设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1736|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 # J# V0 b( @5 V! w% r
    2 e6 A, G8 i4 n5 ^; a
    解释的不错8 S9 X4 t; V+ ]+ u/ n& ^6 ]
    & V# w9 M4 {8 }/ Y
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 I! n2 F7 m! Q( h5 J
    4 k4 N% h( P* f, z" v; ]- ` 关键要素
      S" `0 U- m2 N0 Z7 z9 M' V1. **基线条件(Base Case)**
    , d; A: c7 v2 P% D: P5 k4 e0 G   - 递归终止的条件,防止无限循环
    ; D2 Y5 q0 V# |- h& D& v6 n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( j! l' S3 j. T6 V8 P# C

    ( l- G( `# O  Q0 r5 J) Q+ \( m2. **递归条件(Recursive Case)**# n, e7 t; }- y
       - 将原问题分解为更小的子问题7 h2 Q( j+ F$ l2 K" A
       - 例如:n! = n × (n-1)!
    ; p9 f$ P0 p; E4 n& t1 Q4 n" J. O# F# S4 ~8 d# ^9 U8 }4 i
    经典示例:计算阶乘
    ! C0 u4 q: C( o( A6 q8 cpython
    1 D& V+ i' W5 \, _def factorial(n):
    ; P3 H2 Y8 }; S! k  t    if n == 0:        # 基线条件
    3 g+ ^/ O# s* [; K: I, o& G        return 1
    * b8 p9 D% t' Q4 u8 N, v    else:             # 递归条件
    $ |5 c! o/ C9 u  `2 X1 S: \        return n * factorial(n-1)
    7 {4 W1 l& u3 V( X: _5 b执行过程(以计算 3! 为例):
    ! B+ S/ @$ o6 H" a* i) `3 n  `0 A9 gfactorial(3)& D% |  |0 o& }; O% u
    3 * factorial(2)
    ) N  X! z9 r% b. T/ ^7 ^- u( e3 * (2 * factorial(1))
    - Y. Q7 {) [, {3 * (2 * (1 * factorial(0)))4 L) O0 o7 @3 Y
    3 * (2 * (1 * 1)) = 6
    & C7 O2 n( y' ~5 r, P# g) |/ U" ]* |7 I/ t
    递归思维要点% f+ k% h, ]  g0 }5 ~% G! t
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ! |: c' D, z. u' ~7 ~2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    3 g$ O" G8 W" _5 o+ Q3. **递推过程**:不断向下分解问题(递)
    " Q8 v$ W9 @8 m, A- j, I9 w- k4. **回溯过程**:组合子问题结果返回(归)0 U2 L+ F  y4 O" n, J: ~+ @

    - J$ ^; `( e- E& y" ?- ~ 注意事项; i: H5 x0 |8 M) a# L* b
    必须要有终止条件
    ! _4 r4 v7 V3 N% d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ j' p1 k/ W6 b! I3 G  \; j
    某些问题用递归更直观(如树遍历),但效率可能不如迭代6 [+ _2 `% H5 {' |
    尾递归优化可以提升效率(但Python不支持)8 }5 ]7 [( z  [+ g6 v: d( J
    3 I. N3 j, \" j$ ]7 c
    递归 vs 迭代# O- K$ N- M3 ^) x+ n$ k
    |          | 递归                          | 迭代               |
    ! A* O" _! Y1 k; Q|----------|-----------------------------|------------------|. K2 d- W7 j/ ]* D
    | 实现方式    | 函数自调用                        | 循环结构            |
    # l2 g3 Y  n2 Z& G5 @* @5 ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 z/ @9 x) w" C, k! f' J& r
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    " R; f$ e& T4 A9 P| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  B# }1 P, X: R
    8 q# I' Z2 p5 F$ G+ S4 K
    经典递归应用场景
    - W! E: p+ o: e; \1. 文件系统遍历(目录树结构)
    9 E7 j7 Y' \8 I2 L: E6 M) u& b2. 快速排序/归并排序算法( G5 T$ [" a/ x# y! `) D: q  {
    3. 汉诺塔问题7 I- R: {- d; A& n/ \- y' f9 X
    4. 二叉树遍历(前序/中序/后序)- V& X' [  `9 B
    5. 生成所有可能的组合(回溯算法)
    : V; X' ?& x1 Y7 J- ^" ], e: v" \: a; [! R) k. C! n- x
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    10 小时前
  • 签到天数: 3137 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 @+ g0 f! |) @% `* o" t7 x我推理机的核心算法应该是二叉树遍历的变种。; ~1 R0 I* T$ v! N  J
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 T- o- d8 @. H6 V9 PKey Idea of Recursion
    ' D- H6 X7 n: \8 r. P
    ; ~: C9 k5 K8 l' ^* uA recursive function solves a problem by:0 o9 R. l$ L' u4 D, o5 C( o

    8 p; N$ Z1 M" q2 x5 n    Breaking the problem into smaller instances of the same problem.
    8 A4 _# A3 p2 n+ p: h1 `# y/ X" v+ b' n7 T2 X! R
        Solving the smallest instance directly (base case).% D5 H* k4 D7 ^7 h1 k7 l( N
    5 E( }' Y) G, x0 D6 D" e  {- h
        Combining the results of smaller instances to solve the larger problem.7 Q0 Z& E, E) r. ~$ W3 r

    * d* e( n4 `0 s. }Components of a Recursive Function: M5 j+ \. L. E+ G

    ( n, f* F# i- w, h4 v. N7 `1 [$ r    Base Case:% L8 k3 W/ m1 u! [; e
    . o. Z/ j8 t. e* |5 D; ^
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    * P/ i. D4 Z+ S3 ~" x- f" v
    6 v4 t+ o( B1 j  t2 g        It acts as the stopping condition to prevent infinite recursion.# w  o1 S' Y* P/ m4 |
    ) f& W1 p) k1 h
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : C' }1 Y7 _& p5 }) j  B  O) \2 ]. H/ ?& R
        Recursive Case:
    4 k* ~( t, ^7 [1 ?  q/ E) p5 k: i9 [# z; x. ?
            This is where the function calls itself with a smaller or simpler version of the problem.
    7 d8 W! R2 C# S0 o& U2 U. S/ h1 f  _
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., ~. c, T' w6 z! d: v/ q  B( _
    + u6 D4 f, z4 W% S8 n) V9 d5 E2 P
    Example: Factorial Calculation
    7 `- l% A* k- _: `9 V
    ( ~; t) L, E" b1 R$ n5 lThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ ]+ f. o7 N! s8 Y4 T
    8 c1 Q: S6 w! _1 ^
        Base case: 0! = 1
    8 n% U1 K  B) Q$ _5 \3 @/ w, K1 X8 U- ~2 y1 x
        Recursive case: n! = n * (n-1)!0 l- h+ B2 K4 G, ~

    0 N* R4 `6 w- b( cHere’s how it looks in code (Python):
    ; \- D7 f: q% }python
    7 Y4 T5 j) ~6 c, R' f4 B
    " f/ N# \) r8 S7 Q' V, W* W
    4 N9 M3 t  [, D  U" ddef factorial(n):
    * P1 A4 o! \$ d8 S  j  n    # Base case
    . x3 ^7 v% _$ `# O$ v4 Z4 G    if n == 0:' U7 O1 _6 L0 x2 [! F
            return 1
    ( M: n% `+ I: [4 m9 N! X$ ^7 I4 y    # Recursive case8 @. [- R  K+ x% \2 P% n8 [0 m  s* k
        else:5 v* A1 U+ M( l
            return n * factorial(n - 1)$ J# u8 L- M5 l. a# ~

    : W+ E; H0 w" Z; r" ?- L# Example usage
    + w+ F5 @8 ]2 W# P" tprint(factorial(5))  # Output: 1206 r. J8 c+ h4 d2 I3 v: D$ S
    4 c, Q) c# z- l- ^; V3 B
    How Recursion Works
    2 e$ z( k) E% a/ Q2 v
    * n' S* \! ]: n8 E: {    The function keeps calling itself with smaller inputs until it reaches the base case.
    6 s3 V- s& N4 g3 w- s5 i
    ; T+ J$ ]! k( W, v% }    Once the base case is reached, the function starts returning values back up the call stack.
    # \3 q  j# B* t6 p1 U. E1 A8 ]8 X8 x  Q% }0 K/ p: i, s
        These returned values are combined to produce the final result./ S% ], C1 c4 w- @$ r
    6 Y8 G: ], Q2 {" H4 {; K. t
    For factorial(5):" U. E/ V( I  [0 i4 Q
    7 x& u* c% H* Y8 I! K% S6 x
    ) x+ }, v' I4 M
    factorial(5) = 5 * factorial(4)
    7 Y" t9 K, ]! E9 L) nfactorial(4) = 4 * factorial(3)& c) o# o; {0 v6 |
    factorial(3) = 3 * factorial(2)% D" T$ `! I. k' m5 T9 w
    factorial(2) = 2 * factorial(1)
    ' n1 W# R% y0 G* Z6 T" z1 f) Ffactorial(1) = 1 * factorial(0)
    6 s: a2 F: i" \: g- n$ x/ P4 w% `8 Jfactorial(0) = 1  # Base case
    5 s7 {6 Y0 W& g$ M, Q2 d# j6 F, l) r" Q4 H. Q$ s% m7 h9 C7 I
    Then, the results are combined:, c" d3 B3 c% U9 F6 [. C+ _% Q

    ( g% M8 B- j) X# E$ O3 r: s
    ! Z9 v5 z* J& M* afactorial(1) = 1 * 1 = 15 d& @" T# }4 E. }: Z
    factorial(2) = 2 * 1 = 2
    ( e/ n& @& {5 `factorial(3) = 3 * 2 = 6$ P* ?! z2 P0 d& u0 k
    factorial(4) = 4 * 6 = 24
    2 ]7 H$ {4 X2 ]4 L: {- Q5 {factorial(5) = 5 * 24 = 120
    8 {. U9 v, I4 _" ?, @! B- @: p, h* F! n& C* R2 k( w' S
    Advantages of Recursion: P. |% j( c- S( m
    ; L! R# e3 F& f: B) o) O
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    8 y1 H' l) F8 k' Y7 z" h) S$ j& Q: H( J- T% }- U$ t9 ?# _7 v
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    , v6 T. }. d  G9 g/ d" B, c6 L! g- ?$ i" s2 O
    Disadvantages of Recursion5 ~8 S5 k3 \8 o6 F$ U

    : x* V) J, B4 n4 m    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. G1 L- v4 L" I( E

    7 H% a5 G7 ~9 h" O4 C    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! c: V/ o: ~; i5 G9 i$ i5 @' G  V* O/ n9 ^" Y
    When to Use Recursion
    , d# q: h7 K" m# O4 }& g1 U
    3 ]- N5 N2 t4 c" @! N    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 R4 b! `: b- t- Y
      i: l' z" c9 n# H    Problems with a clear base case and recursive case.& {4 t  N$ `, V

    ! r( _, }0 f& a5 p* v0 m2 QExample: Fibonacci Sequence  c% l8 V. ]4 n9 `! {* \
    + s8 [* @" `) j, J; E
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 t5 J0 m8 D" |( G: a3 H# R
    # }. u, I, V# h) S& J( _
        Base case: fib(0) = 0, fib(1) = 1
    6 r" T" h; {1 @4 u6 o
    7 g" e2 `! h  v! G* Y% k7 P    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 J0 s' `* G' }' X9 d9 L3 K) c8 q$ Q# E$ A% f
    python
    ( T; z4 m+ r; T  k* t) s3 Q
    0 n; r5 e2 E- O. {' R' N6 k
      P: w$ ~$ ~: Odef fibonacci(n):
    : l- g- o; Z- }0 I    # Base cases
    7 M; n0 A/ Y! Q7 b. }( s* N    if n == 0:% b$ b: M* J% G$ B2 {' t* ]8 _
            return 0
    2 A% e& ?6 D. c5 L; W+ n( D, C# r    elif n == 1:
    . {) L" j' y  h' k        return 1  @4 p5 C- D. e. s- |/ m% }  `( Y) _
        # Recursive case
    " y. G: d. @/ b' |- x. @# ?0 B    else:
    6 v5 {6 w* \% Z$ x9 ?        return fibonacci(n - 1) + fibonacci(n - 2)0 w' T1 f  `9 u1 M1 G% M' H( ]

    7 O! G' O5 N* U% N+ ^/ |# Example usage
    $ ?7 y) n+ \/ c! [- o* B$ W6 Iprint(fibonacci(6))  # Output: 8- a4 d! u" f2 s3 q4 `0 X4 B' ]

    * M( z/ a- n$ i8 gTail Recursion; t. z7 c! Y7 r" J% }1 [

      I! e7 `7 @! D! S' W( ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* W4 p9 j* b6 H) G9 u
    " b+ s, j/ c5 a3 E. u
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-5 17:16 , Processed in 0.036722 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表