设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2071|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! x1 o8 ?3 e( @  l( i: l# r$ N* C  E0 f, t
    解释的不错
    3 q9 H  _( p# b/ N# w# W% ~+ i6 g
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' P( j( P3 T9 s: q
    + `1 Q$ H- j; i9 E 关键要素
    ) T; S4 {/ S. k1. **基线条件(Base Case)**/ U; H$ Z( {5 J' |2 q( L5 k
       - 递归终止的条件,防止无限循环4 J( u- ^, ~) `$ T% l
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " Q% z8 c; u0 j* g. \/ K9 g! d
    ; ^9 R$ j! ?. J0 R+ x3 P2. **递归条件(Recursive Case)**
    ! u& \; Q8 |" Q. P! G+ k. Y: G   - 将原问题分解为更小的子问题( v& n& F0 {) S) Z. O" R& U* l. M8 x
       - 例如:n! = n × (n-1)!5 p. @, U3 F8 I. B
    / l- N' L8 l+ G
    经典示例:计算阶乘9 S' u" s8 u6 H, M. b. Z8 ^& r
    python" P' ~) w* l) Y1 n, `9 r% {
    def factorial(n):
    2 Z' n  n! z) ^6 F    if n == 0:        # 基线条件
    0 {8 H1 V4 O2 G9 ]( b( t' z        return 1* V( a& p# J! n
        else:             # 递归条件
    : n8 |- V# c6 @        return n * factorial(n-1)
    % a- T  T  F- i执行过程(以计算 3! 为例):
    8 p& v# S7 w# u2 g) Mfactorial(3)
    * M: r6 u6 ^) ^. G- n3 * factorial(2)
    $ g7 s& N* M6 P3 * (2 * factorial(1))  E4 y# d8 Z& p1 q
    3 * (2 * (1 * factorial(0)))6 \( Z. ]# d( P
    3 * (2 * (1 * 1)) = 6. W, j8 {% p% s' M4 Y+ ]- i

    3 I9 C+ `, i- }& _; Q( b: w: \ 递归思维要点
    0 M) K1 x5 Z3 J  G* D4 l" w1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " Q1 Q( }0 b& f8 P! t& T" f2. **栈结构**:每次调用都会创建新的栈帧(内存空间)# B; A8 v5 o  P+ [
    3. **递推过程**:不断向下分解问题(递)3 m: I, ^- m5 C! |  U
    4. **回溯过程**:组合子问题结果返回(归)
    & B1 ~+ W8 |; ~
    ; I8 q1 Q- m' d2 j/ D$ J 注意事项
    0 ^) @  O* |' j, B4 ]5 b必须要有终止条件
    7 s* E! A2 `+ X- X" w递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    , L' o$ j2 Q8 x; c7 F& e" s某些问题用递归更直观(如树遍历),但效率可能不如迭代
      ~7 d) x. p8 W$ n; k! f  M尾递归优化可以提升效率(但Python不支持)0 @" s% c0 ^+ d, N6 T+ c  p2 r
    4 v- Y" t0 Q  P, a6 n& J6 O. @, Y
    递归 vs 迭代2 V( {" V4 b: T+ @6 Z
    |          | 递归                          | 迭代               |
    ) ?3 y9 T/ r9 ^) z* C+ Y- T6 O|----------|-----------------------------|------------------|
    7 M3 L/ A2 N& P| 实现方式    | 函数自调用                        | 循环结构            |
    % B& Y2 v8 d; l: R1 X  J% b; C& || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , \1 y0 i- v9 Q6 k4 n; `7 j% F| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 ?  p: k: s! c+ Q| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ [# D0 E8 b5 P, r
    3 P) ?: C0 u& O3 k# M9 C
    经典递归应用场景' V5 J$ A/ O, x/ ]$ L8 }( n8 Z% l: f# @
    1. 文件系统遍历(目录树结构)9 h# j0 G, \* h8 X: W6 |' W
    2. 快速排序/归并排序算法' `" ~( Y' R; L2 r% Y: l, H( j: A
    3. 汉诺塔问题% b* S; C9 \8 Y6 b! t
    4. 二叉树遍历(前序/中序/后序)- m% |( ?- S2 I" S
    5. 生成所有可能的组合(回溯算法)
    & `+ j  E0 }. q  G5 I+ q' S4 {! W( ]4 z; f7 f! Y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    3 小时前
  • 签到天数: 3171 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    8 E9 ^; S6 ^- [5 j& ?我推理机的核心算法应该是二叉树遍历的变种。
      s# D  Z: K, }, ?2 p另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    * @" \; h9 _" p) V% k# IKey Idea of Recursion
    9 L2 {, U4 N- c$ V7 a* Z- m. A7 m2 e1 P
    A recursive function solves a problem by:
    ( `* c* W# J- ~1 s% z( T5 M) G7 b
        Breaking the problem into smaller instances of the same problem.
    ) t$ b# {2 l# r  _' \
    $ x  g4 g; Y2 {    Solving the smallest instance directly (base case).6 x% i. Q# H8 y1 Q# |% T
    ; h+ ~, {* _4 w! V3 [2 v8 t
        Combining the results of smaller instances to solve the larger problem.: c0 e$ f+ L- C. L+ F  r
    5 N' S7 x3 e# _+ Q; _! V
    Components of a Recursive Function
    # l. {* y' G2 Y$ C0 c. z& q# ~' [- R6 U, h3 y* i
        Base Case:( P0 [+ O! j$ g$ a
    3 M' q: i3 L0 [$ k% y
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( j$ j, L5 H! X- \2 u; a5 B
    % y5 d4 o! k0 V& e7 ?3 f
            It acts as the stopping condition to prevent infinite recursion.: w. }9 k, H0 B" ^: e

    7 V% x2 c7 K  _7 }$ Y8 f* p$ E        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! M: t* ^/ ], v1 {( [* E( m
    & H. f& u* p, v& m- o' A; t
        Recursive Case:  d7 V" b. E( _

      I/ [% Y3 n; L! _        This is where the function calls itself with a smaller or simpler version of the problem.! m6 U% p* C$ t& `, F2 {& d

    2 M- t; T8 t& F0 s3 ^2 ?3 P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- f" p+ d9 V# p
    & `) S! p5 |2 z* F7 \8 w1 G
    Example: Factorial Calculation7 o  i. ?( v; w3 w7 b( `
    ; d0 b* S! R+ R' `" S7 [& F( i" p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, m! }& }2 d8 x* _2 g2 `7 j* l

    . N" R1 s& x+ G( {8 Z- y    Base case: 0! = 1: P/ u# B$ Y; f0 S; y
    0 L/ e- c( k8 D. N8 i: f
        Recursive case: n! = n * (n-1)!
    6 N6 j% ^# U9 C  v7 `- Z5 r7 c4 _9 W0 W/ O3 ^' z- X5 f
    Here’s how it looks in code (Python):
    ) M, I  F# _) [  Q' d) Jpython
    - u6 R/ ?4 @9 K" Q- ?8 s2 t6 J9 [4 T6 O# f4 K

    $ j, m& v' v- Hdef factorial(n):% Z9 V( d4 X" _- N7 Q
        # Base case
    , V3 h) ~+ z+ b* {* c5 }    if n == 0:
    9 Z6 g2 Y3 {1 H, D        return 1  n* b( i8 ^0 Y
        # Recursive case: u6 W9 d7 g/ q. a
        else:
    * T9 t9 G- D: N9 M        return n * factorial(n - 1)* c8 ?+ f- p3 \& W* ^) F

    : a, C+ N" [2 `" w# O& M; G$ G# Example usage2 l8 Z. b$ _/ T/ m0 J
    print(factorial(5))  # Output: 120) Q* B) V$ A7 ]& z
    / R& l6 R# b6 k6 D' n5 V' w* v  q/ ^
    How Recursion Works; \" D5 u% O/ ]- r, l" ^+ C
    - d, N3 {3 n' N, c4 U2 a8 J( a
        The function keeps calling itself with smaller inputs until it reaches the base case.
    9 X3 s& _: K5 \1 @6 n/ ~
    0 [1 l7 d0 h* b: s* N" @5 I    Once the base case is reached, the function starts returning values back up the call stack.
    9 y3 @6 b2 R+ I2 I/ c# k" O: C! {5 g/ O' V) R6 a* Q0 |
        These returned values are combined to produce the final result.
    6 }& ?- n3 `4 n
    5 r1 O! i& s7 o3 @For factorial(5):
    & Q, E/ ?$ F$ L7 b' d; y/ Y
    # Q4 T5 j  z% Q0 T( K
    . r& |  V8 X, ]  S4 V  {" Lfactorial(5) = 5 * factorial(4)# B/ ~7 R% P0 T1 e' j  T
    factorial(4) = 4 * factorial(3)4 J$ |# U4 ^% _9 s$ l
    factorial(3) = 3 * factorial(2)
    3 P, r: C! u# s" rfactorial(2) = 2 * factorial(1)
    9 m+ z' L. {- J7 G' u6 \! ~9 jfactorial(1) = 1 * factorial(0)
    7 w# i% y: v* C/ c# b# o$ pfactorial(0) = 1  # Base case
    ) n, p" U' y/ d. q3 Y5 P9 |% a
    ! z& ?0 c$ [8 W% _Then, the results are combined:
    . s$ y- Q( V3 g: h3 M" O
    4 g3 }3 `  a7 v  |' S  \  g' f( {, p% v( w4 m; D7 T
    factorial(1) = 1 * 1 = 1
    3 ^, }( Z# l% v- ]factorial(2) = 2 * 1 = 2
    ! _: X: p2 L. C, d/ C! {factorial(3) = 3 * 2 = 6
    / i) E# H! f' |7 Efactorial(4) = 4 * 6 = 24" D# J, x3 L+ s4 X
    factorial(5) = 5 * 24 = 1204 n$ X9 G! n3 I
    # n% B" A. D8 S; l; t' y% q2 ~" t
    Advantages of Recursion
      N8 W3 p5 [! `) ^7 p+ o3 k/ e7 Z
    + S  w" @' ^5 u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& Z6 a) s! f* N

    4 z4 j  A6 {1 W    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    " c- C2 Q4 @- Z7 W' j7 T
    / d2 I7 Q; n/ G0 b1 dDisadvantages of Recursion
    ' S) v* j4 y, ]' _+ f; N; {
    + L' U7 f0 W. H# Q/ A# k) t( _8 x    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- n2 w1 v) ^/ U' U7 _; V6 P  d  h& _
    9 T8 x0 E+ u3 _) S6 {
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    , V+ M, R1 r% \- ^
    " s0 k9 O* {3 c+ f. G. R. nWhen to Use Recursion& ]0 i& F! w0 m- ?6 c  X% p$ G
    1 N6 P8 u# y  i" k& a
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! m% v& j& U0 G4 ~1 N' Q/ {: a# c: d  O

    / ~4 H) ~6 m+ ]% U    Problems with a clear base case and recursive case." j3 \9 y5 J) i) y# f
    7 a$ z" |# N% j
    Example: Fibonacci Sequence
    3 R5 s! h% ^9 N" W* I' L: `* b: j( R: |% ?& C3 e
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' J: k# }, o+ l! m
    # `' E, J/ A3 o7 D% O+ v' W/ W, b    Base case: fib(0) = 0, fib(1) = 1
    4 w* r6 B. p5 g8 z  g7 k
    6 O/ V: m# f3 Q. z    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * @# V1 N- R, W, z1 f9 o+ J7 q# V/ ?8 D9 G. X5 q
    python" @. m* ]1 ~4 g1 b
    9 X" D) t4 \2 i! q& V- D8 A0 ]
    # F! A9 o" A) Z0 o1 B- I; v2 b' N
    def fibonacci(n):
    7 M7 O' i0 h; R+ n4 Z; m    # Base cases( o$ B* H3 g0 T9 w2 {! h1 T
        if n == 0:
    ; F  j3 M+ B6 U! g- c5 F        return 0
    - Q! I( R% p+ E4 A6 f/ N& A3 f    elif n == 1:! C( K4 K5 B4 d- M' U# Z
            return 1' @9 x' |- J# }( ]
        # Recursive case
    ( C' i  u4 e' g, ~- _. v9 r    else:3 g1 h% C& Z6 I: d! w9 e( o, {
            return fibonacci(n - 1) + fibonacci(n - 2)
    ! o2 H' T: r7 L0 O3 |6 `) r: u2 H  P; x& `. N1 b/ `' ~7 a
    # Example usage
    3 h% t9 i0 S( ?9 H9 Sprint(fibonacci(6))  # Output: 83 K/ m- `2 A, r! r$ E* s
    / y4 h8 V1 L& a8 G& f5 {
    Tail Recursion
    2 A- C- v0 F" B$ O* K# ^1 B
    " C5 t; N6 z) r, DTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    $ X7 h; H: ?" m+ O! l, v, ]2 H2 V* A' O
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-12 11:29 , Processed in 0.062584 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表