设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1499|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    & L8 c) L3 V$ \0 ]; w6 ^/ f6 n+ E" f1 ~- r4 [
    解释的不错4 t/ C6 {2 r( y

    $ h$ R, B8 T' n! R' e# N4 l递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    3 Y8 q# C5 ?& o3 U0 j' s$ @
    , R( x6 m8 s* r2 {$ y$ b 关键要素- q: @/ t0 P" |$ e& u4 p1 P  H! [
    1. **基线条件(Base Case)**
    3 O/ E8 ~0 ]+ Z  J: r: T3 G   - 递归终止的条件,防止无限循环
    ) {9 j+ K3 }% u( F' {) S1 Y   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 L2 T: ^+ L( c) }
    . B6 I8 f( p0 u, v" y7 U. y2 p
    2. **递归条件(Recursive Case)**
    ' S8 s9 i# a- S- a- e* [# l   - 将原问题分解为更小的子问题, ?9 ^* Z2 X# v+ V' e
       - 例如:n! = n × (n-1)!
    6 h4 q0 s% y. S! N" J5 m2 [" l# j0 c- w( h
    经典示例:计算阶乘
    ! ~1 Z4 e" K) C" F: k( @1 vpython
    & d/ a6 z) z- K3 |3 Q1 q- h/ U+ ndef factorial(n):
    8 v1 [3 |" Y% z7 X5 ]6 t8 E% d7 u    if n == 0:        # 基线条件
    $ w6 `( J' X. F- M  B1 q        return 1; `) ]- E5 j1 d- y; C
        else:             # 递归条件; ^8 Y: I( g( U: q1 U/ h% W
            return n * factorial(n-1)" b6 y. N- W9 K. G4 F6 V1 t
    执行过程(以计算 3! 为例):
    $ D3 Q5 b7 ~4 S7 D" Mfactorial(3)5 u5 m9 C# e6 g6 Y8 \
    3 * factorial(2)
    # ~- ]% q) J8 n( B, O. s2 Q" u* B% L0 L3 * (2 * factorial(1))
    5 G! Y( y. X& |, i  t* Z3 * (2 * (1 * factorial(0)))* ~" I+ Y5 z' }/ s! O
    3 * (2 * (1 * 1)) = 6; T; l) |1 G! [9 u# A& g

    2 p) G4 \; Q( u1 s7 S/ w 递归思维要点
    : ?4 N. W1 U1 W+ J- z+ p1. **信任递归**:假设子问题已经解决,专注当前层逻辑% u1 C- n0 A% f5 t- Z0 j
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间). q. w/ P" A" F9 o
    3. **递推过程**:不断向下分解问题(递)# c8 Z5 S7 ~3 l( a
    4. **回溯过程**:组合子问题结果返回(归)
    9 s" |, L* C* G) s( `
    " _1 b5 j6 _7 V) F4 x6 I' Q. D. I- c 注意事项
    . f" }6 F! R, {6 E9 h2 k. I必须要有终止条件! k4 ?( O2 T4 e) f/ }! I3 g% I
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) N6 H+ j: f" M( M3 i+ L% n4 V
    某些问题用递归更直观(如树遍历),但效率可能不如迭代$ l, P# W% X2 n( k& J
    尾递归优化可以提升效率(但Python不支持)- \' f( M% C" o* n( B8 H  N
    / ~& S; _+ c* L  q, |# D9 `5 N
    递归 vs 迭代
    / S6 [6 K; Z. T; W5 ]- `|          | 递归                          | 迭代               |
    & [5 @8 j' n2 p' J|----------|-----------------------------|------------------|
      M6 S% [5 m3 {% t. q; I) g, J| 实现方式    | 函数自调用                        | 循环结构            |* Y5 l' z; X" [  W* f" K* ]
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 j4 D( M% I8 X# l+ f$ @8 @' }$ Q+ `
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |3 E' I( z" o4 ~1 n8 K) A. I4 U
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 k! I3 F2 c( v% ?9 K, R* i1 _+ C7 X# n
    经典递归应用场景
    9 c7 ~' \) ^" b6 Z9 S1. 文件系统遍历(目录树结构)
    " S9 ~: o3 V* x2. 快速排序/归并排序算法
    5 ^1 \5 W: ?0 ^; K) U3. 汉诺塔问题
    0 M: C) d* m2 }0 v* x4. 二叉树遍历(前序/中序/后序)9 _6 _7 ^4 k' K: }8 X8 c
    5. 生成所有可能的组合(回溯算法)
    0 _- w: s  D$ T8 O; p- x. \9 f
    ' I7 Z! T( r3 {" {: e试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    8 小时前
  • 签到天数: 3116 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
      f  H2 O3 G& J* N8 g2 x3 e我推理机的核心算法应该是二叉树遍历的变种。' K  @( {; s4 P' m
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 p4 Y- [; \2 n" O! i2 Z/ LKey Idea of Recursion) {4 U9 p0 W! W( k/ |

    * N2 _! M2 h5 h, XA recursive function solves a problem by:
      p0 j( l# }  b( j% S% [/ D* X( t1 f" U% }; l
        Breaking the problem into smaller instances of the same problem.. q8 @& K3 X  i
    : r+ w7 V3 t. r. e' q6 i6 k
        Solving the smallest instance directly (base case).
    $ h. B# u1 L0 T7 G3 i( c
    # E1 a; J) X+ D    Combining the results of smaller instances to solve the larger problem.
    5 W+ }% z$ \1 h) T
    . ?7 u9 W' o" ?9 W, lComponents of a Recursive Function6 S4 u  M- i( W' D* q
    4 E; ^  `+ W) B& R- j
        Base Case:
    4 b6 \: ^& _$ r
    2 |$ w: Z7 h) ?7 s5 U% m) `: Y4 a        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 J1 m) U5 F% H9 i+ M( ?9 R
    # Q  j% c" [' l; B7 g" F
            It acts as the stopping condition to prevent infinite recursion.
    ' W& k8 g& I- }+ x' f# _. B
    ' u. d0 p8 u# m: z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 ]& W* k/ A* X7 {, W
    % c  t7 f0 Y& J" l. r* j8 T3 k% S- D$ ~
        Recursive Case:
    % `' E7 G6 J" ~) ?, M9 o7 i9 _! C( _6 L# i$ r. j0 B/ k2 {
            This is where the function calls itself with a smaller or simpler version of the problem.8 P2 ?2 @8 ^5 J
    ( X0 m% \5 I# g
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).. }. T! N- y& S) T2 V" m- q0 u
    4 L9 f# h, t9 _* Y9 Z: W0 W
    Example: Factorial Calculation7 s. O/ i- B, m9 w

    # N2 s" H/ M( S3 y! B1 XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + |2 ~& J2 A3 S& f+ t- u( s
    6 s6 z4 U4 y7 o$ h/ Z    Base case: 0! = 1  C; ~/ d6 t3 X3 a: P) C1 [4 y

    " M. `4 U/ }  W9 _* f! y8 v, ]    Recursive case: n! = n * (n-1)!
    , [* ]; |5 q  b6 J
    5 @5 \8 Q4 J2 Z/ U0 D* gHere’s how it looks in code (Python):
    + G/ Y+ Z% p0 S6 _' z$ ^; G& `* gpython
    + s' ]- h4 J& M  Q8 u- x2 ~3 n, g/ u: ~

    " M/ k3 m) U3 Y+ g; C4 ?def factorial(n):
    8 ~6 d* m) B5 o. p    # Base case
    ' k  m" v) ]+ o$ M( k) D    if n == 0:3 r0 s. |4 g- b- l- S6 y# }! a9 Y
            return 11 B, {; U8 S8 J+ U; V1 b4 s
        # Recursive case
    1 n4 N( z6 ~0 M/ O    else:+ j  @, r) D5 L( |( v
            return n * factorial(n - 1)
    6 C5 o$ e' D- n' ]+ `8 I0 C) F6 y4 I9 \
    # Example usage
    $ S1 k% U! N- S3 N3 m! uprint(factorial(5))  # Output: 120& J; n2 g! n! o9 o: S* B

    - S* c- r' R2 `9 B, g; mHow Recursion Works
    8 e* N  b  T" t; }1 C/ D: f+ K# F4 J5 _! B3 d4 K7 y# M
        The function keeps calling itself with smaller inputs until it reaches the base case.
    * f$ c, R; ~# M$ l  |, k9 T6 {" }$ \/ {5 f/ i8 y. \' m% m) y! j
        Once the base case is reached, the function starts returning values back up the call stack.. S$ t* u. A3 R* A8 M$ P
    1 U, N9 E  ~5 J! Y
        These returned values are combined to produce the final result.2 K8 R# J! N: q8 b
    6 ]3 b" }$ h& u  S; ~
    For factorial(5):
    / J6 |7 x* d0 x% s
    7 m" H) Y( {" \: k" H
    8 i6 }, l5 n. {& u  |1 ^" \factorial(5) = 5 * factorial(4)- F3 v/ k" {- `
    factorial(4) = 4 * factorial(3)
    + [+ X! t5 h$ M! Efactorial(3) = 3 * factorial(2)
      v+ r* x  O( G/ i! xfactorial(2) = 2 * factorial(1). W6 q( s* y0 S
    factorial(1) = 1 * factorial(0)
    - N/ A5 `" r. r) K* Yfactorial(0) = 1  # Base case
    * |& d8 F2 _# T3 F7 t+ t0 o
    , o4 m4 f; E" G/ T1 BThen, the results are combined:
    ! A5 \3 r: f4 ^
    0 s: v) Q6 C: O; g4 ]7 ^' E. q6 K3 H  v: }) u! a! f
    factorial(1) = 1 * 1 = 1$ E% S- l0 ?8 q% L: G  w8 h
    factorial(2) = 2 * 1 = 28 s0 k' m# T* T0 z# a
    factorial(3) = 3 * 2 = 6/ \" g, L+ q3 o3 P3 G/ p
    factorial(4) = 4 * 6 = 24
    0 ]2 f$ n4 q; f/ t6 ?factorial(5) = 5 * 24 = 120
    ) Q- y2 k0 i5 u* y8 s; V* \* _2 |' v. A0 H7 Q& f) @
    Advantages of Recursion
    2 C7 d) }, c8 n  s* H; {7 r3 c+ B+ C" [! P3 }" i  N' `! y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) {1 u$ \/ V& }. q
    8 }' K7 I6 x, A+ U+ ]. _" b
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) y; T' {- O! D
    # B; \, ]' r' D: [7 kDisadvantages of Recursion
    % Y4 A# I  ]* D0 O4 Q+ S1 U8 K- z" S, e5 Z  j4 |2 S, B; T- R
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., `' V  K4 Y7 L  o( F2 {

    ' ]: p2 r) A  J' o    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 _; U) W+ Y* |% B& u

    ( s, Y' `0 i: c8 K: \0 xWhen to Use Recursion, L3 J) ^' U* l4 U" a% {7 Y
    ) o2 x  Y- x0 \" Z. w
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ _  [- D' p) K7 y
    8 v: ~6 b( n# N* s' k
        Problems with a clear base case and recursive case.
    ! W+ x- Q% `8 `' Z) u2 A) N" E' u4 P3 v! F: L. K2 Q
    Example: Fibonacci Sequence
    " V. v( q6 }& p# [* `" _# t6 s# y' Y4 i% a- T% \& L/ t& E
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! M. O/ m# b4 R. ]: G5 h& W) j$ @2 ?* c8 Q  \+ y$ t
        Base case: fib(0) = 0, fib(1) = 1
    + i9 D/ y, v0 h* G+ O! j6 @. O* b: _+ L: |
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ( g5 m3 r" O, K6 v# A7 I8 E, _7 N# z) P
    python
    & ?* `7 Z& c2 V4 X$ p; G& [1 g( @3 _3 J* |

    ( H* `  q# Z, b5 ~& U, zdef fibonacci(n):4 g/ V1 _+ p2 c, s& F
        # Base cases. O! R! s  @5 n, }
        if n == 0:! j0 O  \8 l+ X2 @
            return 0
    & j* {/ l% V1 b8 L* A( W& u4 F1 h' w, R    elif n == 1:
    9 H2 j9 S' A$ ~        return 1
    9 b6 ~8 k! d$ c! w# I8 U! y/ I$ t    # Recursive case
    3 a2 v9 f7 Y6 W1 W& L5 S3 |0 s    else:
    - t) r* s1 j5 g        return fibonacci(n - 1) + fibonacci(n - 2)& }7 l) I- o  N9 d: h1 `' ]

    . X; u3 U3 e1 [: H" ]: k# [# Example usage/ H: E- W( T. r- p. @; T
    print(fibonacci(6))  # Output: 86 T6 i! ~! Q# n1 f3 i; [

    1 c9 [" Y; o) o1 l/ G9 [Tail Recursion+ P, ?6 @  [9 ^2 ]( n0 k
    " h3 f0 Q6 W/ y! z+ c
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., w7 o' O2 \/ n8 Q7 o$ j. |3 j

    5 b2 y4 Y( @# h3 CIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 22:00 , Processed in 0.036498 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表