设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1849|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    % I  O9 e% b! D+ ~8 E7 \9 N) D
    解释的不错
    . C9 P! U- b. B, ^
    ! ^7 E0 u6 ~  J: }* P递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! A0 c( U# F/ D, U- s
    3 P( N% {$ t5 @, K
    关键要素$ O# M: C) k( H: j1 S8 M
    1. **基线条件(Base Case)**
    9 S4 x; \# ^& B* o$ _% T   - 递归终止的条件,防止无限循环1 Q' _0 O2 z9 y# s" Z, s) {9 s* R
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    1 z- ^" E0 O  {! \( a5 n! C+ m  N3 U" m3 c, M
    2. **递归条件(Recursive Case)**
    5 K3 k; i2 S2 O   - 将原问题分解为更小的子问题
    , c0 C# X( p( b( d2 D$ u   - 例如:n! = n × (n-1)!
    0 a& r8 S8 w% s# y8 M9 p( h) i5 z, B. V( c/ @7 E
    经典示例:计算阶乘7 E% r' @6 \5 `( A# D1 v
    python
    / d. U& ?. h* M+ @def factorial(n):
    ( F7 |, F8 Y, n+ t    if n == 0:        # 基线条件# Z$ [: [3 ]" ^7 R
            return 1: Y6 I) P. G/ A) i7 m
        else:             # 递归条件
    ; g. |' S! y$ P7 T        return n * factorial(n-1)% Q; ~  n) \0 p5 k% |( {3 b4 O: x
    执行过程(以计算 3! 为例):1 Y  ]- d4 s' A! L4 X
    factorial(3)! R, e- P$ w5 b7 Q" a& N
    3 * factorial(2)! U2 g5 n! s: X) H; d% @5 d# X; G
    3 * (2 * factorial(1))
    5 J' K3 x* f: k( f3 |3 f3 * (2 * (1 * factorial(0)))
    , N: W: k* q( Z, _5 U3 * (2 * (1 * 1)) = 6% e, m5 v1 D: [6 ?
    / A5 ]. q6 y1 L& B: X4 Z% V2 I& i
    递归思维要点% i" Z1 {; v3 g8 G  R
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + e8 m/ p1 t+ q' I$ p2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% Q3 k4 J+ o9 k, c4 H9 |
    3. **递推过程**:不断向下分解问题(递)6 g/ b+ j$ K: F; Z- G' E, g
    4. **回溯过程**:组合子问题结果返回(归)9 q6 c$ ^4 @4 V
    ; Y0 e. O3 R0 a3 K- g+ Z
    注意事项& s6 @; Z% R& b. B! S8 Q
    必须要有终止条件$ r) E  U' \5 B/ K% V7 r% R
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - `, x2 K9 L  N0 v" m5 }; h某些问题用递归更直观(如树遍历),但效率可能不如迭代2 J, b. D% s# a4 @3 T, `: ^( v
    尾递归优化可以提升效率(但Python不支持)) I, }& R- M: ~5 F( e
    0 L8 n" r6 g# H7 P1 q- w% |# ]
    递归 vs 迭代
    * D0 C6 e2 N# R6 O/ g|          | 递归                          | 迭代               |0 |$ }3 h' {5 h( Z& y
    |----------|-----------------------------|------------------|
    & s% b5 d3 {. }$ B4 @| 实现方式    | 函数自调用                        | 循环结构            |* R% E, }6 C  U9 w, D
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' [* `! T: T3 y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 |# z$ {5 D1 J9 n$ d7 J: D| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 t3 W  u& O8 m
    9 X5 M; e4 m8 E 经典递归应用场景
    8 g9 R4 H) w' _) }1. 文件系统遍历(目录树结构)% Y$ G2 I7 q+ w4 v! {% K
    2. 快速排序/归并排序算法/ a# u: [+ F5 c, E9 B: h
    3. 汉诺塔问题8 C) e9 A" D/ U! A$ w
    4. 二叉树遍历(前序/中序/后序)6 j4 ]; V/ F. u, M% b$ Q+ Q
    5. 生成所有可能的组合(回溯算法)" x8 P7 `9 F1 W% [8 r1 H
      G3 x$ J0 A4 N
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,6 l1 U/ x4 a" g4 X' j) _
    我推理机的核心算法应该是二叉树遍历的变种。
    ; @! c5 j+ O# x; e1 z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    2 L2 z0 G+ h; d+ g* @- q3 hKey Idea of Recursion3 W) L0 T' y9 a
    $ N/ J1 [4 ?. o% n: T
    A recursive function solves a problem by:
    2 v, b. ^5 K% o8 ]3 f7 i: s; Y7 [; e% C8 r
        Breaking the problem into smaller instances of the same problem.
    ; }/ I3 h+ ]/ }  [* O- M  I; p1 R
    7 d, |& A8 u  O    Solving the smallest instance directly (base case).4 F6 n% G) f  y9 M3 i
    7 o, d( _$ E, T6 H0 I% d0 d
        Combining the results of smaller instances to solve the larger problem.
    + d- T- e. \0 v! }4 i* _( i
    6 q2 x$ z9 _4 A4 SComponents of a Recursive Function
    , i( i, |( C9 A! I$ O0 g% ]( W/ w2 P) j% E* I) ~* j
        Base Case:
    ) q5 u! t. b% Z# C3 ?9 \+ e8 t/ x
    - A  M, X- K: U# e2 I! A        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 Z& V' n0 u1 L% J+ F- s( u( i8 ]7 r4 m: @- ~5 U. i" ~
            It acts as the stopping condition to prevent infinite recursion.
    ( p) _5 f4 P7 @; W# X, \+ ^/ T3 X1 |5 T. O! u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.1 q6 z  J; a7 b( T9 D( H; a% b* O% k

    6 ]' |' P3 W6 r$ r- d3 J    Recursive Case:4 G8 v3 X6 @- J  A

    ) D2 n" S& D" B        This is where the function calls itself with a smaller or simpler version of the problem.
    2 `: U2 O+ t  c# t! w: x3 W9 u+ A; X% I% J. V# z3 ]- r, C
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ I6 |, p/ D7 W  F4 R& q, V  v: [
    Example: Factorial Calculation0 G! p0 v: ?) J

    . z7 C( S( g% k; IThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% Z9 w/ R$ {, i  w2 K

    4 c: J/ z$ {; M. U$ W5 b5 u    Base case: 0! = 1
    4 B9 s6 h+ p+ O' C9 A$ G; v9 t% Q  Z5 v$ H
        Recursive case: n! = n * (n-1)!
    ' C4 Z( e: R# y7 U# ~4 w: Y$ X8 x( B& D
    Here’s how it looks in code (Python):2 v; z( O+ M8 q
    python
    8 ?# d2 [3 J: u" |" F! m) ^1 U4 l# ^! m  ^% n; c1 z
    + R: ^- [* f3 o# B
    def factorial(n):
    : ^, P, \" i7 y  ^" g, s2 ~  e    # Base case* z/ f& ?1 \! z% I- p( T
        if n == 0:
    : Z" i8 Y7 y3 d        return 13 B* T) |+ [6 @( u7 i6 {) [5 s* O
        # Recursive case" {. x( Q  F. U* x5 q/ z1 _( H1 w
        else:2 m4 T  ?- t, K2 d0 Q4 L
            return n * factorial(n - 1)9 f3 C) G* L8 o, P
    , d) L3 x+ g- I5 D) s
    # Example usage
    8 b  L1 P( O' n2 |/ D9 j5 pprint(factorial(5))  # Output: 120) \1 }, X; k9 Q# ^  g) e
    # y, F. T' _% p9 W! i
    How Recursion Works( `1 N5 W( f$ P; C& R% k
    6 D8 U% B$ T5 u% u& A' B  H. g
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 D7 p$ ^: Q& M( K) D& U* L4 j. q6 G  h
        Once the base case is reached, the function starts returning values back up the call stack.) O/ G6 V0 }( ]; a" ?! Q

    # q+ m0 N; A3 h1 s" V  m  }/ N; o    These returned values are combined to produce the final result.! u* @/ z* p* \1 \7 K$ d4 D% J

    9 v% l" V1 T, ?) HFor factorial(5):
    # @& I3 G' @- D3 f- N) w% w9 S6 x6 t, j( k1 l) V$ h& V  C

    ) U$ _& t; _2 E. hfactorial(5) = 5 * factorial(4)
    2 v7 G  Z) C- P- W3 h/ kfactorial(4) = 4 * factorial(3)$ y' \2 X6 ?" D9 D* m- j+ p
    factorial(3) = 3 * factorial(2)6 a  U  s0 S1 x" v, N& Z  P5 X& X
    factorial(2) = 2 * factorial(1)( l3 u6 m' d4 o- o2 X
    factorial(1) = 1 * factorial(0)$ P7 I. C* {% t# W
    factorial(0) = 1  # Base case8 X# v- f5 q9 T; Y% |" w1 ^
    ! {. S1 B- P& u3 i+ A8 J
    Then, the results are combined:& r- u9 c1 f, R
    ) G$ y: Q& c4 t6 |+ K9 t

    8 U  `) k( t0 m6 h9 Ufactorial(1) = 1 * 1 = 13 ?( ^, X/ s2 G: _
    factorial(2) = 2 * 1 = 26 l9 s8 f: `% `7 f
    factorial(3) = 3 * 2 = 6
    ( E7 P% Q9 z, d# {0 tfactorial(4) = 4 * 6 = 24
    # E/ x8 S. g* O% Nfactorial(5) = 5 * 24 = 120; U) j) R- \2 T7 g6 N9 ^) R( F
    " F9 X6 |: v" D  K7 d. \  _3 W1 X9 [: D
    Advantages of Recursion$ f7 q4 |/ l/ U# C- p5 [3 R
    1 I2 ~: w9 n7 K% U
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
      {/ x, f! x0 f$ r+ h# v: q* z* B" x, ^9 Y8 y/ h
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + G5 _4 y' L2 ^) U+ h! [1 n2 R& H# [* i3 ~- f0 R+ @, U
    Disadvantages of Recursion$ `% x8 M7 k2 F

    ; I9 u) @/ U' }# ~. N5 d    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 c- f& Y  [* F/ X; l( }

    ) A. \% c0 h0 K- V) A: R" ]! z    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  y8 Y  ^- ]; y' k3 b" r

    # U3 S( [# h- ~: q  bWhen to Use Recursion
      U. s7 g* w" Q) u9 M- b. }) j; r1 e
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    . C* L0 M2 D! M) K9 D" ]' V
    / G, w! D4 z1 P; }9 X' W5 H    Problems with a clear base case and recursive case.5 ?5 T1 X, s! P
    8 F7 d9 g/ ?6 H  o: D) G) L8 B' `
    Example: Fibonacci Sequence
    ' P& D( ~7 S; }! g: g  t! k; z# z, L
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& S" h5 o' }3 F

    * Q3 \3 B& I6 i/ `: Q9 \, g    Base case: fib(0) = 0, fib(1) = 1
    % \) P2 q( X; v& X. t1 H
    3 D1 d: h& }/ G5 R8 ^. P    Recursive case: fib(n) = fib(n-1) + fib(n-2)( \) v( H! J, s7 J

    / \' k2 O$ a# s& H1 Fpython
    " {+ e- O! ]3 r  {$ v
    ( m. ], j( A4 e( g) t7 n. E8 n5 C" Z0 U
    def fibonacci(n):4 m5 \& A3 m9 |8 ~( m
        # Base cases2 y& Q1 n' P6 l
        if n == 0:3 D7 b5 b! Z7 R
            return 0
    1 ?7 s2 F/ E# q3 I0 ]% ?4 k% Y    elif n == 1:+ x1 f4 ~  _4 C* {& T0 z& |$ W
            return 18 k3 N2 K7 S: K
        # Recursive case
    5 o2 X! t% |; c  d6 z& z    else:( [2 t' S" v* {) y6 y: w/ X
            return fibonacci(n - 1) + fibonacci(n - 2)* e; [' ?7 g) @* C" q4 i
    " r% u* ~, M9 I) z$ P
    # Example usage
    9 S0 H. }" G  b+ s7 O5 t# bprint(fibonacci(6))  # Output: 86 R' i' J0 w7 i4 M

    % S, m/ L- U' {9 `) ETail Recursion
    / N8 i) T* w# s! j, [7 t- Z
    5 t. j; b- E8 J+ N8 F) i2 wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , V0 m2 g4 k9 t% r7 c
    ) B" R' R1 j* X  [2 h- QIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 11:58 , Processed in 0.031001 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表