设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1081|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 F6 D, ~. R! K7 `0 x7 T4 ~  u0 u2 c
    解释的不错
    3 s! K% Z0 g1 F1 v) {: h% \
    8 Q! {& N& R+ P' d  D& ]5 {- @递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; ]. `% t  \1 R) D& v& k

    , f8 B$ ]% F3 f 关键要素- B4 J) ^3 [, f$ V9 i6 `/ P/ u
    1. **基线条件(Base Case)**# _. l8 N3 A% ^5 r! o
       - 递归终止的条件,防止无限循环
    * Q; o2 A7 r1 \2 b/ ]+ _   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 m* D: K0 x4 J" ^" j! B! C1 R+ T3 @/ V  f; _* E
    2. **递归条件(Recursive Case)**3 o% u, S9 F  i* J& s1 ?+ N
       - 将原问题分解为更小的子问题
    % t4 [' ]- W: Z  {   - 例如:n! = n × (n-1)!
    : [" i& J- n! v: M+ Y  C, _1 a" e* w7 z$ D( B$ G( k$ g9 h' ^1 d! j, [
    经典示例:计算阶乘, U2 P* H  `' l/ Y5 l# G' ^
    python
    5 b7 b% n; b- x+ E1 b. w8 |def factorial(n):+ g0 A. U# {0 \% x
        if n == 0:        # 基线条件: Z9 a  c" X6 g; I; H
            return 1  r- S1 y6 D4 r7 E( C: U2 \3 I
        else:             # 递归条件8 I  w4 y7 B0 H- ~  t
            return n * factorial(n-1)
    . L5 x5 C5 F# ~执行过程(以计算 3! 为例):/ M$ i9 g9 l, \  E
    factorial(3); p1 r' O; v9 ~4 k
    3 * factorial(2)
    : a9 S$ |/ o2 @( k+ `6 c3 * (2 * factorial(1))
    * j) n: d; y- _+ O* ^3 * (2 * (1 * factorial(0)))
    2 D9 W) @- Z/ X3 * (2 * (1 * 1)) = 6) f+ w- Z3 I- a9 w) v6 u

    2 d4 I; f& z* v! m 递归思维要点7 ]: A" r. M! Q* l: ]) o: b
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 f# ?0 k0 C  Y: Q9 i9 s2. **栈结构**:每次调用都会创建新的栈帧(内存空间); D% }0 D& m! E5 a# L2 t4 y
    3. **递推过程**:不断向下分解问题(递)( e* l- J5 L: }. Z2 t
    4. **回溯过程**:组合子问题结果返回(归)
    & Z1 K/ _6 c; {& O2 b4 l$ j" A( c% `
    注意事项
    " k$ L7 y8 v! G1 Q) W: h( Y9 q必须要有终止条件
    2 O/ I* G( g. ~. R3 q5 n" k递归深度过大可能导致栈溢出(Python默认递归深度约1000层). I4 ?; b  B& _; [
    某些问题用递归更直观(如树遍历),但效率可能不如迭代; g8 P8 E8 ^2 L
    尾递归优化可以提升效率(但Python不支持)7 D+ F% p  l- P
    * y4 ^! C$ L* M+ O9 {0 F
    递归 vs 迭代
    3 Q. @5 V" {7 D1 J|          | 递归                          | 迭代               |: l. N! f7 T! G& h
    |----------|-----------------------------|------------------|! \  m- z: {8 l' ]' d
    | 实现方式    | 函数自调用                        | 循环结构            |
      {9 T+ y4 o) v" l7 G: U| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    / D# m) _" A2 y9 D4 A7 N| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# {8 k- _) W. y6 F9 V$ K( V, J, m
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . q$ l( Z, U3 h& u- _8 ?# E* s
    9 G4 {* G( O4 c5 _8 `2 q/ X5 h 经典递归应用场景/ J6 K" {: }! T2 c3 G
    1. 文件系统遍历(目录树结构)5 A% t6 \8 ?0 C6 t! S) A- I" q
    2. 快速排序/归并排序算法' f3 h6 b5 E& R/ U
    3. 汉诺塔问题8 l& E4 _5 w8 D; H
    4. 二叉树遍历(前序/中序/后序)
    # P* e9 P- I. U1 r* C9 s3 ~5. 生成所有可能的组合(回溯算法), z9 s- i3 u% o. v4 B- m7 A. f; c

    9 l2 a: D. N- ^: ^/ B; O试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:30
  • 签到天数: 3093 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    7 ^- n# t$ |) ~, {我推理机的核心算法应该是二叉树遍历的变种。# R3 Z+ I5 ]4 a# q$ j
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* `. U9 p) D7 i" K) X8 C) A+ f
    Key Idea of Recursion
    4 D8 W0 u3 t- X7 R. V3 j8 b# ~% Y" s) i' m0 o% |* b8 A2 j
    A recursive function solves a problem by:
      v4 Y) o- c% D# |7 W3 m6 N2 n: ]
    ' V6 T" L& K" {    Breaking the problem into smaller instances of the same problem./ R: ^& K" x# u; t$ D1 G
    5 S: \; j  p6 E8 e  K6 E' `6 z
        Solving the smallest instance directly (base case).
    . r7 Y. R8 C5 n7 M* U
    # H1 ~6 l( Y" P- D    Combining the results of smaller instances to solve the larger problem.
    ! [* R( Q1 f: I( y" P2 R% L" b; _/ x' s
    Components of a Recursive Function
    * j% t$ u9 I% o1 A! M
    7 I) U7 y& d1 S- h    Base Case:1 g& }9 f  u  G% k5 `
      V) c! f$ T% m0 b
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 s, ^9 r; R. |0 [  M4 a4 y5 h- T' Y, b) A" g" Y: ~# p" G
            It acts as the stopping condition to prevent infinite recursion.
    # [/ e5 U' p& a6 L" y9 r7 Q% O; N1 {4 i  @' L3 C% ^  m
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 H: r5 R& a  |' v
    $ X* v2 c& V) f0 D
        Recursive Case:; S9 s3 k4 i* l5 [( G3 @; o
    , Y' l4 A; p; f  Y0 a. v( W
            This is where the function calls itself with a smaller or simpler version of the problem.
    0 _0 x) H) C0 Q3 C, i# g2 q8 k6 U- `+ a
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 ]  k  e8 d4 c4 a- p7 o- T5 ~' k1 U  ~1 K' Q
    Example: Factorial Calculation: _% L+ b* K2 O& ]

    ) ~' M( v1 I" H  d  F6 `The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" w2 w! N& T* E9 l) ~3 l

      D; J, ]5 H8 w. s7 R3 U- {6 m! Y    Base case: 0! = 12 L- h. ?' a+ `- t' L

    5 w' y: t6 j7 o7 U2 d    Recursive case: n! = n * (n-1)!
    " ^6 p( M; l4 ^  u5 X
      M: L- k, o- F/ aHere’s how it looks in code (Python):
    4 g: d+ D! Y! T! `8 t$ G8 Qpython
    5 m$ W* L1 K5 J& B' E
    - F6 c8 y( ?* d$ W( t+ k5 A/ z4 }( k' @2 a$ O  L8 Z
    def factorial(n):
    2 o6 n$ t6 Q9 C: w- @% z; N: p    # Base case
    / m" y6 B: Q# g% n0 w$ E    if n == 0:$ S/ j2 W0 |7 {8 h4 f% v9 O
            return 1
    7 V; \1 f7 }- N+ g( B: d, V. Q( \    # Recursive case
    ! P2 \9 b8 Z0 F  p3 @    else:
    / j2 ?8 D9 g  f        return n * factorial(n - 1): v" Q2 F6 N, l9 W8 c5 e! v
    ! T& z. e4 m* i7 o# x! b
    # Example usage
    & y+ H/ \6 D0 g: K8 Y# |% s+ Rprint(factorial(5))  # Output: 120
    4 u' V) f, e$ ~* a- |$ q  s# l9 k& }4 G. s
    How Recursion Works" g5 f4 m: Y+ |/ f
    7 Q$ a4 a5 u3 @; Z( a9 Y
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + C. Y+ t/ O% p+ a1 u/ ^3 U6 w0 l3 A
        Once the base case is reached, the function starts returning values back up the call stack.
    " b! ?1 D9 G& s6 k
    6 G( O; |8 [% w3 G/ }    These returned values are combined to produce the final result.
    5 a" k; A" U+ m* O' s  ^$ c7 b3 P& V# x0 Q1 {/ f1 Y0 f
    For factorial(5):
    / x" K' o$ |3 J( y
    5 {& g; `" e% p9 R5 l6 D& M4 F* n* \6 u2 y
    factorial(5) = 5 * factorial(4)) L; G5 [6 n3 T3 x5 q& v3 }
    factorial(4) = 4 * factorial(3)6 [$ x. w' F7 R$ K- y+ L2 a. H
    factorial(3) = 3 * factorial(2)
    4 Y! T) k- y0 pfactorial(2) = 2 * factorial(1)* n3 R1 J, ^7 O9 A; a6 D4 t: q
    factorial(1) = 1 * factorial(0)' w$ z) R3 q7 J! S2 _
    factorial(0) = 1  # Base case
    2 L3 S' y$ L& M" v9 |; W: M" R2 u; d, T, G6 p, x' Z
    Then, the results are combined:. Q! |* n3 F% Y" P: z! |

    4 K+ t5 @! b: \3 Y# O# h7 W: [; H6 d" ~6 n# g! G& B" k, L; G7 m! d
    factorial(1) = 1 * 1 = 1
    5 M& u( H/ z. _" d* Q  ]6 jfactorial(2) = 2 * 1 = 27 C# t3 r/ U  ]$ y+ T! [0 Z# L
    factorial(3) = 3 * 2 = 61 U5 e2 K8 B" f; F, K
    factorial(4) = 4 * 6 = 24
    0 @, E3 i. B! g) S$ o3 ^' ~factorial(5) = 5 * 24 = 120. u( s( ~( f/ J" v/ g

    ; |( N! ]  p! |+ h5 H6 P& GAdvantages of Recursion( n2 n5 |3 i  u- C

    3 Y) ]7 U9 D5 P# k* G    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    / R% t  V3 j. T7 `
    " J. z& O8 }7 `' a    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & b" \" c1 \+ o0 l  W2 ~: O
    4 g* g4 w8 c5 v4 JDisadvantages of Recursion
    8 T: w) G+ I) ]% Q( \! M. i2 T* [3 Y4 n* K- [* z$ X: i
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 z+ a; b6 a0 Q: H9 z" z

    # U" ?4 E3 n3 N' J& M    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    " V6 d) i3 }' b) t
    8 f9 a+ G0 _9 S- RWhen to Use Recursion- q) F7 i& B& s9 y- ?9 j5 i3 N" L

    % ^  B  }$ G& {$ w    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 ?0 k2 D1 [4 U

    3 Y3 q8 p3 M7 _$ p! ~% W  L    Problems with a clear base case and recursive case.$ G2 C6 u: t" ?0 G
    6 y2 Y* |9 j4 `
    Example: Fibonacci Sequence
    ! ^1 Q9 H9 V& ]
    ! _% F4 T4 [$ }/ m$ v1 AThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; I# Z; w% t  b5 \9 j5 ^# B1 w$ `4 ~; Z. H; Z
        Base case: fib(0) = 0, fib(1) = 1& b( a7 X, C% r' K) X4 G

    $ V! b$ b. w/ P4 l( y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 o1 \# c0 M" i* e6 l9 C4 ~" d9 t( h% R0 h6 _, J
    python6 T: P( n. D* x1 G" d
    " Y1 [# W' z/ ^8 }; ?9 T  N

    7 F) u* H2 E, t- k- }# D$ pdef fibonacci(n):5 O" d$ M9 W6 ]( B' s8 Y+ c% o
        # Base cases+ A$ z5 W, v% z1 ]8 d
        if n == 0:
    / [& _- s# r" k  y% T% ]+ x        return 0- Z9 B6 G% ^& m: }' }; ]$ T
        elif n == 1:- G9 f- G$ `1 ?0 a! q4 q; b5 k
            return 12 |" w) W, ^/ f  \3 V3 L$ H8 X
        # Recursive case
    : g+ k, o! Z6 D2 p+ A    else:: [1 R4 o/ F, m9 P" W( U% ]
            return fibonacci(n - 1) + fibonacci(n - 2)
    & K' a1 w# P* i* D* R1 M3 I5 n. ?4 W+ }6 ^
    # Example usage
    ' ^$ K% c( m- n' j9 Aprint(fibonacci(6))  # Output: 81 J4 a$ _. H. m, G1 s
    3 [2 Y( V* ^- Q* a+ B% q' k% ]
    Tail Recursion
    2 ~5 E* j% X4 y0 X/ d
    # P* h, L. {- Z# Q0 z# m- h" ]Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 D8 i1 s9 v: a$ w: E
    2 v, j% X+ V/ b
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-16 06:36 , Processed in 0.032359 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表