设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1826|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ) a3 o- N+ V/ ?% F. r. a  i# s
    ' g" H8 R& @# [( C& U- w+ z
    解释的不错
    " s& c- y, O1 A
    2 S$ w( [' V  Y3 d1 K# d递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。1 ?3 \) @3 |+ o3 i" K8 I$ K8 K

    3 Y& T- _: t' K* T* q$ n  | 关键要素
    0 x- m: n! W) C) M: n/ ~1. **基线条件(Base Case)**, s3 e4 p* X6 }: I1 K
       - 递归终止的条件,防止无限循环
    7 d% W5 T+ t2 G1 H9 o) @' }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 f5 L+ K, W9 C; }# R2 X
    , J1 O1 @8 N) }- ?2 U; j2. **递归条件(Recursive Case)**! e; @+ R7 v5 B& p
       - 将原问题分解为更小的子问题- h9 d9 U/ ~" D1 P3 @
       - 例如:n! = n × (n-1)!( ?# Z* ]7 |( i  J2 P# A6 k

    4 y: T+ r" \6 m, \) R 经典示例:计算阶乘1 q! H5 o3 X. C+ E: k
    python
    # Z7 P* f0 q, H2 G* L$ Ydef factorial(n):- t5 v/ \1 J0 S1 M; Y3 a
        if n == 0:        # 基线条件3 [6 j, C" z8 [& _' y" _! A
            return 1& I7 `& |# Y9 k$ O4 B
        else:             # 递归条件
    % m5 y; B3 F- J0 j" ^% Y. V& W# w        return n * factorial(n-1)* |5 t7 v+ C4 F, a- \" _# m5 S
    执行过程(以计算 3! 为例):
    ' f, V$ I6 v, G3 D! bfactorial(3)$ G% Z5 o: I) O5 l: K, N, b5 Z
    3 * factorial(2)
    - c# U4 O2 F4 f) r6 p3 * (2 * factorial(1))
    $ V% e  J% l2 n$ U+ I9 A( e- {( {3 * (2 * (1 * factorial(0)))
    ) o  E+ \/ a( [7 s/ x5 j& V9 v% l( F3 * (2 * (1 * 1)) = 60 I& b0 W4 G; z1 G# F
    3 c+ w+ I. d* {+ }+ p
    递归思维要点
    ( E4 G' I9 V  K8 q# B1 u# N( S1. **信任递归**:假设子问题已经解决,专注当前层逻辑& l: S: y2 f2 `1 a
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 L0 G3 Y% ?/ ^2 ^# x$ N6 V
    3. **递推过程**:不断向下分解问题(递)
    ' O3 u3 a- P5 E$ u3 v% y. H4. **回溯过程**:组合子问题结果返回(归)2 H6 O( w+ X# g$ ]5 a) ^. p" G
    , j) q4 g3 S, J5 P# ^, s
    注意事项
    ( n+ W) m! E1 i必须要有终止条件
    - x) f  i6 B" T: J' ~1 \递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % F; g7 t0 I+ {3 Y$ a6 I6 y某些问题用递归更直观(如树遍历),但效率可能不如迭代
    , _/ J4 J1 ?; s% ?尾递归优化可以提升效率(但Python不支持)
    " U" S& h! l* m3 r# z7 O# x
    , P* K5 V- Z) n% h" o 递归 vs 迭代  Z9 g1 B& L( x- I. e
    |          | 递归                          | 迭代               |: y) e; v+ O8 m: g! a
    |----------|-----------------------------|------------------|# R; A' a( H; @+ D  H' y* U# `
    | 实现方式    | 函数自调用                        | 循环结构            |
    4 N# }0 j1 i0 Z9 y3 y+ D| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    8 W$ a* t* `& G6 q3 a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' _2 v8 _% ~* _% X) l
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : P3 M% |7 f1 q: V' @  |+ E" D- x0 }5 Q! a/ |
    经典递归应用场景$ a. e5 p9 G! P* n5 p
    1. 文件系统遍历(目录树结构)
    , [3 `0 s, @2 d8 h- y2. 快速排序/归并排序算法; l: U4 S' [* G; l' e" I( f' T
    3. 汉诺塔问题& [& n* |4 l, X% X
    4. 二叉树遍历(前序/中序/后序)
    ( D. i, {) c: Y/ N9 b, e6 t5. 生成所有可能的组合(回溯算法)3 K6 s% _  j) ~$ F0 N

    9 K% L9 A' S$ U试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    半小时前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. f9 ?& e* F* R4 Y
    我推理机的核心算法应该是二叉树遍历的变种。( n5 T6 F( H7 D" V+ ^. Z' @3 K
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. h9 X) g! c& w, }8 c0 x
    Key Idea of Recursion/ v4 f- B3 A5 e$ Y
    ( d. y( d# g5 x, n/ u# j  B) Y
    A recursive function solves a problem by:+ Y6 s  i. y, t
    - y0 N3 ]8 g* ~* j0 L3 L7 {8 k
        Breaking the problem into smaller instances of the same problem.6 u$ `7 v0 e2 u" Q' H: \/ b! Z0 ~
    ) W" C# `+ G+ w) p2 f4 U+ X" I" ~
        Solving the smallest instance directly (base case).
    0 q( R0 s, {! A, f  O3 U3 P/ D/ A& n' ^6 Z2 K
        Combining the results of smaller instances to solve the larger problem./ R- p6 w3 H* i% `/ K: h$ J( Q3 D8 o
    $ N3 n. @. N. f# N
    Components of a Recursive Function' f% f5 T; M1 N

    % F# D) l, K$ G+ m  h& Z5 F* G% j! a3 m    Base Case:
    2 ^" g% F3 Z9 x9 g; P) B0 m
    ! [& W' T! x; n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) @6 D, q0 I9 R
    * z7 ^8 c8 ]0 I# w6 h7 U        It acts as the stopping condition to prevent infinite recursion.5 i4 E4 \3 R  Z  D# J  L4 c
    & J, _% ~* t( T7 J; n' `9 Q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , q  K3 R1 d) i3 D* {
    " I( d) |2 ^) Y+ N: D$ q5 a' D* Q    Recursive Case:
    . z% g" L! y+ ?" u' p7 w, H5 a
    " q3 }' Q1 P) b9 c- h  _        This is where the function calls itself with a smaller or simpler version of the problem.9 Z) z  J4 {" W3 l
    1 S# l2 B) u) ~2 k9 G. e, c
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    8 b  t4 X6 Q0 M5 ]- j3 h) j: l
    6 [0 y/ P7 [3 h" F0 @: Q5 }Example: Factorial Calculation/ d+ y( l: b+ c

    % C+ H; s, w3 F, q/ H' ^The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 X" x! Y! A! i" O" p, Y( ^: A- @/ y. l# I' \; T* y
        Base case: 0! = 1
    0 K7 E9 w: j8 l2 L/ O0 M0 K% q" v: L1 z6 I( p
        Recursive case: n! = n * (n-1)!
    $ q! F" b+ S7 u3 J, R7 u/ ]0 {5 v
    8 r! @* H$ @' U! d& w# H8 a$ J; X6 K- vHere’s how it looks in code (Python):
    ' ?& a9 ]8 d" F5 wpython( b" `2 O. K9 q+ {- z1 U0 r
    9 b" t! N6 o/ b  ]# W9 H# r0 r! a' E

    * `1 E3 N, e1 m1 `+ kdef factorial(n):
    , l: B2 k7 k1 r8 U! F    # Base case
      L2 A# E+ ?1 J. |8 I    if n == 0:& Y' _; P3 K' z& x2 F' l1 @/ Z6 l
            return 1
    8 }1 E7 i* x* e/ [7 a, y$ h    # Recursive case
    8 I& u0 _% @& `' g/ n5 R    else:1 ^. C8 [& T4 t  g# k; O
            return n * factorial(n - 1)
    / M) }4 T, E+ {" N+ Z$ x, C* \. K0 O5 L1 h3 }
    # Example usage
    4 w2 C( @1 t9 U0 X+ Q8 Dprint(factorial(5))  # Output: 120
    / R. [6 ~9 I+ L+ E5 g& T4 E$ O5 `6 H& I+ k6 V- ~! K% j
    How Recursion Works! t3 {7 J; u9 N5 U- B3 k% j" M0 f' m$ W
    - v: m  T" @* s) W# p7 {* I* [
        The function keeps calling itself with smaller inputs until it reaches the base case.
    9 i+ X6 e7 P2 w' D' L
    - i# j2 q- W; b5 B* m3 s    Once the base case is reached, the function starts returning values back up the call stack.
    8 O- F( a! \' m  ~2 d
    1 X* N) j5 l) ]- E0 L7 E    These returned values are combined to produce the final result.
    1 _, A& ]2 \! \7 _/ J  H* t
    ) \! ?/ |5 @6 l" B/ I. nFor factorial(5):
    4 z$ h/ Y/ g2 x, n% |  e8 k0 T9 K, G
    ; a( B" p: c% b5 M0 m$ M0 ~( i
    factorial(5) = 5 * factorial(4)
    2 \+ m" C& o" u# K1 k# ]# Afactorial(4) = 4 * factorial(3)
    3 H5 a4 D: r8 d7 W8 b% Vfactorial(3) = 3 * factorial(2). H* f3 L& |! E8 F0 e, r# }
    factorial(2) = 2 * factorial(1)  c1 v) Q8 m5 Y
    factorial(1) = 1 * factorial(0)) d' f+ q) p! V; g% y2 O5 z
    factorial(0) = 1  # Base case9 w2 J  d, @1 `# m

    . s$ N" a3 C( L+ b; FThen, the results are combined:
    . g0 F0 A# n. j! R: Z' p7 W( z( f$ b
    + K8 S- A9 z3 o: b$ D0 F0 R! C5 W
    8 c6 l9 Q, V6 w/ N5 g2 n, afactorial(1) = 1 * 1 = 1
    - L# m! P. I0 H1 p% D2 {& o  [factorial(2) = 2 * 1 = 2  e: u& Z5 ]* x) D' m0 Q
    factorial(3) = 3 * 2 = 6. x1 }5 O: J6 c3 ~* X
    factorial(4) = 4 * 6 = 24# q2 H! l- y6 Q( C  i
    factorial(5) = 5 * 24 = 120
    1 X1 r/ f! P# J2 g6 I" R" _9 y4 x! J1 V
    Advantages of Recursion
    3 {! ~& J5 A# n/ }! L1 e. o8 P$ S! v$ E2 E
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : }- X( ?. L. B% O: ~' b. n7 [! g
    % l  ~. V0 B3 }  s    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    " G7 K) h! G7 `' J( \# ]8 Y! S; T! T2 l! Z4 i- x
    Disadvantages of Recursion
    , ~7 {0 G% V( v* _- K
    ( a7 A9 h5 }0 M5 L    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ) l$ f- ?9 Y$ K3 l/ F, |
    ' V/ h7 `8 }$ R    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: {) J, c" _% K& I2 t6 V& D

    5 M' X- F# y5 G" YWhen to Use Recursion
    5 b2 u, \2 X- T
    & L  G& g1 G1 l3 l    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  x1 N! Y# d* c5 u/ ^, F
    $ P8 V& `( I' J2 i9 q  U
        Problems with a clear base case and recursive case.
    # B* Y3 J* O. a, e1 ^! x  E) h. W$ c) \% g6 l
    Example: Fibonacci Sequence3 O8 V/ o) }, ^8 y, u; \( N

    % l6 I" F7 o) Q, Q2 |9 O4 YThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:8 }2 R2 ?# B9 d3 H

    3 A( j4 u, s+ W0 P8 h    Base case: fib(0) = 0, fib(1) = 1
    # T1 p# d# w- |$ P. [9 U3 w8 V/ Y. ]* H# S: S1 }" a
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% t$ R# Y# |" p9 w2 J
    ; A% K1 }. g2 L% j* e! F  ^7 P4 M
    python
    * z3 L/ j/ s* {" E, N5 P$ m# A% w

    ( K  }+ |1 Y% @2 B# I" rdef fibonacci(n):
    1 ?! U4 h% ]/ a/ C' i    # Base cases7 V, p# m& Z3 _/ _- ?2 h3 A
        if n == 0:9 K1 F, q+ W- v% j
            return 0/ w/ ~6 C  V8 t) R4 k* r/ K
        elif n == 1:- _# \7 q# @  K- e) a8 }' }
            return 1; x( d) r7 P# j1 {
        # Recursive case* J; m. K/ ]5 r5 \( k
        else:. _7 k$ D3 n: k1 t- Z0 Q9 A& D
            return fibonacci(n - 1) + fibonacci(n - 2)0 o7 I- Q/ g0 H6 ~% S
    2 P$ W+ M8 _' t5 A4 m
    # Example usage
      M( H) W% b. \- r+ p5 C" zprint(fibonacci(6))  # Output: 8
    8 ]( W5 n- V4 u, |
    & S& Y. f  T3 Y- j- ^Tail Recursion
    % G- Z9 _& U* G# N( P0 m: E/ ?9 G8 p! H$ q8 R  W
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    - E; J& W4 g, Q2 u( d' z% @* i+ M8 Y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-14 07:20 , Processed in 0.028589 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表