设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 269|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 4 天前 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 J% C4 a) p, q

    4 j" h# }. u" _4 ^2 Y解释的不错4 a, T' |7 U. S! f# R( k
    3 g; ^2 W( C% L
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 O% \. l7 `) C2 i1 P

    + S- g0 q6 d3 w 关键要素4 a2 L% t: B9 X' j# j2 F
    1. **基线条件(Base Case)**8 l1 Q2 |1 R% S. N! p6 X& s
       - 递归终止的条件,防止无限循环
    6 l, w5 z; v8 T: {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 U" ?8 M0 s$ i3 F2 U
    ) i; W7 ^5 g$ Q* L; p- h5 [2. **递归条件(Recursive Case)**8 O2 z) U/ q  R% y# ?7 B' C
       - 将原问题分解为更小的子问题' ^2 `( ?' w2 `5 d) m! v* G
       - 例如:n! = n × (n-1)!$ [4 s6 L+ W, u7 ^; a0 o: J

    9 T: X: B/ y( F: c# ^  g# v& B 经典示例:计算阶乘
    3 [8 F+ m7 q6 Npython
    ) }8 I* \2 k3 [1 {, U; k" odef factorial(n):
    0 q2 P& n. G+ w: g    if n == 0:        # 基线条件- f1 a' H1 I! C, ?: R
            return 1- i6 O# L, |- p3 D% k+ ?
        else:             # 递归条件
    - {5 k! I9 W- M1 ?6 g& L( p$ b        return n * factorial(n-1)
    - B2 }# f& W  q6 g( ?执行过程(以计算 3! 为例):0 x( @4 r1 \0 j: [7 w0 [
    factorial(3)+ z  K) H6 P3 ?! M; ]
    3 * factorial(2)5 G# G& G+ L" Q+ }' r; R
    3 * (2 * factorial(1))
    2 h3 L* z" S' w0 V9 C; U" \3 * (2 * (1 * factorial(0)))' j; f) `8 f: f5 y; s
    3 * (2 * (1 * 1)) = 6
    0 J; y/ M, C( y8 v5 C1 C/ d
    6 s  Y; d/ L7 D' t8 [, t6 ? 递归思维要点& [7 Y5 N" D/ Q9 o% F
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 E7 Y" q0 w% Y1 t/ w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)+ B: L6 y8 `  m3 O$ Y+ C5 b' V
    3. **递推过程**:不断向下分解问题(递), _+ U, e- H$ u2 V- s/ i  |& ?
    4. **回溯过程**:组合子问题结果返回(归)9 P% a% c& o$ o" n5 M" `$ f1 i) e

    , c+ P$ ]+ K% @, I' |+ F/ G 注意事项
    * x$ e5 T9 n) b/ v5 I7 J/ f必须要有终止条件
    , ~- w& I, U4 ]+ R! q. g1 ?递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( ]7 [6 g3 A! t; [3 p
    某些问题用递归更直观(如树遍历),但效率可能不如迭代! Q6 g" E  U  V
    尾递归优化可以提升效率(但Python不支持)3 T4 ^6 v* x6 F) g6 v- ~5 p# {( d6 d

    5 k4 V9 [1 n9 a3 v( z 递归 vs 迭代
    ' g  X4 r6 _/ T* a|          | 递归                          | 迭代               |) A8 i8 t0 ?5 K
    |----------|-----------------------------|------------------|
    ; L$ O6 l7 u4 J& I$ D" b| 实现方式    | 函数自调用                        | 循环结构            |
    4 J, i# u- {. {3 |- D5 Y1 X& p9 p. U6 q$ i| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |5 T: o. V: T+ u- P6 j5 A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    % A+ \% i$ @$ _8 K4 U; h. [| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 j* `' e) Z  T- {4 F5 s$ J- ~# P0 _: ^7 N# u
    经典递归应用场景
    . ]+ u* K; b3 c) Z1. 文件系统遍历(目录树结构)5 I( t! T' M% k; z+ B2 {+ q
    2. 快速排序/归并排序算法
    ; X/ r0 R& l" D' g3. 汉诺塔问题
    1 ^. c3 X! i+ |+ w8 O4. 二叉树遍历(前序/中序/后序)
    # [% s0 P+ p8 s8 r# B. t4 @/ Y5. 生成所有可能的组合(回溯算法)
    # W' u  }* s2 u/ p; e9 u1 Q( ?( V, ~4 k
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    15 小时前
  • 签到天数: 2820 天

    [LV.Master]无

    沙发
    发表于 3 天前 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 s/ ~7 s: N- f* ~7 b/ r我推理机的核心算法应该是二叉树遍历的变种。
    & k/ h2 C3 Z) z& O2 z; d另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 20 小时前 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; x& T: y' M, t! z% i/ \/ SKey Idea of Recursion
    ! B6 N' X; J  a; Y$ U9 Z" ]% [, W" s5 N
    A recursive function solves a problem by:; u9 L( Q! v1 O

    ' D( j0 P, m" R# W) J: v    Breaking the problem into smaller instances of the same problem.
    7 o6 M- \; l# n: ]" V8 ^& c2 J
    " ~2 }# k( X7 o2 n* a+ O0 R( v* L( a! `! \    Solving the smallest instance directly (base case).
    - c" E. i6 R" }1 Z7 ~) Z
    ' X+ P9 {/ {7 E    Combining the results of smaller instances to solve the larger problem.5 a1 u* g* k! t: j% s
    7 S+ E4 a, Y9 q& H. T0 Q
    Components of a Recursive Function
    3 o/ ^9 t' z( s: J
    2 s. x6 h/ C, g; q% ]+ i2 u    Base Case:, E, _6 s# S5 ?4 k7 U3 ~

    9 P- h# g; g+ Q, d        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    * }' l; f% ]3 Z$ s. i* V3 v' x' B
    6 D3 S/ {! B" H$ d# u5 `/ f        It acts as the stopping condition to prevent infinite recursion.
    % D+ e% p" m1 q% a! w* s) N6 b( p
    , w, a$ ~/ k0 z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 z) ^2 ~) g! B
    . ?/ Z/ E4 a& K: ^: b2 f    Recursive Case:" a, R+ Z$ A4 u

    + i) a7 N- u" j6 S, `0 V* O9 Q        This is where the function calls itself with a smaller or simpler version of the problem.
      \, @" I0 _1 k! w4 \1 t2 K! W; r( w, c& _; h) H$ G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).! x* ~2 F# N. H
    - r+ b4 s. e3 ?  G
    Example: Factorial Calculation
    " ^6 K7 ]  R. U' t  \1 `+ z% _2 g' q& a' X' c/ I0 @+ h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    : N3 Y& a' T7 f, f  E1 W" K# s* ?3 t7 {
        Base case: 0! = 1
    - G  V- D: }" \8 I- W9 l- H
    1 Z  s1 |2 h8 \, T# y5 l) v4 }( \  ]    Recursive case: n! = n * (n-1)!* B  `: I' O' I$ W

    / K7 [  U  L* K" P) d( cHere’s how it looks in code (Python):
    / j  v! x) c5 b5 o& G6 k2 F: tpython
    * c  a; J/ r- L' w
    , x# o# \! K. F* I6 h4 R5 T- O; n3 C
    def factorial(n):
    0 a- t. P. I# ^; s    # Base case, Q- z9 j$ Q* |. z6 I' m+ I& R
        if n == 0:$ m1 q3 `9 P* ^* _5 ^, g
            return 1
    ! N: Z5 v1 f- Z9 B6 J    # Recursive case1 l: w( W" S, L, R8 H8 b
        else:
    ; ?! y) b0 M4 [' ]$ {        return n * factorial(n - 1). ?, w, B& z* A: k$ u4 A
    : V4 f( W( l/ z' v1 }6 o/ c( J
    # Example usage
    . w  L- E2 r5 a* }' |$ u  `9 _6 _print(factorial(5))  # Output: 120
    5 P4 L( F9 Y  ?, Y+ W1 e6 {
    1 P  [4 W  q: w" b* THow Recursion Works" `7 I& ^2 K' ?* [3 c2 R" j3 |. S& K& {
    + [* m' m& N* I( o
        The function keeps calling itself with smaller inputs until it reaches the base case.
    7 ?5 z: ~) _/ V2 Y5 d1 o1 D3 N2 ~7 A8 n2 `- e
        Once the base case is reached, the function starts returning values back up the call stack.
    ) B1 P" C1 ]. x' a* K' L/ Q
    ! E7 _4 g; h4 A% g8 l" H/ T    These returned values are combined to produce the final result.! \& f% _5 `+ N! F4 @2 n8 r7 k

    4 D2 i! J  n, jFor factorial(5):
    2 a+ H) @. X. X3 t/ @/ d8 H, \# ^

      X8 M9 X& ?6 q2 \! z" v% dfactorial(5) = 5 * factorial(4)6 }, P$ I4 b) r$ d7 B4 J# k, x) `5 o% `
    factorial(4) = 4 * factorial(3)  ~8 Y! ?" A) ?) |5 P' L
    factorial(3) = 3 * factorial(2)
    9 }/ P* R$ M* C/ D' ^factorial(2) = 2 * factorial(1)$ f7 b& R! s+ j* `+ o
    factorial(1) = 1 * factorial(0)" I( X5 J, v2 _! q  g5 s
    factorial(0) = 1  # Base case
    5 @# D! H$ w0 ~+ I! L
    - n* G4 T, y, D7 q% j3 I2 X8 CThen, the results are combined:
    6 H7 y7 ?. z2 b% e  a, ]& N  t% C
    6 G' f% l% i. a/ _% U( J
    3 [/ z1 K, i& f: J6 Jfactorial(1) = 1 * 1 = 1% Q7 \; {/ C. w4 Q5 H3 P  ?: i
    factorial(2) = 2 * 1 = 22 P8 R0 B) g9 I1 z
    factorial(3) = 3 * 2 = 67 i* q  \+ _- ~5 |9 r
    factorial(4) = 4 * 6 = 24
    ; p) j5 E: @1 P/ dfactorial(5) = 5 * 24 = 1207 x! W: }0 @  r# G- L. B

    $ q2 S4 @- {& x5 MAdvantages of Recursion
    0 I' ~# A2 Q. K$ O$ X. `" G3 |6 R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 a( B( z0 a. k- _# x! t2 Q+ I  Y/ c' U
        Readability: Recursive code can be more readable and concise compared to iterative solutions.- r' H- l7 u0 X3 j* A# u, K
    + t0 z+ Y- P+ N+ K. [
    Disadvantages of Recursion
    ' v6 p" ~5 T! J& |8 e; u; a
    / o. \  k3 n, t9 Z6 `" F    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ C$ _6 x# R' M

    + w1 E0 f& t9 W# M" I$ F    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 n/ X, J! K( Z9 m

    , {+ b7 e8 n" B2 R+ @) I' EWhen to Use Recursion
    8 s, S& B: u% M. I: G: m. ?, ?/ y! t" W4 c( S7 w( S% [8 [, r+ Y& T$ L
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    9 `% M* E. o! }9 q1 H
    % t/ ?4 k  B2 J  t4 ^: Q7 v  q    Problems with a clear base case and recursive case.
    2 B+ k9 b. a5 L9 N
    9 {7 ~: D  |) D' NExample: Fibonacci Sequence
    ! J7 Q5 P' `) q- M) t9 M& a! d9 m) Q$ v: D3 |
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . c8 Z& Y; B& _
    # `2 P$ x3 S8 e! w7 f. b    Base case: fib(0) = 0, fib(1) = 13 D) S  a. R8 x

    0 o# O. E( b( m. Y# S8 t    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * G# _) k1 P9 C( }2 r. Q5 P
    5 h. E' q$ G5 ?6 D; z* u5 Npython( z8 p3 s/ h, z$ F: ^
    6 ~/ R" H$ a. ^/ i8 f' @) i
    5 _% g8 p2 w. F! k6 w
    def fibonacci(n):* @) n! M3 Q1 }% X* C/ d8 j6 d
        # Base cases
    - f+ i1 W9 f! l0 L; \    if n == 0:, k& C5 Q/ ^4 g/ ?1 k6 K2 X
            return 0. r5 `9 c+ c% F' o0 x. Q9 S
        elif n == 1:
    1 L8 U( s. Q/ w8 i: {# L, k4 |        return 1
    9 K& a! l% J- p    # Recursive case
      S2 K3 a+ D" V4 i    else:
    : M- l+ l' U. p* ^        return fibonacci(n - 1) + fibonacci(n - 2)
    * q/ y6 t9 N" D8 `0 R# W
    ( U- `' D' V4 Y" \. z# Example usage) E7 d" d' C2 @7 n; u) f2 X' Q# N
    print(fibonacci(6))  # Output: 8
    8 \6 p  O9 {9 A* h: `( n
    7 @% o( p5 {, c# yTail Recursion
    ; i: y* o. D/ v' v4 U" ~
    9 T% Q9 Y. Z* L, m! LTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / H- d7 H. m- {/ b% S' }0 A) a9 K  A. f- s4 c0 @6 F# ^
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 20 小时前 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-2-2 20:54 , Processed in 0.039789 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表