设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1390|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 9 h- Z: w' W, }; T3 O; U

    3 Q, I! _3 e1 e* ?0 K解释的不错' Q1 y7 f$ m$ Q% o9 _

    ( S: ^- m. _# f9 K0 f/ H" S递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) U) J6 y( x; E7 }) a
    ' e, I9 O6 o2 P 关键要素
    8 j. ]+ Q- @# j  G/ x1. **基线条件(Base Case)**; N3 o9 m& M$ i' }- k
       - 递归终止的条件,防止无限循环& b. |8 C5 A  w8 d" o7 r( I
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ |) ?3 |* v! g; a; r
    8 t2 y5 `5 T, V) y. x7 j2. **递归条件(Recursive Case)**
    + R* z7 Y5 N$ B/ }   - 将原问题分解为更小的子问题
    ) T8 f5 H1 w% G+ J( E: [   - 例如:n! = n × (n-1)!
    ( ~; x1 K& D  J" @5 w, R6 r
    $ g) I) M) k! ?5 V' u$ \ 经典示例:计算阶乘
    0 I3 e7 {/ ~7 h% C( rpython# \$ f  P) U$ M3 u4 Q" S
    def factorial(n):7 i- g; ?" y- F) k0 V
        if n == 0:        # 基线条件5 @* {# C3 r2 o9 m  l0 F+ q  j/ z" E, i; x
            return 1/ n) A& [6 b+ m* |8 m
        else:             # 递归条件0 k+ M% h$ ]8 Q2 \3 n/ z$ ~) h
            return n * factorial(n-1)
    1 Y9 H/ h' S& N0 y2 o执行过程(以计算 3! 为例):) Q: z# K" M4 Y; s% a, {
    factorial(3)
    % T& C+ A5 n9 t0 i$ g3 * factorial(2)6 B! H% k! @+ e0 a9 T% _
    3 * (2 * factorial(1))4 s8 {: A' W6 u3 }- ~
    3 * (2 * (1 * factorial(0)))+ P! C; t+ T3 K3 X! I5 b# Q2 f
    3 * (2 * (1 * 1)) = 6' x3 [( N9 f' G# W( B

    " q. G4 z& \, r# {% t8 s 递归思维要点
    . p1 @0 s) g& Q: o8 }1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    : W6 [8 V, G7 n2 ]( z2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 r( X3 P8 N- g- \3. **递推过程**:不断向下分解问题(递)% |: S- E) e4 d) Y2 i& ?  X
    4. **回溯过程**:组合子问题结果返回(归)
    . H& v9 g3 M, g  `( d$ T0 C
    7 X2 F; Y# x9 _ 注意事项2 ?1 D! c1 g" h% m9 t
    必须要有终止条件
    ' Y; y0 g6 l2 p: {9 i" q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    : [1 A' a1 ?* F6 W" v; B3 ^/ T某些问题用递归更直观(如树遍历),但效率可能不如迭代' z; B6 l' C% T6 V* B
    尾递归优化可以提升效率(但Python不支持)) Y1 z" W) I; ?9 q: I- q0 h7 I, R& u3 P

    4 l* Z2 f( j" w 递归 vs 迭代; n' V4 Z% R- V6 J8 Y! d7 U9 O
    |          | 递归                          | 迭代               |
    # d* r# s$ w) c|----------|-----------------------------|------------------|
    - P/ r$ z' C, y! j| 实现方式    | 函数自调用                        | 循环结构            |# y" ?2 ]$ |/ o5 W
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: T# g3 N  I" `* H' _/ v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 v3 N8 ]' L2 y2 g* u# Z  @* W3 G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : m7 N0 v! J1 q2 E! w- K
    4 p7 ?, N0 _- ?8 {" A4 w+ X 经典递归应用场景
    1 s, [  U8 J0 e2 z8 b1. 文件系统遍历(目录树结构)
    ' V! |+ }( w/ X) I2. 快速排序/归并排序算法- f" b( C# g7 k; [, p8 K$ I
    3. 汉诺塔问题
    , q( F- u3 t! q* H6 y4. 二叉树遍历(前序/中序/后序)' e6 x8 w4 j( M* p
    5. 生成所有可能的组合(回溯算法)- \" a) }9 j7 D

    ! l- t& u  d6 C, W$ o; c试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    13 小时前
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 k/ ~! R' R. g6 @4 [2 V我推理机的核心算法应该是二叉树遍历的变种。* N7 f$ ?; @4 T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. _, y, R" K9 X) c* Z( H# `* R$ G! N3 Q
    Key Idea of Recursion. x- a! X2 H* N
    * E+ b5 Z% y- X1 N0 A9 y
    A recursive function solves a problem by:& a3 z( C+ W3 `! j
    9 Z/ w$ F: W, u$ T" K
        Breaking the problem into smaller instances of the same problem.
    . ^  D8 |: r& C/ \* S5 g9 B8 F' T
        Solving the smallest instance directly (base case).
    + m7 r. ?! D% J) m7 L# u+ a
      p- A- J2 I( O& m  h/ S7 q    Combining the results of smaller instances to solve the larger problem.$ |! D( Q( J5 p2 e- [

    5 a8 l; g1 W6 m) n1 z, @% sComponents of a Recursive Function9 R  v( @9 G: O
    , l+ g7 R/ p  G
        Base Case:* k4 i! s% {' O+ u/ s% S$ U9 N
    7 W  C$ p9 I$ P# S/ ]: A" _
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % O) ]% `  U% G5 Z4 @1 a7 h& {  d0 Q9 d" q4 `. f7 P: K
            It acts as the stopping condition to prevent infinite recursion.: i5 L" Q' w* s2 u2 A) \) d4 `
    0 d0 [8 x; G+ B. M. j
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.. G- ]' ~8 e% u
    6 ]+ F# P* G4 O: Q. g
        Recursive Case:! \" E: x: N1 B6 \' ?! L
    * l) |# n5 \- d" q; Z
            This is where the function calls itself with a smaller or simpler version of the problem.( _! Z1 }- g# L$ z" V  Q) X2 `

    : c  Z# w4 |; a: Q4 U        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* v. g; ?9 O- q6 Z
    ' X- I& t6 W4 Q$ s+ \/ W
    Example: Factorial Calculation7 p0 t  e6 ]6 r- y  E

    & h+ z/ P+ S0 [# n* ^, HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- H/ ^$ f% G; {  o$ H
    6 |* |3 F- |0 c  m
        Base case: 0! = 17 k; Z. k! O: c: M: i& X2 v+ q5 ^# C
    0 C$ [4 y+ b* H5 Z& K- i% @3 }
        Recursive case: n! = n * (n-1)!. h: N' M" H* t) \- a1 {7 }

    8 x( z' H# j: A8 b+ x, GHere’s how it looks in code (Python):: L& ?- I5 w; s; w. x# O
    python
    ( t+ \+ @6 I' f. E3 E+ ?' O4 W- h+ @1 C! c+ u$ _4 f
    " E& z; [( ~# m) Z6 {" K
    def factorial(n):: v! _6 q5 W4 R
        # Base case
    % f9 M+ Q2 n# m    if n == 0:" N9 P  V# \* u: A6 w* d2 R
            return 1
    $ }: O8 Q5 c5 i1 t. y1 X: k    # Recursive case* W8 R! _9 {8 p' ^# G! \# e
        else:
    9 G, R* J% u9 @8 P2 v2 L9 W. `        return n * factorial(n - 1)! X# w& G$ R( V2 `
    / s3 l" @% x+ T# B% ?
    # Example usage
    ' W# ^3 i$ d/ e  g% ?& B5 ~: Kprint(factorial(5))  # Output: 120; ^! R; k" u% C4 \/ p0 d
    ! w. Y5 o: L4 G% l8 n/ ~0 G
    How Recursion Works3 ~6 B3 R+ G5 R4 H5 I

    ( n5 J' P6 ?+ e7 X) R1 Q* o    The function keeps calling itself with smaller inputs until it reaches the base case.
    ' ?' u2 ^( b+ Z6 g0 F
    / F* b8 Z) ?8 p    Once the base case is reached, the function starts returning values back up the call stack.5 K' ^; J* @1 `6 E

    * _! s9 I1 _' n9 m    These returned values are combined to produce the final result.) C+ R$ Q% t# s$ D/ F

    " y9 p$ l3 S( _9 T( U7 X5 {  N* FFor factorial(5):
      ]: R# E2 M3 q9 B$ K% p, ]1 \
    # o; C  c. v3 \' u4 z9 B& [! z6 I# s, o0 B$ {' ?
    factorial(5) = 5 * factorial(4)6 m7 k/ E4 d$ W. O. z
    factorial(4) = 4 * factorial(3)) Q8 I* l) i7 p  `
    factorial(3) = 3 * factorial(2)
      l# X$ |' |2 Q7 B3 R; H3 |9 }factorial(2) = 2 * factorial(1)
    6 i. a2 C# i4 B9 G6 v' r8 jfactorial(1) = 1 * factorial(0)% |7 Z- D/ a; O. Z
    factorial(0) = 1  # Base case
    $ f" A  z4 s& D% m/ j
    1 j: C2 z/ N5 v% T$ ?8 bThen, the results are combined:
    9 m3 V+ K! d9 p& m2 e9 ]8 ?- D" t4 v7 }4 N, T1 T, q

    0 G/ a  P) \( Q: |4 h. q) qfactorial(1) = 1 * 1 = 1
    3 S0 [7 l" M( h; X; [* [( @factorial(2) = 2 * 1 = 2
    9 S; `/ f) W) M5 zfactorial(3) = 3 * 2 = 6! ^* c# u  d3 }% d
    factorial(4) = 4 * 6 = 24
    0 j! y1 c7 k4 ^: {factorial(5) = 5 * 24 = 120
    ' G9 X; T  i* c
    5 Z' X! u; F6 ?- r% V/ Y% RAdvantages of Recursion
    ( c; U2 D1 d/ f4 _  K4 ]+ t. g5 H. X# i  \# S
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 G  G( Q( h0 M+ l
    ) d5 t% ~  D4 h9 y5 I8 S" ^8 w    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 I0 a& a+ f% M0 g6 H* Z6 e

    & `6 ]% B, G9 Z  O8 d  p5 i( oDisadvantages of Recursion# n0 Q2 G+ t6 W8 \
      i* m- B+ ^0 n% _6 F, Z
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    . o# b+ d* n1 i/ |9 f7 s* ]; s' g3 g# T2 o; q: S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ |, `6 `1 g' H  e: |3 y
    6 ]& g$ z) {2 v* l
    When to Use Recursion' c* a" ]" J  A- U2 o
    9 L8 }! [' b4 h1 F- z% a4 s& O- f: C
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ J' c6 a  s  }' k* ?4 t/ r3 R
    & q& S6 M! g/ d
        Problems with a clear base case and recursive case.8 J8 D* ^$ f! T( Y+ F
    0 D2 K' [, I2 p, _% l8 m0 F
    Example: Fibonacci Sequence$ N3 p% b+ K' q) I# w" c) m
    1 _. `: C! E& q7 i5 ~
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 P- n0 I/ X( B/ ?2 }. t  |+ {4 v( o2 a4 Z. u6 o# x
        Base case: fib(0) = 0, fib(1) = 1/ ~; n2 f3 \. n

    3 n, x( f( P7 x3 Y7 i: g5 S    Recursive case: fib(n) = fib(n-1) + fib(n-2)( C+ [. s0 O* I1 r8 o7 q  y

    ( j: d$ s1 \9 X' ~+ i3 Cpython* z% T) O! S$ ~7 h- D

    7 K* [8 B* V; x5 U' F+ u. M% y' x+ l1 _
    def fibonacci(n):/ P; `- ?. c$ G: E- x  B
        # Base cases- M: v/ }+ x& h' s. s2 S/ O  y
        if n == 0:
    ' o# _2 f0 j1 R% K) l        return 0
    4 Y2 h7 j, u$ m% a) F    elif n == 1:% n4 u8 Y+ o2 x- I
            return 1" f; d+ H9 n7 W/ y" ?; c
        # Recursive case
    7 G# K' y9 d( ?1 q& b  Y7 l    else:
    + C; U0 Y! M5 N# ^4 I        return fibonacci(n - 1) + fibonacci(n - 2)
    4 N; I% a& x+ G4 x. a" z; {$ k
    ) y& i! |% L* x) k5 J# Example usage
    ( l3 O4 Z; X6 T  u7 cprint(fibonacci(6))  # Output: 8+ n( K% x; G# A. `, }5 @) G
    * b4 @1 N! Y& `& }
    Tail Recursion! n% y! I# b9 k

    # G3 M9 n% n" \+ t+ UTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ; W8 u1 C+ J- V- d( X- }/ G7 w( X# e% z  `' T
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 20:53 , Processed in 0.032669 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表