设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2089|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / {6 g; j- w' }9 Q
    ! C8 D& R  k7 C+ Y" V' ]6 ?解释的不错" w! J9 r, J. ~' {

    ) G. W" R( j* T+ g递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* x7 r$ o, K* W4 E- |- j+ }) ?

    1 B8 g4 e# `* g5 O. X+ f9 c, G5 c" } 关键要素
    1 Y+ v* |# l/ M5 k, z  l5 s3 a1. **基线条件(Base Case)**
    ' N6 z3 P8 b! V: k9 i/ D  v   - 递归终止的条件,防止无限循环4 w, I$ L: M& h3 o  u+ I7 V& o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 A3 A" b, Q3 k- h
    9 e+ ~; S6 I, x. B2 }7 X$ A2 i! z
    2. **递归条件(Recursive Case)**: ?& U5 |( J, n: o5 K
       - 将原问题分解为更小的子问题- a$ J8 q8 z* _5 O$ N
       - 例如:n! = n × (n-1)!
    5 f8 X8 J/ F/ R8 r1 V5 r$ d/ u- q
    9 w- r3 s* w5 \. T" K 经典示例:计算阶乘# L) K) o! ?5 Z/ L3 O  a* ~) |# \& l
    python
    . k) Y, a' f$ @/ Fdef factorial(n):. ?# h! K+ c5 X$ l0 X" u
        if n == 0:        # 基线条件( A# L/ _9 y9 D
            return 1
    ! u9 R+ X+ o$ K2 y8 S    else:             # 递归条件
    ( F- T' i& w9 G6 T) T- H0 L        return n * factorial(n-1)+ u& T9 T! h6 S
    执行过程(以计算 3! 为例):& d2 |4 c' {3 q) g9 A. P3 h+ I1 ]' _
    factorial(3)- x+ a: b* n+ V( j
    3 * factorial(2)
    ) Z/ N8 `6 }6 b' A1 Z& `# O& I3 * (2 * factorial(1))
    ! Z+ G: C& M% ]* C) K# G3 * (2 * (1 * factorial(0)))
    3 ~/ S( X" a/ k3 x( j' D# k3 * (2 * (1 * 1)) = 6
    * g- b% j0 ^/ a4 C5 d
    # c  j4 D  w* c. N( [' p 递归思维要点
    $ b% a# F# C1 p2 M- B7 j6 X1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    * d& v  X0 o, x$ n& w7 A2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    $ j' R( q: J2 t8 ?# x4 Y3 r3. **递推过程**:不断向下分解问题(递); v  }* c% E6 b' U' b7 S# H  \1 W
    4. **回溯过程**:组合子问题结果返回(归)
    % ^- h8 o. `9 w( h
    8 l: x! L/ H5 M 注意事项% S9 g2 V1 K; }; U( ?$ x
    必须要有终止条件
      x+ D0 L7 v0 a$ e递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % y7 e/ H* g  X. F. P( r某些问题用递归更直观(如树遍历),但效率可能不如迭代. o) X3 t% D0 \7 o
    尾递归优化可以提升效率(但Python不支持)
    * K& r- w+ M& a9 b" @2 a, _5 h, t! u% c! }! {9 V+ F
    递归 vs 迭代6 T' A# R3 F3 |
    |          | 递归                          | 迭代               |
    2 Z1 g9 R! B' @! y: S|----------|-----------------------------|------------------|3 s$ [4 z! w1 G- v
    | 实现方式    | 函数自调用                        | 循环结构            |( S5 A9 f8 y  u+ y
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + _" B$ {$ g5 g( [# D| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 @5 w0 @2 b( \  W- @/ G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; X7 I( P3 h. Y7 T0 k5 F$ x3 G+ n/ `) a4 O4 Z8 S% _% i; ^4 O
    经典递归应用场景
    ( n/ R9 x. F- ^" w0 n1. 文件系统遍历(目录树结构)
    0 v' k4 O: m; p9 F2. 快速排序/归并排序算法
    , V6 j$ w4 y' y3. 汉诺塔问题: K. d; w: ]' i4 |/ y- ?+ t
    4. 二叉树遍历(前序/中序/后序)
    ) R- a5 I1 w  t8 B3 T5. 生成所有可能的组合(回溯算法)( U% Q; A: q. y, p

    & G. [) N1 |8 N$ c% c$ |试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3174 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ' T0 l0 v% }4 P; x) R, \% v我推理机的核心算法应该是二叉树遍历的变种。1 ^& Y, J; H0 W3 c
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 Z4 {2 |4 r. j9 {# ^/ `/ w
    Key Idea of Recursion- a% {( b: S+ T& L; _9 q6 R8 T2 n9 E% d
    7 P9 Z4 c% f* h' [5 U3 U
    A recursive function solves a problem by:
    2 n/ S9 ]+ Z8 P1 T5 I) P9 g) u+ n& f* x& I: C# H  A4 n
        Breaking the problem into smaller instances of the same problem.. g9 ~/ Z7 E1 h6 n
    0 w  N( x0 Z$ G
        Solving the smallest instance directly (base case).
    3 d- {9 D# H) j4 w8 N2 g2 x2 E. V1 @0 w. u% U7 P0 t% w5 z+ K+ f
        Combining the results of smaller instances to solve the larger problem.
    . u) U* j1 |; d% e  J# b  e& D# O  j% u/ f$ t
    Components of a Recursive Function
    8 ^# c0 m- o6 O/ `% {) U$ H4 Y
    ' g6 ~3 z, B6 {, t/ u, s3 a  Q    Base Case:" D" n4 [# [4 N/ {

    + \0 w$ S" l/ F. P6 [1 L. |        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 G# B6 n; A$ @! K2 c) X7 t- B$ a4 Y5 N* d+ k
            It acts as the stopping condition to prevent infinite recursion.. i4 A5 S8 H" C. f/ D  u: Z* }. A

    ' Z5 S" t  ]6 j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; C3 T  S0 e5 F  _, ?5 I

    % r6 B/ c' y6 s- |  l5 Y3 Q1 {    Recursive Case:
    7 M1 ^. }$ |! W5 J, m/ r3 n3 j; ]! X5 Z3 ^2 {
            This is where the function calls itself with a smaller or simpler version of the problem.' Z. j0 m9 F6 O0 r' x; x1 [; b
    " r0 N# Q( ]5 g3 Z" R& W" k
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / `% D/ o. M7 ], Q1 e+ G4 o( h! h+ ~  z
    Example: Factorial Calculation
    : ~3 w5 r( m; K/ n# w" c2 }2 G4 Y: q% u2 h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& ?' r. b# u$ s' f# h# u# I
    - Z9 v/ A( {4 t7 N+ ^
        Base case: 0! = 1
    + t. I/ K. o# ~7 ~0 G
    6 Q% {* j4 X! n# W( G% o0 d    Recursive case: n! = n * (n-1)!
    + U2 \/ N. Q1 K8 p' ]" B) N# B: G1 a8 [9 p0 N) ^
    Here’s how it looks in code (Python):
    ( N4 T! A% Z! h5 f4 vpython
    : \$ g, a& I9 P+ [, u) t! U6 f, r0 [

    2 m7 G, a5 n. v+ d: J+ T) Hdef factorial(n):
    4 l% u* a5 K+ y9 ?    # Base case& n# ^  T+ M& m- w
        if n == 0:
    + T" E( b6 M" c1 H3 P1 {2 e) P        return 1
    6 `( C6 L; a+ b1 k1 R& I, b    # Recursive case( W) D4 |. W. S: ^% I5 D7 e9 _+ W+ i
        else:
    - j1 Y. q, o$ O  f* e( I2 D* D2 S        return n * factorial(n - 1)! Z) o7 I8 V+ B3 U0 c, P# o

    9 b" e6 h  X, v6 H# Example usage5 g9 c$ T0 E: z4 \& @
    print(factorial(5))  # Output: 120
    / }! ?+ \6 R) D0 P+ W! n4 u* d& P- b! L
    4 v4 l0 K$ i1 v+ S; g' c  WHow Recursion Works0 b: [$ }1 U: X# Y
    5 f) k3 T0 S. C% E, N1 G: b9 q8 O
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 r# s6 y; E9 v5 a: T# \5 w8 L1 T" v1 G
        Once the base case is reached, the function starts returning values back up the call stack.  v* b& G5 U! c. L% ?  ^! }8 H. y

    5 g2 `4 F/ \- W! Q& w( o    These returned values are combined to produce the final result./ S8 m7 ?( J3 Y% m
    / L, q& W1 B( G! ~8 ~
    For factorial(5):
    9 F" j9 O8 C3 g
    0 b8 @7 y, `# {( ]* o6 Q0 L" z1 R3 m+ G+ B' M+ X
    factorial(5) = 5 * factorial(4)
    - K+ B$ I' y" |factorial(4) = 4 * factorial(3)4 g% v. b* V  ?, q6 l- i6 i
    factorial(3) = 3 * factorial(2)8 [) a- G+ h4 {) I9 e% D
    factorial(2) = 2 * factorial(1)
    6 y! I1 [1 P1 S% a# k7 l6 Kfactorial(1) = 1 * factorial(0)
    & Q& Z$ O, M2 H- t, _% T1 A4 Rfactorial(0) = 1  # Base case
    / {4 ?% U+ }% y% E
    + n6 B' W5 P! BThen, the results are combined:
    0 W  b, ]5 A1 I3 y" @) v2 E2 t: v" G0 e2 }) e+ J% D  J
    - X9 R# H1 n/ x  U/ g# T
    factorial(1) = 1 * 1 = 1! X; ^4 n6 y5 e4 `9 u; M
    factorial(2) = 2 * 1 = 20 M: e$ l- E$ k. \
    factorial(3) = 3 * 2 = 6
    ! s7 O  g1 O, i0 o, J! I( J7 Cfactorial(4) = 4 * 6 = 24; D2 B. P' a; ]6 I+ p" u
    factorial(5) = 5 * 24 = 120
    ; D# ]8 Z/ v" j1 h" ~
    $ H4 C( i8 G) c2 E8 a- p+ f0 rAdvantages of Recursion6 Z$ H$ [1 Z6 W1 j1 k

    3 V: K6 b( N3 f  X1 h! d    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - y5 N2 [) n. G) q  _
    ; d6 d5 y5 i" G& j2 H    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & @' j* e5 B* E3 f# B3 G8 V- ^
    6 O2 r: k+ g# |2 G2 NDisadvantages of Recursion1 u7 g- O: q$ x; }/ \5 M8 F5 ]2 b1 |

    2 ]" ^, v8 [( k1 d% {    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& q- X3 I+ S. N% x

    : r9 X( z2 c' r0 A. M4 q* S" [    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! A( n$ q; Y; C9 ]+ g0 c3 T( o3 ^5 C' ?" B# J4 t2 i2 R7 w
    When to Use Recursion0 U' x& T* b& j
    4 J, |. L9 A9 o3 R6 J
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 h( ], X" b  u' i+ }
    ) A* O  P/ ]' Z1 v* S
        Problems with a clear base case and recursive case.
    3 O$ F# |* h9 E3 ~. a4 B% }: Z
    1 k9 g+ E  h, `/ k; G/ [+ U# b0 IExample: Fibonacci Sequence% J' f* C: b/ A9 J9 H7 M

    2 o4 q3 s* ]% x" S+ f7 h! G4 [% Q) oThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 Z, x; Z% h/ c' k- E9 j1 S- f3 a1 I
        Base case: fib(0) = 0, fib(1) = 12 N; _6 X7 d& |" e$ I% K

      u6 b* E4 S, H  o/ l2 A9 j    Recursive case: fib(n) = fib(n-1) + fib(n-2)3 k# K) x1 e- x# J9 g5 x% @$ }
      q4 {/ o$ [7 r: z7 F2 E. K1 k
    python9 M0 O8 p7 W4 e+ }# H0 ^" n3 `

    / p1 O/ F, e5 X! P' B8 T" D9 w& ]* f/ J9 ]$ ?$ f" h$ {
    def fibonacci(n):( ?# ~- W6 z8 t/ G1 k! K) q) U+ B
        # Base cases) V: h! j& K' x( D8 u- Z
        if n == 0:
    5 J  k' `! a3 T- |+ c! U5 _) c        return 02 A/ f. |# y- v5 V  R5 x1 P4 _
        elif n == 1:) S1 m0 g+ u* e# g) k5 [* d9 Y
            return 1
    $ N, V0 u  U/ R, S( K1 N% a2 T    # Recursive case
    ) ^! |2 [2 h; A) t    else:
      b  e) X5 R8 j+ `/ @  I) R! F        return fibonacci(n - 1) + fibonacci(n - 2)
    : X; }/ C+ P" D4 x* }1 _8 H. f6 d3 Y* {5 c7 ^+ u! ?3 l
    # Example usage$ |3 S$ }* ]0 O
    print(fibonacci(6))  # Output: 8
    * w, C6 y- n& u" \. U9 p* M; T
    , \* X1 ~  n! J, W% l9 CTail Recursion* W& `/ Q  ?4 E4 s( q

    ( E7 i5 j- \: d$ tTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., k* I+ I" n. \% {. i6 ]
    ; ?! K- g' b( z6 I( ^3 v
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-15 17:18 , Processed in 0.054420 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表