设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1935|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 J" A+ }! M7 U- Y$ X. O% C

    # H1 W& S0 T7 p* C6 v# E5 g* p- o解释的不错3 @- m6 O  o8 R2 L( Z, K! q
    9 L* L5 p. [+ x6 p% Q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( k$ H, M. H- C5 K* A2 B

    . B3 _! D' K' g6 N0 l0 ] 关键要素
    7 J+ M7 x9 \9 R3 I& ^" O1. **基线条件(Base Case)**
    # I. ~# b; ~# J! X9 ?   - 递归终止的条件,防止无限循环  X% y5 i4 |( n
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) U0 ~! X# x( T3 N
    ' F" c8 W& @& g( b5 a) o2. **递归条件(Recursive Case)**9 H- R1 p1 ?7 ]. ^% N
       - 将原问题分解为更小的子问题
    " d. I0 `$ d6 ?* {$ C0 n7 j   - 例如:n! = n × (n-1)!* |; ~& `* A5 P. l8 I# }+ v6 ]

    0 [# n' h9 i0 e2 [1 u 经典示例:计算阶乘  U% o+ f$ l9 E8 x& y, |$ I
    python, l* n  g% O+ V: f% o
    def factorial(n):
    1 ?9 k8 Z4 }6 m  h    if n == 0:        # 基线条件$ P3 G9 m. h: D# u4 h& C3 z
            return 1
    ' ~( ~& b) ~6 A. Y% _" ]% M    else:             # 递归条件5 {2 q( U0 g0 y0 o! L
            return n * factorial(n-1)( @7 U. ~& r& m5 _1 v
    执行过程(以计算 3! 为例):- }. \) Q( b- ]5 V
    factorial(3)
    : T4 a1 [. T$ {3 * factorial(2). R  a  `2 g) H0 V$ n- e$ C
    3 * (2 * factorial(1))
    0 R( H6 K# K" Y% V3 * (2 * (1 * factorial(0)))
    ! {) [8 I2 I- l* {; F, p3 * (2 * (1 * 1)) = 6
    , V8 Z% X9 w" Q
    * @7 G* ~" P% \0 X) Z$ d 递归思维要点
    & M. A  U2 o% T9 u$ ~% T8 N/ O1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 _" K! y0 k2 z5 U2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- N* K2 T/ D& ?2 o% A+ E6 y
    3. **递推过程**:不断向下分解问题(递)
    / ?3 L. _2 g5 q5 L' B+ E7 g% c4. **回溯过程**:组合子问题结果返回(归), r4 N$ k% u. p: H, v) E) W

    4 m' Z5 ~) J5 F5 | 注意事项
    / u% V$ l7 T* E* V4 {必须要有终止条件
    1 u3 O/ j# M' G$ L- G递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - \* u0 g3 u) H3 n! m' U8 }某些问题用递归更直观(如树遍历),但效率可能不如迭代( }: f/ L5 u& @% B& y
    尾递归优化可以提升效率(但Python不支持)8 G% G- n7 G* a% E0 e7 s) o
    9 q$ e/ a# y: \) f6 g% ^1 d
    递归 vs 迭代. F) ~: p6 f+ v
    |          | 递归                          | 迭代               |# Q4 o) m* W+ K$ B
    |----------|-----------------------------|------------------|- ?! s0 X7 u7 q2 }6 Y' o2 [5 ]$ ?8 Q
    | 实现方式    | 函数自调用                        | 循环结构            |1 E7 Y" x) c2 N, A5 K
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- z7 a! K- H4 U
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ u& \  E' w5 q* o: V/ F. t
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 K/ |: u! A) @" C: a
    3 i  {* t0 G' ]- d 经典递归应用场景
    9 }! l6 }1 e1 i1. 文件系统遍历(目录树结构)
    2 G& B' p  s/ c, B/ h+ }2. 快速排序/归并排序算法
    : h8 d  c$ N0 o; d* {$ f, X4 h3. 汉诺塔问题# N$ A: ~: O% \; z! P7 R
    4. 二叉树遍历(前序/中序/后序)
    , j! j" L2 p: @% F9 b8 h/ d$ E9 W9 M5. 生成所有可能的组合(回溯算法)
    - q( i# B, z: s6 H0 ]% ^7 Q7 v% ~- x' d+ T; U
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    昨天 07:28
  • 签到天数: 3152 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    7 H. z1 i0 L# M( Z6 d) X5 x! l我推理机的核心算法应该是二叉树遍历的变种。! H. I. i, z: X, U5 _
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! g! F) D* F9 a' N
    Key Idea of Recursion
    1 K, c1 f7 z. r' l$ i' Q
    / d' |, }0 \5 [% Y7 z! ?" NA recursive function solves a problem by:
    2 G8 _2 E* W) s# B* ?) n0 ]
    * }. ^! M# l! V) G    Breaking the problem into smaller instances of the same problem.7 `  x7 W! H: ~  b

    ) o5 {+ P( o* t7 B. z3 t3 A) k    Solving the smallest instance directly (base case).7 m) W6 ~0 F4 R& p! i  u$ {
    & x5 R- l- R0 c
        Combining the results of smaller instances to solve the larger problem.) _( J) l5 B5 U4 @3 o
    7 C6 W: [% Y# a/ |: U
    Components of a Recursive Function$ H; a6 R3 f( x

    9 n0 h0 e8 V+ z    Base Case:$ f  ~/ h' j! m* A2 \
    ' t, u- @. H. F) r
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : G. D1 C& h6 C2 L6 e9 l" l, ^4 g: u6 N
            It acts as the stopping condition to prevent infinite recursion.
    ! k0 t# g$ P% i/ W% D3 i! J& q5 x3 K* T. r" M3 ?8 x  `+ f+ Q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! T, M- t; g7 N
    ) K9 V& k7 `, Z8 u/ g
        Recursive Case:4 J# @# N! y0 L1 U. c
    - q% s# f( x/ o: C$ e& |8 l
            This is where the function calls itself with a smaller or simpler version of the problem.3 e/ u+ B  D) B' W! u

    , |( b  M8 p0 `2 v        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    . `9 D" j. K) B0 m5 s3 a; T7 F* d$ y' m! `. a$ u$ n9 |8 a  `) ^( p" A
    Example: Factorial Calculation9 ^" X  Q5 v/ N* d% M! M* ^
    ' q* ]: w. k3 K; \( H% A+ n1 Z
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& t6 U5 _& H) N4 X$ I

    * @3 L0 D' a3 C+ l9 x; D; p5 ~    Base case: 0! = 1
    3 I1 `% q: d: w; K
    0 ?. Y: T. _8 t; E0 W' I! O    Recursive case: n! = n * (n-1)!
    ) p% n/ u# l4 H0 h6 j5 G" j- S; w5 _1 C- F9 z5 q
    Here’s how it looks in code (Python):0 y+ X8 n1 u5 s' H( x# u% M
    python1 A4 r: f: P! k6 A  Z
    , \( Q; g) E2 X
    4 p* N2 g( A( e, l. F* g
    def factorial(n):
    % M/ ^+ [" `4 c) z2 V1 p    # Base case
    * j9 q8 H7 r7 D0 c7 z8 G7 j    if n == 0:; P6 y2 V1 a0 V! ~! I; H% a
            return 15 \: o$ I3 D, C; K( W1 g" G# x4 m1 N
        # Recursive case
    " O. e9 K$ ?8 I0 r/ d    else:
    6 B5 U  \. M. P8 y: K& c        return n * factorial(n - 1)
    - ^1 [5 F5 ?" w9 e5 g7 S" v0 ?* s' v8 e/ V* T+ m4 I; K
    # Example usage
    1 C" c5 T0 l8 b: V. c) N0 xprint(factorial(5))  # Output: 120: o9 L* i, c6 O' y
    / o. Z4 j: j$ R' \/ c8 S+ M
    How Recursion Works+ B; m$ p6 x" Z4 I2 m/ [
    ' E; k# j( s; a: ]8 [% N' V
        The function keeps calling itself with smaller inputs until it reaches the base case.' ~0 f$ r) O6 M+ `$ {/ G
    " I. q3 ^' N; `6 F$ K! w
        Once the base case is reached, the function starts returning values back up the call stack.+ @( d4 \; T- P$ h, O2 M0 v* r: d+ C

      }: Q& e% z7 F6 K: |! r    These returned values are combined to produce the final result.- O2 \7 \# T: ]- _

      w* S' o6 S1 b  d, eFor factorial(5):- l/ e/ i0 z( i  P$ _3 X& [  k

    ! u3 i- L) l9 o. u
    1 a6 {3 s7 z6 Lfactorial(5) = 5 * factorial(4)0 g7 M1 c. l$ @# Y
    factorial(4) = 4 * factorial(3); M* t6 L% s5 m6 s' q! i
    factorial(3) = 3 * factorial(2)3 ]8 ]. x% q- x, X
    factorial(2) = 2 * factorial(1)
    # H# F& w5 K9 M7 \8 a8 bfactorial(1) = 1 * factorial(0)
    , O+ ?! {0 v; {- h  A3 X4 Yfactorial(0) = 1  # Base case1 f, ?( b. x, ~) i' `$ l
    $ g( Y3 X( b2 H' V  M% a
    Then, the results are combined:* E0 B! G* b2 _

    : N8 l# k4 `6 h4 r& N4 d" t& w
    5 H. ?9 e4 ]2 }' W4 d/ Hfactorial(1) = 1 * 1 = 1
    : {( d. n; L0 q6 {$ ?( C5 e: @factorial(2) = 2 * 1 = 2; @0 A% {/ l% n
    factorial(3) = 3 * 2 = 6
    ) o8 z3 D3 ]6 Kfactorial(4) = 4 * 6 = 24- a% |( M( z. V4 S  x8 q1 e
    factorial(5) = 5 * 24 = 1205 c! ?, @- P6 ?) z4 p6 b

    9 @# s" X! V. [5 ^, c" D4 I' ^2 sAdvantages of Recursion0 d$ |6 n  x9 Q; s
    9 s' C' l( N7 T9 D
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).' {0 n* u2 a- @& p/ W6 ?# n

    . o+ o' X7 S. _& X1 M0 W# U! B    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . X# Y8 N3 h5 c1 i- u! f
    2 T* U) m+ B+ u1 ~  Y/ q2 _+ LDisadvantages of Recursion0 c. R8 l6 E% V" h4 g

    ) U" u  E. i2 g    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 _9 }6 ]1 J4 L+ S9 j  I  _2 s9 l' H
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( g( u+ I; t$ w. A, i
    & P2 z1 R1 V7 E: _  l9 o) i8 _) NWhen to Use Recursion
    . I: m) m: V( t0 q  j4 C, V4 R) q
    ( b( m0 Y  i8 U, ]6 {6 v    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- A3 A' C: G2 e2 q. M
    6 p/ j3 U' W- J1 @3 K
        Problems with a clear base case and recursive case.
    ; m6 h9 N- U/ i6 C& w6 `; f* ^. A4 w. m! H
    Example: Fibonacci Sequence
    . K% o% E' H5 X$ [0 u& @8 i1 \# @7 R' v0 c  s
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; \7 ^' i$ o# m2 F7 S0 f6 k- |/ `" J5 I2 j  m# x$ l& p
        Base case: fib(0) = 0, fib(1) = 1' U  {9 [/ }  j$ n( Z( O
    . S; F' K9 G. c
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 o4 i# }, ]1 i; |+ b" ~
    ( b' s, U- }* t# e% K6 C6 N) a5 cpython- N& l$ g. T6 s& s

    $ n& x- N  A/ P/ T4 I# n! d
    , ~4 b4 t* _% }& u) H2 X6 B9 _+ d' Mdef fibonacci(n):
    6 J$ i; \4 `: N+ e    # Base cases
    . {* J! M. j4 w) o+ J    if n == 0:8 A$ ?8 t8 K* R
            return 0
    , @, p5 B; O+ T6 h" i    elif n == 1:
    - X. [" i1 e6 z! n8 U4 h        return 1! O0 \% t( n) {8 A0 c" ~! h
        # Recursive case
    3 K- }: k, _0 G    else:4 m" _9 ?3 y+ Y9 ~8 d6 W; e
            return fibonacci(n - 1) + fibonacci(n - 2)+ D! p2 B9 T( y* h
    ( v7 Q+ D2 X  r7 b) R5 N+ k0 d" X
    # Example usage
    % M2 Y' D, l, s/ S3 Lprint(fibonacci(6))  # Output: 8+ k8 G* E1 ^+ I/ T; I) A8 H

    3 A; T0 R9 ?- [$ U* Z: \Tail Recursion
    # J1 K' j* D3 B1 o! C) q
    . M( l9 n  A: RTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    5 o. j* u" l& Y0 R" @% Z) p$ G9 V7 ~+ K8 u9 V7 }
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-24 05:37 , Processed in 0.056860 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表