, x$ B1 _& `. ?! q+ j) _( e/ Y5 ]4 [/ @
    How Recursion Works
    1 O4 T5 e) S* Y1 S: G7 l
    ; }# F6 k8 z) `- p; x8 C    The function keeps calling itself with smaller inputs until it reaches the base case.
    " s+ q# r5 ], `6 i2 w$ o
    2 e6 H4 ?# P8 S: K7 E    Once the base case is reached, the function starts returning values back up the call stack.
    1 ~" i! L  g1 N6 I2 W. j0 b! {0 N3 N/ s2 n. G- n
        These returned values are combined to produce the final result.* {" Z4 \& @) u/ i4 z8 X
    0 v* F# O' V; O8 F% v
    For factorial(5):
      }0 T9 l& W0 f* f0 S. P' G- J0 ^5 w& c8 z

    3 }/ \0 S+ l7 O8 Y6 t- {9 xfactorial(5) = 5 * factorial(4)
    + }! `& P( y  ^2 M" Yfactorial(4) = 4 * factorial(3)' B; [' l( {* w/ l5 q) I
    factorial(3) = 3 * factorial(2)! B/ [6 q7 _1 s
    factorial(2) = 2 * factorial(1)
    - R1 }6 E2 N* _factorial(1) = 1 * factorial(0)
    # B) o% O9 K. K3 R/ U! J% Mfactorial(0) = 1  # Base case
    4 u& z3 a! o( s% u# m: r
    $ P' U, K' [, ^1 a* C4 rThen, the results are combined:
    ! [. @; s: X6 F$ S2 |! @6 I# H& Z3 \& y6 a
    - A. u' w; z% i; B( t  X0 k
    factorial(1) = 1 * 1 = 11 H+ a+ y5 {# w& U
    factorial(2) = 2 * 1 = 2/ B/ _6 ^( R* m+ o. M7 D
    factorial(3) = 3 * 2 = 6
    # r0 a: w: F7 J1 F- bfactorial(4) = 4 * 6 = 24/ \0 h( W) z7 ?6 }3 J! `
    factorial(5) = 5 * 24 = 120  J7 G  y" W8 S6 `# Y4 `5 _. d, m' n
    . a% t! p# V1 X2 L8 ?* ^
    Advantages of Recursion
    ; `% {1 O" b4 Y- ?$ H- D
    $ ^" Q* H: k1 L    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 T5 k" u5 N* F+ }$ N$ X* A6 z2 ~5 ~0 U' d5 d6 U) W, ^
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    9 }: q& c, j. j/ x" O
    & ~5 b5 w+ E/ I( R9 E$ L9 a. m1 TDisadvantages of Recursion2 `) }1 K" o" r4 ]0 m3 {

    : C5 r' s0 `1 C! P    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% C" _8 K! m) x2 E" d* x8 @9 b

    7 U6 r7 _) r" l4 Y8 L/ z$ H    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 r, z" z3 I, B% y% w
    ' E, |  o1 g% w7 R9 B. b
    When to Use Recursion
    / N% N7 b& x$ G. i5 q) s5 P' q; F& G3 F- ^( a* M  X/ L- l
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ( a' o* M5 U" \# R2 X. ~  U4 P8 ^6 ^  o/ H5 x; A0 e& ~( j' w/ K
        Problems with a clear base case and recursive case.% }- x0 I! t( X% o. C

    6 @( c: D1 c: ~2 S. j( Y. ]) v7 WExample: Fibonacci Sequence) R: s" G3 P  [% ?$ q

      d2 m; ^  v! @( DThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ( l$ A  ^" @$ i! i, _) K) l. A
    ! m# p( g2 R( H) b9 I5 s- O: ?' I    Base case: fib(0) = 0, fib(1) = 1
    3 l9 D/ i- L% D+ ]# w$ l$ s' f  |8 `7 {' b
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 }  @& m. p  t- C6 y8 a8 D5 Q# f- Z! v* \) J% a6 H* U* l+ i
    python
    ' I. J: B- ^; `) I' f4 {# c2 R  u+ w' `9 n

    # B( J4 X+ w2 B1 X- @3 ~3 D  v. a% [def fibonacci(n):
      f: u2 C* a0 h0 K/ O/ j    # Base cases
    9 h2 b2 h- s6 V$ z0 _$ t    if n == 0:
    9 `2 `5 j3 d2 g        return 0, @- O# H$ B) g$ P6 O6 b
        elif n == 1:
    6 L; C9 d# }* z8 ^* L        return 1
    9 ^; i) [/ j. e! q! j    # Recursive case+ @( n$ Y+ E) T% [9 ^* |. p
        else:
    # R( A" z3 a+ I: L        return fibonacci(n - 1) + fibonacci(n - 2)
    7 y9 G& v5 j! C( U. g9 O0 p' h$ z' g% Y% M. O, T9 W; ]
    # Example usage
    $ F3 t7 r4 T8 s; C" @0 x! hprint(fibonacci(6))  # Output: 8
      T6 C" Z" Z) b& x7 m# @- \
    8 u1 f. S0 f8 t0 V7 ETail Recursion
    : u* ]3 X4 T: N1 b
    3 a( L5 k) D' X1 vTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 L% g6 F6 G7 k+ d

    - a8 b. U0 \  b  KIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-6 05:57 , Processed in 0.062741 second(s), 21 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表