设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1164|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 `( J: h) W  g3 j+ I7 m% }+ o) B0 X, H1 H
    解释的不错
    6 X0 h  S9 ?* \& P3 V% q
    : a5 L$ G! K0 u: ]递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% z& `2 ]8 S% }/ _/ X$ b" q& I
    : m' Q2 v% A1 x6 i2 c" G- m5 e* D
    关键要素! p9 [; H+ K# L$ g4 W  n
    1. **基线条件(Base Case)**% m2 Q  ]% h4 l8 ]( \2 F3 ]  {4 J
       - 递归终止的条件,防止无限循环
    7 N( o' u/ b  n6 [! I" \# H   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  [4 h% E0 F$ t5 J( w' ^
    % T/ B* j* \7 N( w$ X
    2. **递归条件(Recursive Case)**! _: G' g# J; ?- T3 b7 K! P
       - 将原问题分解为更小的子问题
    # ]5 `, t: }5 V/ x  L   - 例如:n! = n × (n-1)!
    4 }$ A; a# M% [5 U9 f+ `9 g# T! d: V$ ~" K" [, w/ o! Q: O
    经典示例:计算阶乘
    ( ?& s  A* _5 Y+ _  y6 @2 t, }: Tpython
    , H2 I# b! D6 S& cdef factorial(n):) C2 H, A- g1 y6 [3 ]: u# R4 r
        if n == 0:        # 基线条件* j5 X1 y5 D0 y% M0 Y9 M
            return 18 i$ V$ m* |0 U4 I0 l' q
        else:             # 递归条件) E7 `. Y# z5 l, Q" f2 ^
            return n * factorial(n-1)) J  P1 `3 J" c$ k0 [
    执行过程(以计算 3! 为例):
    : O& I! Q; n5 P+ B7 \factorial(3)  d1 l  ^5 a. k; @, a4 w
    3 * factorial(2)( e  W2 t, ]; r* \( |
    3 * (2 * factorial(1))2 ]; \9 C' u  {
    3 * (2 * (1 * factorial(0)))' v6 s" [7 Q6 c& o
    3 * (2 * (1 * 1)) = 6
    ! o& t  x1 O1 i6 ?& J* I- z" V3 o0 Q; L" u
    递归思维要点' K8 B0 c/ K# `4 ]- x6 `2 R! r, ]
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    - k. q& i! H7 h2 M$ a/ P2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 E& B2 F+ f, w: p8 Q; ?) W0 h
    3. **递推过程**:不断向下分解问题(递)
    ; D! k) H0 }! J. Y9 e4. **回溯过程**:组合子问题结果返回(归). D) x& m- t. f- l, x

    / M2 ?3 }) w4 b5 y. K) K" d1 p 注意事项3 z" Z& y  ]* R+ G
    必须要有终止条件
    ' U0 e6 ]0 E9 N* S( h$ U/ c递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) w) Q6 @  S- p- V: Y( I某些问题用递归更直观(如树遍历),但效率可能不如迭代
    9 n' Q7 r' I& ]8 B  X0 Y尾递归优化可以提升效率(但Python不支持)
    # ~$ C0 j) k* P/ b
    * g% u4 j; j. }% X 递归 vs 迭代/ T, v9 @( J! V; X1 f+ A5 t
    |          | 递归                          | 迭代               |* U8 B0 x) \+ O9 r0 _$ R
    |----------|-----------------------------|------------------|
    : c7 M3 n' m. N# g* Z! V  [& u, [| 实现方式    | 函数自调用                        | 循环结构            |
    * e" Q9 a+ A# V! L6 v% T5 a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |2 S9 q4 p/ K1 p& e8 h8 I# r
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' U/ \* f2 t4 ?2 c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ L8 u+ n  q$ f5 f
    9 c4 e& B  m9 `& f1 }9 C2 {
    经典递归应用场景
    + o! Y% b0 t$ Q* H" Z1. 文件系统遍历(目录树结构)9 T5 ?5 e" j3 g- d# z' g4 `" S# X
    2. 快速排序/归并排序算法, X+ W8 P6 t: v$ o2 @1 U- H( f" ]
    3. 汉诺塔问题
    9 b  _) D  |0 w$ k: B) R/ r$ f9 F: i4. 二叉树遍历(前序/中序/后序). `1 [, _# z7 F* U& i
    5. 生成所有可能的组合(回溯算法)
    ( V" g; _+ _* ]% ]4 Y
    $ i! _6 x& n& ]6 k( N$ b试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 06:43
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 F3 ^7 |! H0 d4 o0 s& m6 J5 _
    我推理机的核心算法应该是二叉树遍历的变种。
    : G  V+ V( V7 X$ R9 z. ~, n0 ?另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, @' B' n; g9 b# V
    Key Idea of Recursion: r# o: C" U! h2 G7 t
    % ?5 s- C5 G/ c, h. g$ ?# R
    A recursive function solves a problem by:2 T6 E4 R2 v& [6 k  d  A

    $ O& A& k5 C; }- K0 w0 G    Breaking the problem into smaller instances of the same problem.* }9 {7 S: C( {" n+ S4 N$ @* V5 G, a
    + m# s7 |7 y) ^$ B  R( n5 n
        Solving the smallest instance directly (base case).
    ) z+ k. ~* k, J! s8 q
      g0 L5 [; n* ]7 o    Combining the results of smaller instances to solve the larger problem.) N" Y7 |7 U: K
    . K6 i8 Y3 d( z
    Components of a Recursive Function
    $ d7 _- u& Y, E" J: W
    0 Y$ ^- Z' _5 k" Q% a    Base Case:+ z, S4 l' Q' a. N) v

    $ p+ \2 O- V5 F  W* n/ f        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 ]6 g( W% n8 H2 L

    , d& z* b8 P# ^6 `5 x) l6 ?: [- Q8 o        It acts as the stopping condition to prevent infinite recursion.' T7 o8 i. y  B

    9 q6 E4 s  m. r4 b        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 M' {5 ?7 z6 N% V. h# \  c
    ' B. e% ~0 E8 `8 t6 d5 q
        Recursive Case:* J# E% j& [5 A: s; b: e5 ^

    / L9 d. u6 G2 Y" I, t        This is where the function calls itself with a smaller or simpler version of the problem.
    # w, p( h1 r8 ~6 d, s. g& d
    3 ]1 v# R/ D/ R+ C        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ H1 [3 {4 F# m! g! ]0 ^2 B0 p% S
    $ z1 U( O' c2 g* T7 C$ E5 g& q* y# J5 v
    Example: Factorial Calculation6 Z9 o- H: J; N" r- {1 F

    , ?& I; ]/ b3 i: E* S8 N+ h; @' gThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 g6 }# }: T0 V( B$ W1 L
    6 p0 R6 E/ h$ J$ U) E1 I
        Base case: 0! = 16 q0 a+ [' r: k; E
    ' s* V2 g6 s1 n' C
        Recursive case: n! = n * (n-1)!
    8 a% w1 V5 t2 S. m* ^; k/ b4 `/ E, D1 m2 ^- l3 W7 E9 f
    Here’s how it looks in code (Python):
    ( }8 h. {- n3 O, ]python2 A% r* O& ]# j! V0 U
    : p$ s* @/ o9 e9 `( I7 q
    * P6 u6 a' D$ j9 W
    def factorial(n):
    & t$ H! f" s1 ?- p* d& f" Q; d    # Base case+ s. C9 d7 ]2 u6 s. P  j
        if n == 0:
    0 g4 @% O) V6 Y( O% e        return 1* g4 c4 ^$ u; z7 E
        # Recursive case
    0 d  F7 p" L6 \3 c" `: M- [$ j    else:2 Z& X# G' ~: ^
            return n * factorial(n - 1)
    - Q2 g# o, {3 Z6 h- W* G
    7 v0 m$ R2 u/ n/ l! V) Z; S5 _# Example usage! l; m1 V( m3 {6 I, i
    print(factorial(5))  # Output: 120
    3 S8 c$ f% ]8 b2 J2 a
    . \. P+ u6 L/ t5 r. _' ^How Recursion Works- S/ Z( y& _  n
    " x; D3 H; u' z  B
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 X' s* {7 r2 x) `
    2 n1 B2 v# A8 ]# w    Once the base case is reached, the function starts returning values back up the call stack.3 h  H3 W7 C- p" j* E

    ( d! |/ {5 G* o    These returned values are combined to produce the final result.' C, _+ T. K+ Y/ Y
    ! E) _- f4 W# O. s+ a7 _) r  h
    For factorial(5):
    # n: }1 A# {1 j- c, ?, k% u7 `* J, i2 b, u8 G# O

      m7 |+ E0 h  K# B3 gfactorial(5) = 5 * factorial(4)
    8 x  |: Q; ?' Cfactorial(4) = 4 * factorial(3)
    3 }- u6 b% B$ W" Afactorial(3) = 3 * factorial(2)9 D) ^6 p+ E; o6 l7 a! _; D
    factorial(2) = 2 * factorial(1)
    ) k) u2 g. }6 K2 ?# w. `factorial(1) = 1 * factorial(0)
    $ H3 z& c( N5 G0 cfactorial(0) = 1  # Base case5 v  |% @0 O* W* L8 n6 i

    0 M$ q$ H( |, D3 K0 D' Y* KThen, the results are combined:
    # e+ ?5 m6 k2 o3 w
    % [6 ]% g5 h! `# _$ B5 G+ d4 A
    ; n- i6 U: P( A8 rfactorial(1) = 1 * 1 = 1
    . L, C/ f8 F* y; ]# W# Rfactorial(2) = 2 * 1 = 2. ?4 h; g& i5 c- S- o+ c
    factorial(3) = 3 * 2 = 6# ~2 P$ a7 y. e- o9 r6 W% _2 x1 a
    factorial(4) = 4 * 6 = 24
    9 n' ?& }8 ?+ Wfactorial(5) = 5 * 24 = 120+ l& |5 U' e. G* w" P7 H

    8 q, [$ i8 F4 a* W9 |5 z9 }0 QAdvantages of Recursion* y; F0 R. W- P, }8 H
    0 m9 Q# z  {' j! E. ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ E( W5 g3 ^0 l4 d0 |
    + V0 \" T  y* o( L, |3 L3 a
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' t0 ^( {5 _6 N- a$ q
    6 [* _, c; m* E* dDisadvantages of Recursion9 n% D* p# v9 m
    4 O% z6 k: L+ Q! S/ C
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ I* i, _+ p5 J1 ]* v# x* x. F' K
    9 G* N) i4 y* [5 Q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)." \; r6 {% q9 C$ f- O- Y) h

    - P# u! W: R- q( CWhen to Use Recursion7 G9 `% u) `1 S: A8 I

    $ |* [- o  n9 N1 Z    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 r4 U8 H6 F# p# M, o* o/ Y

    7 c; i6 m; b9 ~  x2 i3 U    Problems with a clear base case and recursive case., m- P9 W0 g, v& u, H

    - `  D1 k# @8 P& qExample: Fibonacci Sequence
    : ?& b( Q9 ^5 b; V$ \: {
      U! r/ y- `1 ]3 R) j' b, |The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " i9 j2 p' J) d- N1 M8 B* S4 m/ ?1 z0 X& v7 h3 {
        Base case: fib(0) = 0, fib(1) = 1) Z2 \* F6 S5 m4 o5 c5 U

    ; N- q) W- ]4 X7 R( i6 r    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : g! L3 R+ G5 C. N
    7 G; u4 c0 |4 F& D' w4 z) jpython
    8 X! Q" p$ x# c4 l" i* u- K; k+ B( Q/ W8 L) z9 w5 i4 g
    ' V: q2 L3 n/ V. s# ~
    def fibonacci(n):7 g. B$ x. E* n7 \# M
        # Base cases
      Y$ h) q, ?- F7 _) T) p. \7 x    if n == 0:4 l1 f$ I( L. C; g
            return 0
    ' r! x2 \# \. [9 |    elif n == 1:: _9 i# ^3 q6 w+ t* c
            return 1$ F4 {. L* V3 L0 n  F% s% Z
        # Recursive case  k$ g( g0 M; k& M# h3 n$ m- \
        else:& V0 u$ Y5 q" U% e: @
            return fibonacci(n - 1) + fibonacci(n - 2)0 W) t9 i. y8 K1 n

    - }  ^  N) N7 P# Example usage
    ; M0 k7 _6 B- U. e0 H* Hprint(fibonacci(6))  # Output: 8
    * ?$ q7 Z: K& d5 o+ q: Z# w5 Z. Z: q
    , H5 T3 \7 b9 s# yTail Recursion
    + G) K! Z9 \! N8 F
    . |- `) G% }1 S& D0 kTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    : w* M- E( i' u
    1 L  k+ _: ^8 q4 k* Y$ qIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-25 12:23 , Processed in 0.031761 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表