设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1718|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / J$ T( o1 f+ P! H% Y
      Y) G: I$ x; L! \2 \8 n% \解释的不错: \6 V# S" y$ `

    6 D$ h( w6 U3 D  x递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ; s/ k& L9 g* M. U' U
      v! t% n9 T3 u4 F) {$ v3 I  E 关键要素% N: K% g; n( {9 m' {
    1. **基线条件(Base Case)**3 `" S* Z; Q$ D' d
       - 递归终止的条件,防止无限循环* @0 R) G6 `' @9 b3 @5 _# C0 l
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- @, b- ^0 n2 l2 b

    % ^9 U5 c9 ~0 |) C6 i0 s2. **递归条件(Recursive Case)**
    4 J, ?- }2 m7 F9 m1 d7 p   - 将原问题分解为更小的子问题
    $ {8 x, p( m. P2 ]; `8 e+ W( `   - 例如:n! = n × (n-1)!
    4 p+ N0 l0 j' l' u. h" Z$ k( s1 U
    9 d5 ^6 X/ L- ? 经典示例:计算阶乘
    + ^4 [- l, g; c. j& i( Vpython. y) Y, z: J) m; F  O" X
    def factorial(n):
    ( P( F0 H7 X+ U4 H1 z7 A1 v    if n == 0:        # 基线条件
    ; s! h+ Q1 O2 v3 c$ g- \! A        return 1+ G1 @; C: k4 G: X5 Z) E2 u$ c' s
        else:             # 递归条件" Q- c5 I* g2 z8 |
            return n * factorial(n-1)
    ; E* ^& |7 _% F执行过程(以计算 3! 为例):2 S1 V$ ~& E; J; ?* s$ M
    factorial(3)
    ! D1 t) E- p: I3 * factorial(2)/ J. Z* D0 m6 r! s! |3 Z- [
    3 * (2 * factorial(1))" C. {% o& ^, G8 E& e- _6 {! C" O
    3 * (2 * (1 * factorial(0)))" `1 Y# b! G+ t. T7 R
    3 * (2 * (1 * 1)) = 6
    7 y, c1 I. p/ V/ {; I0 V' a
    ; u( S, O) |  i4 Z# z' i 递归思维要点
    9 ^4 f# ]8 [& u' P: Q( I# [6 n9 }  A1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + v! I. i" `7 b2. **栈结构**:每次调用都会创建新的栈帧(内存空间)' f; ]) u2 ?2 t' @
    3. **递推过程**:不断向下分解问题(递)
    * A1 x8 _8 U5 J  N  d4. **回溯过程**:组合子问题结果返回(归)( n. u1 M$ T/ _& N6 |; l# ]+ L- t
    / A) V. W" @5 R% D! [2 S% A. J
    注意事项' _$ T5 L/ S& ?7 c6 r5 d3 l
    必须要有终止条件' O* A6 x& `2 t& l# m
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层); k$ v9 E5 d2 ~: k; E0 n
    某些问题用递归更直观(如树遍历),但效率可能不如迭代) j3 W+ @" D8 {: ~
    尾递归优化可以提升效率(但Python不支持)
    ' q3 c! ?  `# i: F% g7 U& t) G9 F/ U9 p! m% |' b' Q
    递归 vs 迭代
    , E9 x1 o; }7 \' P|          | 递归                          | 迭代               |3 \$ D6 H2 _# X. O5 `
    |----------|-----------------------------|------------------|( q+ @5 m  N. ^$ w. a) Q
    | 实现方式    | 函数自调用                        | 循环结构            |
    2 V% \0 J0 o0 k6 @3 L$ k; n| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: ?! U2 b0 x1 F. \& }0 ^( w
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 ?$ @/ T; K& r6 ~+ u| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    & Y. v2 O$ U/ L7 B/ [  T5 I" B. A
    经典递归应用场景
    ! w# X3 |  l" h. f+ p3 i1. 文件系统遍历(目录树结构)  s3 n4 w6 `# J! _) h
    2. 快速排序/归并排序算法. U4 f( U- T4 q
    3. 汉诺塔问题
    3 V( |4 B& \8 i# `, E# V4. 二叉树遍历(前序/中序/后序)
    % s! M- W9 E9 \7 Z& B8 Q5. 生成所有可能的组合(回溯算法)1 u6 c# V. d4 C* L; C
    # m# h; [2 z4 M7 \
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 15:11
  • 签到天数: 3133 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,  s, [* F. z* T. X) X; h2 t2 u
    我推理机的核心算法应该是二叉树遍历的变种。8 @$ |) D# Q: z$ m* |0 s
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. E6 O9 u. e3 z7 B  u3 j  S
    Key Idea of Recursion
    . g# J. G1 |+ c8 y
    % j. `% i! @3 S( f5 yA recursive function solves a problem by:  ^8 K8 j1 F) x( {* O
    & Y, u8 m# g3 E
        Breaking the problem into smaller instances of the same problem.! E+ j# x6 l. G- W0 W% M8 J

    5 f, \1 B# X7 T- J    Solving the smallest instance directly (base case).- Q& K$ D1 T% C' `& ~! |# j5 D( ^' W

    % J& y. l7 m3 _- R2 t' c    Combining the results of smaller instances to solve the larger problem.) k7 {: H) |# W+ ]
    ' n) n3 {7 Q5 N5 w; @8 v
    Components of a Recursive Function' y) Z2 _/ }; h1 ?) M( i
    / }9 d+ x, b& e/ ~, G
        Base Case:3 x; q' t  d" n0 t0 a3 v$ `

    ; }9 E5 R# `' J- s5 N4 j0 v1 c* A6 s        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) D5 d! u; _6 \2 e) K! t
    ' ?* \* R0 E# k( Z2 @0 U/ v( {+ f        It acts as the stopping condition to prevent infinite recursion.! w+ u2 h7 }% h% C' h

    . R3 O; b$ o& N! g: B6 m" U        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ T5 s2 D2 t" w' Z5 N8 D1 e
    ! @% S$ S1 C. u9 ^& r/ g2 ?2 \
        Recursive Case:* C/ ], {3 W" B+ b

    , ]+ x! g* d; v/ b5 o6 w        This is where the function calls itself with a smaller or simpler version of the problem.
    ) d$ f7 }/ b7 [7 u$ A+ o5 `7 v$ `) [! t9 \; k1 p, M
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 D, q; x/ S) b1 w( R+ Y2 }4 y( w1 t( r* @: g
    Example: Factorial Calculation
    , ~& P4 i4 K0 m- l, W( [& ^
    * S8 t# |. H2 ^6 k' SThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 m& i* F% w! J) s& i! T4 `

      l, {% a% N! Q    Base case: 0! = 17 k$ h4 W& N! f; O
    6 s3 z9 O) s2 V! Y; j8 H
        Recursive case: n! = n * (n-1)!2 `3 j5 `# R' s# U. Y
    8 O/ ]& S- I- b( i
    Here’s how it looks in code (Python):
    , T+ g; G4 m$ M* g" [: b" tpython
    , L$ Z# D4 j) S1 w
    ! ?- Z: U. T- P5 i& @5 D6 \8 Q: D: e. N% _5 a. ^+ \/ j& F2 D# [
    def factorial(n):
    1 v- ^# ?1 H: j! W2 S1 u' c7 K    # Base case7 {) b. H; x( j; b' V# H7 p
        if n == 0:% b8 G/ y# G; T6 ?8 a
            return 1
    ) K4 X$ ^* ?. d% C) _    # Recursive case
    ) I. x8 E: Z1 S" p    else:+ @( C3 o  |  y+ R
            return n * factorial(n - 1)
    ! o/ }0 b! ]" p* I0 ]; N( R' H9 Q! C& t# ], L$ u
    # Example usage
    6 i- b6 [! m) d1 Nprint(factorial(5))  # Output: 120
    & |  p( U5 S$ ]& t7 `: `. \' g1 F7 a3 y+ X
    How Recursion Works
    ! k% N* z7 I4 W. p
    . m+ A  d8 l0 w/ ]3 _9 h- u" D9 f( ~& O    The function keeps calling itself with smaller inputs until it reaches the base case.
    ; s# g: d' {$ h% ^! @* [% w* |! f8 g: x3 ~
        Once the base case is reached, the function starts returning values back up the call stack.5 L% m2 O& @, H% P$ s. d2 v7 Y
    % }* f) N! I! `6 B1 C6 S% G, V
        These returned values are combined to produce the final result.' }/ C. u4 d3 t) _: G. O

    / Y6 z+ E2 r% ^8 X% I8 GFor factorial(5):
    ( b  ]9 u4 t2 q( W* z
    * C% u% m* z5 g
    , D" t4 r; Y0 |0 bfactorial(5) = 5 * factorial(4)
    % R- Q! E5 ~3 zfactorial(4) = 4 * factorial(3)
    " b- S% m6 r  @0 q  w- }factorial(3) = 3 * factorial(2)
    ) q3 |- a+ ~* o& G: kfactorial(2) = 2 * factorial(1)
    1 Q$ E1 n  K: I0 w% S" V& Yfactorial(1) = 1 * factorial(0)
    $ c# g( f0 k8 k# X# R3 u. K2 G$ cfactorial(0) = 1  # Base case8 X) b: ^- X$ k* m* |* Q; ?+ i+ y$ w; f; Z
    ' T, H8 }3 l0 `. a1 y4 A) a/ x9 a
    Then, the results are combined:
    3 ~4 c! v9 Z' Z. B( ?' P. R0 G
    6 P7 {* K- R3 w4 v" y4 t8 s0 V9 `+ Y7 Y
    5 X- z( K4 d( mfactorial(1) = 1 * 1 = 18 L& T8 y/ U1 F2 _$ e6 v0 F  ?
    factorial(2) = 2 * 1 = 27 Z5 U9 o" d3 ]( J, ~
    factorial(3) = 3 * 2 = 6
    / j( R; v  j; t* jfactorial(4) = 4 * 6 = 24
    / G( o$ a' U  m+ G; P- B8 k$ R/ a+ Qfactorial(5) = 5 * 24 = 1205 F8 w4 s. A/ J

    ! }& K9 Y) f% P7 F  MAdvantages of Recursion
    % D5 C6 ~, H4 }& h% A4 ?( O
    ' a5 {( A3 |5 r: z, u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* M& u; F; B; h: H! d" [7 ]
    2 y3 E! b  T6 g9 j5 }; V
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    / T; z! v+ k& x$ t: f1 C2 E8 T* P' U3 A% ?* d7 o% l$ F
    Disadvantages of Recursion
    ! W) P! l6 g2 _1 r+ }/ Z2 |% x% C5 b, u1 g
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - d, R/ q0 O4 A& V- p! y. P; G" `5 G3 I4 G$ z, O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . B$ }) M2 g! F
    4 k$ G% j& b! b2 c$ o: {When to Use Recursion
    : T( F. I2 r+ _- k; v2 j: u
    7 s: Q4 H: |! @2 B' X+ q1 j    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).) J) F4 T' N  H9 v
    0 U" ^  z) I" c3 g+ \8 [
        Problems with a clear base case and recursive case.0 {8 o9 p& Q" H; m
    0 ~. R0 c0 d1 ~# y$ @
    Example: Fibonacci Sequence8 w6 r. _  a0 ]* H

    4 D$ `; ~# `3 wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # x6 I9 L, o- y  x, P3 \
    3 D5 d) p/ O% }* S. ~; z    Base case: fib(0) = 0, fib(1) = 1
    1 i, a+ S5 I9 z7 F- }. W5 [
    6 u# G6 C: ]! D( h# b7 i    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 {! x+ D; I1 F8 W: o5 l5 ^% b9 w! q! z9 T
    python2 b, h, ^0 @2 q' ?# {- d
    / `6 l0 V! z. P: p- g5 r

      d) T- G' }4 Y2 W5 ~0 [/ gdef fibonacci(n):
    0 C: |; P. H' G6 P/ Z    # Base cases
    $ R- Q7 J) T$ @& O    if n == 0:
    % m' K9 X. D8 Y        return 00 C  {8 C6 J, `9 [
        elif n == 1:0 E! @# j6 `6 ^9 k
            return 1# J$ v4 w, i9 j5 A" @
        # Recursive case
    $ z% M3 C; @1 Z. Y    else:
    * {* V% {1 @/ k) e( J1 G  J        return fibonacci(n - 1) + fibonacci(n - 2)
    5 J/ W( D% ~# @; @2 i/ J8 [* S
    $ Z8 R+ W9 }- ?" A: t# b# n# Example usage( ^3 Q8 }; B* i, f  r
    print(fibonacci(6))  # Output: 8
    7 r: X. m' b$ o/ M% g0 C6 k: T
    ( t; u. F0 t4 f; p  z6 E" a2 vTail Recursion/ E) v; l8 A, Y) L$ s) [& C
    , p3 g4 f) W2 R& g
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 f/ {! o6 m& Y* T

    7 p" K9 z0 f& Y+ t" V, H0 cIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 10:35 , Processed in 0.030801 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表