设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2100|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) r* p' z' V$ D9 }6 ~: _; R5 \2 E" i& E' e
    解释的不错7 B$ W6 m0 P. O0 {# M
    6 I. s0 q  p( H# w& V0 L* L
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # M0 P: f6 j5 Z- k0 L( U' O2 A: D% i+ ?) K# W  S1 m' t, N( D
    关键要素8 ]% T1 ^' F' u( D4 d
    1. **基线条件(Base Case)**8 p0 w& E4 @! C
       - 递归终止的条件,防止无限循环
    - ?7 y  l# [! g" |: f/ ?8 V   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    - T4 Z( M. K0 i! D
    - p, n1 g1 x5 F* ]2. **递归条件(Recursive Case)**/ s, z, S' w  c$ `# I7 L
       - 将原问题分解为更小的子问题
    % Y  V0 P0 Q  o" O! u2 F, b* @2 P   - 例如:n! = n × (n-1)!2 G2 v8 h  a& t5 P# n
    8 ^, s, M7 S$ X  Q; o! Q9 A- p5 Z
    经典示例:计算阶乘# b4 c; P& v2 {! Y" y
    python
    * d* T- \. ^- p$ T9 E4 {: Cdef factorial(n):
    1 V1 I" {1 x) u    if n == 0:        # 基线条件' x  p2 S: g0 }& u
            return 1
    4 u9 \# {& [4 F8 T    else:             # 递归条件0 a: i" r. M: g
            return n * factorial(n-1)
    ( G6 I4 f2 f$ X; p执行过程(以计算 3! 为例):/ s+ s9 N9 X, ^4 k
    factorial(3)1 R$ Z! K% i6 l! q" u
    3 * factorial(2)8 q6 U  {4 u' M: E$ J4 e; v
    3 * (2 * factorial(1))) x- D* \& ~: B5 o
    3 * (2 * (1 * factorial(0)))
    9 H8 _- g* Y' w3 A+ q9 R% ~3 * (2 * (1 * 1)) = 6
    6 n( ~0 t6 z' W$ a5 p- z& R* @' N( i5 q: x9 \+ |
    递归思维要点
    " S% y, ?- O$ P+ Y1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    2 X8 U9 O( e/ u' W% ~8 J/ R' N2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 v$ O- L) N: t, n( A8 y% Q
    3. **递推过程**:不断向下分解问题(递)0 Y  J3 Q4 H  t5 {; {
    4. **回溯过程**:组合子问题结果返回(归)# p, M% W; Y9 n$ k/ K
    6 W; T% @: j' ?9 v$ E3 X
    注意事项6 ^9 B& V& [( ~* g
    必须要有终止条件# ~8 u& [( A. g- Q& D
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); {% o2 H8 X' [; h
    某些问题用递归更直观(如树遍历),但效率可能不如迭代+ _. \. y" y6 y, V5 @- t. X
    尾递归优化可以提升效率(但Python不支持)$ r; l6 \7 k" I# T

    3 U# c3 ^8 k' E 递归 vs 迭代& C/ X2 {, ^# e( I4 C
    |          | 递归                          | 迭代               |* @8 A* b- e8 c3 U( C
    |----------|-----------------------------|------------------|
    - i" Y: Y( P, P8 n2 |. I| 实现方式    | 函数自调用                        | 循环结构            |7 ?. {% e8 g8 l5 \6 d2 R+ Z1 f# S- T
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) X  [2 Z) B; N. O2 B3 i) @, t
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! f  y# z+ I2 A  |
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    6 {5 F% R) }8 M" p  u/ ]6 k( }( l! Y3 n2 p% O) V+ p
    经典递归应用场景
    - q2 L! r: e0 {' L7 D1. 文件系统遍历(目录树结构)
    % M' {5 D2 I0 J6 t2. 快速排序/归并排序算法  k+ v' z7 x4 X- h8 C, `7 l
    3. 汉诺塔问题
    % @) p$ \+ Z& i1 y. g4. 二叉树遍历(前序/中序/后序); I( q% y( {( A' s$ @2 b! \
    5. 生成所有可能的组合(回溯算法)% z& b$ T" O, L/ v" r: H
    " D1 Y; f6 O* ~: j7 \( @
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 12:17
  • 签到天数: 3175 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 ]9 ?* U/ l* B9 g
    我推理机的核心算法应该是二叉树遍历的变种。- e. c2 D: ]  L; ~* W
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . y3 N1 n* ]$ [1 [) F2 xKey Idea of Recursion# I4 V- n% q' c7 i9 v

    7 S7 a: B. V* l3 W% a! qA recursive function solves a problem by:
    5 @) ?" c. @0 U
    , x. Q. q" g' T* @! ]4 ^    Breaking the problem into smaller instances of the same problem.: B* m# @) G7 W6 [3 r
    5 L' ~$ r& {, o
        Solving the smallest instance directly (base case).
    7 o1 f, k0 G( f; ^8 o
    8 @/ N) ~1 v* ~) U    Combining the results of smaller instances to solve the larger problem.
    - C& i& z* B+ k; y& J; A; q& k& a6 c* e3 X6 d6 l3 d
    Components of a Recursive Function
    $ }( I! n3 B* v8 C0 M9 n6 `" G3 ~
    5 a( i' W& p2 I    Base Case:" H5 y8 {5 D* d

    ) u" L1 C0 e% \6 @# J        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : q6 M1 M, |& Y* ]( ?5 \( f# [* q" w9 ^
            It acts as the stopping condition to prevent infinite recursion.: z. I, D$ ]: s* J2 m  s2 U& k! A

    4 M0 d) e& L& \! W. f! t        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( \0 W1 o. R; v0 \, G! q
    5 l  t, D. a7 H- U/ M9 ]4 M! q0 i    Recursive Case:
      ?& p! h& o/ W5 q7 C+ l2 r
    ! @, o9 i1 T1 D5 R5 l) S8 K% d* g. S% w        This is where the function calls itself with a smaller or simpler version of the problem.
    " W5 u" E0 s$ X) I. ^9 w/ M
    $ {' p9 ~; l* l# S* X5 I        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." {/ @) S0 m* z( S# r& i+ i( _: E5 w

    + F7 i5 B# ~% D0 `1 [Example: Factorial Calculation6 J$ y( M8 Z! j7 L' |8 a2 s

    ; H2 X0 `' W" d3 E) RThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 }# v# n2 F; C2 _/ @, D2 q) ^5 R+ L7 B+ i, j' q4 R" ^7 A- u9 H
        Base case: 0! = 16 z5 k$ }/ l9 z  Z

    - T( c; W- {* h7 t    Recursive case: n! = n * (n-1)!5 G5 i3 ^. R. C) a& G
    5 c& c! a4 \) Y3 u0 F, J
    Here’s how it looks in code (Python):
      s0 p2 F, C. U& O; r2 U  D% Upython
    ; ?' T. x$ |: w/ Q% X+ a+ B2 J7 P. `7 }. z8 Y, T
    8 g5 B( `* j7 K- Y" \  D. x
    def factorial(n):- G' C& g$ d8 |" u0 Z5 k/ o
        # Base case4 v2 u5 R. P3 A% i
        if n == 0:7 \+ `) @" b3 r  d/ U8 y- ]: v
            return 1' l  D, U" E: |( I- }, m
        # Recursive case9 t5 R9 J" L0 A
        else:
    & g) y3 g9 W# P+ f' |' v' j; Q% K        return n * factorial(n - 1)! Y" m1 o2 l5 n: Q2 Y4 ^

    * R& n2 A) m" W5 O( K0 W2 O# Example usage
    " [& c& _. I0 ^4 G" H/ {print(factorial(5))  # Output: 120
    + D3 T' U. d7 v( B$ k, R, f. `, ~' D0 W9 ?* E: K) l, L8 m
    How Recursion Works
    4 x% `+ O6 {; h) G2 b9 k; X/ G( @% B" u+ F4 ]' z# y- b
        The function keeps calling itself with smaller inputs until it reaches the base case.( J  v6 y6 q/ y. a

    5 _) J+ H3 r& M1 c    Once the base case is reached, the function starts returning values back up the call stack.! n# n% b7 B; p1 G, s7 X

    " R7 t# C# s; K/ z" H3 Z# Z) j    These returned values are combined to produce the final result.
    6 Q0 h! L* S6 q* O- u! K3 ?1 d. q- f
    3 q9 y( G+ n$ m; YFor factorial(5):* ~- n# X) F7 t1 @1 Y
    ' i0 w# ^9 g8 L0 U% n
    ' K4 R! V% [# `6 o* Z
    factorial(5) = 5 * factorial(4)
    0 v9 m+ m0 L1 A% J  [7 b5 Gfactorial(4) = 4 * factorial(3). @5 B4 m+ v$ X: v! E# K& F7 ~7 @4 `
    factorial(3) = 3 * factorial(2)
    * r5 D6 p. B2 }4 g+ g8 Kfactorial(2) = 2 * factorial(1)
    * c  N+ \2 n, Z; w" y, `' y" dfactorial(1) = 1 * factorial(0), J! K! E1 d2 h% ?- d
    factorial(0) = 1  # Base case
    0 Z5 C! D& G+ T' }# a  }1 [; {: _$ C0 A; D& w5 a2 Y- w# h
    Then, the results are combined:. ]- D6 A( R; M. }

    0 N5 ~. v  A1 n( F& n7 r. y+ a3 X9 p& u# u7 W
    factorial(1) = 1 * 1 = 16 x3 z) L8 ^  O8 d0 u5 s# l5 \
    factorial(2) = 2 * 1 = 2
    2 d6 g/ |$ R8 p* v& {) w3 mfactorial(3) = 3 * 2 = 6( U! E; ^. H) y+ v6 M% y% P
    factorial(4) = 4 * 6 = 242 n; G/ v. O2 ~4 u
    factorial(5) = 5 * 24 = 120
    ! _" t; Y( G, V  s/ V& w- \7 z6 ^2 B6 R7 U/ B9 U
    Advantages of Recursion; L/ I5 e& }% S" s; Z1 I7 ?: r% Q
    8 I4 x, f8 ]( D* O& ^3 t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , g& Z9 e3 T) {: m; A' C" d$ P3 _3 X. ^) e4 U. J( c
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) \  ~/ g9 @$ A7 M# P% z7 G0 P3 t: D! p- I- `5 r6 v
    Disadvantages of Recursion
    : S3 I$ C# _$ S: O5 _' ^
      J( {$ J% [0 j9 J& b/ v& ?    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ @) T& g* a- T7 K

    1 L3 G. Z5 L5 n2 p    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . ]/ V$ `' X* O+ U
    4 j( k, b  ~5 D! gWhen to Use Recursion7 h: P1 M$ E5 y) d" O% E# Y" r5 f

    7 L5 l4 m* w" L4 Y5 R3 f6 O( b6 M    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ F6 T5 P, i7 w: o6 e5 x" N
    / v9 T& a% E/ I1 m  r; m4 p
        Problems with a clear base case and recursive case.- h- X6 r6 P2 f& w

    . T3 l  v$ A+ f9 P; N$ aExample: Fibonacci Sequence
    : H. @( N9 m6 y& }, `
    ! c. z9 W8 i& O; S5 E2 V; Y% fThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 e  b+ ~7 `# N9 [2 x4 P1 c1 O

    # i9 u9 u; ^, c8 H    Base case: fib(0) = 0, fib(1) = 1+ I9 N8 S7 S- v2 H* w) O& e% f

    & B' Y, K* ~; B; z* g) d: B% R    Recursive case: fib(n) = fib(n-1) + fib(n-2)! p% }7 ~# c2 N, i6 X! ]
    / K7 W* Q( O* a: O9 m1 X
    python
    5 s0 }4 O& m6 f1 Q0 J9 F: S
    * P0 T* t  j  K9 r7 r' \! H* }6 d
    : c( J# p/ H- _1 e( h% Q! ?% y) Rdef fibonacci(n):) S' S8 F1 N) a/ k0 T$ d
        # Base cases
    ' w' @  I1 V! L    if n == 0:1 h" |$ |" N, E# |( U
            return 09 p2 w% I4 M8 n1 T5 I8 F3 y
        elif n == 1:% p: Z' c0 N) v: Y. e
            return 1
      \0 {3 t+ ]. f. _    # Recursive case
    2 ?# K! Q$ T# L0 s' C1 \+ ~    else:
    ' P$ p& H; k* l/ J        return fibonacci(n - 1) + fibonacci(n - 2)
    , f. L& m. k8 A/ I+ ]9 v8 \; U
    ' @. O3 z9 v1 {1 w# Example usage
    . n# A% b7 d( M) N) C$ Oprint(fibonacci(6))  # Output: 8+ s" h6 Y9 q4 X  N
    ) z- t- t. L, t* Q- @/ P6 ?5 Y7 u
    Tail Recursion& i) C3 Z7 F( F6 a! ^

    $ f! o( ^2 s" i$ \2 ]: XTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 x5 C6 w1 A- t$ r/ Z
    7 ^$ _$ q7 l- ^, yIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-17 11:05 , Processed in 0.066323 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表