设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2096|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    * |/ p$ t, O5 u/ V# o0 A! R) i3 @  W1 ^
    解释的不错% b+ ?% G/ J% H6 k

    2 H: M) ^$ B) b递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ @) K7 ?) ~: Q( c' @* `" \# j  ]3 I2 m2 t
    关键要素$ f6 ]+ _( B: s
    1. **基线条件(Base Case)**9 p0 q8 ]2 U9 u% ~! w2 w5 M1 x
       - 递归终止的条件,防止无限循环
    , h0 ^; d6 a& j$ q' E0 r6 f) q" l   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1' y" Y0 m! I2 C/ B1 J" y' {
    " j& F! C' P& h! Q8 ^% R2 i
    2. **递归条件(Recursive Case)**# i' i$ M; Q# w3 {4 \. d: ~
       - 将原问题分解为更小的子问题# h9 b; o- A6 r
       - 例如:n! = n × (n-1)!
    & h' C. B/ b- u* M, M6 ?  U
    ' f9 ^2 W' T* d! ] 经典示例:计算阶乘3 f% E3 S+ J& u/ l8 M! J9 c
    python
    . J6 c7 R2 p: pdef factorial(n):  f0 b: B6 ?( ^" ^( }
        if n == 0:        # 基线条件
    8 F8 e$ B3 @& _: q" L        return 1
    1 T: [) z3 v) e# c    else:             # 递归条件
    * c+ `, M+ m& G! @# m- X/ h        return n * factorial(n-1)
    ( q* e; s3 t; x# X. {8 H% Z- f8 w; L执行过程(以计算 3! 为例):
    . A7 u' ?: h4 v4 ~' i) W5 [factorial(3)
    & f# x3 g6 `" e( C& u7 Y5 u3 * factorial(2)
    % f! ~' F! @) L( \" E. _8 d* V% \3 * (2 * factorial(1))
    5 J: u- i; C" |, u& Y( C* C) s1 g3 * (2 * (1 * factorial(0)))8 K4 @0 F* }. n  M) B
    3 * (2 * (1 * 1)) = 67 d# i2 W+ r6 R3 z8 O  ~

    ) q' S2 d: \! u. u3 V( q" o 递归思维要点
    8 K7 T$ \, c; l# ~7 Q0 P1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . b# u0 Y7 r  r) X  f' H2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    & ~. \2 m0 W# P/ V( O) r; \: n3. **递推过程**:不断向下分解问题(递)
    0 ?0 [$ T* ^$ X+ _$ ]4. **回溯过程**:组合子问题结果返回(归)
    . ?& N, x+ |" M! x: u# y( ~# ]  e/ h! l# X( Z; L$ ^- \
    注意事项
    * ^) a. Y) j  w) `必须要有终止条件
    7 H" Z1 y8 a1 ]3 g: o, q; V. g递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- `+ h9 r2 U; |2 B5 ]( [; l
    某些问题用递归更直观(如树遍历),但效率可能不如迭代% O' H1 c4 B8 Z7 n; ]
    尾递归优化可以提升效率(但Python不支持)- R+ K- J* _: T+ E4 y8 ?& y* j
    - S" v- @' f: `5 s$ J
    递归 vs 迭代4 T+ h5 [/ I1 j! z+ m
    |          | 递归                          | 迭代               |
    0 V2 M9 R7 ]% \' e- ^0 {|----------|-----------------------------|------------------|/ Q: Q1 f5 I2 y& \/ U& O! `
    | 实现方式    | 函数自调用                        | 循环结构            |/ m2 v/ i/ \1 ^/ S
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    8 q% [, k. Z+ T8 e) B| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* Y: ?/ b3 ^% D% Z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 x2 v0 M- c2 R, Y
    4 e5 M0 a% E+ f" I+ E8 J) h) c. |3 F 经典递归应用场景
    * j$ R$ `- j, b% a0 f# n1. 文件系统遍历(目录树结构)5 I1 _  F$ w6 i0 G8 R1 l
    2. 快速排序/归并排序算法
    $ W9 _9 n" i2 e% Z( }9 Q3. 汉诺塔问题. C2 _  V3 {0 F$ g* p
    4. 二叉树遍历(前序/中序/后序)0 A* X: |: r0 p0 G; |5 O) m9 ~( p
    5. 生成所有可能的组合(回溯算法): [4 e! J* |3 [5 \; `

    1 r9 w' K" c% ?! e8 T: b试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3175 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ' F$ Z7 Q* W$ h: s& ]9 C2 e我推理机的核心算法应该是二叉树遍历的变种。
    . ~8 A5 W, e6 M# W0 O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 e. D: i* \6 }, w8 }) g" F- MKey Idea of Recursion5 B5 m, R& j& z- {2 d) S5 v/ s) W
    2 I+ h8 N( r* s: ~: v
    A recursive function solves a problem by:
    - W- X$ c: k' n+ C
    8 K0 I) v5 p$ n3 V8 P3 j7 u    Breaking the problem into smaller instances of the same problem.% I! T  ~/ s1 Q7 R; L$ }. M

    $ f$ N: R- M  y9 `4 U    Solving the smallest instance directly (base case).
    : S' B5 [* s3 Q: E9 u/ @
    5 o* O; e0 a% S6 Y    Combining the results of smaller instances to solve the larger problem.1 u! X2 G4 }2 k$ b$ g2 R

    0 t( \6 ^& n* N+ d, pComponents of a Recursive Function
    / t$ v" }8 b5 K* ?: C& a7 Q8 X1 p* g, Q" K& D( H
        Base Case:
    % f4 ~3 e9 h) m/ s' e* ]. K" v0 Q" _1 [/ {& R
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    . h, h. }% a8 d& d1 {$ A4 e0 w# b/ }$ T3 B$ ]9 N# i1 F0 r
            It acts as the stopping condition to prevent infinite recursion.: g+ K) h. V5 w6 w- P/ ]& S

    1 F0 l' C# g/ w, _: @, |        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & A) C5 t3 D; X- w5 V9 q& |; H
    8 h2 u) K9 |: _- J3 w    Recursive Case:- F/ d4 D: ~1 Y( T# l% L- ]9 {& U
    % \8 e9 V; b2 J* \
            This is where the function calls itself with a smaller or simpler version of the problem.
    # O0 ]1 g% x6 r6 L# Z% h0 f+ o. N+ \' d' X# o- b2 n: O2 ~
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* f# {( f8 j! h
    - k5 D5 A& H9 U' w
    Example: Factorial Calculation
    9 \' j$ p( A$ X) z6 o1 p7 V
    4 p. p6 C' ^. D- [4 @8 aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 Z3 a) @9 ^  P3 M
    " i% \% E- C- _: \8 }6 ]( i    Base case: 0! = 1( S. U; B' j9 U- {. G. ~. _

    $ m1 `7 _$ W6 j2 x4 d7 l0 o    Recursive case: n! = n * (n-1)!: J) E/ a$ p  _) x) C& o9 B
    % d# {0 D$ Q! J; {5 x7 c% @* Q4 l
    Here’s how it looks in code (Python):3 F6 S! M5 r# E' w& c6 D
    python# \+ Z$ \% P- A3 _- [/ ^

    $ C# o4 R& `5 _5 r2 w4 B( j. H4 F9 Q& \: j! H
    def factorial(n):
    ' Q4 I0 w' p4 h( A# A6 h' t    # Base case+ e8 C3 U0 y- I; h% Z$ G
        if n == 0:
    3 T8 A# h2 C; n; Y! `' q( _  u        return 1
    # b: C0 {2 @4 O1 g( ^, B    # Recursive case
    ) ~- p: a  `* l8 _. z/ k0 k    else:& H/ N% n+ c+ a2 h' |  N% G
            return n * factorial(n - 1), G4 z* A& D+ ~" h" W! z' @1 ]# i

    ; g/ H" w' A+ s) }% w' J# Example usage" }7 [, h% K* e) I6 E# R
    print(factorial(5))  # Output: 120
    % h/ w1 S5 i& L* l6 l
    ; t( ?- }4 Y( C. X" o; W3 m9 \2 yHow Recursion Works
    ; @; O( p. {3 j7 P) h1 H* T9 ?( Q# |, u# B$ z/ o2 {
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , n  O% K7 K/ v8 {; Q9 b6 n) M8 b% R8 @$ r: B9 _2 ]3 H7 a# J. d
        Once the base case is reached, the function starts returning values back up the call stack.
    5 ]; F7 l$ T3 `+ z9 m
    ) l) e" c# G2 I( L8 U& a) U1 \    These returned values are combined to produce the final result." `  }7 I& [- u7 d! ?

    : u6 }! c$ ?  gFor factorial(5):* ?' F* ~. b. K$ t; O2 N: [& o1 A7 K
    4 ^" R. y8 T, b* N6 H
    4 e/ ?. V& [1 V& I
    factorial(5) = 5 * factorial(4): Z1 @3 ~' C0 b  r
    factorial(4) = 4 * factorial(3): m; W- H6 W3 I7 K
    factorial(3) = 3 * factorial(2)- ?9 |9 H6 x  ~; B' ]
    factorial(2) = 2 * factorial(1), d- `4 E8 y. a7 t
    factorial(1) = 1 * factorial(0)
    7 Z: c6 w3 f; a0 K. P5 @, Afactorial(0) = 1  # Base case) R6 v+ @  M2 \5 |
    ! w1 x' q: l) G! Z
    Then, the results are combined:3 [3 |9 _8 Q$ M0 i: e

    ) B! ^3 q1 x9 b
    + @- v- {) x& o( Y0 ffactorial(1) = 1 * 1 = 17 ^+ y! r/ [. h' u  Q/ e. C" u0 R
    factorial(2) = 2 * 1 = 2$ ^' _+ i0 B; q4 J( a% A
    factorial(3) = 3 * 2 = 6
    % O0 t- W  c( U4 Wfactorial(4) = 4 * 6 = 248 Q$ s5 l$ S* V2 }* X$ S% x/ q/ l) x3 w
    factorial(5) = 5 * 24 = 120* v  k5 o3 ?2 S9 J8 p$ e6 x

    * H' O: B5 K8 T; l+ H1 N* }Advantages of Recursion
    - A6 {+ i" V' N* x8 u% e0 B6 o# `+ p3 b9 ~: s+ K- D! M  x
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( z( B! r. m. x5 |! y% Y: z4 Q; T  ?
        Readability: Recursive code can be more readable and concise compared to iterative solutions.7 K6 D0 W' T5 r8 N' |# a
    & P& v- X+ F8 q5 C
    Disadvantages of Recursion
    2 U/ {- Y4 t) [, G! q6 x
    - D. j% S6 G4 w/ \' @$ M1 ?, [    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * U# Q$ ^$ x" X+ r; T5 G2 B: H. b, [% \
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 e& G8 V* ]! K2 M, _0 L
    ( ]  [- }7 F" k0 @' `
    When to Use Recursion
    1 [7 ~# T" Q9 K; |) D4 m% `# N; q" y, {5 V5 w0 k4 Y' y" L
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# z5 ], J' e& O9 v' \

    . q' ?: Q( Z* P3 \    Problems with a clear base case and recursive case.
    0 i. v. i& q9 H* D* j0 v/ L, e
    - u1 D! h: l7 C/ aExample: Fibonacci Sequence
    ) Q# o& u, c' |8 h; M
    % U: S4 Q4 C8 Z$ ?  [7 y1 @# r- [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    8 `$ }. o' t  }& y
    " i1 ?7 \+ l8 \# K2 v    Base case: fib(0) = 0, fib(1) = 1
    0 e; ^$ x1 {& }& g! R1 N5 B3 P  k: v# g  a4 b5 `! g$ I
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    4 l% i! B" J! o# ^$ x! R; d% O) i  ]/ M
    python% E, i7 l2 o0 n

    7 G" e% J. D+ j" {3 S& U
    - h: A% \, C. Bdef fibonacci(n):
    ; n! @0 a6 u) R& ?7 S: a0 O    # Base cases
    7 o4 P# y6 m5 t/ n    if n == 0:
    ; `8 P! e* ]4 K  h        return 0
    , X  U) c3 g; s3 Y: a2 S    elif n == 1:& O2 Y2 }7 o$ M( t- Z/ Q
            return 12 `* V( n* T  s8 x. I
        # Recursive case: s2 e8 t) \8 r
        else:6 W3 E4 v) h$ k- v4 g4 q
            return fibonacci(n - 1) + fibonacci(n - 2)
    2 c$ s- r' p* p( J" G+ {7 k. n4 x
    8 {  Q% Q9 o/ {- o7 p+ B# Example usage  |" Q7 _- Q) q3 B" x2 d
    print(fibonacci(6))  # Output: 8
    5 h" Z! O; a+ o) T& j8 Z
    & X# X8 q2 q3 j6 x% YTail Recursion9 U3 k  b5 ], _. {2 N" y! j3 S' p
    ( p( C! `. l* T& v& B
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! b( w! B# ~/ F. n1 q
    * M1 r. z7 ~; j( D( \# }In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-16 19:45 , Processed in 0.055227 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表