设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2130|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! W# y: w7 S) \9 U& X; j8 Z. w! k2 |' k8 B
    解释的不错/ p% e" N, J& R0 n+ C& J  F
    7 b) V% O$ x5 g- j1 h( a, a
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    / |* R3 B' E/ }, s& l5 c0 P
    ( x. V. K( @2 n! k 关键要素" J+ v# z0 @- S5 v: A" u
    1. **基线条件(Base Case)**7 S/ e* A; m& p
       - 递归终止的条件,防止无限循环$ t" b* {2 K% [) L
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1' u$ N) C$ J: q. m8 W  t
    # p+ z9 f  r6 x$ b
    2. **递归条件(Recursive Case)**9 G* C: {- G, R9 I! e5 w
       - 将原问题分解为更小的子问题. Q$ j  z! w4 L
       - 例如:n! = n × (n-1)!
    + q$ e$ u( d4 f' T8 A6 g, e. A0 y% k! E" W( P
    经典示例:计算阶乘
    " t4 O! X$ o' dpython7 ?/ M: ~/ {' Q, h
    def factorial(n):) ?! h0 U% |% ?% q
        if n == 0:        # 基线条件
    & T2 K0 c' J. A/ ]; E        return 1
    + D2 O0 i: U( v    else:             # 递归条件( [& D+ j  _' b' I7 g& l' n! y
            return n * factorial(n-1)
    & n4 j$ Z! o  w5 Q* q' s& c执行过程(以计算 3! 为例):
    " n1 @4 z# l7 a" e6 Ffactorial(3)
    + |$ _0 l$ h, o+ j3 ~3 * factorial(2)
    9 H# f5 m- K" k* ^3 * (2 * factorial(1))
    3 k# T. x  A, d1 M/ A+ A2 r3 * (2 * (1 * factorial(0)))# }4 @8 r: Z" S* ?2 s$ \
    3 * (2 * (1 * 1)) = 6+ C) O: [* n; O- F( f; L
    9 b2 g3 S8 ~3 o8 |1 B: I0 ]
    递归思维要点
    4 J  v% c+ F$ B1 Z/ A1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    - S: A0 \8 b) M. L2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" B# O2 ~+ y) ]
    3. **递推过程**:不断向下分解问题(递)% N" Z0 \& U  H+ K6 o& I6 w
    4. **回溯过程**:组合子问题结果返回(归)6 |% }" a4 }3 S" o2 ~. y

    6 i* Z' U* L. W1 a  _2 j& p 注意事项7 c8 p( p+ h) x% c6 A3 e7 _: F4 N
    必须要有终止条件0 {! f! a9 w' L& S: U2 h
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    9 x+ [; \/ Z; Z7 \/ @5 v某些问题用递归更直观(如树遍历),但效率可能不如迭代' ]. J* ?2 A( `$ T( K5 D  n6 K
    尾递归优化可以提升效率(但Python不支持)
    + d9 r/ r6 }0 @- J
    " O" D0 Y0 c4 B 递归 vs 迭代# u# V9 x7 l9 @3 }: m7 `
    |          | 递归                          | 迭代               |+ x6 G; u& ~  ~: {' v+ ]/ x+ `) O
    |----------|-----------------------------|------------------|* H0 Z" @' Z" V: v
    | 实现方式    | 函数自调用                        | 循环结构            |
    ; _5 O# Z3 M1 v1 t4 ?! L1 m4 M| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 R( P. [& E- U' A
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ S( M! O7 N% H& H* L9 Y# E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 C5 B- F) o$ u. f
    ; ]# ]' v5 y7 x3 h  a: K6 p' R, M 经典递归应用场景4 `( D4 D9 K5 ?: w. q9 G  W
    1. 文件系统遍历(目录树结构)! m: W$ x: t+ i! X- m; u  \
    2. 快速排序/归并排序算法8 P$ W* C4 ~5 J/ Y8 B/ {/ d2 M
    3. 汉诺塔问题$ d% D/ v0 y, b. q# g8 s
    4. 二叉树遍历(前序/中序/后序)
    - Q0 l# c# \7 g- C5. 生成所有可能的组合(回溯算法)
    ! z4 q5 U+ }+ I
    " J7 b3 e* a" `) m- ?试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    7 小时前
  • 签到天数: 3181 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , s( x/ j0 }8 _: z我推理机的核心算法应该是二叉树遍历的变种。
    $ {, f0 {- U+ @+ K另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    / [* f9 v! M! W$ e2 q' j8 vKey Idea of Recursion& a7 X9 o7 v. x+ i
    & W5 Y4 R5 s! e5 V& B8 i
    A recursive function solves a problem by:
    & B/ Q3 f1 U0 k/ i+ t
    $ D  X# |) A/ V3 l( X( U5 _5 J1 W    Breaking the problem into smaller instances of the same problem.
    - K6 _- B/ q$ }, A1 n( @$ \
    / D6 ]1 s$ F0 S5 C. L( K9 I' ]' _    Solving the smallest instance directly (base case).9 K$ c+ @9 b9 Q! N4 X4 R( ^. d
    * [/ }5 I# {& j& f. Y" q6 d
        Combining the results of smaller instances to solve the larger problem.- E' T+ ~* A+ Q& I% u& n
    + ]2 P. a1 ]0 D4 Z5 J
    Components of a Recursive Function
    : L9 O/ ~1 o8 g4 g( ~8 }1 X6 i& z3 J$ u% O
        Base Case:
    $ Z* f# M4 a# B; J6 D) Z
    . b) y8 K3 d9 L1 u. K        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ Y$ R4 I' a1 ~: Z0 C
    4 Q# p" j# p! A4 r8 n
            It acts as the stopping condition to prevent infinite recursion.6 o4 Q/ d" A' L. c/ X3 G
    8 j7 f) N6 o# ~
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    7 f2 M9 B+ x  R0 r3 j; G$ a' ]6 N" \! n, H
        Recursive Case:: D$ v$ z3 f! U* P- H

    $ t9 V; J6 F) i( i1 F1 [/ K        This is where the function calls itself with a smaller or simpler version of the problem.( R- u( q* \$ D) G

    - t' ]% Y) r" F" ~4 G- Y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# B! S! b* w% ~0 s

    6 A0 O* Z! O# u. dExample: Factorial Calculation' [4 |' n6 Y0 P
      P; O2 J# f9 \# k/ V
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ }* r, F6 z! w) @$ ~
    & F0 k5 B$ n$ m9 `/ D) G- P    Base case: 0! = 1* v2 z& l- C9 R0 y* p$ F+ ]# p: S
    6 ~, ?. E3 y2 g
        Recursive case: n! = n * (n-1)!. j( _1 Z6 d/ ]

    1 U2 Q- M+ i3 m+ k, XHere’s how it looks in code (Python):: b# b% w6 d# z: c
    python
      x: L3 j+ n; O% V6 M: u7 H" _7 p$ O+ m6 v- _9 L) G% ~- g
    , z' Q% {2 R  `  T) y7 R6 P
    def factorial(n):. p" i' q3 L( b
        # Base case
    4 ^1 p; s) T' O    if n == 0:
    9 N% f  O: k8 |1 A        return 1; b0 Y' v9 V/ \7 R
        # Recursive case. l& [8 @* r( I( P" {
        else:
    7 r, ]$ x7 B/ i  o) T$ g        return n * factorial(n - 1)3 j( F3 L  @% \7 S' R% S1 k
    & m) p' v8 r- P$ f2 B
    # Example usage
    # q+ h+ V" q3 z$ a% D2 ~3 Mprint(factorial(5))  # Output: 120
    7 N2 U$ l1 C+ v# U$ U# l$ |+ R8 ~* ^
    ( X5 ]0 m8 v/ J; l6 ?, L: j1 nHow Recursion Works+ ]& ^7 f& m4 P7 o$ b2 K
    ' a5 J4 D3 r0 d1 c+ J, L1 Q6 p$ y
        The function keeps calling itself with smaller inputs until it reaches the base case.
    % ]+ O* T* _  F# m1 e
    ' f1 Q7 I% d6 W5 {6 @7 E, Q    Once the base case is reached, the function starts returning values back up the call stack.* m3 E" E' g9 t* i$ G( y

    * w& X1 b! \& K$ |$ C. r% f7 K5 M    These returned values are combined to produce the final result.
    # A  b3 c6 [# Z# e% j. p! |5 x
    + v; L2 T' }- R. V& R6 mFor factorial(5):8 q/ V. A$ e3 l* @& C# G# k

    , Z5 o6 C/ Z% V. m
    5 l" Z. V" s: d+ e7 Wfactorial(5) = 5 * factorial(4)
    + |. A) @4 M( C7 k8 ^factorial(4) = 4 * factorial(3)
    6 D, R( s7 L1 l9 ?# ?! cfactorial(3) = 3 * factorial(2)
    6 N/ n  O) o% Ffactorial(2) = 2 * factorial(1)# ^( a6 v/ p$ W; l; r. ^& k" n; ^
    factorial(1) = 1 * factorial(0)
    : L+ d% W3 N; f: U# P& ~0 Vfactorial(0) = 1  # Base case4 f1 I  M0 T: J3 n7 Z- F" f0 M/ q

    : i' N$ E, m8 P" ~$ O  D! XThen, the results are combined:
    7 f' O) k  u' R2 K8 m7 c5 R/ t% L: A8 {0 d- O- o

    $ \9 S: t, v) v& I% u6 V: H- }factorial(1) = 1 * 1 = 1
    : |/ e( j# ?1 A" Pfactorial(2) = 2 * 1 = 28 V+ `  B. A  N* n
    factorial(3) = 3 * 2 = 6' X4 _1 r+ U1 N+ v7 y( X$ I% _3 v0 l% H
    factorial(4) = 4 * 6 = 24# v; p8 l$ P' Z2 j2 Z9 u
    factorial(5) = 5 * 24 = 120
    8 c3 E- D5 s6 r  q; F
    8 ^' N$ B  _' G5 p. YAdvantages of Recursion
    1 W# j7 |% @( `, y9 P
    & S6 U- O- [  J0 T2 F4 K    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! e# D) M# h/ E9 j  [, t  q4 _

    9 i' m' g6 l* \2 v( |% q5 g3 P    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 w; y& t$ f7 \$ v8 M; z; B5 V
    " U$ W9 g" \& _/ T, W
    Disadvantages of Recursion
    ! d, R0 p8 ~: S3 @7 S6 E) h
    % N4 @$ X) w- D' x  C: s# ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! }! h4 L) X7 T' l; l, e! x

    # ]0 V. f. [; B    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)., y8 @5 r" U8 \% V$ s8 M
    ' j- m4 P$ x+ ?! ~7 f% B
    When to Use Recursion/ Y6 _- j' ]: `- ^+ ?) K
    + l& Y' l& p$ _) z% {  e3 ?6 F
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 B6 k- e, ^. Y2 B  Z+ d
    " u# c$ a9 A6 {7 E3 |5 ^6 ]$ I8 f
        Problems with a clear base case and recursive case." i* M2 E# v/ A/ X# _5 w$ u" X- U1 c

    & ~) W( [6 A4 Z2 NExample: Fibonacci Sequence0 `" Q0 m9 V5 s$ a: E1 M9 l
    7 Q: }$ P; f6 B6 f; z/ J
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 ~: M; x% ~6 A; W7 V$ Y

    6 u( n/ F, \6 [  l6 s6 @3 _+ H% z4 W( J    Base case: fib(0) = 0, fib(1) = 1& |5 p: N7 G# |1 U6 P$ S& m

    . u! S; P$ Z+ i! D) t$ m6 a, w; \$ v4 q    Recursive case: fib(n) = fib(n-1) + fib(n-2)9 C; Y: I. g# B; |  i& O0 L
    + u* E, m4 F) D  i7 ]
    python
    2 j. C/ l5 x( @- v0 N: m. _4 U' k8 V/ ~. b. W
    8 o) t  {& N# d: N- C
    def fibonacci(n):
    % [% f* t; q- Z2 v" D    # Base cases
    % Z) B9 @: l/ n; L$ q$ I    if n == 0:/ I8 _6 c0 y% Q% Q8 s' p
            return 00 ^- l6 R4 p# U. ]
        elif n == 1:& c3 a  R2 G! b; j0 \/ g! j3 B3 y, b
            return 1
    + X; i& V+ C7 j: {    # Recursive case
    $ P4 d  Y& r; R: h    else:' v, E& p" I2 u4 L2 w9 L
            return fibonacci(n - 1) + fibonacci(n - 2)
    # V) `& \# ^6 u
    ; r: Q, u4 C+ p$ R9 t2 \/ P# Example usage! B* p$ m+ O  t) X) f
    print(fibonacci(6))  # Output: 8
    8 f) V8 _+ ?6 E- j% F1 ?+ J+ l  t( F* r4 S) l2 s! r% i5 |" J  l
    Tail Recursion, ~2 d0 i9 D5 ^% o  ~

    5 A5 A8 R) M- c. L$ ~3 j0 GTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( h7 u0 s. ^" K/ s2 |# W! C
    9 q4 J7 `# d% x' qIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-22 14:13 , Processed in 0.057103 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表