设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1093|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 N7 _! G6 \- ~8 S. I6 V0 [

    + @8 C/ d; X( [5 ~. |6 o3 @7 Y解释的不错8 r+ V8 y, u3 l. j

    6 V1 K9 ~3 \& r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % C$ x% G4 c5 B2 P% a" [6 j
    - ], B  C1 b( \* t$ n8 m) E 关键要素
    5 g6 W2 Q  _$ A( Z# P" ~1. **基线条件(Base Case)**, B; I9 C8 j; Q1 g0 `5 v! ~
       - 递归终止的条件,防止无限循环
    4 x  W3 s0 s- P6 x6 B3 p! m   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1! ?' x( A: u3 ~/ z6 \

    0 W: w' X; K1 K  N- M: i! t% ~2. **递归条件(Recursive Case)**$ Y2 X# k2 ~" X2 k+ s
       - 将原问题分解为更小的子问题
    , e( Z# {1 {" u" L" {% R   - 例如:n! = n × (n-1)!, k+ K5 G7 M: D) }! m8 |* D

    $ |' k6 O# b9 u7 _* J 经典示例:计算阶乘
    7 ?- W7 ^# L- G6 h, j/ G9 Lpython( C4 B; ^* P/ k; O
    def factorial(n):) q- L3 P2 V9 ]' f0 _$ D
        if n == 0:        # 基线条件
    % H# {' Z* N4 `6 L        return 1
    * Z+ s* W( u% y! r, ~) z    else:             # 递归条件( Y5 K! k9 T; ^: N* Z, i7 f1 j
            return n * factorial(n-1)! T2 t+ l/ W& D/ [. j
    执行过程(以计算 3! 为例):9 d0 W& H" r. i/ w. O& p
    factorial(3)' I" X' [5 g8 t$ }1 W" n/ i: R
    3 * factorial(2)
    1 t+ L7 v8 M' _9 e7 \3 * (2 * factorial(1))3 d8 \$ w8 a% H
    3 * (2 * (1 * factorial(0))), U% b& u$ ~$ O% t) L* ~* {2 M* @
    3 * (2 * (1 * 1)) = 69 E% K3 M/ P! t0 L/ z3 R/ ^/ s

    6 }/ T1 q+ {5 w) S; f+ P' S 递归思维要点
    5 g6 }# g4 B1 O0 N2 d1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 D% k, h* [4 I. f7 T4 G2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 p  h) [1 f& W4 z* |+ z( g! f- p7 X5 R
    3. **递推过程**:不断向下分解问题(递)* U; }& Q$ ]  ~/ u7 L! U: [' x" B
    4. **回溯过程**:组合子问题结果返回(归)) c/ U6 t4 k7 h4 r

    : x8 K# R0 }8 t& y$ Q6 V 注意事项6 N; T* L* S$ V- B
    必须要有终止条件
    ! u$ b- l' q6 U递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / j  m( K& ^. G  N# k/ d9 X某些问题用递归更直观(如树遍历),但效率可能不如迭代( L8 F& W9 o+ v; M3 J
    尾递归优化可以提升效率(但Python不支持)  q5 F5 F% U; }8 y' j3 q
    5 U# ~7 u, k8 E) m1 t" ?
    递归 vs 迭代. s: @; Q2 M6 O  T
    |          | 递归                          | 迭代               |
    ; f; g. \6 ?- [! l$ J|----------|-----------------------------|------------------|+ m7 t, x3 ~. Q' Y( y
    | 实现方式    | 函数自调用                        | 循环结构            |; o4 ?5 {0 V" [6 \! g3 t! G7 m
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# Q5 ~: w  F% j( c( U$ D
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    % ?5 l1 P, Z% O$ l$ O| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! s% |& \  n2 [. q0 c3 O" B; z% p3 K" m) t8 O. V2 T5 e/ o- c# j7 d
    经典递归应用场景
    - A( L6 V5 g2 @1. 文件系统遍历(目录树结构)
    4 a' b! @7 V9 a. _1 l2. 快速排序/归并排序算法/ s$ x! Y8 D& m/ p" R8 J
    3. 汉诺塔问题
    # H. z% d- |8 O$ a4 `% b) W/ m4. 二叉树遍历(前序/中序/后序)
    / d% b4 c" L3 D- o. a5. 生成所有可能的组合(回溯算法)$ I1 X) q4 T: m0 Q4 P/ i# \

    9 T2 S# H4 }& i7 ?  L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    2 小时前
  • 签到天数: 3096 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 G- d. ^  o0 R' f+ r; b我推理机的核心算法应该是二叉树遍历的变种。
    + K- h8 Y, Z) R另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ s; L5 @1 ~: r6 }
    Key Idea of Recursion9 G5 c( r( L, I' h8 W
    - S4 R0 l+ }# q
    A recursive function solves a problem by:
    + K5 w6 f* Z/ j6 X, F8 o1 E: _* l& |4 W0 u
        Breaking the problem into smaller instances of the same problem.
    ( a1 _) B( g/ P- G4 |
    $ C# m. J' l2 R# N! n    Solving the smallest instance directly (base case).6 v: Z" U- p  L, s

    7 i' f! Y. L/ i) A" S- x    Combining the results of smaller instances to solve the larger problem.7 b. }9 x" J$ m% c+ ^  s# u& Q

    9 }  P4 p- K$ T$ w' KComponents of a Recursive Function
    4 _0 }' k4 R* J3 z- G* T! L
    . X4 z# A, \* z: @# ]4 q    Base Case:  Q: K! g, `2 [9 W$ M/ Q' A! P% d

    1 C* \$ {/ b! @! f5 J        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  R3 E, n' D& @/ P# d7 T
    5 `1 t9 l" y4 ?/ H- i8 W! {
            It acts as the stopping condition to prevent infinite recursion.
    & W( ]7 d" G; Q; u  o* y9 Z  }3 H- B
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: ~+ t" @  j8 w% B" Z

    5 j. u3 P* \  a) [3 t" n) @    Recursive Case:. E: i' w0 P& h5 Z& T2 U
    7 m& s. M: {, [. h
            This is where the function calls itself with a smaller or simpler version of the problem.
    ; E5 F3 L1 \/ V& Y. \- [5 y
    - Q( H7 W  K4 p2 O: y3 E8 C        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).8 K" d! a& z; P* K, X+ M

    / _9 ^# B1 n, t1 C9 jExample: Factorial Calculation" N! m( w9 O! B: w( k# }' D
    0 r( Z9 ?2 v% C$ T% q& l0 c
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% V" J3 _) o. l3 i8 `

    1 x/ [7 ?0 l* ^3 |    Base case: 0! = 1" ~  K/ w  h& i, \+ {
    . {+ y/ ^; n. J0 l1 L3 J3 E
        Recursive case: n! = n * (n-1)!
    % K7 O0 {6 E: r: ^/ Q* A
    . P+ w( `4 r3 u/ G* W% cHere’s how it looks in code (Python):3 |6 X. k# K7 j
    python
    " f' i- L7 e* w$ U* \; f. w) y! U! G7 o* _1 x+ ^5 W1 q  M. s
    ' @0 `* z/ f2 V  t( u
    def factorial(n):
    6 Z  a" ^& X+ X3 q5 `2 i6 G    # Base case
    + }5 q1 J+ V+ u  Q6 a! X    if n == 0:
    ( H. g! c* ^& r3 }0 W5 A1 {5 u3 y        return 1- l! G6 _, k8 ?7 o! T$ O
        # Recursive case9 y3 J. R/ J& H! K
        else:; K: X% |" Y# \" `7 ?8 ]; r# D! M
            return n * factorial(n - 1)# h2 b9 S" D5 X) i* x: m/ Z
    " f1 a! x& y; \1 W+ B6 M
    # Example usage
    % j0 |, ?0 `+ B- V8 O' }" \print(factorial(5))  # Output: 120
    " j1 ~# K/ S6 w/ L: z5 [; @/ A; l( a5 d  [/ _$ \3 {6 ?
    How Recursion Works7 s) T0 V  j! q5 D" w
    # Y, ?9 p& p# N4 b$ L2 x0 x# {" O: n
        The function keeps calling itself with smaller inputs until it reaches the base case.
    * V1 o6 G) [0 ^% e
    + L8 U5 H, o: M; R2 q" M9 ?    Once the base case is reached, the function starts returning values back up the call stack.6 {1 i, A3 n0 c3 s/ F* n2 I

    2 t, r: T8 w6 b" E% N1 O  A, U/ Z    These returned values are combined to produce the final result.
    9 S- s& s. I$ ~* b: r: J/ \
    $ _: n% t" O2 S7 Y' JFor factorial(5):
    3 h2 N' i; B) z7 r& Z" X9 J  q# E3 Z

    , N) g6 R) i, Z" S, p# v+ C9 `factorial(5) = 5 * factorial(4): M' h& \, u' V* `) @% K2 o& N( Z- m$ {
    factorial(4) = 4 * factorial(3): H, w& [3 x9 H% ~9 k* Q
    factorial(3) = 3 * factorial(2), }' F; z# h4 g
    factorial(2) = 2 * factorial(1)
    6 u; a' s4 E7 J) y" Hfactorial(1) = 1 * factorial(0)
    ( E5 H; v6 G# x3 A7 E% ~  o$ Mfactorial(0) = 1  # Base case
    ( q. P! ~6 U7 a8 r% _. [1 X+ G" q8 U1 z6 W8 `; u
    Then, the results are combined:4 s4 _+ r0 |# L: J. r1 J) C$ ]9 h- E1 _
    : F. v8 I/ A& O( ~' _. N! ^
    2 d: E" z$ B! I" k- _
    factorial(1) = 1 * 1 = 1
    8 \) Y. M7 w$ Z0 o5 U5 Lfactorial(2) = 2 * 1 = 2
    + A  J  W2 R/ h. K* Gfactorial(3) = 3 * 2 = 6( N1 w+ p0 i- }' d+ O! o
    factorial(4) = 4 * 6 = 24
    ! @; N7 r5 ?4 Vfactorial(5) = 5 * 24 = 120
    4 `% ?8 p0 ^- h2 O' ]/ Y; n* p
    ) X3 m. A. d! qAdvantages of Recursion
    . n6 t; `. S7 K) u/ R# g4 H
    ( z+ w( Z! i/ ]6 @    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& N, b( w# M3 ~1 p/ H4 Y( j# x/ [6 p" H
    , P  V5 X" }/ Y. w" |' O. K
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) A* K8 \9 }$ ^% E2 a) m6 f# c& p9 p9 r
    Disadvantages of Recursion& U7 r$ M5 b! |8 w( j0 }

    ' V7 ~+ ~2 Q; ]/ p3 l    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 H; Z8 t; a, e0 S5 d9 ]; A/ j/ |" c, R6 ?7 F; p) n0 ]
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    : U4 A2 q. q  c  ?1 P
    % M+ J- i$ A9 B1 [5 \( M) mWhen to Use Recursion
    # \5 \3 }  D( O& H7 [: n# t
    8 G: d% ~* |; |2 w: I5 `    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 a; ?1 E5 C8 \# H1 I) r2 @: e  }0 ]
    4 _2 \6 o7 l* X3 O$ L! p) K2 H
        Problems with a clear base case and recursive case.
    2 G( j# ?, I5 _( t2 E) R4 a7 }7 H" [/ N9 I- `& l& P
    Example: Fibonacci Sequence) i& G. q9 g9 q

    3 Y$ X# k. F! l' g0 c2 C" hThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 p5 A9 t; @) E, H) s7 H! I3 j& ]. J1 B: U! x2 J
        Base case: fib(0) = 0, fib(1) = 1, ^) y# @. V6 W$ ^
    0 s& k5 a! F' K* Z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 I9 F) f* }( O' Q+ K2 q; x  T$ W8 D( n% P4 ]; N
    python
    + _5 u- v! b9 b2 p7 ?4 q9 A
    " D6 G2 y4 B. U9 [5 y7 |* w, h7 |( s; z, t" i
    def fibonacci(n):
    2 Y5 ~* U3 h. {; N    # Base cases
    0 g# j% i- W. _    if n == 0:
    " _7 c: l- M) L* z. ~5 F3 e        return 0
    . X& a# ?) ]6 v    elif n == 1:, J4 P- F5 @: {! g
            return 1! n- H5 O% u$ j: U4 K' B6 `$ Y
        # Recursive case! i- }5 z3 t4 a3 C
        else:
    * y0 _* H; @* b: n        return fibonacci(n - 1) + fibonacci(n - 2)7 H2 b$ V9 Y  `; X$ e! I
    # J# S, \; \* M: w" {  e- N
    # Example usage
    ; ?' p2 }9 F/ Nprint(fibonacci(6))  # Output: 82 u- ?8 e% i7 h& S" T5 p/ f
    / C7 u' z: s+ ]" t0 Y( D& l
    Tail Recursion
    4 Y) H7 g' Y- C
    2 D1 K; K: \; l( v# XTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ; `8 [) g1 M" W1 |& \$ \' _3 V3 S
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-19 09:50 , Processed in 0.036095 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表