设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1962|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 C/ d" G+ H! i" q# N& C$ P8 h% r; m
    解释的不错# ~  d$ c# K( `4 L9 h/ f

    % j* X  J3 r. x8 L& |7 W& M递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 s5 t- l' J8 q; I! j. }' k! j# A3 ~7 [. B
    关键要素
    ; ^, m  K' o5 e% q3 |5 S3 X  S1. **基线条件(Base Case)**
    & P( n$ ^5 K8 k- C3 L   - 递归终止的条件,防止无限循环3 M0 z" P6 U) J  P, M
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; W) K% L5 U- \! u" b* S
    0 n5 B6 R2 v! Z: ?2. **递归条件(Recursive Case)**
    & o! H. p  P1 H5 |; v7 o0 H/ s   - 将原问题分解为更小的子问题
    9 y: e9 u+ o! X' Q3 l2 |# P  _) _   - 例如:n! = n × (n-1)!
    7 {' o/ w/ z' a2 I7 Q
    0 M/ W( F% X5 b1 \3 X 经典示例:计算阶乘
    1 c: Z/ G* Y" \6 \5 T4 upython5 b& h# I4 x  O4 r( _, \+ w0 z4 F
    def factorial(n):
    + j$ t8 j* Q' X* b# P4 t    if n == 0:        # 基线条件
    8 P( U7 }7 d9 ]0 c2 o( W: v        return 1! f* {! w8 s5 ]- j- V
        else:             # 递归条件
    3 M- S6 I2 S) g# Q! r* _4 U! K        return n * factorial(n-1): h6 i5 z# ^2 V: a8 u  L/ P3 }
    执行过程(以计算 3! 为例):
    , {* E& g+ O1 W; Z2 ?6 \' Q8 t8 I$ afactorial(3)6 m8 E3 a" k+ M$ f4 Z* {. q
    3 * factorial(2)+ c2 w6 T2 S' Z, _
    3 * (2 * factorial(1))
    % H1 i/ c& m3 e; k( H# G3 * (2 * (1 * factorial(0)))& |  N- J5 m  p5 r& a8 }- P- v
    3 * (2 * (1 * 1)) = 6
    4 i7 @% g" H) A2 [) s0 l  [" a7 b. {8 N/ m0 e: G1 _- b! x- V
    递归思维要点
    6 p2 b4 z3 \$ f* \9 R- V1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ y: [+ g1 R% M; Q
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    5 H$ v# i- J8 W- S- b: r0 O3. **递推过程**:不断向下分解问题(递)1 d6 ?" F: T$ T2 m. a. E: |
    4. **回溯过程**:组合子问题结果返回(归), u# P  g0 p3 w+ N
    ; P* f) z2 d1 R/ V
    注意事项
    3 `4 p+ _  c9 N$ a$ m/ _# r必须要有终止条件7 V( ^" s, e0 S
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)7 M0 W* e: I1 B+ S
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 v. L7 t4 _- I4 Y1 L尾递归优化可以提升效率(但Python不支持)
    & }0 y. [3 I* d- R$ q% f
    / g4 ^" M0 p$ }# ^ 递归 vs 迭代
    . M' M% u; h6 c|          | 递归                          | 迭代               |
    ) Q+ {* g9 X* h  B|----------|-----------------------------|------------------|
    . X+ P/ S* U) \' T2 u# F| 实现方式    | 函数自调用                        | 循环结构            |
    " Y) Z5 L6 F) P3 X/ K* c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + Z% \6 J; P1 K| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: h4 G7 S- w  E) w% p7 s1 `/ o" T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
      O+ W2 H4 l# ?
    ! ^& K; S3 y$ ^! q2 A, p" e- M 经典递归应用场景
    7 i9 w4 R) ?7 z9 c1. 文件系统遍历(目录树结构)" C4 n$ U7 w! Q; |9 o  ?
    2. 快速排序/归并排序算法; }6 J# f2 h" B" |9 r$ e1 m
    3. 汉诺塔问题0 @! j5 T4 \# |
    4. 二叉树遍历(前序/中序/后序)2 Q& i/ w' r8 c& F! M
    5. 生成所有可能的组合(回溯算法)
    9 ~7 E! T3 P* s3 p
    / v- t7 }" n4 l+ D* F试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    4 小时前
  • 签到天数: 3156 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- ?. N9 r. o1 J" B$ G9 I
    我推理机的核心算法应该是二叉树遍历的变种。9 t3 Q% }( l9 c2 ?6 h3 O8 d6 c
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; [9 C% w7 ~. T) P% K
    Key Idea of Recursion
    8 ^( C" J3 n2 I! D8 O3 u4 ?' a# u! _$ T
    A recursive function solves a problem by:
    & G" @( N$ t4 k0 ]: W  d: z+ D2 C# g* ^" G: K! V- K
        Breaking the problem into smaller instances of the same problem.
    1 @- M; n* d) D8 L& l" U- B' T1 T! o5 C% y
        Solving the smallest instance directly (base case).
    0 T' l3 o( \/ Z3 ^( H
    6 o; Z' j$ m% i# ?' j- O    Combining the results of smaller instances to solve the larger problem.7 U5 d9 R( z! j9 U
    9 b7 D( R1 |. f- }$ P
    Components of a Recursive Function- x- ~9 `7 D5 t4 V! N0 \2 y! q
    . ]( d8 A' i* I3 J8 b
        Base Case:$ ~$ t- K6 N% J
    , p& d5 Q* R: r# y* g! ?
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    + O0 ~' ]2 q- r/ m1 A
    * B# r5 k$ V3 s  H1 t, }# r        It acts as the stopping condition to prevent infinite recursion.' R$ k. X$ ]- ?+ Q8 {+ u' s
    ) o4 [( M; g: h  V9 P
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! e: D8 m7 n4 q2 i% V" l$ Z* @

    8 J; W  Y4 c) z( r2 v  C/ b% X    Recursive Case:
    0 A  t# P1 _# M8 O" K; {9 P$ F5 f+ m" ~, }- U2 q( |
            This is where the function calls itself with a smaller or simpler version of the problem., \9 w, J" v3 {  n( i+ e# C# I) r
    7 Y" y( x& J# s7 W! a" L* h
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    7 @, I' }$ }, [8 b5 o
    4 Y& E- u/ T2 M5 cExample: Factorial Calculation
    ; x, C" x' T$ e5 }. o7 ?9 A+ Y, p: S5 t. b! V9 N
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    0 B# E) ^+ X7 W7 m' E8 x* s7 v& e/ A% Z! |/ @& N, q
        Base case: 0! = 13 M  a$ n1 E' [0 B$ y) W2 f( h9 E
    ( g. e3 r  C+ V) j; q$ H
        Recursive case: n! = n * (n-1)!
    5 J# `+ i& u# P+ e- ^9 w" S
    7 T8 a  S$ m2 r2 a; T3 ]5 sHere’s how it looks in code (Python):5 B% ]9 L% x7 J, }: Q- T/ v# e" k
    python* T- j0 p* ~7 z
    , e- U( \- x. T7 Q- Z8 w

    & Z, A& }# y7 T) ]4 T8 H* w- mdef factorial(n):
    " h1 S. t& z1 w/ D- @! D; q    # Base case' B4 c/ }8 I! c7 T$ ]
        if n == 0:
    1 O2 H6 y& `0 v2 @( B6 Q4 u        return 1
    , w& t2 h  `) ^" h  n7 h    # Recursive case5 m/ H* l, g4 J* E5 ]& g  Q
        else:' m7 y( g: i$ }1 |
            return n * factorial(n - 1)
    / ~3 Q0 v, a7 l) o1 `
    4 {( j  c. U! }+ F7 O# Example usage
    ( r# g$ s. f4 `* ]* zprint(factorial(5))  # Output: 120. w, E1 k: ], Z' X

    $ M. z0 a- f6 a8 U. dHow Recursion Works
    , V3 B0 ^: `  M* S+ X0 v$ R% r  m2 Z
        The function keeps calling itself with smaller inputs until it reaches the base case.# Z1 e! t& L" m

    5 H, F7 E& W  N( Y2 Y    Once the base case is reached, the function starts returning values back up the call stack.
    2 O* f+ E( x9 t( G: x& F
    ; J, {# i* b; x, T( ^3 K    These returned values are combined to produce the final result.
    " {) Z4 Z* f. K- D6 {/ ]; z, ]) @( u. m
    For factorial(5):  B7 t$ E# F  B$ O$ m7 e2 z
    5 j) l# N. k/ K3 I
      y  `3 ?; X& b8 e. W1 c+ s: T9 q
    factorial(5) = 5 * factorial(4)
    5 d4 C8 D3 G- |  mfactorial(4) = 4 * factorial(3)
    / \# [: L% G! S$ G8 N# Zfactorial(3) = 3 * factorial(2)
    " U9 {) Y0 o, f/ _8 J& vfactorial(2) = 2 * factorial(1)
    ; J  T2 L$ c: |' p. X3 \. z/ Gfactorial(1) = 1 * factorial(0)8 q. f6 h7 b- Q$ D
    factorial(0) = 1  # Base case1 N, @& d6 ?" @# b0 g
    ! B! L7 @' |* W) n
    Then, the results are combined:
    3 Y% b; S$ M/ q! T  {  ~8 E# M; b, r3 u. e* s

    4 q5 \$ O- [4 B+ A9 Z! p* _" c# D; ]) ofactorial(1) = 1 * 1 = 1
    . K5 i$ ^8 x3 F, \+ K5 |1 yfactorial(2) = 2 * 1 = 21 R1 a& L# {, N7 V
    factorial(3) = 3 * 2 = 6
    * ?: k/ g7 C& z. r" Y( l$ Pfactorial(4) = 4 * 6 = 249 X2 j, l9 Q* o1 O+ P! ?
    factorial(5) = 5 * 24 = 1209 U5 M( a. @2 g% {8 |* M) t

    1 |# p7 C0 R5 eAdvantages of Recursion2 \! `6 s6 i9 |5 ?. l# }

    7 b' J3 R$ \6 {/ n. g) F    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! x& t1 P) n; J: d& M2 Y) K2 a) I: y" v) y; W/ B
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 Q8 ?6 p) i$ ~1 H* E, Y- d3 ^& {8 W, W
    Disadvantages of Recursion
    2 I7 R5 l" E5 [. ~# t4 ?0 P/ n( Z& G) z- r: T$ O
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 ]/ m. F+ u1 V. H% d! y; y; Q
    . f. w2 L( e  v* W- T    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( {% K1 g3 |" x5 t/ }6 y

    $ k. C2 N# C! H+ z) fWhen to Use Recursion. s" j6 y6 S( U# w/ _

    3 U. `1 A' v. {! n; @; ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).' W. L+ A, W3 d9 T/ c# A
    , I* ?% y( J, X6 Z+ R4 z; j) w# q
        Problems with a clear base case and recursive case.
    # y0 c2 G  _- P  v2 |
    0 e) t' ~: u- A. N& D8 k. d( j( {Example: Fibonacci Sequence% T( u8 d' U  E. B# [. I4 p0 W

    ) X' V! _8 x3 k! WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 f) P; q2 N2 [. K+ C% W

    - c. a9 r9 b; p' Z7 G9 I    Base case: fib(0) = 0, fib(1) = 1
    , w8 F) s* w4 C& n2 c* b4 R7 K! O6 N" {& Q/ @
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . f4 L; ]$ a) P) c4 a) v; D; x
    - w! |1 ?0 H4 C$ b3 ?+ K& c6 r" V( }python$ c& J  i3 N0 m$ ?
    * c5 f) k* V! ^" {- t9 @/ |

    9 j, @6 B) u2 l+ ^5 F, w/ T$ J/ ldef fibonacci(n):9 `: J# j+ h& i, w' I$ d
        # Base cases
    5 M! @* a9 D5 \# w( L' h    if n == 0:
    ' T9 e6 N& D' \        return 0
    ; r$ @2 b% f& D( n! F    elif n == 1:
    * M' Z/ `9 k: A% k# m* c  {& d6 a3 D        return 14 m6 L' z* ]/ S/ S
        # Recursive case
    " w* ^8 |" H$ s. K  c5 v    else:
    , k6 @) E% k+ ?/ E! u1 c        return fibonacci(n - 1) + fibonacci(n - 2)+ Q( W2 j3 Z% C; Z; N0 L
    - Z3 s" @: v2 Y5 W9 C  @
    # Example usage
    ) K) M' y* u5 ~( y: zprint(fibonacci(6))  # Output: 8
    2 ?! e! V" c- O8 C) G1 e5 q' h0 U' V" B7 T% ?- b& u
    Tail Recursion. }# g: ], Z& y0 w2 L& l

      O% W5 {& b/ }: p; ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  d# ]) b' x9 _- Y

    2 ?' I6 @) W2 {. MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-28 12:17 , Processed in 0.057138 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表