设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1307|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 , M1 P: \  {$ p$ f$ S; R

    - A) i9 h9 _+ ~( g; Y  C6 ]+ V5 h解释的不错$ p; k. V8 m' a; B( ?* U# }6 G

    ; x% Q- d. R+ N7 {. x+ D1 i2 L- L递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' d/ i6 s8 e' K/ ^, x" {# d  e

    6 j: _  p7 u3 `+ {) g2 m9 s 关键要素( e6 f5 b+ G5 j8 x' I7 T: o0 j
    1. **基线条件(Base Case)**
    6 ?& C1 l  z& {7 J   - 递归终止的条件,防止无限循环
    ' u) {7 L$ ^, y2 M, W; U& k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    3 T/ n$ F+ d% _& A/ `4 H# u7 q  A+ L5 p
    2. **递归条件(Recursive Case)**
    ; @% T' T; T2 q( w# P( I   - 将原问题分解为更小的子问题: j9 E  Y8 H6 ~/ M( A
       - 例如:n! = n × (n-1)!
    + J; `; m; c# ~& `1 y( t' h+ A, R( f) [
    经典示例:计算阶乘
    # p+ n1 V- d# o7 v2 Qpython
    4 Q" y* @, {# `def factorial(n):
    % p7 p+ @+ c- C    if n == 0:        # 基线条件
    0 k# w0 W0 P- m        return 1
    8 N- `4 ~  K) h9 a6 _    else:             # 递归条件
    - U, ^9 @1 P: H7 S( J" c! r5 n        return n * factorial(n-1)8 n) C8 n, i1 q7 I
    执行过程(以计算 3! 为例):
    6 x7 |, g. [- a9 tfactorial(3)) f) s# A3 [( Q; o2 l
    3 * factorial(2)$ q$ @2 `, D( W+ V
    3 * (2 * factorial(1))
    : F* V8 g% F; y2 {* Y; c! y3 * (2 * (1 * factorial(0)))
    ! K' F; y8 D5 o8 L3 * (2 * (1 * 1)) = 6& i5 j; I/ B2 h" T( l) a' T  Z7 W

    3 T  i6 \$ D: j; d. v 递归思维要点  `& s1 Y8 Q* g6 h5 q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 N: h8 m, @+ ~8 Y9 W
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ B  W2 ^) t  @3 J0 X& v$ A
    3. **递推过程**:不断向下分解问题(递)" R. E# S, r" M5 v9 C# W
    4. **回溯过程**:组合子问题结果返回(归)
    / b  }( e: O7 N/ D0 N4 Z: K4 z: v  m  q  J# A
    注意事项
    4 G% X/ w+ z' Y' @6 i3 @6 ^必须要有终止条件# k( h, }: j  ?5 C9 Y$ R4 x
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ `( K7 x) b; C6 r' I" I5 B: D
    某些问题用递归更直观(如树遍历),但效率可能不如迭代+ ?+ v/ J. E$ o1 _0 S; B- t% x0 h
    尾递归优化可以提升效率(但Python不支持)2 I  K, u/ U' a0 T& N: G6 f

      c  g& p& s" S" |* D% _ 递归 vs 迭代  I" O9 `' K! `: R3 h/ e0 }
    |          | 递归                          | 迭代               |
    . J$ G0 U6 S" R) _0 y1 C|----------|-----------------------------|------------------|
    # X7 z9 G. B0 [- Y| 实现方式    | 函数自调用                        | 循环结构            |
    ( g2 T8 b- l, w' `| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 V# a, a; j9 y# Y; u. N3 P' c| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |3 h  J4 S% p9 P5 K1 t, w) W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - O' J" I2 H& h  }( g  P2 S9 \9 P0 y: [/ z
    经典递归应用场景
    + q/ I2 y* H6 B4 F( ?1. 文件系统遍历(目录树结构)
    0 A/ [0 X9 `# d2. 快速排序/归并排序算法1 ]0 t8 X+ D* I& v. S1 g
    3. 汉诺塔问题
    8 H8 A8 f* d* x; A+ ^, V* Z# O4. 二叉树遍历(前序/中序/后序)
    % B9 r% w9 m' Y0 \: N( S% b: ?5. 生成所有可能的组合(回溯算法)
    / v3 R8 x, c2 \5 ?* i; w- `$ i' c
    2 t# t5 f( W4 l+ o- N7 P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    3 小时前
  • 签到天数: 3107 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    & e7 _9 ?- v* [1 `( Q  _我推理机的核心算法应该是二叉树遍历的变种。+ t, N7 W) ]) |8 l1 G" D5 j) m# @) h
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 v/ ]8 [% q- Q3 T
    Key Idea of Recursion4 O: O, v! b3 Q$ H  ]& K
    & s& i7 e3 F! R7 G% Z9 T
    A recursive function solves a problem by:) J0 G, j$ x' A7 c, N- D  J

    - p/ F/ l+ J$ S; z    Breaking the problem into smaller instances of the same problem.
    $ ^5 x6 q, [1 P# t! b. ?6 p! _) \6 T/ C% r, y+ C/ G! i, d, i# _
        Solving the smallest instance directly (base case).
    0 x+ E4 f4 S7 C( H% P1 {8 D( R4 s1 g& ?+ _0 V4 z, O8 d; z
        Combining the results of smaller instances to solve the larger problem.
    * d- C9 m# v7 E; k# L
    ' v0 }, Y6 N- w3 J( ]1 K' Q6 nComponents of a Recursive Function
    6 B( T# q. R- |7 E  _  r) ^$ [1 H9 J$ o6 n* t
        Base Case:
    3 g7 X6 P4 D/ v+ O, V$ h' k" [- o
    , v" U' ?9 w: Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) Z: c1 w6 M# X' }4 |- S1 L, j* }
    8 \. D; v  @+ j4 b7 C4 W& b1 I1 E        It acts as the stopping condition to prevent infinite recursion.
    ; d8 Z8 R! Y3 I# B9 {2 c- r. e( ^# y- l, m
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 G! d% _1 T% m8 Q/ j
    * {2 t* q; b* V" }3 w* ^: U    Recursive Case:& x0 I5 i0 f5 B9 w$ R
    ) p% Q% l& [3 d9 o$ m# X3 q
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ m0 \9 Q! ?* E6 }8 I- R
    0 ?6 Y8 t  ^6 B        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' e- s4 i" v) F; l( L8 K/ X

    " A) D# @5 R0 R) A: rExample: Factorial Calculation
    $ d. P" n' |6 R/ X5 c5 J6 t7 e
    3 T& T7 }% W: q& I* D/ FThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! Y5 @. h) Y+ m

    + _# s4 r5 f$ A/ X' s  [2 \    Base case: 0! = 16 o6 q' g$ J7 x$ m3 a. d% c

    : F0 l- E1 n0 l. }    Recursive case: n! = n * (n-1)!9 B( u, W4 X# c* e' A% ~$ v+ ]- r4 u
    2 \6 ]/ @! E7 X$ c
    Here’s how it looks in code (Python):
    , d3 ?8 q; C5 Mpython4 Y" j) F7 R$ ]! l/ G9 T

      F3 h% C& n3 s9 t+ H+ g" G6 W: D6 E6 q5 s
    def factorial(n):
    ! j% V% I3 z$ J1 f    # Base case( w- v! t- z. @# w5 W' h- N
        if n == 0:4 L2 n, S4 E/ _8 p! O5 b  o
            return 1
    * B8 d: C$ r3 n! }0 G0 P    # Recursive case7 D  m, M1 o6 b6 ~( ~# v
        else:
    $ U+ t( ^7 a$ N+ W' t        return n * factorial(n - 1)
    ! k$ T" h* B+ A8 I) {1 g5 }. P) q; W
    * Y0 p9 X& L0 y' H  H# Example usage0 n& T; P1 ^8 ?
    print(factorial(5))  # Output: 1209 N/ _6 b# e( B0 ]9 K& [

    . D8 `& i2 U/ o$ Z6 E- w0 vHow Recursion Works6 m& A: K3 J% o! C( u( g! h' n

    + G5 s3 U' k3 Q8 N    The function keeps calling itself with smaller inputs until it reaches the base case.
    ) x# m/ _7 O% V# i# U6 H# V
    $ u5 O3 T6 y- n    Once the base case is reached, the function starts returning values back up the call stack.
    . X& n9 h! n" C( M: \% A# }8 C' ]5 l6 ]4 L  U0 J
        These returned values are combined to produce the final result.
    8 ]8 ^6 }. k# `) ~/ `! l$ C: T/ i5 g
    For factorial(5):$ i7 T$ J4 c( K2 @
    3 B& V# l; P, D  D

    ! H( d  u- p2 o# p- C2 R' Cfactorial(5) = 5 * factorial(4)1 X8 H+ R. g6 a& Q
    factorial(4) = 4 * factorial(3)) P/ _+ s, w$ X1 i) G- }  ?- p
    factorial(3) = 3 * factorial(2)& K" u+ c2 A1 \
    factorial(2) = 2 * factorial(1)
    & m3 ?; C% H: u9 K" F5 ]1 H6 ?9 zfactorial(1) = 1 * factorial(0): ~9 o  Z1 s# Q- j* e
    factorial(0) = 1  # Base case
    ! q( c  L7 @9 c0 }. Q! q
    ! ?. }! J: k! ZThen, the results are combined:
    , G( V3 j4 W" F% i8 s0 |# O" ?4 L5 [0 E. `' G9 O

    & I# ~- C3 ]1 tfactorial(1) = 1 * 1 = 1
    " ?# C; N# U4 ^0 `( h9 w0 r! k* jfactorial(2) = 2 * 1 = 2/ R4 y2 `( y# ?. ?$ a! P
    factorial(3) = 3 * 2 = 6
    " X! |0 C) @! O) ]/ ~3 Afactorial(4) = 4 * 6 = 24: i+ M* b: t) ~! |! M# e) M
    factorial(5) = 5 * 24 = 120. U; n5 V9 g( k! W

    5 j4 J: d0 r8 A7 iAdvantages of Recursion& }3 w1 `2 w4 F: V0 O0 r

    / ?( _- C' R# m# a2 |1 C; ?    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 X7 `# P" D- B/ p8 d2 v

    2 P/ Y6 M# U& }, _    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % M# s, ?# a1 O- p. Y; |4 [& D% t6 N& P/ j
    Disadvantages of Recursion
    1 W$ i0 _: I, R- G* e' m6 K$ G" }/ n5 E
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' ^6 I& E1 _+ A1 N4 N4 w
    - ^% ^' C3 n" i8 ?% S7 P0 K8 j    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + z& S7 U9 W5 ^8 e5 H- ^- N* k, W2 O+ z0 K. R4 H5 \
    When to Use Recursion) d( U+ n) E8 q
    + C4 M- S( @9 K* O% U- i
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' R3 s' K) T$ I) g8 Y. G, L5 N$ n
    + h  ~! S1 H3 L$ L$ H' J- T    Problems with a clear base case and recursive case.
    % T& r% ~& |1 a4 D" f) z( y- m: j1 P
    Example: Fibonacci Sequence9 P- p5 r, f! q  ^0 D, u6 Z3 k

    4 Q" [; r; O1 q: D$ {3 BThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    1 @4 T2 o2 \1 O9 [
    , {) W7 Z% f7 ~( v6 H" R- s    Base case: fib(0) = 0, fib(1) = 1% o/ s: d) X; ~  o+ w0 j2 b# S4 I
    7 d* e1 D( H* \8 X$ q$ C* }
        Recursive case: fib(n) = fib(n-1) + fib(n-2)7 `3 O1 D& ?3 X9 D! x5 L( \
    6 v8 `* e  |# a3 O/ k2 M
    python
    8 t. A8 I9 `) W) L8 F
    1 H9 S% O6 x0 u
    / a0 m0 i" A4 }def fibonacci(n):( M8 X) I8 L+ V3 O* {- |, J3 I3 J
        # Base cases: i  A3 J; M" L- K
        if n == 0:
    " u( W+ E) C6 V* L. z) d6 u        return 0
    2 {5 x. F/ N) U0 m9 t    elif n == 1:
    " a. u' N; u8 }5 l5 t" \        return 1
    8 z# \) M5 F0 B    # Recursive case9 e6 S+ x- C5 f' P. G- N
        else:
    $ k3 m' S4 S! Z0 X! D5 ^; A7 R        return fibonacci(n - 1) + fibonacci(n - 2)/ p* V) U- k6 {, v% K
    % q! C5 [# q" I' t, W/ x6 {  n  p
    # Example usage% v9 E4 c' y$ W! h/ D
    print(fibonacci(6))  # Output: 8- W: f* B* ?6 n

    ' d1 I  H9 T% T' {/ w. \: ZTail Recursion# q+ O2 [, _5 i, \* w( O( m3 U4 K4 |
    " ^6 @+ z9 a9 e
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! m5 R) m  u; I2 w( Z* ~# M( Y: k9 x" S9 L; X! |+ c/ c% J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 15:20 , Processed in 0.031135 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表