设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1253|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   }: g$ \9 ~, H
    ! q" c! Y! b) r+ s7 c+ k' V
    解释的不错
    , Y. ]) d2 Y9 z* p; o" P; I" F0 Z, E* Y5 p. d
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; n" g: b) N& r- T7 Z; l& y: z
    " j; e5 [; k( F& \
    关键要素
    5 |& z3 g* k; m1. **基线条件(Base Case)**) A. `! i  ]. Z% Q# f3 Y
       - 递归终止的条件,防止无限循环
    % E$ g% g, a6 f9 T, {  ]2 W* _   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ l* f2 k& b( ^4 ?5 E$ y

    ! n. t7 X7 M+ f2. **递归条件(Recursive Case)**
    # _9 x) t) M& d   - 将原问题分解为更小的子问题" k3 o1 Q1 k9 X0 d* _0 |2 }
       - 例如:n! = n × (n-1)!: ~) V+ i3 N/ G0 `. s. F

    ' D5 z, o- Y# H" }8 y. o 经典示例:计算阶乘
    / z8 o% [. ~! ?, ppython
    2 e; g3 I  E3 O5 [0 e: r: Kdef factorial(n):
    ) Z' {) \: v) B    if n == 0:        # 基线条件' n8 \! k) g& M# m! J( |
            return 1" K: i6 B; U- Q/ e; j
        else:             # 递归条件
    $ ^3 I9 ^6 M5 F# m2 s% U- U/ A        return n * factorial(n-1)) E9 \# c0 S, w8 J) \$ P) W" [/ Z
    执行过程(以计算 3! 为例):; r0 `2 N& }( [; ~( @
    factorial(3)
    % I' b# O5 M6 z  c" X) F9 _- [3 * factorial(2)
    4 P" ^$ \9 w! `  l3 * (2 * factorial(1))* r, P" q' m9 [2 ~/ O0 w9 z! O
    3 * (2 * (1 * factorial(0)))
    8 x7 V$ m& c' d* n7 k# D. K3 * (2 * (1 * 1)) = 60 k" \& ^; T0 ^& F  E: X

    ; \7 {7 b0 \: L0 F 递归思维要点
    8 G: X. U( Z$ _6 O3 K9 @+ S1. **信任递归**:假设子问题已经解决,专注当前层逻辑* C1 d$ E$ b: x% P
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间), j! R6 ~4 V' J) Q
    3. **递推过程**:不断向下分解问题(递)
    # O0 }5 u# x1 ?) ^4. **回溯过程**:组合子问题结果返回(归)
    7 Q8 s8 W: u* F. a/ A, f& K" q* L! Y
    注意事项
    1 [1 g+ x* o, @$ y; t必须要有终止条件2 n# k3 Z5 a0 B2 A' H2 |
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 O' _+ H7 X+ K5 ]- Z1 u# ^某些问题用递归更直观(如树遍历),但效率可能不如迭代
    , z7 X5 e" H% _0 T+ ?; e尾递归优化可以提升效率(但Python不支持)
    2 h$ T3 V$ B8 M! Y/ a
    * Q* y# x( Z% v  k: R9 T1 O 递归 vs 迭代
    , Q9 H5 y+ O4 a- q1 [1 y|          | 递归                          | 迭代               |
    4 Y' |/ g- N5 t& C+ o|----------|-----------------------------|------------------|
      k% @8 k, }& O6 z  g6 ?" q2 f5 y| 实现方式    | 函数自调用                        | 循环结构            |
    7 b' A/ c- X( b* p# H7 b  l0 t8 W| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 A; G5 P8 w$ Q5 v' B. P; f| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& p( s& u7 n* T5 C
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 z( ], r9 Y# h& V/ {) |
    ( J8 S7 ^1 }9 C 经典递归应用场景
    & K, f+ e  o  Q3 F$ j! [) s+ m1. 文件系统遍历(目录树结构)* W0 J; K. l2 C# c7 M% T1 U& b
    2. 快速排序/归并排序算法# e& s  b0 a- t
    3. 汉诺塔问题
    ; H7 G7 S; H" O3 w. Y4 \4 [4. 二叉树遍历(前序/中序/后序)
    ; E1 c8 d" j: |7 O2 U: i5. 生成所有可能的组合(回溯算法)+ i' n  i7 t! b, m# s' P
    ! g6 W( z, R$ J/ N0 B0 ~
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    11 小时前
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 M  {) O4 D9 y8 H5 [
    我推理机的核心算法应该是二叉树遍历的变种。1 p- x, @/ U( }9 d# I' a
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. R6 J: J0 |; P; P
    Key Idea of Recursion
    8 N/ m$ F' T8 x" T4 H7 N9 b; Z) J( z$ S# b  ~# g
    A recursive function solves a problem by:
    8 ]2 s% M, z1 W4 o* j& n+ c/ M" {+ _/ }2 V8 h4 ^: l
        Breaking the problem into smaller instances of the same problem.+ m$ m. k$ J" _" ^! k. I: v

    , T) U+ O: C/ [8 G    Solving the smallest instance directly (base case).$ B; u- U1 q+ w
    ) ]% n& k  [" _2 T5 h
        Combining the results of smaller instances to solve the larger problem.$ Q% S  t; ?& e, B/ c( Q" B4 b

    - p2 U+ T0 j( U: {, @1 C+ R6 z5 KComponents of a Recursive Function
    ' Q$ n1 ?" x* v+ n- b6 t! W! @8 n6 ^7 b+ D, W- e
        Base Case:
    ) m! B9 L  ]8 p
    : i; D' H- n' n/ D        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.* }% o" y; m0 A3 i
    # O3 I/ Y' c7 Z( e; y* g* q8 H
            It acts as the stopping condition to prevent infinite recursion.( X" q' c0 x  g; T# t* q+ l

    4 a) A3 g5 p3 R        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) n. p" _. n; }# S' O+ G( F+ F' ^
    7 h( Y# u) ?2 S: E! m    Recursive Case:
    - C2 d- t0 N  A) h( T# `, H7 c
    + x9 E2 Y" A: O( h( f/ W' G        This is where the function calls itself with a smaller or simpler version of the problem.
    * b# O6 C% I- [7 g. P* Y# J1 W. s' E  H9 {$ i1 W1 W+ E4 ~, U$ @
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ X  h4 l2 h% }- R" @4 f+ o
    + V: I% Q# d9 i) q+ z1 x
    Example: Factorial Calculation8 w: ~, T) Y6 I, s* R
    " u% O! x" j8 Q7 F; P
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* _; B1 m4 R3 B" W
    # V) H4 u: \) f( @4 R" H
        Base case: 0! = 1
    : I# _  ~; A6 G/ @6 v
    ' ^" J8 D0 e' k+ j+ @7 }* F    Recursive case: n! = n * (n-1)!
    + S9 X8 x" U. {) t2 U# m) F
      v& s) Y# y: `; U& s+ UHere’s how it looks in code (Python):
    * i2 o. n# F  D8 r7 Jpython
    $ C# h" Y8 t" w7 R3 Y* B6 w8 J: E* s  p. T! _% o

    9 V8 ]' D, v8 u8 R8 \$ Bdef factorial(n):
    + e. z9 s( @' U" r  F9 |    # Base case
    ) Z! y: b6 q! h3 o3 D  A. J' X    if n == 0:/ r0 H4 F2 g( `) i- O
            return 1  Y4 M$ H) I: o5 ^, Q4 c& d
        # Recursive case
      |1 {+ g( S0 i2 o* c* s! R' h) b0 ^    else:1 E, i( K) _3 N+ t/ u/ l4 B
            return n * factorial(n - 1)6 [& X) K; W3 Y& H$ X( [, y% O" L
    $ m( `. Y3 k8 Q
    # Example usage$ X( T  i$ X7 Q% E  m" q5 L
    print(factorial(5))  # Output: 120  D9 Y4 F% S! o. m1 ~0 c6 m" \$ i
    & T4 z4 \* N# I+ H, f0 V+ W+ q# G/ w
    How Recursion Works
    - o* M% [( ?' j' G# {% K9 o6 `' \
    0 l+ b1 H( e8 p9 a6 X9 O    The function keeps calling itself with smaller inputs until it reaches the base case.+ a8 j: \" C2 H

    5 C/ V! q6 f0 S% x    Once the base case is reached, the function starts returning values back up the call stack." i6 f( p! A/ K

    9 ^* Z* r# I- g* P$ g9 _    These returned values are combined to produce the final result.: J, b; V9 p1 e# r( O

    + F' [$ g8 Q' B* D) wFor factorial(5):( a8 H  J0 R9 u0 ^0 r

    7 V# Z; Z# h1 Q8 @9 Q6 i! p" a6 B! `) D
    factorial(5) = 5 * factorial(4)
    $ n" }* x( u7 L. [" [1 Wfactorial(4) = 4 * factorial(3)' p+ r1 m/ L9 v
    factorial(3) = 3 * factorial(2)
    , }' y% e5 u" J. _$ {; _factorial(2) = 2 * factorial(1)
    ) Y9 S/ s) s9 Q- h8 U5 Ufactorial(1) = 1 * factorial(0)
    + V) `" U4 H2 v& u: Bfactorial(0) = 1  # Base case
    ! ]7 J$ b: y6 d1 y7 ?7 L6 X
    ! M/ E1 h4 ]  X) Q% UThen, the results are combined:
    2 X# m5 D# L! t1 ~. E( i0 R9 D8 q
    0 u8 e3 S6 I8 B/ N% F- R" J
    % m" i; f$ I. Yfactorial(1) = 1 * 1 = 1
    ( H; d0 w9 C( k- r, C  E! ?6 Gfactorial(2) = 2 * 1 = 2& {8 r* Q0 C, D& w) F8 O. X
    factorial(3) = 3 * 2 = 6
      c9 W0 D/ E6 S6 ]factorial(4) = 4 * 6 = 24
    * l. G& e- v3 C9 ~7 m# Q8 Mfactorial(5) = 5 * 24 = 120, e% ^8 W; W0 R, L
    ' a' P1 J% t& R# Q4 Y
    Advantages of Recursion
    . P6 L, l6 R/ }8 @
      Y! c2 h7 t4 P0 k! ]8 a    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) [' [( ^( p% H7 F2 n, O
    8 l5 {5 ^5 [; [. ]8 i% U/ N    Readability: Recursive code can be more readable and concise compared to iterative solutions." d: y4 L( m! i& {& i
    * y+ _, M, e( Y$ L
    Disadvantages of Recursion# k- J( }9 I0 v/ q* `' k. Y6 _8 A

    ( P4 u! Z4 R5 j) A3 V& y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ @! o+ X+ k4 I/ z( \! r0 w# n( t

    * U! B  `1 C7 q6 K. X    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( C) G6 I$ `8 [# H& s  A* ]! v
    : H# p0 h/ j- a
    When to Use Recursion& e* `0 C! g# \! @- a
    ; m9 |: w' o0 V9 d% G' M
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).3 K; R7 z. q$ a0 }" t

    ; \6 R4 o! Z6 }6 u* t( L    Problems with a clear base case and recursive case.* U4 l% A) ~; u2 ~3 G
    ' g9 K1 M1 X; G+ I
    Example: Fibonacci Sequence) N. D, V  g" }, _4 F7 V# E

    2 l  T. W; z4 [+ N% [& x( kThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; I( Z: G1 s$ W: E8 p  ], A% H3 ]$ X/ ]" B, ^
        Base case: fib(0) = 0, fib(1) = 1
    4 K* d# ^" Q& T0 z  p4 `" p$ P* X* o7 H* p2 H9 R
        Recursive case: fib(n) = fib(n-1) + fib(n-2)2 f2 y/ h4 T* K& ~# ]5 g
    3 b  g- P2 i- ~
    python
    6 Y: x7 ]; m1 }# q7 W$ Y
      @* B0 X4 ~; {7 p" P8 F  z, y. b' J6 n
    def fibonacci(n):
      n) Y) S( v1 k' ?' N  L8 Q2 v    # Base cases3 d$ D5 s3 a1 y8 c
        if n == 0:
    2 B1 F0 |% ?: C8 y        return 08 K" [* U* O7 G1 g/ a
        elif n == 1:
    # J) M1 ^, Q0 T# R- B9 F3 e1 u$ t        return 1
    , q; x* O1 B8 x. L  s# \( U  q    # Recursive case3 H# ?! A$ v# }" c% i% Q6 L! k9 Q
        else:
    7 b' S  c. B9 M% b9 F# ?# H& ?7 i# a; H        return fibonacci(n - 1) + fibonacci(n - 2)1 Y" P* N0 u' M  P" w! W
    / I& y1 D' F0 C. p9 f  T' d
    # Example usage
    9 w2 Q: j9 C% r! T# G/ K- R# s- A3 hprint(fibonacci(6))  # Output: 8+ M$ \. i  i" T* r! D
    5 q2 g7 b5 l3 T1 f! K
    Tail Recursion% o6 A6 v" U* N: |5 \$ w
    7 n- Y9 O, v7 R# }" c1 ]/ n* M6 _9 o
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 k5 R$ N6 y1 C! x

    0 R& Z  u- k; y! k+ ^! ]; uIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-30 17:41 , Processed in 0.030103 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表