设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1238|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / [6 r4 D( D; }3 S$ [
    ) W$ @# c9 x# m2 L- p5 S
    解释的不错& H/ w- k; f& v/ s$ y) r' M; I) v
    # c# B- k1 ^+ ?! M
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 G9 x2 t2 {/ x. A7 ~+ I, j$ o! ]. e! g
    关键要素! Z6 n( V( K& c2 w5 j
    1. **基线条件(Base Case)**
    8 l3 N" v: u& [$ U   - 递归终止的条件,防止无限循环0 k9 a0 _* K; E' {
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 ~4 a% G. Q, G- `
    2 r0 i' H, q& A: h1 I! G/ T
    2. **递归条件(Recursive Case)**
    9 S; f- }; L; c) U! m( j0 f% E/ U   - 将原问题分解为更小的子问题- s* ~# \+ Y  @1 A4 ?
       - 例如:n! = n × (n-1)!
    + d% [( W0 |' w% n! B8 u7 I( d* w% \0 O
    经典示例:计算阶乘
    , e: Z! Y1 Q, C: r. ^; b; X5 l6 Y7 gpython$ f/ r9 n0 o; f) u. ^; d
    def factorial(n):  j5 `' H$ G* }$ w* f6 U8 B
        if n == 0:        # 基线条件
    + I% m8 p' A% ^% y) K; Z+ n* M9 C        return 1
    : P" w1 |3 m# v) h6 d# p    else:             # 递归条件
    ' X, e& T. V9 v/ R2 V6 v) ?        return n * factorial(n-1)7 c( a* G6 P( I" v& w
    执行过程(以计算 3! 为例):
    # p  y' k# j# Y3 ^( R. d; w# sfactorial(3)
    , V! z0 A: P& T, T8 _3 * factorial(2)' W2 J* ]- U+ l8 ^( [
    3 * (2 * factorial(1))
    . R) x1 e0 m7 K3 z3 * (2 * (1 * factorial(0)))
    ( z; w" O) _, p7 }6 x3 * (2 * (1 * 1)) = 6
    6 b2 y, f& Y  G3 S. B: r* f2 ~4 U0 ~3 L! |3 w9 _
    递归思维要点7 E( h) D8 M! [' N
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & D) }# ~/ x) Y" d" v8 T2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 B% Q5 l. p" D! n" F& R; o7 q
    3. **递推过程**:不断向下分解问题(递)
    5 h1 z: d5 k# X& _* y* d; N4. **回溯过程**:组合子问题结果返回(归)
    ( g" z0 [; R1 k/ Y! Y7 @& @4 A: Q" E) S' O: R" n& G
    注意事项
    - j. m8 D9 \, D& r必须要有终止条件' C) {: [+ k/ l+ R* U
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* G4 t  m2 M7 |: \
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & Q- [( I3 v9 `7 Y! K7 O' J* c4 m尾递归优化可以提升效率(但Python不支持)
    ' s+ I* e( C" r/ _4 R# {! |) X9 s) t0 u3 {
    递归 vs 迭代
      K8 N; M4 Q5 {( U$ j1 p|          | 递归                          | 迭代               |: P& h( R9 A: u: g1 u. f
    |----------|-----------------------------|------------------|7 k# L8 {- c2 q3 y
    | 实现方式    | 函数自调用                        | 循环结构            |9 U" L. F4 P, k1 f  U
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |6 E" J1 Z% n9 Y+ x, l* U: T) j1 U
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 o& Y2 N; j. K/ d
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - y1 I' u8 K' @1 U# m/ X3 l0 K9 A1 t; h6 C/ G
    经典递归应用场景; l7 |+ B0 ]* T, y
    1. 文件系统遍历(目录树结构)1 ?% Y. T/ z  P9 U! X$ \0 z: H
    2. 快速排序/归并排序算法* r0 y" l$ h+ z5 \
    3. 汉诺塔问题( h! V3 l1 U; b/ [+ s" l9 U
    4. 二叉树遍历(前序/中序/后序)2 g8 f9 k9 }& q5 Z* w( @) _% c6 z
    5. 生成所有可能的组合(回溯算法); k, A6 N$ a  g2 u: p

    8 E( _/ O! a  X3 u9 w8 k试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:44
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; \6 g/ K9 n0 b
    我推理机的核心算法应该是二叉树遍历的变种。, J- _; Q, I9 }4 m5 n9 S
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ' q2 x1 K. Q0 j; DKey Idea of Recursion* l" f, q; O4 @4 k) [
    4 ?% \1 W7 ?) z
    A recursive function solves a problem by:2 K0 _7 [& x3 T  [/ X
    3 A/ C: ]0 ^( _. L
        Breaking the problem into smaller instances of the same problem.# w; ]- z, a$ _+ E7 ]( L
    $ q& t# G/ _) S8 H
        Solving the smallest instance directly (base case).
    . c) @: G3 X, t3 o7 e* \3 [. t) ?1 O: B& h4 O% a( V
        Combining the results of smaller instances to solve the larger problem./ s; q$ l  M& X% F# r

    ; _! v3 G; [: m" R( r9 QComponents of a Recursive Function5 O: |3 M2 G) L- p) A: r
    2 n7 U& m1 w9 M" y
        Base Case:
    8 u7 {- T$ z3 U& e
    , f+ X5 b. n; [: x% B* T3 ]        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ( k) R5 y9 C2 i
    8 S( }( S: X8 c  c        It acts as the stopping condition to prevent infinite recursion.3 z7 c8 V) L2 u- A+ m

    * s7 ~- i0 e6 s3 m  |" L        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 t& q5 x) c6 J6 U5 G+ P8 z8 h
    5 t9 s: K7 r8 h' ]/ A( M
        Recursive Case:
    " K3 S* w" [, g& e
    , G+ X7 B; p+ ]        This is where the function calls itself with a smaller or simpler version of the problem.$ Q; G; ?! T( X7 ~. c+ U0 m

    7 l$ L& x# l$ o( f; C! I        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." ]! q' |$ i4 L6 F" p4 F
    4 i4 J* A% ~2 D9 h1 l5 ]: D3 M. A
    Example: Factorial Calculation* r) a2 ?. Q0 k$ z2 b
    / z3 [8 t+ S5 F% _! J: L* M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 E' x/ ^7 R/ Y( f  s% k7 Q8 P

    3 O% w( {' X# I2 D  d0 h/ u    Base case: 0! = 1
    ; X% j) D# r$ o" v/ I8 y9 X- I
    ( S$ m9 G: |- j' H' M6 v/ Q    Recursive case: n! = n * (n-1)!0 ^) W1 K! t/ S% B) q
      g3 P" f- `$ M" v8 N& L8 S& I
    Here’s how it looks in code (Python):
    8 N/ a, M! q# n: V! `: K/ ]python
    6 \2 Q1 m6 R2 C0 H# B3 O. o/ D5 _$ y; C9 ~5 J3 U

    1 U- Y4 I2 t* |: Y8 zdef factorial(n):" k/ ?$ w- u, }* R( V, j7 P0 S
        # Base case& k, Q) P8 }$ i. O, q$ N
        if n == 0:1 S9 S/ U# d$ a( {8 J. a
            return 16 W: B% h6 z7 v( d/ {
        # Recursive case5 m! R) W3 S/ i' k  S
        else:
      ]" p- i  N! U: l        return n * factorial(n - 1)) F6 S7 Z( K$ P; o- l

    ! k2 k, O  `+ W9 J+ m, c& u4 V# Example usage
    6 K+ R- |9 e7 ]' v* Uprint(factorial(5))  # Output: 120
    % q- C4 V5 u5 k9 m1 t' o: G+ a4 t, \! E: G# l, E
    How Recursion Works
    / f: |) \/ ?: C" E, Z2 i/ ~+ I6 m( N
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ; `) G( v3 l$ N% a, R. ?
    % s0 k6 G8 p/ Z- T    Once the base case is reached, the function starts returning values back up the call stack.2 |5 C; T5 ]4 j& g1 V8 P

    8 n2 a+ Q/ S% q, @  M/ Y5 j- v    These returned values are combined to produce the final result.
    + A" S% E8 o) l& v: }/ b
    ' _9 V! {) m3 b# hFor factorial(5):
    , |  Z. E2 M5 x7 `, c. j$ U4 ~- P; f. K& m
    , R2 B$ d9 Q! q# ~# u$ s% ^
    factorial(5) = 5 * factorial(4)
    1 b# J/ I( p; h. o7 r$ p4 L6 ^$ `factorial(4) = 4 * factorial(3)5 L: I" @  d0 o- F7 T8 u# F
    factorial(3) = 3 * factorial(2)
    5 U  @, W  t- f/ {factorial(2) = 2 * factorial(1)
    # A3 M5 s  r* z$ ifactorial(1) = 1 * factorial(0)$ _3 A% t9 O. _
    factorial(0) = 1  # Base case
    ( u: }( x  p- t+ U$ X0 W8 M5 P* p( c& C/ U' Y
    Then, the results are combined:: d' l' q" m; N/ @/ \# S, \
    3 Y+ K9 |  J  K8 a

    9 P" ]/ }, ^4 Q" W% d# j7 q; B) K) A" gfactorial(1) = 1 * 1 = 1/ W8 s% h4 }6 D! t( M$ S  r' T* |8 z
    factorial(2) = 2 * 1 = 2
    ! @5 W' g( Q0 ~7 k- J# t& Pfactorial(3) = 3 * 2 = 6/ L; F5 ^0 I6 _# `: j+ }
    factorial(4) = 4 * 6 = 24
    + y2 i, @" b4 T3 [factorial(5) = 5 * 24 = 120
    6 Z/ H9 F! G) R2 J; i$ c1 J; h/ {, T  c1 Y- o* H
    Advantages of Recursion
    - ^6 H7 Y0 |4 M% D, g; D9 A+ F: u# }8 r, p
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    2 I2 x# t" d8 s5 y' h* ?* H+ v& {5 p) Q# O" I( H. e9 ]
        Readability: Recursive code can be more readable and concise compared to iterative solutions.. V0 A* m) b6 h

    ! C# t1 Q1 N3 [4 I' d/ {+ o& G1 `& CDisadvantages of Recursion0 A# V& U/ ~, ^! D

    , ]' v6 a& [6 z' e/ k! F+ ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / t1 [) f% Z% z* K6 S, r/ b5 ?
    - y* g$ Q& n; t. e( K) Z% p    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 K- A; F: t% y1 E
    6 d9 ?0 s# Z" `& GWhen to Use Recursion
    7 B% F$ s7 R" i! O# |4 r: Y3 f8 P( S$ F
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    0 _9 r. Y  Y8 l) S  W. T1 S3 v! l3 h% h$ c8 M8 P4 U
        Problems with a clear base case and recursive case.
    3 @2 ~  A" e1 X6 f5 C- U9 m6 ?) Y4 O+ i3 c
    Example: Fibonacci Sequence
    3 |& J$ U+ ^5 y# s% @1 j: O9 L- e0 q/ w) o/ D
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ {% P1 P# z+ F! ~/ w+ @/ u# a0 P( E( @* j
        Base case: fib(0) = 0, fib(1) = 19 ~4 P  f, Y# Y; M8 I' O. `
    % _' E6 [2 ?/ f8 ~
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 X! n$ v* R6 ~& a, }
    - |7 `9 f9 R" j# h$ Q. }6 e- k
    python4 L3 A% B1 i. L4 a( `

    ) j0 \( e5 r" c6 L9 q3 s
    * G0 w. m. }: |! w. v0 \def fibonacci(n):/ A: ]8 d0 `  a8 s  p0 [2 l% t
        # Base cases( F! n+ W4 R' ^' t7 T2 n$ a
        if n == 0:: N4 H4 p! @2 E6 X5 W( T& B/ Q" {
            return 0
    ( o8 o' c, D) U; r# q    elif n == 1:
    - D" r5 y4 l' w3 E/ D$ X        return 1: Z# S# s4 L4 J( J" V
        # Recursive case1 H' \: p4 V, ?/ j
        else:
    / C, F* W# ^+ A7 f& O4 L        return fibonacci(n - 1) + fibonacci(n - 2)# f. _" z6 [! f! M# A5 J! |; t& }
    " o" P4 j; R# e  n% `
    # Example usage" a4 d/ \7 m- K8 z: G3 l7 a
    print(fibonacci(6))  # Output: 89 H  T; q' q: K  R; h
    8 s9 s) I% K% J
    Tail Recursion
      f! }6 l. L+ S# b8 x
    / `. c/ w' i4 Y- UTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).! y; r, o8 {( L: j/ `( F& N

    - a3 X9 i- c! |9 l, ?% i  i7 CIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-30 03:57 , Processed in 0.032897 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表