设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1688|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : a( G% |& [3 [: Z+ _
    : N- m2 X& {2 r' H$ P. b
    解释的不错
    . M2 v3 ~5 ^6 U; Q0 Z7 k& I9 l, }8 B6 L# i! d4 G
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' R% _2 F# L, \8 `+ Y% u6 ?5 ]& f1 t4 Y( }7 b
    关键要素# p% _. u1 |/ k; a
    1. **基线条件(Base Case)**
      _- i7 X8 u2 X8 q9 I5 X+ f   - 递归终止的条件,防止无限循环5 w( t9 S% o& o+ {% F
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    3 F$ ?  s; x. T8 L9 j, I9 m# J$ s* {3 J
    2. **递归条件(Recursive Case)**4 m" U9 A  R* [4 S
       - 将原问题分解为更小的子问题
    7 ]! M- {" h1 R# p9 X) r! k) [  u   - 例如:n! = n × (n-1)!& t2 ~+ j, O" \; F% i" s6 @

    * e! z( l0 l1 C7 S6 k: y8 i 经典示例:计算阶乘- ^. R) Z, f1 l8 n# v& F" a% b
    python
    ) U: ?/ P6 v6 edef factorial(n):" V% W& X- A# g0 z; @- W& n  `; M
        if n == 0:        # 基线条件( P! U, h* P# b+ \: w2 a
            return 1
    7 r$ U" ?; g1 l# Y+ x    else:             # 递归条件6 d$ G( g& T) U. F! g8 y
            return n * factorial(n-1)9 ~& Z7 ]! g: Y- z+ }8 }
    执行过程(以计算 3! 为例):( v$ z! W7 C( u/ m0 A% K5 h& [
    factorial(3)  m8 T* h. |. K4 l9 B$ M0 ^
    3 * factorial(2)9 k. D( S2 D% K+ A1 v6 U- ~
    3 * (2 * factorial(1))+ E: P8 A( U2 B( N+ S
    3 * (2 * (1 * factorial(0)))
    ' v3 f7 C+ _* O8 B5 \" T3 * (2 * (1 * 1)) = 6
    $ |' c4 \# z7 y! o( o2 J* S  ?' X9 z. y/ ~
    递归思维要点( R+ E/ e& \  Z4 x& r1 X
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % q, y. E/ w7 N4 r2 H3 T5 P6 v6 _2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  o0 i, c# X# i; d) s
    3. **递推过程**:不断向下分解问题(递)7 J- O( R# `0 v7 H4 o& @4 d
    4. **回溯过程**:组合子问题结果返回(归)1 a, B4 L3 f  m4 N; ?0 Q% ^

    4 ~' T5 p8 X, A% w7 f! Z  \ 注意事项
    - M( F- J( u  O必须要有终止条件& c; L2 k4 K$ B2 v9 z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 ?4 ~  |/ V+ U7 v) ]0 p
    某些问题用递归更直观(如树遍历),但效率可能不如迭代# Q' ]) n2 \0 p* B
    尾递归优化可以提升效率(但Python不支持)
    % {# R: ?7 S- u7 M' Y( C3 n& F5 s9 t: i5 c+ n8 k
    递归 vs 迭代
    ' [! a- r, R% ~+ |  u|          | 递归                          | 迭代               |/ K' c5 Y( [: [) j* L0 D: Z2 E, Q% M
    |----------|-----------------------------|------------------|
    4 q" S' O3 e; {' S& Y! k# O& R5 ]| 实现方式    | 函数自调用                        | 循环结构            |
    ( }& i1 K- N- o6 V3 D7 m& s9 l| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |% ?$ S. |0 m# e: P- Y# b1 S3 Y
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    - |( _# u7 }  V( V. u* V# h) [" n| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- N, U, F4 n% T" ]
    ' a* r1 N, s: A" A& B, X
    经典递归应用场景2 u; c8 n# a- @5 X3 g' d/ M
    1. 文件系统遍历(目录树结构)2 x9 m! M0 M/ N2 r. M/ T
    2. 快速排序/归并排序算法
    5 e2 W8 c0 }" O1 [3. 汉诺塔问题
    4 h6 @- a: ?) }4 }) G5 w4. 二叉树遍历(前序/中序/后序), |* m  z. K+ V2 c$ `: u
    5. 生成所有可能的组合(回溯算法)
    - I, M1 Z" ]& ~( A8 `, O& w2 k, n, B( G& K4 t4 I0 ]
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 07:42
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," x" T# P& {3 V5 u3 L6 A
    我推理机的核心算法应该是二叉树遍历的变种。
    / w3 J, \2 Y# s$ j, y" l- R  ^" J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ M& I" \* y+ g, a. \
    Key Idea of Recursion. P! n7 H* Z' B$ U

    * t) y8 W- K& ]9 h% mA recursive function solves a problem by:
    4 a1 o' V( ?# c" k7 F
    / T; ]# G' p1 k% g1 `    Breaking the problem into smaller instances of the same problem.
    6 o4 E4 P" n- l+ I: @2 |. Q! C8 W8 C% A( r: L3 Y
        Solving the smallest instance directly (base case).' }# F4 s# ^" K5 L- L. Y1 F
    . V6 C& F0 h" J; ?0 C
        Combining the results of smaller instances to solve the larger problem.
    7 W0 Q- j% P/ E  l! _
    ) _2 g+ [" ^5 S. p' a* T* @$ `, g8 SComponents of a Recursive Function
    : t; d& q: N& O3 D
    " B9 @$ _2 o' g5 m+ w    Base Case:
    ) U* I1 _( n9 s# t0 `
    - b; M! ~; N# S* s# F5 Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) |' {1 M: R% r
    / q9 R% f; H9 y, W' y% y# h& x9 ]        It acts as the stopping condition to prevent infinite recursion.* a, d1 `  c& A# p) q

    & n* j9 |0 d3 B) N7 `! d# N. G        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) \1 D) \) f) Q: f4 K. w  O+ s
    + S8 M- G+ b! V( o! @    Recursive Case:
    0 [+ |. F! y) P2 \; I% F0 c
    ( e9 S# T! H4 F2 B  w! f) k$ T2 n        This is where the function calls itself with a smaller or simpler version of the problem.
    5 o6 y- D1 ^% x
    1 }4 {% H' S0 Y4 M& \( }  [        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( o, G' g8 N" a# }2 L/ D
    9 W1 L1 o' \5 f9 p3 g. r! a) [Example: Factorial Calculation
    1 O0 r! e4 O' Q. y4 Y0 c2 A) z% e& x) u3 r
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    * z4 z  x+ h4 {' ~  W
    8 ^) b! P( O4 Y3 @6 S    Base case: 0! = 1' X' O) g) `4 w8 w; f
    - ]( y1 @/ ~: |& k# ?
        Recursive case: n! = n * (n-1)!- y4 g. I3 j5 U+ V2 v' }
    & A2 f" D& b" q
    Here’s how it looks in code (Python):
    7 p6 a& o3 x6 r" _# j, qpython! }/ @# `7 O) p4 M0 l" |  I

    ; e" |: E+ @$ L  l2 c# s( m9 G+ J2 p# G3 Y$ S
    def factorial(n):: z6 R# O1 B- r1 t. U8 o6 G6 P
        # Base case5 A" Y( u! v3 }( o
        if n == 0:
    - l( J9 i5 `4 P2 A        return 1+ b$ E5 L- W: |( f; t5 q
        # Recursive case6 ~, `: ^3 e5 v) n; [3 H
        else:
    ( e$ i! R  _# K4 z+ B        return n * factorial(n - 1)
      F2 N0 W, ]) G% V' k+ x" x+ b2 D" J4 T. Y6 M
    # Example usage
    ' _9 H: a( g: x, C. ~- N5 S7 _print(factorial(5))  # Output: 120
    % U% n) ^# L) A9 N6 e, l! k. b. N
    How Recursion Works
    ; @! ~2 V, q5 q$ i& s' F6 }0 R, P4 D4 w+ i; X6 h' p8 ]$ `
        The function keeps calling itself with smaller inputs until it reaches the base case.6 R4 k+ ?2 ~; o) A3 l8 L

    $ p0 Y9 ]9 X8 d$ `" I    Once the base case is reached, the function starts returning values back up the call stack.. E  V& |' d) T% h1 A2 {

    4 j% \9 n; _5 j! S: o7 {  f    These returned values are combined to produce the final result.
    ) B* a8 _5 V( {( J" q4 a
    6 V; t. w' I. D- f" @: ^; R8 d$ I1 jFor factorial(5):
    ( V$ \/ r1 O; b" h. i' F
    5 m- `& g4 X& e! k9 Y0 E$ f/ u' t, u. k$ |3 R
    factorial(5) = 5 * factorial(4)% P0 J1 I& ]& e8 W
    factorial(4) = 4 * factorial(3)
    : D) y, [& W* c6 C) Q# hfactorial(3) = 3 * factorial(2)
    . G' D1 _% }- Y; kfactorial(2) = 2 * factorial(1)
    ' O4 h1 g9 h$ o- @- l% c, n" t5 y6 Efactorial(1) = 1 * factorial(0)4 |: |( N: t" s; f
    factorial(0) = 1  # Base case
    4 Z6 C7 G, ?+ C" S. n+ |* ]! D( h2 s
    : V# `9 C" s8 V8 cThen, the results are combined:
    / [1 b- B8 L& S; \
    9 z5 q" ]' ~3 Q  e, |9 I& g/ ]& W6 y  l) {- n
    factorial(1) = 1 * 1 = 1
    7 b) Q! f9 O  I) h' Jfactorial(2) = 2 * 1 = 25 C" {: l* e8 M, h' {3 l% Y* k7 ]
    factorial(3) = 3 * 2 = 67 B" @3 }" \1 v1 b
    factorial(4) = 4 * 6 = 24
    ; U) p/ J3 Z, I0 s: qfactorial(5) = 5 * 24 = 120! z  O9 ]" I6 x/ M% S4 D# f. ]" Q7 Z/ D7 ~/ M

    : u2 ]  m5 {% F3 SAdvantages of Recursion
    + }: Q3 f$ c  E5 g9 I' A0 o/ o/ t
    / O+ m7 \9 q4 ?, i; y! L    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# D, f, |/ [; X! N* e* w, @
    * q+ X( D( ]0 o# n: T! _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    # H) V2 j( f  h+ Z$ e& @
    5 \: u0 k1 ?, q+ dDisadvantages of Recursion
    , U6 H! U, [  i6 u8 \* p# ^/ g1 C$ B2 }5 z8 D. @, ?8 n1 S/ V
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 S# |: z- \: q& Z
    : i" Z) s- \' {4 d    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% |* e! O; c7 X+ @7 M6 _
    1 ?+ Y# w* g* b
    When to Use Recursion
    ; X0 F- X. i5 S7 i0 E" D2 c: ?' L+ G$ ~3 |
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ \0 q; a" y5 B% O
    5 O6 M, L: E) ^3 a9 d2 m    Problems with a clear base case and recursive case.
    6 V% W, J5 d. R" q+ g+ m. M
    # H; S6 U& H' Z+ p% }' ZExample: Fibonacci Sequence' q. c' Y% B3 C! M
    + {3 z  ^- s5 [4 e" O6 J
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    9 o( H, ?( W2 b& R! s0 u8 H$ f9 B) B  Q. Q3 _
        Base case: fib(0) = 0, fib(1) = 1, j1 m' g( \9 f9 F* V/ ]/ T+ F

    ! K2 d$ V5 A% `/ N1 G! R    Recursive case: fib(n) = fib(n-1) + fib(n-2)) h( y$ z; ]6 n( U% T* E

    + ~7 }0 e0 C! A1 j, D$ u" spython4 p* E/ B8 L1 m" Q/ D

    ! W5 E) H' x2 H& Y
    # @, y# @- y" }% i, M, c& O6 W* edef fibonacci(n):5 q8 z8 m* l$ F  o, k2 L, R
        # Base cases
    1 x1 L7 [9 N: S2 `    if n == 0:, X: ]" G! E' a  ?/ t
            return 0
    0 h3 H% J! }5 ?    elif n == 1:
    4 X) q. p+ M$ o) S7 @5 r        return 17 e  ~, n' s, q% w1 G
        # Recursive case6 C& L! J  l5 X& y% I
        else:2 j# i% D! y. n* L( a! S
            return fibonacci(n - 1) + fibonacci(n - 2)
    % O' [: Z* N) ]/ C- n" E' k- D8 X: I  x+ {8 K* \# H8 x
    # Example usage7 M7 d& D* w" z' M! i$ ~0 h
    print(fibonacci(6))  # Output: 82 Y0 `6 I9 \4 i7 b8 d
    5 ^% V4 }% H  s0 _% S" D
    Tail Recursion
    ( p2 m4 e- a2 X8 r( G. r
    ! V# d8 q$ }8 Y  \2 h7 xTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ [' ^. s% l5 x; T0 N6 z9 K

    : q* a" y! W! ^3 l7 pIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-31 06:17 , Processed in 0.032460 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表