设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1196|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . B. P0 a7 M5 v. G5 q( b: _
      _+ X+ [" ]& O2 S( u& ]解释的不错9 `* x/ U2 ?, T4 Q  J/ n4 v: \

    : }' Q/ p/ H4 V# h, _) \$ k4 d5 p( j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 a: _; Q% v0 U+ |9 A
    0 [# @2 F* K0 Q, S# @' N2 p/ Z( b
    关键要素
    8 K' f- _! M' I( B9 K% J5 t1. **基线条件(Base Case)**5 }5 O1 g9 s0 O  H  Q. p+ o
       - 递归终止的条件,防止无限循环
    4 m; W, M8 ~6 c; V8 d! }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ' U! R8 I$ K; i# K
    . O5 s" d) E) ~# M2. **递归条件(Recursive Case)**6 X7 k/ u# I) {2 H# d
       - 将原问题分解为更小的子问题
    $ l( q4 c; s# K( F0 N( G   - 例如:n! = n × (n-1)!) P) Q" I8 V+ o: H0 w& e4 H( u

    0 d% t7 g/ B4 E0 i5 O( u 经典示例:计算阶乘  W7 x2 N! c+ I: j. m" f: ]4 X  K
    python% |& J; V2 ?. `! `0 D
    def factorial(n):  Y$ z' j+ I/ t
        if n == 0:        # 基线条件3 B0 H* y: g8 p7 t; B, N
            return 1+ g. E1 b+ c9 p  O( C
        else:             # 递归条件
    6 d: J' U2 Y$ ]( N& b# x1 |        return n * factorial(n-1)
    % U0 N" M+ D" c/ ?7 U* [执行过程(以计算 3! 为例):
    6 r4 K% t0 y! c3 s% gfactorial(3)
    ; d3 i5 }; {( F3 * factorial(2): r6 z0 e7 }) ~! b# Y8 k" x; B: y
    3 * (2 * factorial(1)), d5 j, `  i0 D3 A2 W- @% w
    3 * (2 * (1 * factorial(0)))
    ! w$ o# |2 |6 r! Z" B4 ], v5 B3 * (2 * (1 * 1)) = 6, T: M+ h( q( `2 K" V

    $ ~/ y. Q, z- Q 递归思维要点
    ; z! ^( H% ]* U! @6 ^" D1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ; W; x1 v2 G+ e* m$ A2. **栈结构**:每次调用都会创建新的栈帧(内存空间): d+ ]( q5 b, e7 x6 h: d2 ~2 t
    3. **递推过程**:不断向下分解问题(递)
    3 M5 u% |; |$ C9 s7 _4. **回溯过程**:组合子问题结果返回(归)
    ; ]8 ^' g: i( a
    . j( B% `, _2 P" x 注意事项6 c- |3 Y1 Y* p) y" [* b' }
    必须要有终止条件7 i: y# k) z7 q, Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)6 _( P5 r3 \+ _" ]- z" a8 e5 Q
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - ~  D2 W" {+ K1 Z7 w尾递归优化可以提升效率(但Python不支持)
    7 h, }1 g( H  t% J7 J* t
    $ A( |* }% G( T0 Z* B 递归 vs 迭代
    3 ^' Y& D7 Q& D0 O|          | 递归                          | 迭代               |
    + }" p7 m: Z; X" e' _" K$ o|----------|-----------------------------|------------------|
    + C1 ], c5 G  v" z| 实现方式    | 函数自调用                        | 循环结构            |
    ; Z) Q7 D) A# ~$ }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + K5 R# K, w( g8 B/ {8 x9 ^| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    2 A, d+ E1 \9 @" G6 ]| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- R9 c6 t5 h$ X5 ]

    ! Z- Q. n3 Y0 k5 X, B 经典递归应用场景5 B$ D) U; s3 C4 E0 D
    1. 文件系统遍历(目录树结构)
    + q& O! @% o3 P& t2. 快速排序/归并排序算法( S: d1 Y3 M3 v
    3. 汉诺塔问题2 |6 G* E+ _5 Q
    4. 二叉树遍历(前序/中序/后序)
    3 g3 H: p$ A: M% V$ X! X5. 生成所有可能的组合(回溯算法)
    % Y" B8 y; H7 [- V; x
    " a4 O# C" r1 ]8 U4 Q/ m试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    - S$ x2 L" R  ]7 w+ B我推理机的核心算法应该是二叉树遍历的变种。
    7 J- V8 L& Z! N" ]# k* i另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + R; Q! v1 f9 p, K8 SKey Idea of Recursion5 K' W4 d0 t! y4 C
    2 Y+ r6 O' b5 J: h0 B, M) |
    A recursive function solves a problem by:: s: a& m) {, V9 X! X1 [
    ( o0 }9 v" b) u
        Breaking the problem into smaller instances of the same problem.( k' b3 [' A; ]- \; s
    1 d  J$ O: N( z! L# l" C( \: r& [
        Solving the smallest instance directly (base case).
    $ {3 H/ @8 _% e! I' {/ {; z, B1 z$ u1 y2 t- M; K
        Combining the results of smaller instances to solve the larger problem.
    9 x0 S% I$ k9 y1 A# T5 {
    + ~4 {/ W8 t* W2 N7 h) H* jComponents of a Recursive Function
      v* Y) j1 s2 p3 g- N* R8 C; E6 u9 `& w* n6 z; j; f
        Base Case:
    : v4 N9 G& j% t; M" B( z1 a+ ]3 A3 e* ?! s6 E$ _
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      K6 U( u4 G& J& u( P
    ' G! w7 `6 @" Z( i6 J% V5 S" \" Z9 ~        It acts as the stopping condition to prevent infinite recursion.) z/ j1 ^, l0 X) L0 o! U& o- R

    . D6 m7 ^$ h1 |- N: a/ y( R% c        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ p" D, f, v2 d5 e9 @

    * Z: B6 ]4 \# d" {    Recursive Case:
    % P3 \/ ~0 t1 ]6 E- T
    + ]+ Z2 Z  k9 D  |8 J        This is where the function calls itself with a smaller or simpler version of the problem.; S* ?. h' [! [) t0 F' l/ r( j
    $ ^8 q; W' Z/ M9 e1 M; Y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' V2 `) U5 @3 R
    # h0 z7 @4 l! I0 d9 d
    Example: Factorial Calculation* q. l5 e$ g: P7 ]) _7 e' D4 M) W
    ; g( T* f/ p; l7 D8 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 C% O+ S6 e2 p  z# J
    ' c* Y2 s5 [3 w! e
        Base case: 0! = 1
    - O6 r' g# e' Z$ z1 X( ]0 N( ~- t3 ^7 B4 S; r
        Recursive case: n! = n * (n-1)!# K. p5 X% W9 u. d* K+ W( ^
    6 o- f' }8 }; g; }8 Y+ Q
    Here’s how it looks in code (Python):
    $ ]  o8 J( ?9 q9 Dpython7 n" Y. H; L6 r' y0 [* R
    8 s6 W6 n( _, Y: G
    & ~7 r0 p& ^. {4 L$ o. D! U! S2 b
    def factorial(n):& w4 D+ ]3 n8 |: A
        # Base case* j+ ~2 Y; e7 R! B1 V, D
        if n == 0:
      V( ]# j2 u# R' U, T: l        return 18 t/ C3 }5 ?4 |1 Y( q2 T( d, ]8 x
        # Recursive case
    . j' c4 Y; Z; V    else:
    ! M2 }! u7 ^' e) g0 Q        return n * factorial(n - 1)
    & X8 x. V% E8 U2 s. P5 Y" f. e, `) `# i0 N
    # Example usage
    ; v, y0 h0 V: E  A) g5 F4 \print(factorial(5))  # Output: 120
    6 R' e4 `& T% |  _3 K
    ; H$ C) Q% ~/ P' s1 S$ _How Recursion Works
    . s& D! _7 m' h4 P& U/ |* o
    0 V% i4 m  V  {/ R+ I    The function keeps calling itself with smaller inputs until it reaches the base case.
    2 V9 j* [% M, _) u
    ) I* o5 l" l. U; Z# Q' n    Once the base case is reached, the function starts returning values back up the call stack." J: Q' a' V4 n9 j+ x" P
    7 ^  Q+ R6 ~  n
        These returned values are combined to produce the final result.$ ]! G5 \3 X' g4 z  `' F

    . m( W* p2 [; \$ {# c% Y  @For factorial(5):  H, w2 R: P/ d* ?( h( ^3 W/ O
    # y. }, e& h& P" s
    * @/ b7 ?7 ?( ^. F2 P" B
    factorial(5) = 5 * factorial(4)
    # d* l* _3 i5 Q) hfactorial(4) = 4 * factorial(3)$ M7 E& X% k3 d9 j, y1 C# z
    factorial(3) = 3 * factorial(2)0 @' x( m# F, a2 J
    factorial(2) = 2 * factorial(1)
    9 l3 q% V. f0 ]2 k' }factorial(1) = 1 * factorial(0)" H5 f0 v8 K7 J" c" N" D* |" X
    factorial(0) = 1  # Base case
    & @( k2 B7 ?6 h/ N( G6 [
    : M% R  d& G! _, ^: _) K- G* mThen, the results are combined:
    , V9 }& r) T" F: A& D% z9 m4 s3 I+ G+ \' R2 I5 `: r% w& R% q, e% S

    4 X/ s7 s* X7 T& F6 }5 tfactorial(1) = 1 * 1 = 15 a1 I0 B; O5 e3 Q
    factorial(2) = 2 * 1 = 2
    ! O5 W# \6 i  I8 Sfactorial(3) = 3 * 2 = 63 d" F4 U( b. e% T
    factorial(4) = 4 * 6 = 24. _9 {% O+ v7 ^& v9 ^! s1 s
    factorial(5) = 5 * 24 = 120
    $ T' w3 e) I; q" T: u
    1 W2 p; O7 n, v. fAdvantages of Recursion
    * X  F  X" x, ?( m& d- y9 L6 z7 m# k! c, ?0 }7 m' L( y+ e7 ^
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 C. W, H) m( u0 p4 S5 E
    % b' \$ V/ Y8 K8 K3 L/ M/ I    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 ?! c" r# s' y
    0 [7 t" I* l) {) R
    Disadvantages of Recursion" j% l% Y& y9 `8 Q6 H/ y4 s
    . h/ r, i% p- |% Q+ h
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ f- X: p( [& T8 z! B/ @

      i7 i. G2 o4 k: ^$ r4 p& d" X    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ' H9 B% \* }6 V! c( w) e& @& ]6 w3 u; F1 V. s4 b
    When to Use Recursion
    ) J- Z. B% Z, q) W3 w! @2 Y5 t) O# W0 [- B  N" n0 f$ K
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 B5 e3 a% s# s$ i& f! {
    * U4 j2 v0 m8 W1 D6 H% q' [
        Problems with a clear base case and recursive case.! P- Y. e4 p/ h: V& ~5 Q

    # w6 ~; T# Z" E4 j" X8 I9 AExample: Fibonacci Sequence
    7 ?* n( h. Q8 [: ]. b( g- }$ v7 x5 a# F! {! X7 P: D, S
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:  y2 C. ]( E# H1 s/ n9 h! s7 H7 K" f
    5 a# ^# j8 E: P4 P/ |( o
        Base case: fib(0) = 0, fib(1) = 11 o! i) O* n6 L/ s% U

    " d- u; v; i2 F( M# g    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 @+ ]3 `: ^$ S9 O" j8 {" }
    : @0 [3 Q$ d7 Z5 z8 r, E2 Opython
    ! M- ~- E7 w6 d* `, B* H% ^/ V! r1 r1 r9 w1 X

    8 ]0 e/ ]5 y/ y% r9 }7 G) A6 \def fibonacci(n):
      C# X6 d* h1 t: @    # Base cases
    # x: [  }+ w) ]' ~' y    if n == 0:
    ! q: o' y5 P' x        return 0+ j) S( }; g) f2 k1 ^0 N8 T
        elif n == 1:! c: d$ t8 w" a! N) ~8 X. R
            return 1
    . ~7 u& d3 |/ F, A: m    # Recursive case
    4 J& Q( f+ y* p, Z" l0 ^    else:: _$ ]( |, o7 ~# b  N9 |
            return fibonacci(n - 1) + fibonacci(n - 2)1 }7 t' ^& R- W

    ) ~5 o, |, o' i; |; l' C# Example usage
    2 Y8 C1 j9 I$ C% ?) t6 ?* sprint(fibonacci(6))  # Output: 8* `$ |9 _7 b- y# ]# \) ]' X
    6 K/ r5 a# ?: Z' u1 @
    Tail Recursion8 ?. t; A, [# ]+ _$ k& l

    / P8 {0 o/ n, D% Q+ `0 q: @Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( f+ m. m4 M& w' r

    " n& m# B6 \( YIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 10:09 , Processed in 0.034779 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表