设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1699|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 t" ?: Z/ _) G+ D: q7 Q, P2 A' n2 B
    解释的不错; ~1 \; V) d& w; ]# ^/ h
    - K" p8 J9 y5 A3 [5 g4 N
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + o: i6 w! W# z+ O# @' N$ s; Y* h, e, ^. G) H
    关键要素- j) l. ^. w; |
    1. **基线条件(Base Case)**; L7 @2 z5 O1 |9 ~( ~
       - 递归终止的条件,防止无限循环2 i* I3 P1 H5 b% s
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1* n: L4 J" |2 }& C

    + i5 S) g0 `: x. [$ A2. **递归条件(Recursive Case)**
    6 U& S1 `4 }( U6 X   - 将原问题分解为更小的子问题5 d" ^! y0 W5 ~, L5 L$ I' v
       - 例如:n! = n × (n-1)!+ q% T7 {1 c7 X# V( F
    / m1 c; `9 y$ f
    经典示例:计算阶乘
    * u/ g4 k' [2 X( |% fpython
    1 G0 z7 k" a9 E1 b) R. c1 ldef factorial(n):0 L. r" X$ a3 p) g( g- O2 I( J1 ?
        if n == 0:        # 基线条件+ P" ]4 ]) e( z( D0 i, }* i
            return 1" c7 a! B4 b+ y! K% a' B/ ?1 a- Y
        else:             # 递归条件
    " l1 }3 G9 I+ N  u( m$ b        return n * factorial(n-1)+ `6 r8 ~  O5 D% E" q. B
    执行过程(以计算 3! 为例):
    $ m! Z  F5 Q% }/ H8 a) n# jfactorial(3)
    . ~+ V% a9 u6 N" Q0 |6 i6 I3 * factorial(2)  x. X; x$ h8 B
    3 * (2 * factorial(1))) p, g1 Y0 j0 W( w! K
    3 * (2 * (1 * factorial(0)))0 s- Z5 _) i9 i/ e  D) i% C
    3 * (2 * (1 * 1)) = 6
    ; H3 a% A1 U5 @* G9 ?7 N
    , {1 k6 N! x+ {% e 递归思维要点
    # X9 m8 O. d- Z( _% j- z, b) s1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 x" w  k/ x- A& O* n( E
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)! K; @8 t# R% q+ b, r  @& o
    3. **递推过程**:不断向下分解问题(递)
    + ?4 V  d& @1 G% n  M: W2 q4. **回溯过程**:组合子问题结果返回(归)
    * H3 A; x+ J4 |# T+ N
    ' c" }3 \% c7 S( K( j* |; i8 C 注意事项+ _! ?8 k$ l0 R2 O4 u0 P
    必须要有终止条件; P( N  D+ `5 d! y, f" G: T
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    2 {6 J0 v& J) J, g) n* D某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ! H3 U/ t, _+ Y0 V" i- m5 l尾递归优化可以提升效率(但Python不支持)
    - U7 ]' H: D+ i9 P1 H+ y
    2 f4 P  q0 d1 J4 a2 d% A 递归 vs 迭代
    - a) D) f9 E# K; h9 v9 b|          | 递归                          | 迭代               |* g1 n1 a! R. M2 x' h/ W3 J) ^/ ?8 M
    |----------|-----------------------------|------------------|
    9 m9 {8 k/ C3 h6 V| 实现方式    | 函数自调用                        | 循环结构            |
    + l) Y3 [) f. }) T% x| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 h3 k* _0 Z" r& ^' E| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ) w0 V3 e$ r4 i* X4 J  Y; g% [| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 r% K0 q; ?+ ?" k# \
      g5 E. ?# F  X; O: v
    经典递归应用场景4 h, w* y. r$ \6 L
    1. 文件系统遍历(目录树结构)
    0 |6 N6 I- r  x( P3 G% i' t2. 快速排序/归并排序算法
      e& X0 o) n% h- M! _" {3. 汉诺塔问题! R& i; K/ L- @# v/ a2 s7 p
    4. 二叉树遍历(前序/中序/后序)
    3 `- R  e8 P- Y" I! B5. 生成所有可能的组合(回溯算法)
    3 {& w9 d' k, b* R! u! F* c
    / ?2 b' ]2 q- ^7 X& n! b; X- o试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    7 小时前
  • 签到天数: 3132 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. M; i6 o, L7 R- N  y, h
    我推理机的核心算法应该是二叉树遍历的变种。4 i% K. {. j( S* g( ~
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ! f4 r6 k- L- \8 J: oKey Idea of Recursion) G( m0 \, q2 W+ }( Z

    ( T/ f0 y5 }5 F# x, C. Q* F/ S  Q$ wA recursive function solves a problem by:
    # g: w/ o2 k9 d+ Q/ f; C2 ?5 N5 r; u8 |) B' i+ S+ h/ `
        Breaking the problem into smaller instances of the same problem.: m7 i. u6 Y8 J

    # m( l: s6 m2 i% _3 [% A8 P    Solving the smallest instance directly (base case).
    + K0 f2 K; Y9 [3 @8 f/ r0 D$ C# n3 g( ]' }  u' H: R
        Combining the results of smaller instances to solve the larger problem.
    & h; ]/ b# @! J
    2 ^0 l0 J( q1 IComponents of a Recursive Function( o  y2 ^; N% j4 D& H% G
    ; n* D3 g* K$ c' X3 h
        Base Case:
    9 k2 S/ a! @, o* n, }& t3 G
    9 `7 W/ \: Y8 U/ z) W4 e        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # f; p& s5 m# W% \9 D- X; E* c
            It acts as the stopping condition to prevent infinite recursion.
    % W  R! P  S8 `2 T: o# ~  `- O% [  I7 F; `# u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.5 K2 |' F. d4 e1 E  H
    4 b9 e8 L( u& I# }5 W) v
        Recursive Case:
    3 h# o5 r" H* Y$ R" i1 _
    7 f0 f7 U% L" }6 C, Z' {$ ~        This is where the function calls itself with a smaller or simpler version of the problem.
    + P+ V$ X; ~, a" S% @; g, v& |+ h8 d4 i9 \" ~' p
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ L" c, p5 [$ O; d+ }: ~
    % Q# Z( X) ~5 E6 v
    Example: Factorial Calculation9 o9 \: J2 ?( \$ R8 _

    ) {& e! I' l$ P* mThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 I4 G2 t! p! l* I. i. V( M) i: x* g6 w8 t8 _- h& I8 I
        Base case: 0! = 1$ ?4 U8 W8 w: |
    ! o0 }. ~( N  x+ t. n1 P# h
        Recursive case: n! = n * (n-1)!
    . _3 {2 ?' o5 {7 e" H, a- @7 T$ `8 S# ^
    Here’s how it looks in code (Python):
    2 ?1 {! c4 R- H% s8 B& X4 O% m  jpython' M8 f2 J& V5 R' M5 S0 P

    # N$ _& {0 b: p& ?# x+ \7 @
    7 j$ `( V" G" Cdef factorial(n):
    * g9 c8 {! T2 R# k    # Base case" {6 x& A% `& G+ d1 I
        if n == 0:4 o: u3 y4 S; ^* f
            return 1) i( z1 M3 n9 L' d$ ~
        # Recursive case
    9 L  [1 ~6 v7 S) s% c$ z    else:# Q' {% U- E: e* j" v  O' r) _
            return n * factorial(n - 1)5 d1 e2 H( B# N! n
    , A# B" m+ n' q' u
    # Example usage
    . d9 O5 W  ~2 V, ]0 A* @+ tprint(factorial(5))  # Output: 120
    8 B- q8 z, u: o$ Z% m# ~; n2 z0 K) F5 s4 K7 E
    How Recursion Works
    : I  o2 o" |5 `$ p- _. H* z: r4 b
    1 U. D9 f, E4 l; k    The function keeps calling itself with smaller inputs until it reaches the base case.) {2 K  k" o, a2 D
    " f# ]* x) T( {! d/ U% c7 p
        Once the base case is reached, the function starts returning values back up the call stack.
    # O% D  Y- V+ O  X% V$ E2 L9 {+ {4 y1 I. ]8 J
        These returned values are combined to produce the final result.
    , ~% a! ?9 E$ ^) I2 w7 Y; P8 D  ?: O  \2 l3 [+ L
    For factorial(5):
    ! @2 H1 H0 b$ x0 K+ w2 n) r9 c; D4 T% x2 E

    ' x; P2 |  g+ F3 L+ Ffactorial(5) = 5 * factorial(4)$ r- L, R3 i- K% e' C4 `/ C
    factorial(4) = 4 * factorial(3)# G% b9 m! d# s0 N; a
    factorial(3) = 3 * factorial(2)3 c# y/ B2 i# y9 K' y
    factorial(2) = 2 * factorial(1)3 ]' x! I! ~; g/ d5 O% c
    factorial(1) = 1 * factorial(0)
    # n0 C7 W. w) a) |1 n+ `% `# Nfactorial(0) = 1  # Base case8 M0 e  q( O/ ~3 ?
    + Z7 {2 T3 e6 [4 }1 F1 {, M: ]7 ]
    Then, the results are combined:# b( i& T1 o; T( I

    + O+ a) K! L9 ~1 x0 ]
    * R0 B2 [( ^( X9 }9 h: B# |' z' dfactorial(1) = 1 * 1 = 14 H9 t4 e4 L5 b# q/ P+ N
    factorial(2) = 2 * 1 = 2
    6 i# E/ `  q1 ^/ T1 Ffactorial(3) = 3 * 2 = 6
    $ O7 w2 O3 r3 J8 J* afactorial(4) = 4 * 6 = 24; |: O; q1 R; I- @3 _7 I
    factorial(5) = 5 * 24 = 120; r! q/ @, P7 Y3 e$ k

    ! J0 r, ^: N: M/ J6 {8 T7 L% v1 ?Advantages of Recursion% b4 X# I+ Z7 o; E1 Q

    8 Y; D  @) e& b* u( [% g$ M5 q3 n; N    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ( {1 H  `# W- n$ ^$ _
    ' \* o4 r9 }& Z& [$ c    Readability: Recursive code can be more readable and concise compared to iterative solutions.' G- f( Z6 s" Q5 \  }. e2 Y
    : O7 G' k  m& M% r1 o4 g) i* L, m
    Disadvantages of Recursion
    : q2 h' F! l) e( {2 _
    6 E. y! ]0 a8 ?( O: ~& ~+ D    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 Y7 @9 w  K- I$ K  ]" U, b
    / ~1 }' X; Z4 {) ~1 A    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. s" y. L" c5 Q" f  @- C
    # f& H4 X" L7 X. X' y
    When to Use Recursion
    % }' S7 m- R% Y% L& }3 _- C) Q
    1 X6 A& \+ Z2 J0 l# c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % N. n7 b% Q9 u; i" P4 I! X
    9 w/ G, r# Y$ B% Q+ o7 a    Problems with a clear base case and recursive case.
    " Q. l$ i3 P) M4 p" b7 }
    + {/ b: F9 ~3 M' gExample: Fibonacci Sequence6 v% ~* ^- F! S- w5 c6 I  c9 l

    ; r% d$ i- ~) r, j7 Z/ MThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
      \& a, l7 c8 ~  U& [# s$ f2 P2 ]) Q$ j
        Base case: fib(0) = 0, fib(1) = 1
    5 {- P0 F# A/ P2 ]# Q- A. \6 H9 B' @  B" h  X; E
        Recursive case: fib(n) = fib(n-1) + fib(n-2)1 C& `1 E7 N+ h7 u- n. [
    ) |1 U2 O% y7 `( u3 @, d# p9 J
    python! Z# ~' j9 V! t, [5 s# x4 R
    % g4 D$ m8 z9 [, U
    8 p6 j5 N7 U. U8 m( \- j8 P8 P
    def fibonacci(n):
    - w* x. u4 D. q9 o- T    # Base cases
    2 K$ U1 R7 u+ H! ^4 [: A    if n == 0:
    + K7 f, }1 j) S        return 01 l9 X: V4 ^- H6 R, Y; ^+ {! r
        elif n == 1:
    ; h! Z+ l5 U% _6 @9 A        return 1. w5 X0 b/ e( G: Y& A. ~
        # Recursive case. K* j8 Y# @( O6 {
        else:
    / m& d# c+ M' r# m        return fibonacci(n - 1) + fibonacci(n - 2)! N& r( Y& Z" c3 `; C! m9 P! i* I
    - l2 B  r' g- S5 ^8 u! A$ n
    # Example usage. m/ Q9 W$ U# x" \; G+ A2 A
    print(fibonacci(6))  # Output: 8
    4 m  c- A% d' c. h: t( m
    ' g% c4 D* j4 PTail Recursion3 g( U% T; p: N2 Z

    2 k/ N7 A+ Y) jTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ; y9 J$ {4 |/ Q, C# \, k1 Z( o0 U3 d3 q% y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-31 21:43 , Processed in 0.031474 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表