设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1170|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 n) i& u. F6 D
    3 A4 `- |4 n9 N6 |7 I2 A9 s/ S# ~解释的不错
    " U& b7 j$ r4 U) P' o6 ]
    7 |- Y& O( C; i! g0 w5 l/ e2 e递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# J1 [; E% I# K; `9 ]! Q& a
    5 F6 S, P9 }. L9 ?  A1 T1 w' @
    关键要素5 G, Z3 ~2 u% Q. ^) ~* P) `
    1. **基线条件(Base Case)**7 J( m0 ?3 Y. M- B% v) e4 _
       - 递归终止的条件,防止无限循环) E; z5 s0 J# A
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) p" ^5 Y  C  G/ U. x5 x$ h# r" Z
    ' `# D; A) D. P. D7 O- b1 Y
    2. **递归条件(Recursive Case)**- }7 r4 |& V2 Q1 E' }# R/ L
       - 将原问题分解为更小的子问题1 k8 x! s, D4 c5 c
       - 例如:n! = n × (n-1)!- f( c% e7 p) `( b

    8 g3 I3 O$ v1 K7 W, a8 h2 \" L 经典示例:计算阶乘9 r9 {7 i6 k' J/ H3 s6 M% }" q8 |' R" G9 B
    python7 G3 ^# j# q2 j3 }+ p
    def factorial(n):1 L2 b8 k* T* z6 ]4 e
        if n == 0:        # 基线条件, V) Y+ e: F3 i6 F
            return 17 ^) e$ n1 I3 F! ]% u1 E
        else:             # 递归条件
    + V6 e% }  m. z8 b2 c        return n * factorial(n-1), A. D" m& V5 v! |" N0 z. V- ]3 S- v
    执行过程(以计算 3! 为例):
    # V3 g( N0 W& M6 s& j& xfactorial(3)( m3 ~4 J: p& Z( a! {) b
    3 * factorial(2)
    ) W3 z, [, P% k# W: v3 * (2 * factorial(1))+ P5 H- F* A* h9 r/ F4 K" H
    3 * (2 * (1 * factorial(0)))
    + g) K- `1 l+ Q* A1 o' U3 * (2 * (1 * 1)) = 6& a; V- F0 V% h

    6 Y- @$ `1 L' X) ] 递归思维要点' C# U5 U1 R7 E* \- a
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " `, _- S; j& F* n( h! L2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , t- M0 c# i+ A1 u3. **递推过程**:不断向下分解问题(递)/ S0 R+ U. H) Z9 W8 j* K5 i
    4. **回溯过程**:组合子问题结果返回(归). i4 B/ S! A+ p' r4 Z

    % h; K7 u2 L7 l& y 注意事项) t  l7 x7 \/ Z: J( ]5 g
    必须要有终止条件2 k4 _& D1 {: R  H$ [
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # _. |9 D" P1 [7 W. n& z# H某些问题用递归更直观(如树遍历),但效率可能不如迭代
    4 F* y3 P" @& X3 Q' f3 {, t8 g( h; i尾递归优化可以提升效率(但Python不支持)
    $ W2 F7 }9 @2 X6 \. z# ]' I
    ' w& z6 Z- H3 J1 G& I' X 递归 vs 迭代
    : S! D1 Y- _  y5 S; Q2 m|          | 递归                          | 迭代               |
    3 M1 x* u! E& j0 v|----------|-----------------------------|------------------|# t- C  j8 u8 M. t
    | 实现方式    | 函数自调用                        | 循环结构            |/ Q# }8 u# {+ [+ f" Y! g" V$ S
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! \, `  ?/ |8 z+ H6 x" A" k
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + ?, p! j6 B& A  ~* `2 ^1 F* L" E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  T5 F8 `9 K- c6 |
    & `" n* m* P& i; D
    经典递归应用场景
    4 U, h# w, }8 n* @* o. b3 B" Y5 w1. 文件系统遍历(目录树结构)
    - I# B$ r" f$ O- M9 U+ H2. 快速排序/归并排序算法
      {% o$ u8 G9 k& q& b. W7 F% m3. 汉诺塔问题# Y- M) m7 Z" q  h7 l+ h4 V) M
    4. 二叉树遍历(前序/中序/后序)2 U' n+ E$ G6 g& [0 H# Q
    5. 生成所有可能的组合(回溯算法)
    ; x2 {' ]2 g$ [3 w, v/ N. U# F. H: N- ?9 l' R( p' T% ]3 D$ L
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 06:43
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ [7 A) T/ H7 s9 X
    我推理机的核心算法应该是二叉树遍历的变种。
    ' U# u. a! p& h3 i另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 T& q, O; _5 [# F
    Key Idea of Recursion
    + C# F% p7 T4 F- v3 Z4 `8 q% \' K$ y6 V4 I
    A recursive function solves a problem by:, a$ r, T; k. w" a1 P9 k

    ! e) K! [' `( ^% V    Breaking the problem into smaller instances of the same problem.
    ) x7 d( z, c4 n" L% Q
    # b0 V# n+ v& u" {( x5 H    Solving the smallest instance directly (base case).
    ( R  p0 y5 _* c4 e% \+ ^9 @# B; s5 D2 P& j
        Combining the results of smaller instances to solve the larger problem.
    " c, }9 b* E) p1 {$ t3 I
    8 D+ T; k( g- G7 K. t* xComponents of a Recursive Function0 }$ n: q2 R6 A* W1 l3 J! b
    % {7 X. r, v. D- y9 K& @
        Base Case:" C3 n: Q6 G1 X$ a; ?( Q2 _

    8 z/ ~0 c' j: D5 A* c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 g  a4 N+ w: f
    9 j" _5 n7 t7 p9 f$ z7 S/ m! L
            It acts as the stopping condition to prevent infinite recursion.
    4 @) K3 T6 N! J" A1 Z( E
    / W) V$ @- k6 x1 l5 E+ {' l) e! z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , X& q& A$ t0 s# H0 y9 Y7 B3 [4 e- F2 j
        Recursive Case:
    : Z" Y0 N! }! K! ^% T: G
    - u! G# m8 i, E% d6 V        This is where the function calls itself with a smaller or simpler version of the problem.9 r) Y  ~2 {# P+ J+ ~1 h+ W- V/ h

    7 R) \/ h- V6 E6 E4 g0 M0 d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: o; M6 W- ~* s1 C& z
    ! k, B/ ]0 b/ ]) ^" j
    Example: Factorial Calculation
    2 e/ B7 u* X3 u! @6 K6 a9 b" d* o4 A; I4 D& B1 V8 g
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 Y/ Q) h' a& [! R- D( k8 {" ?2 m" I) f
        Base case: 0! = 12 T+ P; y8 `& Y6 j
    " p  G; S. ]. y/ V$ ~. {" b+ U
        Recursive case: n! = n * (n-1)!
    / W6 L" T1 A2 l
    8 Y) N4 p! ^- M. Y/ R9 y1 HHere’s how it looks in code (Python):
    0 N0 r$ k0 _; T0 d# T0 ~$ Bpython& |, }. t9 [" T0 @
    / o' f/ v1 H8 Q6 B

    3 Y- P7 f  O0 r* q, Hdef factorial(n):/ U: n) I$ N6 x& C( u' e# n4 ]! F
        # Base case
    9 `5 p0 U$ X5 r" N! ?& R6 i    if n == 0:: b1 U# z, `5 G
            return 1
    8 W  P- \/ G( x  [. A    # Recursive case
    ' u9 t) w: A5 Z" ^" p& p" H    else:
    9 p9 g( E" ]/ L+ Y8 p        return n * factorial(n - 1)/ S, k! M. i9 S  y; ]
      v4 p* I* R/ M: J: J
    # Example usage; F/ [* C6 u! j& i! V( A
    print(factorial(5))  # Output: 120, v& }- e- I, e& I) d7 I0 H

    1 \- M: V" m3 Z, vHow Recursion Works7 z/ [7 u# ^: _, j/ ~) f' O9 Q. L
    . `. K; J5 ]3 z+ b1 g6 P( M
        The function keeps calling itself with smaller inputs until it reaches the base case.; G0 N3 K3 z- [' C8 N
    8 |9 }* D7 g7 A% x
        Once the base case is reached, the function starts returning values back up the call stack.
    % P5 y2 V3 N6 M- g: g* Z) [8 F* |' A3 [1 H( m
        These returned values are combined to produce the final result.
    ) t- M$ Z8 y) p; b. {; l$ Z) H) w4 A: e5 v9 @: e/ U9 y
    For factorial(5):
    6 X+ N$ t9 J. w# {$ {3 q2 U% y: h% D$ v% O) f
    % N7 d5 g& p, I; V6 l: {+ c7 a
    factorial(5) = 5 * factorial(4)% A- Q; Z! Z2 K- d
    factorial(4) = 4 * factorial(3)6 p& v) p# u, h1 k/ }3 A* o) g9 x
    factorial(3) = 3 * factorial(2)
    # k- n  E; W( S% Ifactorial(2) = 2 * factorial(1)2 x2 B- U0 Q; O
    factorial(1) = 1 * factorial(0)
    - g0 V7 K6 \3 E& gfactorial(0) = 1  # Base case/ K8 i6 s/ _* i0 @6 `  c  ]
    1 v0 k# I3 v  s
    Then, the results are combined:# z3 f* b+ l& D. {- C1 l; C
    $ {4 t0 N6 t* c4 H$ b
    + R; z- ^( w- }+ W6 H
    factorial(1) = 1 * 1 = 1
    + ?! g3 z% P$ \! e  n8 h. n0 x' afactorial(2) = 2 * 1 = 2  _2 Q0 x0 M+ m6 n' |
    factorial(3) = 3 * 2 = 68 G  K+ }, R" [# ^& p* s2 D
    factorial(4) = 4 * 6 = 24
    / V" g4 d  ?5 F. }factorial(5) = 5 * 24 = 120
    + L& O4 {+ M6 ^  ?" j/ j  Z2 N3 J3 r! R; L' e( o( y
    Advantages of Recursion* d8 E5 u3 H3 s; }. R! X

    ( j) w( i+ B4 E' h    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 s6 h, `$ R: Q3 a' r8 O4 T" W
    * h' p6 ~+ c4 j( \, B  c. m8 s    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    6 \* ?$ K9 E! z! F+ f( X) i! j6 F$ e; l9 z! G
    Disadvantages of Recursion
    ) y$ K2 s8 h4 p! K# j& O( I# J
    . t- V* q2 P: w5 i    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " ?' s! i) b# Q4 M4 }0 o! A- s: }% ^0 F# }/ |8 q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * A' j. j( @4 t
    5 y% P: q$ A+ z1 t1 Y4 H) B9 l8 nWhen to Use Recursion; e: N* Z* B$ g5 W
    ; l  A  P+ k5 {$ I+ f- x
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! Y8 O# v0 Q, K0 ]/ d9 l0 l0 W' a
    # x& P) ]4 m2 [  E    Problems with a clear base case and recursive case.
    3 o9 r; W( U: x" U9 I4 y( t1 Q7 l! N8 O
    Example: Fibonacci Sequence: |; p, i! e% u: x: g  h
    4 C: |/ e! J2 k
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:. i0 y/ b: G& \5 h
    ( s' s2 k6 T# J2 m
        Base case: fib(0) = 0, fib(1) = 1  e6 h- o3 v5 j" Z% b# U7 y

    # Q9 \  I% d! L, c    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 A. b! S, b$ Z6 ~% a! P7 J# [$ ]
    ' B1 ?4 ^9 G3 {+ ?) }. Dpython' [" B' H+ g0 R- D

    , G! ?  E# O. K. w" `' p3 t' q! F3 Z2 F  }: h: t7 G: l7 I
    def fibonacci(n):* t9 g% G' h& |. F
        # Base cases" n2 c) \8 h' S  J8 Y
        if n == 0:
    & {1 ]: I2 P( g! d  s        return 0
    + T, m% C: q4 t! a    elif n == 1:" S8 t3 c# L1 b/ f/ T9 U
            return 1$ o# H9 t2 u+ d) E7 u
        # Recursive case+ C7 |6 J: U$ e: l
        else:
    5 u/ @- o8 s1 f! Q# @( p1 E/ k        return fibonacci(n - 1) + fibonacci(n - 2)
    0 o. {/ H5 r5 I; W: f7 B! e4 [; Y5 z% a7 Q; P' x: F
    # Example usage
    2 }- T+ e4 l! P% r* M) _print(fibonacci(6))  # Output: 86 s- q( m9 ~5 q' _

    ' F/ G. d& ~- h/ X0 K! V6 V) rTail Recursion
    , H: z" N4 m% M7 d4 b* i' K$ }" ^0 B; T, z4 k0 d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 G7 `" L  N5 n' e% Y$ W- B" S. z7 E; O8 U  q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-25 20:26 , Processed in 0.036670 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表