设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1384|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; p+ v0 B! T* L# ?: J% a# {

    4 \- g# l* E( i: ?. \8 @0 V解释的不错# A1 H; S  C3 B& K; L
    ' [. S" Y) m2 P" n. z' {; s& S
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    7 ^/ ^( U0 N: s" l
    3 J- b# D& t0 J5 u2 r8 \ 关键要素* b0 h! j7 E/ a! P% B+ P% w
    1. **基线条件(Base Case)**9 M6 b7 P% e3 l( c& s8 s; Q* e+ v
       - 递归终止的条件,防止无限循环. S8 n2 ?/ A# L. f# V# i
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- l9 f6 p( Y* G4 _6 e
    1 p! n6 V! q9 U
    2. **递归条件(Recursive Case)**4 `1 p' D: h( Q. B
       - 将原问题分解为更小的子问题
    " p, x' I# Z3 {% R, ^   - 例如:n! = n × (n-1)!$ J3 p% \8 i6 H4 g
    4 l/ e2 f5 R/ D# s$ c* g& D' p! B( J
    经典示例:计算阶乘- ^8 R4 D6 W1 ]: T
    python( k& ^3 U% s" J! h8 W. A
    def factorial(n):7 `% }. Q4 _2 C& F- k* V& V% U
        if n == 0:        # 基线条件
    9 `: ?/ q6 [) t7 }0 m' F        return 1
    ; L  c8 _. H) z7 J  A    else:             # 递归条件. D" o+ G- i: @4 g( _
            return n * factorial(n-1)
    + O  O6 n* G2 }# r执行过程(以计算 3! 为例):/ }: ^! M" ^8 p" S3 J
    factorial(3)2 c6 G: U" d: P3 A0 U8 e- q% {
    3 * factorial(2); |9 r6 O' j# j/ `; V3 I
    3 * (2 * factorial(1))$ F1 z( @. D1 \8 f# K/ P
    3 * (2 * (1 * factorial(0)))
    * R- g% L# L; ?5 w5 c3 * (2 * (1 * 1)) = 6
    3 r/ B# {/ l! P+ ]3 C
    / M& q( d! Q3 s! [: k$ B 递归思维要点& w' Z* t, V! P
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑; e" h( t9 z2 {, y! l& V& u3 y
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    9 |, f4 @# r$ r. y3. **递推过程**:不断向下分解问题(递)
    ! C4 k3 v* }, h+ l4. **回溯过程**:组合子问题结果返回(归)
    6 N: U! L2 F3 Y, M. n: A3 z3 M4 b5 j+ k& X+ u
    注意事项6 d& d8 Z+ [% u! y4 T. Y1 {
    必须要有终止条件
    ' ?( Z  }( R/ I: K! c4 `/ g/ Y递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    $ x: S& S) i. V" a2 k7 ~5 @某些问题用递归更直观(如树遍历),但效率可能不如迭代$ `  b7 u2 X+ v" L( J
    尾递归优化可以提升效率(但Python不支持)
    7 s0 f  v" B; ~5 e  }# ]  z
    - E$ B. I# d: {  H 递归 vs 迭代4 \! h1 Q, M. a. R+ e
    |          | 递归                          | 迭代               |) C6 W8 }& P1 U4 y* D( }1 W1 _: d
    |----------|-----------------------------|------------------|
    3 I  }; B4 U  I( i| 实现方式    | 函数自调用                        | 循环结构            |
    ( m* Z; r$ [! C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' r" E, v3 d7 @) W1 i$ @. q* z- M7 E- @| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |2 N& D  p* K* l) A4 R. ~' l8 f* c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! q! ~3 A+ Q& D: b0 z0 A
    : s" x( p2 c) K/ j* N1 R% K% o 经典递归应用场景/ w- e$ h- ~& J0 M* K
    1. 文件系统遍历(目录树结构)
    . F+ ]  T) p: E- Z) t% @! c2 w2 N2. 快速排序/归并排序算法( A% K8 w  h6 l  P4 ]9 A
    3. 汉诺塔问题
    2 n# M$ _6 Z- R& t3 n4. 二叉树遍历(前序/中序/后序)# F& y* h/ d# Z5 B3 Y. u  J
    5. 生成所有可能的组合(回溯算法)
    # e% o3 u9 j: ?! m: o' z. f2 ?7 s! j4 n' \
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    4 小时前
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ }3 B3 J2 L2 O1 y& N. c& b我推理机的核心算法应该是二叉树遍历的变种。. m. ], M( _' e! C" {
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# J$ y1 ~2 o. x
    Key Idea of Recursion! i. k- r' _. V

    ' L0 x' h% X+ x; S. `- ^, fA recursive function solves a problem by:4 B8 ~9 x+ ]' [! o) J
    * K: Z' J5 ?  t# s; r
        Breaking the problem into smaller instances of the same problem.
    % g, Q  B) S, P8 d$ m7 w  U" w. q0 i3 f; ]. \6 e$ Q, \9 n
        Solving the smallest instance directly (base case).
    * T, m2 G- ^* A" C% s, n; b$ s- @( b" @/ d# E% D$ X7 U
        Combining the results of smaller instances to solve the larger problem./ X3 o* p! M& w' _. A
    7 d+ [& l: s  Y- t8 k9 [& ^; b( c9 f
    Components of a Recursive Function( f1 s7 N) \2 O4 }. n
    5 P- N1 s: M$ e, K
        Base Case:
    ( e5 U4 C9 m" x, d" F' z1 G& q* l& D+ W
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( F9 `% c5 U3 T& X% p

    ' X/ }8 i  I# o        It acts as the stopping condition to prevent infinite recursion.
    , b* k! p/ m5 Y% b- b0 H0 P5 U) I  K$ u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.& t5 n3 s: o1 Y5 E- n- ?

    ( g3 y8 }' E4 m( n# L    Recursive Case:! D/ ?+ J/ C! n: X
    . x. _9 Y8 |/ p7 ~
            This is where the function calls itself with a smaller or simpler version of the problem.3 |$ m  P: u3 j/ F& q
    5 z$ v) m- {! e! d9 X0 c
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    1 n9 O4 p/ i7 F0 p
      z5 G; W9 n9 QExample: Factorial Calculation
    % B7 S! b- ?7 |* y( u) i* ?* ~+ k# U0 d
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" s. D4 ~! Q/ [' i

    $ w& X; W; V, G- d9 s& W! }    Base case: 0! = 1
    * p. }. Z+ f% c/ K. d- `) a* h# Z. u& m) F
        Recursive case: n! = n * (n-1)!/ `! Y$ B$ U6 l% X7 h  _, G( n
    . ^/ v$ a2 E  }! o1 ], U( f
    Here’s how it looks in code (Python):
    9 Z' G( l  ~4 `! tpython
    7 D" C: \$ c& G" A( k* R
    , |, U  b1 v. u- s# C6 i2 ~, R  u% D$ m$ ~* ~4 _
    def factorial(n):
    # m$ a0 d' ~2 O: x. f" k! l0 t! f# C    # Base case: \. l) D' l# K) K4 N- Q
        if n == 0:* o+ r. p3 m; k: Y- u' b
            return 1$ t9 e7 ^6 n- _- {
        # Recursive case9 [: p7 W) j$ p2 t  f
        else:1 ^% V& ?6 P7 y; R
            return n * factorial(n - 1)
    0 n. c& w; T2 h. V0 q8 E# c+ S% R! P
    ( B" c4 i1 u% t# Example usage- R; R! b2 E/ \" z& C9 ~
    print(factorial(5))  # Output: 120
    ; Q+ G: k  t8 ~% t9 i! |
    + R0 d3 r2 o# M+ ]# R0 v% k; dHow Recursion Works
    " t, H' _1 q* c/ ]8 y: c* Y$ P' P, i5 R" E4 U: ?
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + M4 s& D+ V" q, R- ]
    & B0 @* h9 h0 V" Y4 G9 U  L    Once the base case is reached, the function starts returning values back up the call stack.+ _. x; D# S4 ^: [5 S
      x' t3 w, K# b. V9 u
        These returned values are combined to produce the final result.0 ^* ]9 m+ ^$ }7 p8 |7 @
    # k; O! V5 ~# W' J" p% e. \) h
    For factorial(5):
    2 d/ Z. H' w* N4 `2 [  p3 g5 @5 n% _6 _1 }5 ~8 R: H

    3 P. ?5 p/ I# L2 ]1 O: ]+ Lfactorial(5) = 5 * factorial(4)" p+ \8 ?* x; K( X
    factorial(4) = 4 * factorial(3)4 c5 y/ N) G: e2 {9 b( ^0 k* i
    factorial(3) = 3 * factorial(2)/ Q* c  R' u* r) Z! V6 T- C+ K
    factorial(2) = 2 * factorial(1)0 q# s* M) X+ y1 i
    factorial(1) = 1 * factorial(0)+ {! P6 D+ ]( k# c( g% M
    factorial(0) = 1  # Base case% Y$ i, g7 C4 L9 i: H; M; \
    : X# w, _$ s* K- F% l, k+ O
    Then, the results are combined:3 w1 v6 F5 x& s; a

    . x7 j9 r  k9 n& i, v+ [) w) V! ~  A0 m
    5 d# u9 |  ^! T5 J; Rfactorial(1) = 1 * 1 = 1
    , ]) y( t. L/ B/ Q. D- ifactorial(2) = 2 * 1 = 2% [7 q/ N: c  E, K+ D3 m
    factorial(3) = 3 * 2 = 6  H. A+ ?. a6 P( s9 R$ F, j
    factorial(4) = 4 * 6 = 24
    - U9 H. r! o* s2 Pfactorial(5) = 5 * 24 = 120
    " W7 w! ^4 h7 c  C$ o8 D5 {' H/ e6 ~% A9 z/ i" Z& ~- u
    Advantages of Recursion7 W- \: h; E. ]

    4 a  W4 k6 K* ^    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) h) [& l% g5 m- q$ E" D
    + z# t5 ^8 q' T2 q; A6 l
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ; S9 C- l; m8 ^9 E& }
    2 z3 A& s  ^/ h' C% }- O; N. o7 vDisadvantages of Recursion
    3 w# S8 f& e) k/ r1 ]
    6 d6 X4 e) X& e4 n, O$ q0 i& y  O    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 n6 b2 m6 M6 h2 p
    : W) ^2 \, t7 ?) m    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 d9 h3 v$ ~4 t$ x3 G3 A1 ~
    ) e0 ^5 a4 X" e$ Y% k& o9 L: @When to Use Recursion3 X! C- c3 v2 F6 ?
    ; v# x* d# c, a" @: ], s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! k) N- J% A+ C" k& W2 U: h

    4 ^+ k) d8 Y5 p4 f1 p    Problems with a clear base case and recursive case.7 J+ B- H' I2 i1 T* y, a( d
      G5 u# \) r2 I9 J/ w
    Example: Fibonacci Sequence
    $ d6 ^6 B5 s) r3 X( h) o2 H$ E$ `& M- F7 ?
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 p5 H; o! m0 ]( c

    ) a7 \6 h% S' K, m& P9 r( o: T1 n    Base case: fib(0) = 0, fib(1) = 1
    * X: j+ \) }1 j9 l. t1 w: l9 |+ Z+ B% @) H5 |6 ?; I, j/ w
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% X, S' W* X/ l+ u/ |7 @$ o5 q
    9 ?; ~/ \4 L9 G7 L4 t+ O& ]
    python9 `' R5 x/ f- [+ _; X
    % I7 L/ j; ?" @3 f3 m, c' Y* Q
    ' k- F* o* _, I+ f& ^
    def fibonacci(n):' s1 I: C% n: F
        # Base cases; b( P3 R0 F2 W  o1 w
        if n == 0:
    7 Q# U" g. E, E* i9 Q+ L3 \6 D1 x        return 0
    : J& U( r4 l+ A4 f- R. f    elif n == 1:
    + m7 j( _( D" K5 B4 c, q        return 1
    ! ^' z0 M1 T, }1 P/ S1 o3 [    # Recursive case
    $ c) c, q% x" ^6 t    else:" d: C/ L& `# V1 i2 C
            return fibonacci(n - 1) + fibonacci(n - 2)3 D9 u8 {1 Z5 n& b

    2 n7 V; m. m2 ?# Example usage4 c" S+ b$ _4 `9 Q$ a6 H
    print(fibonacci(6))  # Output: 89 j! N+ q! [' H6 e- O
    " |7 W1 g" u, k( L0 S7 v# h9 w
    Tail Recursion
    + I5 {1 P% n( ~: c- Q$ P' |, X1 E$ C" o1 @' r. E
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ B* l6 t! c; D2 a

    & z5 P/ E! G" o9 j! u- B- UIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 11:19 , Processed in 0.031970 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表