设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2041|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    " \4 ~! f  D& Z6 Y( h$ J4 I+ s7 N+ ?& [
    解释的不错
    0 ^) g& D+ R3 T/ v  y, H* t
    3 g. h( i9 |' Q6 _0 p递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ U* j+ ?  p* h! D  Q- N% k7 M7 m
    5 v* b" }' G2 \% x 关键要素
    - S0 }8 I9 l7 D2 R( z8 Y1. **基线条件(Base Case)**
    % s1 ?% K& Z+ e# z- k7 K* c   - 递归终止的条件,防止无限循环5 G# h3 G4 E: B1 E! c
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ) h0 e! |% W$ l2 l4 N7 {6 K8 d0 O- M$ |  w
    2. **递归条件(Recursive Case)**
    9 u5 Y6 d9 E5 [5 P. c$ I   - 将原问题分解为更小的子问题6 Z: C3 U3 @$ w; ^% b
       - 例如:n! = n × (n-1)!+ T* m9 [: B9 F3 J
    . a! A# w& }4 m2 h7 l
    经典示例:计算阶乘
    3 a6 e; R+ q4 w" K# ^5 L! a0 zpython9 k4 R& P6 f8 x, f& F' b* t$ }
    def factorial(n):. K9 e* `; s1 v: s$ V: K
        if n == 0:        # 基线条件
    4 N! C( o1 t6 |% u. x        return 1
    ' d( Y5 Q  l0 v% o    else:             # 递归条件% l" ]: s9 D4 x: u* c3 t
            return n * factorial(n-1)) M: n: U4 c  \$ M: ?
    执行过程(以计算 3! 为例):5 o1 }4 }& b/ A
    factorial(3)) H6 x2 w; |4 K( f* c$ P
    3 * factorial(2)9 {; N4 N, J+ A! K- p
    3 * (2 * factorial(1))+ [5 \5 T; h. Q4 n1 [
    3 * (2 * (1 * factorial(0)))8 ], e) ~% I6 N# s! f/ V
    3 * (2 * (1 * 1)) = 6- d6 D% ~" i+ N# ]

    : b7 D4 u& {3 r  U1 D" Y. ~ 递归思维要点% ]7 Y  A3 h& w  L3 @  b2 o! K
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑7 O# s" b& {# F( l3 z+ J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 B' @6 [, n$ g0 X+ `
    3. **递推过程**:不断向下分解问题(递)
    / J% @" l; |& w% L+ e. j6 l' X: B) ?4. **回溯过程**:组合子问题结果返回(归)
    * q4 k+ n( p/ j- |: ^9 }6 v( Z% k
    ( y* b+ s% M2 U' k; o 注意事项# i4 U+ k  d7 E4 U/ z, ?. x
    必须要有终止条件% E# O; M- U: ]+ r
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 ]$ S0 [- Q) ]. M7 V1 F某些问题用递归更直观(如树遍历),但效率可能不如迭代' W, X1 P+ {" T8 P
    尾递归优化可以提升效率(但Python不支持). A8 m+ D# w3 ?$ d/ N6 g
    2 _  g' i- y# }2 S2 X
    递归 vs 迭代! s3 M* m8 q9 d
    |          | 递归                          | 迭代               |
    6 W0 n3 S+ Z4 \1 U* C3 w|----------|-----------------------------|------------------|
    : s1 m6 q; \1 @" ]) m0 p2 x| 实现方式    | 函数自调用                        | 循环结构            |- W/ @' h% _+ r
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % I9 k# z; g! B7 y& s# X3 K: ~| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    % x/ b( J/ X( i+ Z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    % }6 D7 X: z0 p7 T6 [3 F7 p
    : ^2 h6 b+ {$ D" ]: b% ? 经典递归应用场景, o1 Q4 m0 F! [8 |
    1. 文件系统遍历(目录树结构), n! o. V, L! P4 A0 I$ B& b; ?2 m, G8 P
    2. 快速排序/归并排序算法1 i, b! h4 }! \' ^
    3. 汉诺塔问题
    ; l( S' \0 A; C* n, ^: N4. 二叉树遍历(前序/中序/后序)) O4 G7 T* ^5 h1 v+ e7 [
    5. 生成所有可能的组合(回溯算法)5 X& A3 G) d  S0 _. I
    , H4 A0 Q% |( o- r
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    5 小时前
  • 签到天数: 3167 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 N6 X! {; C; n我推理机的核心算法应该是二叉树遍历的变种。
    2 a/ ^) E+ E* r9 D, @另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      [/ `& l" y* }' C7 P; ^; M9 Y3 XKey Idea of Recursion
    , |3 e7 D: v0 {3 q. U, r
    0 T4 W- X; s' u$ D' QA recursive function solves a problem by:# ?* z) s) B" E$ A
    1 c5 K0 E$ v* h
        Breaking the problem into smaller instances of the same problem.* d  R: p* F1 t" G& s+ e) n- w; U

    5 z4 f' K4 L% N- A- ]" u: R    Solving the smallest instance directly (base case).
    0 j# n$ R4 R- D; p
    ! n  y3 @. i1 m/ K2 t% {8 v! Q7 X  q    Combining the results of smaller instances to solve the larger problem.% {4 N$ M7 Y% n1 k( o& v

    4 }! l, r0 d+ J/ rComponents of a Recursive Function
    0 i1 I: H, i- F9 S* c
    4 Y# U0 t* @7 |% ^; G    Base Case:
    9 Q+ B! L; m) i( M& G" Y& `: B' Q2 B$ _  s* t( P
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( h: a' [4 O; M6 l, |& }
    5 y" b  O8 i& Z  L/ e/ g
            It acts as the stopping condition to prevent infinite recursion.
    7 _' L1 ]- P% X1 [4 A. g! T8 ^1 P* X* M6 g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( E" s0 \+ q% m  P8 @+ D8 U
    ) J5 p1 x5 C& G    Recursive Case:7 R4 z8 X# K1 l) y7 v
    ; f% \2 |# s1 f( C( ^% d7 Z% F/ @
            This is where the function calls itself with a smaller or simpler version of the problem.
    * s9 f  S0 T2 n# q+ F+ X- z2 V: s4 b2 U5 Z8 _4 q& N
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' s6 q$ O7 r/ c) d6 k7 q
    9 W% }* L7 B: A# l" J6 u$ I' {4 f
    Example: Factorial Calculation
    . N" |# [( |, P* ~) D
      U" k4 D$ f) SThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 P! |+ c) z: h4 j6 u0 l$ m2 l) U* h3 Y# W9 q$ x
        Base case: 0! = 11 W0 a, j3 {' z- I

    / ~  R- H# [7 ^    Recursive case: n! = n * (n-1)!3 t* b6 q6 ~/ n& p% @

    8 }, C  A! L' D) T- h; ^Here’s how it looks in code (Python):
    ( Z5 l. D3 E) [" L& ]& A* j& l- kpython1 A+ D1 F* Q' ^+ U9 E
    0 w1 ]/ K3 H' `$ o: n" J
    & {7 u( B, N7 r* u( @9 S+ P6 t4 [
    def factorial(n):
    4 D+ r7 A5 t! X$ h    # Base case" ]& E3 n. J4 d% X' R+ U7 b
        if n == 0:
    # i, K( l* e( g! v. ^& N        return 1
    , t* u: {: x: \1 V    # Recursive case
    " h5 M. S! L0 `/ @    else:
    ) F! U+ |: k( }) S        return n * factorial(n - 1)0 N' j! w9 u7 m; p" k

    . B; a+ l4 e% d' `8 M0 f# Example usage/ C* C: }3 P- T! I. e
    print(factorial(5))  # Output: 120
    ; F$ J' C% s, u+ s! Z% X) U6 w/ p8 ~0 K; R! I9 Y9 t: T, g
    How Recursion Works5 o2 L5 v9 V6 U' \0 g/ p, ^

    " F( ?0 P( B+ j( b    The function keeps calling itself with smaller inputs until it reaches the base case.5 [) @! p. N3 C* a8 H  X( Z1 b

    ! ^+ T5 B+ e! a; P2 O/ Z    Once the base case is reached, the function starts returning values back up the call stack.! D+ K4 _1 J* c6 X  w& r
    $ J, K: q$ m0 F7 v9 n
        These returned values are combined to produce the final result.$ T( V8 P3 Z6 b2 I9 U/ P  x
    ; r: V" d, Q3 d' Q2 }
    For factorial(5):" V6 N8 @3 K8 X. w

    % |/ q3 j; A" P- W! ~2 J9 [/ ?& G+ p, `" e! X
    factorial(5) = 5 * factorial(4)
    ( x, I( J4 B; xfactorial(4) = 4 * factorial(3)
    0 A4 q4 ?" ]: B. E% M$ b" |factorial(3) = 3 * factorial(2)
    ! U8 ^1 D0 ]8 _) A8 m# P7 mfactorial(2) = 2 * factorial(1)0 J" h7 D: S6 z( ~! T2 u# i
    factorial(1) = 1 * factorial(0)( Z7 y1 ~% K- q1 [! Z
    factorial(0) = 1  # Base case
    " O! h$ P  H: D; Y6 ?3 t" Y2 e6 i3 }) O% o
    Then, the results are combined:* w: ]# M0 E3 g; j9 t1 R2 h
    7 F& p4 {8 E, g9 y" R

    $ U& Q* `4 E) L* G+ nfactorial(1) = 1 * 1 = 1
    : ]- o1 `+ A- g0 Cfactorial(2) = 2 * 1 = 2$ Q% P, J  h% n
    factorial(3) = 3 * 2 = 6
    7 ^8 _% d2 y" i% H/ }factorial(4) = 4 * 6 = 24
    ! J" V) ]$ r, }: b# Y9 D0 T2 M# _factorial(5) = 5 * 24 = 120+ V0 ~* S* H* x* F+ o8 S
    3 o& Y- v8 d/ P0 h( D4 K5 i
    Advantages of Recursion
    - t& @1 m9 W% \% x" N/ p9 l9 O6 S. O8 b4 O% h) f* I) o
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# i7 a2 f6 W% s' r  S8 ]4 f. t
    9 \, g# K, T# Z3 N& ]$ n4 D
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . R5 {0 |+ z) v
    + o: f+ k% g( X* T# cDisadvantages of Recursion8 ^6 Q% F" R# Q5 b( W

    . m& j: D6 |8 m, W    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 d7 u. @' F! V3 [* j

    ! e# Q" N' e/ X  a    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. ^# G" m, j. [3 i6 d
    . x& J' _  U  p1 \9 x. o
    When to Use Recursion
    - n6 Y5 t1 `8 F5 t. x5 n0 `$ [  q: c( w
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) e, ?" b& u* Q, g. i7 k) ?5 F" w; u# t1 O6 l
        Problems with a clear base case and recursive case.% S9 t# l# F# |9 K+ e( m5 Q$ S0 r
    * o/ W' x5 `$ U# J4 E% ^9 x
    Example: Fibonacci Sequence, F: @; w, \0 z! P
    9 D! ^9 w( L* ~' m6 E2 g2 s
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 J) o9 [8 K# L( {0 \1 t' y1 K
    6 S- m( A, k* @% q& H; E    Base case: fib(0) = 0, fib(1) = 1
    % k0 Y7 q! M5 o) z! M
    $ ^. d6 ?* f  w/ H    Recursive case: fib(n) = fib(n-1) + fib(n-2)5 e4 z- ?7 s% Y, F
    0 H  d1 S" p: J: m. U: R4 i; \
    python( K; g* j1 C9 G
    ( x2 O# P$ X1 U# {. P
    6 E4 c% s( z9 ^: _- S& Q
    def fibonacci(n):
    : Y8 Q# f) w5 l" k. N2 E    # Base cases
    . x) w* ~5 q) Q/ D; {! P    if n == 0:6 M+ ]& H5 A; ?1 w& m6 m
            return 0% l5 d) s  D% y8 Z2 P
        elif n == 1:
    ' o0 p3 p: o# n- K0 |( Q4 Z3 d        return 1) I. [) x5 v5 {; i4 O
        # Recursive case2 M. Y" e! Y+ F$ s9 g) [) T1 N
        else:) L" ]+ }. |; z! {9 m# u
            return fibonacci(n - 1) + fibonacci(n - 2)
    ) T4 w, R; Z1 S  m! q
    ) i$ V9 S# w1 F1 l# Example usage
    % P/ W9 e* i+ m2 q! J0 \" N3 Aprint(fibonacci(6))  # Output: 83 G# T2 ]% `& A1 l$ M
    1 E- w8 r( R! a( v
    Tail Recursion1 [+ r+ x/ b0 a: g+ M% _

    7 A6 q& g; w* _- X1 U$ a, aTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 x3 I' U9 C  [+ ~- D$ m7 O$ r) x. Q/ Z0 U1 {* e$ h3 \9 F0 U
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 15:17 , Processed in 0.057199 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表