设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1680|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( |7 k& \- h+ {7 b1 I8 K$ I0 C$ }' L, o0 `0 o* h* I3 `2 C5 {
    解释的不错
    + ]; b: n3 J3 f2 s
    0 O" h4 G: W, y" H5 v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 S. R5 Y/ E8 O; E" K9 }: p. s( a

    % B& K2 l8 Y! U 关键要素4 P2 G9 ]; c; R
    1. **基线条件(Base Case)**
    ) f; Q; |. z+ T: b' w3 M4 w   - 递归终止的条件,防止无限循环
      o2 U. R2 j* Q/ G( \9 w) g" ?   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ r6 _/ v. k2 ^( D9 l2 B* v
    * V4 _& _" k! p5 n# ]0 g
    2. **递归条件(Recursive Case)**
    4 P6 {# Q) ^& d3 p+ Q   - 将原问题分解为更小的子问题
    " o: `$ F$ M, G1 [1 L6 \2 c; m( s   - 例如:n! = n × (n-1)!
    + \; H# W, J( B- s7 ]9 z1 ]
    . k1 U- V4 U( i% b* O7 Q$ `: B  w# z# i 经典示例:计算阶乘6 x, m! l+ c2 e+ ?
    python' ~3 j1 T5 {! m6 d/ b& G
    def factorial(n):
    2 m0 e0 \0 p5 @- @* r: H8 M* i: {    if n == 0:        # 基线条件9 u# a1 f1 {7 e7 A' j
            return 1- `5 f3 S; `+ M* d/ B2 C
        else:             # 递归条件! @4 o/ [; G- r+ |. h3 z( _
            return n * factorial(n-1)
    , Q* J3 e: A2 Q; S" O1 E, v执行过程(以计算 3! 为例):
    6 G2 i0 {/ Z9 `8 J+ Q- zfactorial(3)+ F/ f' A' \) {3 q9 e
    3 * factorial(2); i8 {+ g* P: w. B, k+ K8 m
    3 * (2 * factorial(1))) w8 d0 N, M% ]
    3 * (2 * (1 * factorial(0)))0 x# ^8 ~7 U' N
    3 * (2 * (1 * 1)) = 6& K9 _0 D; v# G/ f
    8 m& @5 B) ^+ y. X2 F2 V. q) c
    递归思维要点
    ; W0 F5 [. P& Y) Y# z1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 O% |* t* ]% U7 `4 h* i7 e
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 m! ]8 @3 e# M+ @( t" _
    3. **递推过程**:不断向下分解问题(递)# q* v4 }0 Q9 F. b* a. `9 Z3 |# v
    4. **回溯过程**:组合子问题结果返回(归)4 ^% h' X  c' y( Z) m7 Q! _6 Q

    . E% Z' b1 ?! I/ z4 q 注意事项
    - F" A/ X4 ~) ~! _; @4 ^2 P必须要有终止条件
    / J2 {  A! U) ]! O! Y, Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ; P) f) W4 P' H$ M4 b# }1 l2 N; O某些问题用递归更直观(如树遍历),但效率可能不如迭代
    8 R% n$ d. D9 a尾递归优化可以提升效率(但Python不支持)0 `" I& j) y  N) h' Z! K
    " z7 U' T7 X8 s3 w. ^
    递归 vs 迭代7 s3 w0 E0 H! S! d2 @) {2 i3 ]9 j
    |          | 递归                          | 迭代               |
    ; M; g+ `) }- W6 w& F  Y; M" Z|----------|-----------------------------|------------------|- |8 D! P5 x0 N; U1 s6 a
    | 实现方式    | 函数自调用                        | 循环结构            |$ ]2 {+ v8 `! H& a/ X0 p6 P1 Y% l
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : |3 J! p! X) w# l2 {8 z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 L+ D5 n' q1 U4 |* G( Q' v/ H| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 q, |, ~+ h# o% [  V/ }; i8 s1 K$ R, j
    经典递归应用场景( M* H' ~2 B; X/ @
    1. 文件系统遍历(目录树结构)" H/ l8 s$ ~# A8 G
    2. 快速排序/归并排序算法6 e4 q$ M4 X( f# D6 d- W, K0 S
    3. 汉诺塔问题
    & c2 q7 K- r+ X* k4. 二叉树遍历(前序/中序/后序)
    / K& v6 J6 _: F' z. _, S5. 生成所有可能的组合(回溯算法)
    ; x# e7 k" I0 v* u$ Y  Q1 ?8 k( t
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    10 小时前
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) j) T) s! ?4 j
    我推理机的核心算法应该是二叉树遍历的变种。1 b  G$ s! T) k. ^% ?
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:  H; j: B- f, g# V2 e& Q
    Key Idea of Recursion
    ( L5 b2 }3 ?2 C$ S4 b6 F9 a" S1 X' h8 r8 O0 [% j
    A recursive function solves a problem by:8 A. {; t- b; F# _3 G5 h& m
    ( E8 ~4 y) I  `2 ]0 t, W
        Breaking the problem into smaller instances of the same problem.
    7 K. i5 G+ u; A
    1 h' \7 \! o5 U( g4 ]& P    Solving the smallest instance directly (base case).
    7 b* t9 r8 E8 \+ |
    ) K9 W- m3 a2 H7 p, c/ M7 R    Combining the results of smaller instances to solve the larger problem.8 c6 p+ w$ x- B( m* K5 P+ u

    # N% J3 w. F. f$ l% XComponents of a Recursive Function+ O6 @6 D) V- `# z/ u

    : E, a3 ?& e( N    Base Case:' S; k3 {& L. [7 k" V# s$ H  ]8 \
    $ p5 ]/ B0 X0 d2 M9 \+ q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( z. o& h/ J- d. A# o6 W

    0 n1 P0 G7 s# P* Y, _- m% X/ S        It acts as the stopping condition to prevent infinite recursion.
    ) Z& S. |1 I7 Z; G7 F* o* p# n6 V$ F' F! e) w6 T/ X; B9 ~
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
      T- t9 u7 p; ]- \2 o0 k* C+ `' J* i) D5 j
        Recursive Case:
    8 j3 ]/ u5 V8 j# s! X8 _
    % p9 `* x& v: j- W/ W        This is where the function calls itself with a smaller or simpler version of the problem.
    " o4 z$ \0 S  T9 U0 C6 L& Y" k6 b# Y* I
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., z& W6 X6 Y6 @# S3 _+ E

      b, u+ U! L- o7 x% LExample: Factorial Calculation' ~  w& s% H9 i
    5 U1 E3 U$ a+ N0 j1 W
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - D) f) t: V! w, w% J7 _1 b7 @1 D6 c8 M+ ^' K- _; ?5 I
        Base case: 0! = 1
    9 `0 k1 c% |4 R7 |- G. O4 T8 i5 v- L
    ' O2 Y8 R( W$ @$ m' J4 I    Recursive case: n! = n * (n-1)!3 r/ l$ |3 [( G" F! B  a4 r

    6 B8 u! y$ ~$ j. O& i; wHere’s how it looks in code (Python):
    # ]0 ]( }0 V+ J4 R+ P% m) ~python
      c2 K; j; E( {4 L8 b0 D; e# ]
    ) t4 m5 R1 e  P7 v- J2 A
    def factorial(n):
    , u/ |6 ~+ I! O0 i    # Base case" A: g% K. k$ t; k$ h
        if n == 0:$ e; O# F" J3 W: j
            return 1! e$ t( |9 V, U2 s+ T
        # Recursive case
    0 D- H* [2 p+ v. M" T; E3 U    else:
    6 f, r3 D% L" |0 D% O8 I3 T        return n * factorial(n - 1)8 m4 a: c" `* S# K2 L/ Z; b
    / V3 }/ ]+ w# W/ J5 Q+ \
    # Example usage
    " o/ k. r; ^: l; Nprint(factorial(5))  # Output: 120* J8 m. p7 X. J' d. o1 B7 y, `

    8 h. C6 N: R. g6 p6 t! WHow Recursion Works& c* d# G- ]7 _
    + e) A0 F, A3 V( A$ r7 U
        The function keeps calling itself with smaller inputs until it reaches the base case.& |; ?+ N  \' C2 x9 K6 J' S; d/ A) p
    7 O5 ^( Z6 T( E$ A
        Once the base case is reached, the function starts returning values back up the call stack.
    * |( B6 q: `; P; U5 w) b0 b: p8 [- q4 i* K: E0 _  T; k4 D7 ~% p
        These returned values are combined to produce the final result.7 a5 X2 C' J$ r. Y
    : t5 O4 U* O/ @! G# ^1 [
    For factorial(5):
    8 Z6 D6 C; f& H3 Q" O9 i$ {% p- j* {# f; }) D

    , J, H) o, l! F" X7 ifactorial(5) = 5 * factorial(4)7 n( o5 k/ A( u8 F9 V
    factorial(4) = 4 * factorial(3)7 K6 _/ h2 {: y6 ~
    factorial(3) = 3 * factorial(2)
    & n2 l3 ?3 |! @factorial(2) = 2 * factorial(1)4 }' X' n2 l2 E  \, E
    factorial(1) = 1 * factorial(0)) s8 _( w% G. {
    factorial(0) = 1  # Base case
    ( w+ F6 }8 {" K( U) H% f: G! t7 _
    * j  F, M6 Z: N4 A! i, sThen, the results are combined:
    ( ]! |. {4 \( N4 E1 A* w
    : _7 S" v& z6 S, ]7 \, k  Q- ^
      `0 T1 d: @% Ffactorial(1) = 1 * 1 = 1
    " Q$ t6 V) |$ v, z: u' r  [factorial(2) = 2 * 1 = 2
    8 _0 c+ p3 A, R1 }# @factorial(3) = 3 * 2 = 6
    0 o- a+ V5 f" D+ T; T% C) z6 ]3 Jfactorial(4) = 4 * 6 = 24
    5 Q1 `$ {: F2 w; g8 L) zfactorial(5) = 5 * 24 = 120
    / ?8 @+ n; w# g: ]2 N6 Q% H! D, V+ |5 d& l0 m" E0 J
    Advantages of Recursion0 l  X9 H3 T! K' ^( m
    , b5 ]* k( n" N5 s: T
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    & O/ t& b: h2 \/ Y. z1 j& q7 f3 o1 {) j4 \! r) p2 ?
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) w+ K- ]. q% O
    5 K4 ?0 a0 \+ I+ n$ t, ]- G" |Disadvantages of Recursion
    3 Q) z6 h7 H& d/ m
    , |9 _+ L* d, U* C! p  {    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; U1 W& N) b. A; R& u+ l5 J

    * s0 J4 d0 y7 m' s    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).2 W9 a5 m" @4 B! _+ l5 f% M

    ( r. K! G1 \! q" b7 AWhen to Use Recursion7 Y# o6 A+ [. ?

    2 A- g( P5 f2 d/ j: t! _$ p& j    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).4 S/ u0 D! ?% _; A
    / b$ {9 s* w% w' E9 ]
        Problems with a clear base case and recursive case.; e- l' ~% M7 F1 m/ V, f

    ( v) K% D" V  {+ OExample: Fibonacci Sequence
    4 ~/ S) \. i* F& @) N; d9 i# F1 U0 {- T7 n8 c( K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 \3 S+ T+ H. b" R1 Q
    6 i2 d) r! [) J, G; f6 E
        Base case: fib(0) = 0, fib(1) = 13 `# ^0 b1 a! n) B0 H( ~. S9 m

    9 g9 Z! G5 U( c$ q! c3 @- r    Recursive case: fib(n) = fib(n-1) + fib(n-2)8 I, t  a$ c% n% I& c
    0 j6 O) z6 l- G3 l# o- }$ O
    python' j4 n( M2 x1 T/ H
    6 w' r8 F0 G! p% K% V0 h6 o' r

    % J8 T6 @$ A( j! r6 jdef fibonacci(n):
    : U$ P$ F- T5 l8 k: {    # Base cases( U& ^% n( H6 L: y
        if n == 0:7 z. Q6 r2 y  {
            return 02 y, @3 y! p1 T. E) Z- G9 _) K/ [% {! _
        elif n == 1:
    0 o8 Y0 `) \% d5 F& |  s+ h) w        return 1
    8 n. u7 V7 S9 D- l! W    # Recursive case4 U# Q! W5 i+ k8 z, i0 Q0 y
        else:: R  L! d( M0 ]* m4 s
            return fibonacci(n - 1) + fibonacci(n - 2)
    # a6 L) [* K" D4 k1 @* Z! H2 F$ k1 [: ~+ O( ]) d2 @( K- {
    # Example usage
    , _3 k- D; W- r- d) rprint(fibonacci(6))  # Output: 8
    ; H9 @) W3 Q- L# v0 e1 J- z# [0 L( p; `4 j2 g, `5 |
    Tail Recursion
    / J  {* C) E5 f5 c8 o4 l% `4 @  J% R( s& c4 C
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; m; q) {& l2 ^6 y9 B; A' C
    : j% a' Z- e, {: d5 W
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-30 18:26 , Processed in 0.046485 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表