设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1485|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # D' S; Z6 F+ Y, u- q/ ?* D  P' z8 f1 _3 V
    解释的不错. S0 N1 t" _! U" b7 E/ Y

    , e9 w( J7 }+ a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 S9 P1 C8 \0 c. `6 d: J' \% U* g4 q1 D
    关键要素( w. V+ Y8 ?" Q6 \; g
    1. **基线条件(Base Case)**! {# X1 c% W( Z3 G% g$ a, T" T1 M
       - 递归终止的条件,防止无限循环
    $ \6 U2 U+ ^! B# C7 M6 X# Q9 ]   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 V9 ]! k; O  o# ?

    $ ~2 N) f& t3 Y. @5 j+ ?8 ~: }2 c2. **递归条件(Recursive Case)**
    % K- R/ u0 a1 F2 r3 W: [0 T   - 将原问题分解为更小的子问题
    + v. Y4 P7 h( w# T5 l( x   - 例如:n! = n × (n-1)!# P, L; \5 [0 _8 m: n

    9 e" Z) G9 x' V9 k3 \( h 经典示例:计算阶乘
    ) Z2 n/ `3 v& M5 W+ F# ypython
    7 l& t8 U- a- J; L' adef factorial(n):
    % x: f& Y2 m! Q0 K8 t    if n == 0:        # 基线条件0 n9 C& w9 ~- ^0 `  ]
            return 13 x# T* K# j) ]
        else:             # 递归条件
    5 K& [  |' N/ [# D  I& U5 f3 l        return n * factorial(n-1)7 a4 {/ I6 n" l' Q7 B% B$ w
    执行过程(以计算 3! 为例):. e8 e9 b2 i5 w7 y: x# K# J9 n/ t
    factorial(3)
    : H7 a+ z7 r9 K7 `3 * factorial(2)
    5 S/ W% w! W1 ^, F+ ]3 * (2 * factorial(1))  Z! B, M  ^8 a1 V: ?( [) [' B* W
    3 * (2 * (1 * factorial(0)))  W2 H4 C; Y' V; [
    3 * (2 * (1 * 1)) = 6( p8 N2 n/ f: Z$ m! f9 f4 s
    $ y3 u  B1 O& a
    递归思维要点/ z7 C6 l+ ?$ ]8 {! L
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    * j: c$ @! ^6 h1 R! q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) R: L# Y. {9 V8 K3. **递推过程**:不断向下分解问题(递); `3 ^9 p: t' u
    4. **回溯过程**:组合子问题结果返回(归)
    - A5 q7 F: `4 S3 W
    $ Z( z. D& I. f! g5 m5 S# Y 注意事项
    " c# ~4 A1 D# n必须要有终止条件
    5 x8 k# c' [0 b9 C; t递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 \& w- X+ K+ Z3 a: b某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % q+ R: j( ^" j6 n尾递归优化可以提升效率(但Python不支持)# e" m9 V" w; u$ N% r) J6 i
    ) k' S% j2 J2 _8 l
    递归 vs 迭代
    3 }; s3 D$ D) Z/ _) G- ~$ N6 x|          | 递归                          | 迭代               |
    ; S3 R  F; u) ^/ W$ h|----------|-----------------------------|------------------|
    3 v- a: t$ G/ m( G| 实现方式    | 函数自调用                        | 循环结构            |& P: X/ Q" `* |; _
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# X5 m; n. F* `% {' P
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 d' g6 ]$ q, t* B0 r2 V2 g| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  t4 C5 Z) _. p) l9 c$ B) k

    $ h( J* s$ C( `% f0 F; N 经典递归应用场景
    - K& W2 q8 [3 O1. 文件系统遍历(目录树结构)
    0 T8 a8 E! g7 s* |2. 快速排序/归并排序算法
    8 f" A$ ?# {9 _3. 汉诺塔问题
    ; {9 ]$ V% K# d& ^  n4. 二叉树遍历(前序/中序/后序)/ M& a( C# E2 d, B1 m
    5. 生成所有可能的组合(回溯算法)/ y. _( y+ c  C) p/ |& N$ Z0 P4 Y  \$ R
    9 b0 [2 ~9 u- y: r
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    前天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ D+ A" z1 k( V: ]& h% b
    我推理机的核心算法应该是二叉树遍历的变种。) t9 s: M% V1 U! _' q" O, ]  ^; R: V
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 W2 s2 i7 }# G( }3 J
    Key Idea of Recursion1 @  e% z" }+ i) z0 ~6 C
    ! L' i* Q4 |2 T+ B2 W- v' k' h9 v! u! K
    A recursive function solves a problem by:7 n' Q- u. ?" @: Z

    $ [) b4 S; Z" i. j6 |2 g: l    Breaking the problem into smaller instances of the same problem.$ A1 ^# Y% M# J) Y! e- ?

    : p4 m7 U# {" a- H    Solving the smallest instance directly (base case)." a% b1 L- Z" u+ o3 A2 p; ]

    ; F. s  j4 l6 v* ]. J! R* H: D" I* ]    Combining the results of smaller instances to solve the larger problem.
    ) z# `7 R2 e; C1 J$ c
    / ^* [' d1 m/ A# g- n+ pComponents of a Recursive Function
    9 Z+ I3 t. u# ^/ w: g+ P* f: |4 E  n& t+ q" M( s
        Base Case:, a5 r  D. k0 i) \: M' L
      ]! j9 q4 P$ c7 m6 @2 L
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ p# r5 v5 v& n4 T& R  x3 ~2 z
    * y" p' t( h9 [# S7 g% y8 K6 T4 A
            It acts as the stopping condition to prevent infinite recursion.' X, L6 L, a; V
    , s7 \* g( p9 t+ R4 R5 r% s
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . l2 v7 p1 k$ q4 G2 H6 w$ _+ E( F3 P3 e6 c" b  F# U/ u
        Recursive Case:
    ; y2 y3 K, _, Y7 D& K! }9 s: g) R' e7 Q$ Y; ?# D
            This is where the function calls itself with a smaller or simpler version of the problem.
    1 [& d3 y0 c# O3 i  e) m. O$ D( `4 X, T
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 d9 i+ g3 ~. o" Y0 k, S; A2 o

    ; P/ ]4 l0 A" C" }$ xExample: Factorial Calculation
    ( ]- w% a! r+ T- F' f6 j! a) U8 j1 [: a9 {# t) o
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + }/ X0 \% ~2 w0 L; ~7 D! \: }" n3 q3 T! n" P7 n: p( w7 R
        Base case: 0! = 1
    - N! g9 Z$ f" n$ X1 b* q  R  b" O# n
    9 K+ c3 X& H4 x; }, |    Recursive case: n! = n * (n-1)!1 S/ E7 H) B1 X! F: u2 l& R

    4 o. y5 j3 u# i" a. B1 I7 S" MHere’s how it looks in code (Python):) U& x$ H8 i: i$ r' t9 @' d: s; R
    python
    " z, p! d; ^; G8 X" L0 d! K
    2 j9 o0 R1 J1 m$ b' W
    4 u# _% G) p. S2 \# q  q+ z, |def factorial(n):1 ~" E4 z& R, P9 u
        # Base case! r9 Y0 ]$ L: w( N
        if n == 0:4 C6 ?% L7 }# }& }. V
            return 1: t( }# `- D  O
        # Recursive case- ~' @- c5 T4 c! f* ?
        else:$ _+ A) U/ i* ^( f" k+ z) Y: d; W
            return n * factorial(n - 1)
    / n2 l* c" `9 x/ r
    & o# R9 {* [+ V* k* e) j  O1 `- j$ G# Example usage6 d: y$ @  F5 w0 u' p
    print(factorial(5))  # Output: 120
    ( a! I# F" B9 J1 \: R$ l
    ' I2 e$ o! E  [8 k5 Q+ C+ OHow Recursion Works
    4 T$ K# v. y! \) r- D0 s# W; u7 j  U$ Y; {
        The function keeps calling itself with smaller inputs until it reaches the base case.' H2 d( |5 i4 t" ~
    , x1 e! z+ ]) ~. i# @
        Once the base case is reached, the function starts returning values back up the call stack.0 J* D& E* j) R$ x0 `9 ]

    $ `% @- A# X/ [/ Z2 e6 s    These returned values are combined to produce the final result.
    3 L6 Q% ^9 j! S! U6 G9 Y: U) b- W( d' ?7 q2 B& l( {
    For factorial(5):( g; x' X# d9 H# g1 a2 b, ^& w' U
    : Z8 h9 q( |/ g% ]) {& p

    $ y: d, f/ v* W+ ?4 \, m9 efactorial(5) = 5 * factorial(4)
    % O' ?8 E, t" k: I3 j# Ffactorial(4) = 4 * factorial(3)3 _* o) g. ~9 r" ^# P+ f
    factorial(3) = 3 * factorial(2)
    ' }# |4 ~. ]( \) f- Ifactorial(2) = 2 * factorial(1)
    2 q6 a1 h% {5 c+ Tfactorial(1) = 1 * factorial(0)8 f7 Y  P/ z) K. R0 }
    factorial(0) = 1  # Base case
    9 r# x2 M8 e6 E6 N) E
      m0 S4 J; a  `( v5 I) OThen, the results are combined:
    " T1 k  @6 Z9 }: L. U- {
    % }! m! \, g4 O3 T  c
    , @, _6 N( [% l& _) s8 ^" Z3 Lfactorial(1) = 1 * 1 = 17 @" a! U1 p/ `) T; T1 k8 _3 W
    factorial(2) = 2 * 1 = 26 `5 |) A( z# o$ W( |3 s6 w/ l$ e
    factorial(3) = 3 * 2 = 6' i, ?, W: Y' _3 L! t" n
    factorial(4) = 4 * 6 = 24% h: e  Y. [: t3 c
    factorial(5) = 5 * 24 = 120
    7 P( o6 {" k5 s. h7 ?: Q$ ~
    5 m8 Q$ }3 P7 WAdvantages of Recursion' h, Y4 \3 e2 i6 c  H" f% T
    & [8 v! _; a# E  a7 C' h6 t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + v( O1 ?8 V" ]3 O! Y2 _- U% l- w! G4 ^1 T4 a* _  |/ L
        Readability: Recursive code can be more readable and concise compared to iterative solutions." U+ _2 [' @. z
    / ^" E; u  g. b7 L
    Disadvantages of Recursion! k6 U5 W3 p; l1 d  y0 V5 R

    6 S' q2 |; d4 a/ y% r; T    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.: Y9 C" O/ i$ G8 R- b* K
    , `3 \: o8 H+ K' W- K# Q# `8 c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
      q4 }# c7 v% e% y; `& v, B+ N
    , i7 L+ |5 _1 B) zWhen to Use Recursion6 z4 i; D" Q' p) E% o8 z- }3 V$ q
    ) l$ c$ l1 a7 o$ d5 Z  Z2 t
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: {& Z* ]. E  \
    1 @& o# O) B. g  M. j1 x
        Problems with a clear base case and recursive case.5 ~& E# }% `  k9 X" C7 Y

    ' D+ q/ I9 k; yExample: Fibonacci Sequence
    - M8 E7 }  b6 n+ _# X9 [' @* ~- {! e: f, U) f$ ?& G$ Z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    5 y) x+ y: O, k* n  @) y% T0 I8 X8 P: N1 v' Z+ g+ O
        Base case: fib(0) = 0, fib(1) = 1* @# ^# T+ x, ?3 ~5 s5 Q
    ; w0 Z! \6 V" h9 h' G3 c; M
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 p  s& z7 Y1 K! @# |" E7 R, M9 I( b& D; p; l2 q
    python
    ; B5 @* I( y5 e  D2 ~2 }5 E8 Z. h* O: b# Y  A0 W2 p- I% ~

    4 O% G- z+ }9 F( Adef fibonacci(n):8 Z3 H% n5 u% [* ^5 K
        # Base cases& C! d: C7 l$ m8 r( _: ]$ {
        if n == 0:
      V+ N& I, {( n' G0 R, b5 ^% V9 [        return 0
    % V8 _  d2 _1 ]8 D0 `" G  V    elif n == 1:
    0 k! F  d' b8 w9 r7 S+ M* |        return 1% a# Q3 g7 f7 P0 A
        # Recursive case" [. I0 W) m' A0 f& S$ Y
        else:
    5 Y% O2 {7 r5 D4 }4 k/ Y        return fibonacci(n - 1) + fibonacci(n - 2)% G+ s# v1 I  I( F& c
    1 _  M/ q* @0 n+ M0 _
    # Example usage
    9 Z* L! S# q- Q- D& |: E5 a( B( Jprint(fibonacci(6))  # Output: 8
    2 D4 b5 ?* I! R! w0 A, b$ m
    8 m+ B5 U! `& y2 ~0 h: k0 }Tail Recursion
    ) R. l& l1 ~% m5 `
    ; J  z/ X  }: Q6 U4 d$ \1 lTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 I: }; d9 O. B+ M- g. m% `1 D( }
    4 I- r6 A% I/ xIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 00:16 , Processed in 0.040025 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表