设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1644|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    % e* r9 R; K( Z. t/ o
    4 a, f3 Y6 F6 T) b: _解释的不错6 B6 z$ @+ A. U" i
    % [6 w5 o6 ~$ }* Y0 D6 r" H
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. ]4 e+ q5 y8 G4 G1 \
    3 r: \$ [/ m! [9 u5 X  R+ {9 O
    关键要素
    5 j$ b& y% f# N$ K4 K- L+ a1. **基线条件(Base Case)**
    6 S/ w* n' h6 q   - 递归终止的条件,防止无限循环
    ) q5 m" M# ?; K- i) w1 f   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 B0 ]/ J* L& S# h  `
    2 o8 X5 c, O+ i4 I
    2. **递归条件(Recursive Case)**
    ; P1 n8 T, c0 o* D2 i( d0 S   - 将原问题分解为更小的子问题
      v$ I/ c2 N6 f1 L3 `  O; D' C1 ^   - 例如:n! = n × (n-1)!
    0 e) ~/ k% y! c1 C0 [" n& C! _
    - ^# T2 `. y" `: R  m. E5 L 经典示例:计算阶乘
    - P, V7 R( Z* `& b/ ~9 f# npython
    1 F# p. D( t4 e" Y# O! W) qdef factorial(n):
      e- g( b1 x  @    if n == 0:        # 基线条件
    / ?* X9 {" a4 h; \8 e( q6 w$ n        return 1
    8 Q6 D7 _3 q# n4 j) B    else:             # 递归条件* w, q% ~7 R, o" A: H6 L9 W* E
            return n * factorial(n-1)
    8 Z, c0 w+ E7 N. ^: K+ H1 i执行过程(以计算 3! 为例):
    # V, A0 I! w8 e; `5 }1 e. Y- \. Sfactorial(3)1 M; r$ u8 Y* Q" n/ q8 ?4 @
    3 * factorial(2)
    , J' R8 v8 g9 d3 * (2 * factorial(1))  A; Y" x+ j: a2 _+ A% S% @
    3 * (2 * (1 * factorial(0)))
    + X% E1 [) [/ Y; ?4 [3 * (2 * (1 * 1)) = 6% l( j1 k5 R& l; S9 x- Y  {
    & m0 e3 o" G1 v# A( R
    递归思维要点7 u9 V0 g% l2 h) |5 l3 K
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑% {! B! V" ^1 y" t& A# p- m
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 A4 A( g( S' F3. **递推过程**:不断向下分解问题(递)
    7 H5 ~2 ?0 M! j8 n; T4. **回溯过程**:组合子问题结果返回(归)
    ' T. C. a9 X  s6 x" ~
    : h* H1 o7 s, |8 {8 g" r5 r' \ 注意事项0 T( n0 I, ?6 A2 B: I0 H9 R
    必须要有终止条件! ~  U/ ]0 d- V' p
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  k1 T$ G: B1 t
    某些问题用递归更直观(如树遍历),但效率可能不如迭代+ d& p# e  _4 l- j5 Q
    尾递归优化可以提升效率(但Python不支持)) |. M/ a7 ?0 j" a8 p

    / M0 X  e4 s" |: t$ v 递归 vs 迭代
    ' Z" I0 w: ~. L- X' a|          | 递归                          | 迭代               |
    ) E: J7 O& m$ C5 Y- B0 j|----------|-----------------------------|------------------|
    / G# D! \% {( f: U8 }- P' H$ n; o| 实现方式    | 函数自调用                        | 循环结构            |: T7 ]/ J% `  Q3 Y) w
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ) N' ?( @7 v  }; y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 \3 v. {  h! Z  M9 |
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |+ [" x" T+ k9 y  y6 e' H
    9 e! h0 s! X2 O' Q1 g
    经典递归应用场景
    + g; D$ _; X# L9 ~5 Z/ q* L1. 文件系统遍历(目录树结构)) Z$ k1 g5 S+ P1 B
    2. 快速排序/归并排序算法0 B- I' B6 n5 y; i
    3. 汉诺塔问题3 O% X3 B* G8 Y
    4. 二叉树遍历(前序/中序/后序)& a& J' M, X$ \! Q- r. j
    5. 生成所有可能的组合(回溯算法)7 ^- S- K+ h+ N2 B( V' h3 O

    ( Y) W. x# B% K$ R试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 12:10
  • 签到天数: 3127 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 S9 l% y1 Y  y( u" M" U我推理机的核心算法应该是二叉树遍历的变种。7 }' _, C* v5 \8 M
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ ?( o3 K7 u2 jKey Idea of Recursion  P- G3 O7 f% `9 y
    0 ^+ v& r6 r+ T: e) t* c
    A recursive function solves a problem by:8 n0 C9 X' f; M' S4 A
    $ ?6 j/ z9 t# J! C2 f& M1 R
        Breaking the problem into smaller instances of the same problem.
    - g2 P8 c$ j6 _8 J1 V$ W
    * h8 I4 S6 C6 b    Solving the smallest instance directly (base case).
      d* ~6 J1 t6 u3 o1 D/ c& N" \+ V) w" g
        Combining the results of smaller instances to solve the larger problem.
    1 l) s& T) V  h5 x& ?5 [
    2 y9 h6 l% F" |* ^0 @Components of a Recursive Function
    + u. w3 p" O& R) O1 Z2 v
      k9 Y, S/ ?: {% d% p4 U    Base Case:
    & h0 |# o* y2 b1 K6 N
    + I" T" }  ]3 {. z* V3 |. N2 Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 c, c  @) J# {8 }$ s4 y, s( k9 w$ ~8 T( p
            It acts as the stopping condition to prevent infinite recursion.0 j( Y' d+ |% M4 @9 |0 C4 \
    7 |2 d, _- m# E7 m7 i1 b4 U
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' c  R; w, Y6 b6 E( {: \& V
    ) p0 _* L0 ]$ w    Recursive Case:* q0 l' ?& m' r1 o9 K
    ( b: P. W; k+ D( z. y( ~& S% E
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ U! y# v/ a! S# u
    ( a' j! A; F& _        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' Q: A, r8 f) E! I8 H: Y, J
    ( ^0 @( ]6 [' B
    Example: Factorial Calculation
    7 v- J. [" [( I3 ^. j8 g8 ~) C# V" f7 f+ l7 A$ b
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:; X( n3 z% M0 H8 M% g& z1 X

    ) |7 _5 w2 C4 T. \* R    Base case: 0! = 1' |$ ~( z5 E# N+ G' p4 j1 U
    & q5 G5 T* d( @8 V
        Recursive case: n! = n * (n-1)!
    $ j" W' d5 J6 g" t) X5 g6 p' l& t6 V
    Here’s how it looks in code (Python):( t7 |6 H. u1 J/ y4 {
    python" u/ R! b$ I( o4 T+ C6 I* g

    7 C9 u8 C; P4 V' @9 D- T9 Y* k+ h8 q7 [* D- l5 {  k$ t+ G
    def factorial(n):
    - [; U4 c# L7 G    # Base case1 W; }# ^! y0 G; `
        if n == 0:1 ?; Q+ X' H; D* m2 K* `9 a$ B$ @3 K
            return 1, Z' V6 w! e, R0 V3 o% ?1 R
        # Recursive case3 c6 w$ k" r, ]5 N5 I7 e
        else:
    1 R& _& K2 v$ u# Z' W" U        return n * factorial(n - 1)2 n( O% X( e; G9 b
    2 g9 I$ h  H/ Y8 q
    # Example usage; @, u( }( x/ H2 j" E! @& m! U
    print(factorial(5))  # Output: 120
    8 F1 i2 ]6 g2 n  k8 ^$ e0 D9 M4 |! w3 g. g% N6 g4 N% G, u/ J
    How Recursion Works
    1 o( W  a" i2 ^5 w+ |5 t8 }: u" X% }% ^. z* ]: z% `
        The function keeps calling itself with smaller inputs until it reaches the base case.
    / q9 X1 Q5 w$ P- n# g: Z
    ' k- ?" V. @& w+ X* G4 S, I    Once the base case is reached, the function starts returning values back up the call stack.7 s4 \& d+ d# T$ N# s/ [  }
    3 I  A+ n9 t/ o1 Q( [) {  c
        These returned values are combined to produce the final result.
    & p9 x+ c- o8 a) A  P0 ^' \( m0 U! Q9 @* {
    ; m( E  }. I7 {3 ZFor factorial(5):
    # J9 D  I2 w* H; k: h
    3 q6 F$ O$ d" x1 U) V* [
    " E! ]6 v  m/ F2 t) rfactorial(5) = 5 * factorial(4)
    9 p4 x- M! l9 F. _- Sfactorial(4) = 4 * factorial(3)8 a& B6 {7 X) c* l) \( U# J
    factorial(3) = 3 * factorial(2)2 F, Y2 w: s  X* ]( w! m, q
    factorial(2) = 2 * factorial(1)5 M6 ^! p0 ^) z5 L
    factorial(1) = 1 * factorial(0)5 s7 C" [- |1 d
    factorial(0) = 1  # Base case- F$ m9 R8 G" O+ |1 j* B) i6 e

    6 k" m( o- O( _, T! RThen, the results are combined:
    + N4 Q) ?* G9 ?0 }7 w) b+ R, F- B/ m& m

    6 N  D  j' i6 E* pfactorial(1) = 1 * 1 = 19 c4 [) J  P9 _6 y- s' |% _
    factorial(2) = 2 * 1 = 2- e4 Y$ P5 G- m/ {* Q) O% |! ^8 Z1 h
    factorial(3) = 3 * 2 = 6' b* \0 e9 Y4 D" t
    factorial(4) = 4 * 6 = 24. o) f) {7 L7 T: H, B' e! {1 h2 U
    factorial(5) = 5 * 24 = 120; G& q4 ~2 h+ @1 O" K( d
    9 V  C) Z" D( _- m* ]$ ?
    Advantages of Recursion
    * L8 d/ {) x! t
    & j* M/ e3 f+ ~. L. K) v2 u5 V    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + Q( A# a+ y: R# o! }; _! L7 }! A: O6 q2 {8 y# Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.8 R5 O" V# k& x$ X) S4 l% p

    * R0 B: {2 H' N5 }Disadvantages of Recursion
    0 z- g# _$ Q" c( l, l5 g) i% q* z
    7 _; Z+ N- V' K3 H1 E6 T$ G    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 H: }& B( N1 i5 v

    6 K- ~. f. }+ [3 |9 g( n    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* V4 n0 g" W0 K/ }

    9 {) M* \% n! }  |When to Use Recursion
    3 T% u5 d% A' C' A# ^; a. l1 P( @7 O! ]* y
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 V2 J* p+ u- r8 @( ~
    $ h3 e$ g1 B2 v8 ?6 t    Problems with a clear base case and recursive case." ~  |7 U, b/ p
    / }. }7 b+ k* c: u( z3 H/ r6 r
    Example: Fibonacci Sequence+ x' \+ a9 Z5 w4 F1 R3 I* R& O; X3 s

    - g* o0 p5 L, h+ B- uThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # @: k" i. Q/ S) h* |6 Q* _2 Z6 c! R/ C5 t5 i( k: u" j; z
        Base case: fib(0) = 0, fib(1) = 1' \7 v" G# E& Y4 W7 o. c4 E% h0 ^
    + W! C- T6 A/ E) m: U
        Recursive case: fib(n) = fib(n-1) + fib(n-2)) L3 C/ \" P9 G5 c

    . {8 W8 d% @3 ]6 S2 ]( m! mpython. ^3 Y/ x1 r" d7 Y' d" j

    ' d, x+ m% i3 ^& p1 |
    6 ]/ k- o$ m- i3 P% Z$ Y; Kdef fibonacci(n):8 k  x+ F2 r" z% Q
        # Base cases
    % V' c% g( Y0 E& o    if n == 0:
    ( g2 W" V( G- R, C+ [- P        return 0( y! |' g: v% d4 b1 P
        elif n == 1:
    2 \& x. l/ ~. V; b  x( u% J        return 1
    - k# L  t7 l" b: G0 C  Z1 l    # Recursive case
    8 F3 U2 j+ X4 U" m* K  E    else:1 |2 V+ }9 H0 [# ]- b
            return fibonacci(n - 1) + fibonacci(n - 2)+ V$ s, H, h, L! Q; m

    ) S7 b2 W- f- I, W) q# Example usage7 k- z% ^' p+ z/ h" X
    print(fibonacci(6))  # Output: 8
    ' z4 N/ t7 X* Z* @& o- E1 u2 D4 C0 {3 x$ c  y7 P7 O( @+ W
    Tail Recursion# a9 N$ n# V- l! A, d0 N

    " h' @- ]$ c7 ?0 a& sTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    1 l. _7 M9 I4 P; X. W9 J- \, w7 T- }) ?6 ~
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 06:14 , Processed in 0.031074 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表