设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2029|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( G5 h& B' I- j  N0 K/ G: e- A: J

    ' S7 @8 _5 \2 \' d2 Z解释的不错, K9 r1 ?' P; |9 R: T

    % D/ o7 M) x4 n8 a+ j! }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& h) t7 U3 F6 C" R- T
    * f* ^1 x+ r. ]2 j( X+ x
    关键要素# F. ^* m  i0 m7 L, Y" p
    1. **基线条件(Base Case)**1 `% [* C6 A% Q
       - 递归终止的条件,防止无限循环1 W) N& C9 x( O
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " V/ t/ q; H5 z+ o! p6 K7 ~+ W. `( b# I( r
    2. **递归条件(Recursive Case)**
    5 [7 x1 ]! N8 q6 M; ?4 ^- W% ]# P   - 将原问题分解为更小的子问题
    2 _1 K3 ]0 K* t- U( e% c: Q   - 例如:n! = n × (n-1)!$ D, \0 X4 U2 X- o$ O

    ; O7 l$ H4 B. F0 k 经典示例:计算阶乘
    6 ~0 v& N0 o; y$ E4 Gpython" D4 `, P6 r7 J" A- z; k
    def factorial(n):
    ! f. o! ]" ?' _+ A5 u    if n == 0:        # 基线条件
    * _$ D+ Z7 i: ]' G" o- R, y4 L        return 1
    $ s$ `' F% L3 z3 _8 E    else:             # 递归条件4 F: A6 z% I% ]2 \8 s7 M
            return n * factorial(n-1)! |, p/ p7 v2 Z: y: B9 M) O" b
    执行过程(以计算 3! 为例):
    ' j/ n' `* ~; i4 x2 ~( `) `& W+ S; |factorial(3)
    2 L6 J" o7 z* }. z# L7 A3 * factorial(2)% b' w" L  Q  O" @4 |1 f
    3 * (2 * factorial(1))
    ) ?1 u, n! h6 `8 m3 L5 c# e3 * (2 * (1 * factorial(0)))( b% R. P* f8 c, t; t
    3 * (2 * (1 * 1)) = 6
    * _4 \; v6 Z' g8 _7 H/ k) C; ~& a% I+ l8 k
    递归思维要点
    * x3 |4 T/ l2 H1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 j: F0 |$ t7 {$ K2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . V3 m- I: n( K' d3. **递推过程**:不断向下分解问题(递)
    8 K$ a+ Q6 Y( l4. **回溯过程**:组合子问题结果返回(归); w; t7 K* D3 C9 }7 r
    9 X+ t( R; M  r' ]$ k
    注意事项2 o; P) W* m$ X. V$ \5 c4 B  t
    必须要有终止条件' I5 @5 Q3 m  ~7 }, k
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ; V4 O3 T) v1 g( ?4 Z0 X6 ]某些问题用递归更直观(如树遍历),但效率可能不如迭代/ e: B  R6 H" a9 l' v  k
    尾递归优化可以提升效率(但Python不支持)5 v" k6 _7 G$ Z* s% m

    - }. J3 |* h6 F6 _; V- z& M 递归 vs 迭代4 x7 L6 Z7 Y  D3 R5 N  B
    |          | 递归                          | 迭代               |/ [; k: Y. l( T% i
    |----------|-----------------------------|------------------|
    ( z% c/ G+ ~5 d5 _$ d, V| 实现方式    | 函数自调用                        | 循环结构            |) i5 I+ b; v4 o- ]- R9 J" o. X
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    # o' J! g& a  l6 M- z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; m1 w3 A: @) P( N
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! c8 y# L0 s5 z, ^% d& y) m
    / l9 [; C2 o  f; h3 R
    经典递归应用场景
    . @% B: r: m0 ]' G8 ]1. 文件系统遍历(目录树结构)4 B( M- S1 T5 k
    2. 快速排序/归并排序算法
    & G, M; j7 x2 a, v3. 汉诺塔问题9 M( b8 y6 t0 T" E7 D5 C  _. `
    4. 二叉树遍历(前序/中序/后序)$ o% g9 h5 L6 x& N* N% j
    5. 生成所有可能的组合(回溯算法)4 C, X; @- W& J9 r! q
    3 a% `, [( n3 [- I4 s+ v6 g
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 14:17
  • 签到天数: 3166 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,' Z" u+ A9 v; }/ i+ r+ H; d4 I
    我推理机的核心算法应该是二叉树遍历的变种。  O" N  B( s8 b" P
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:  S# {9 G* P7 U# m4 Z
    Key Idea of Recursion! I! [8 Q8 N3 j
    ' A$ i; t- H( _5 k
    A recursive function solves a problem by:
    0 @3 w9 c' F! q1 f8 S/ {
    . }/ q! N/ F/ \+ d# Z    Breaking the problem into smaller instances of the same problem.
    ' d# }8 p# q/ O$ W! |7 V: c( E+ R4 H0 A# o, y) }
        Solving the smallest instance directly (base case).
    . {) n; e% c/ x2 L. ^; w6 K! M' y
    3 N0 ], y, N; w- z. n$ _) h4 Y/ F8 j" u- c    Combining the results of smaller instances to solve the larger problem.
    5 |4 g7 Y0 I: q2 \9 N" @) h1 \9 y- c( p1 J0 E/ I/ k
    Components of a Recursive Function
    - d3 _5 ?' [" W; `; ~: C7 p8 [
    ! ?$ [6 |# K4 w. W- D1 y% s+ g    Base Case:
    : J4 z& z+ f. y" V
    ; T! @3 ?# d+ {% e2 E6 @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- k3 A5 Y3 J3 H) K  [% C

    6 m7 l. X1 E/ B+ I        It acts as the stopping condition to prevent infinite recursion.
    % A( }+ }# L0 _+ D4 I. u
    ! |4 ]5 H6 u# A. G" q; y        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.. q, q( A3 z1 X" R- N% s
    5 J# k  F/ W# ]( l
        Recursive Case:  {* h  a! a% n

    # o( h' u: \  }3 W& [! R2 B+ h        This is where the function calls itself with a smaller or simpler version of the problem.
    1 f, i; H7 ~& `( y
    4 Q  C; E$ v. c* @: G! C        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).. E! Y8 W- [  r9 n

    ) A8 ~8 l: H- G9 i/ v1 ~0 wExample: Factorial Calculation
    + J! Q9 M. b+ C- J6 Y" U2 z) x% w. K
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% F9 B9 o0 F& F" o3 ]0 Y
    * _/ o4 ^  F. k' O4 f
        Base case: 0! = 1. B# Y/ U, X, }1 H6 L; B- k
    3 e+ s8 J4 d6 Y8 {0 j" I
        Recursive case: n! = n * (n-1)!
    0 V: R; q0 ]  Y- ?) ^  r  D4 a
    2 Q+ _* F/ D- v  U' qHere’s how it looks in code (Python):$ W! ?; ]! m- w! D( p0 D. v
    python6 [8 u: f) D+ a* U8 w8 E& Q
    ! C; m9 |2 l3 t& o: S+ x
    " N5 ]: K  D& S8 ?; Y  a
    def factorial(n):
    0 ?& J8 V! {0 f& B/ a( j7 \9 V    # Base case
    7 Z5 U* U3 |; n6 X' X. W) ~* @    if n == 0:( }: n8 b- k4 C
            return 1
    : }* c4 h$ |" c* ?+ E+ K$ l    # Recursive case
    3 B9 w6 {* T; \2 l, q5 T    else:
    2 P, R4 J& ?9 M$ R3 C        return n * factorial(n - 1)5 n5 W/ B6 s; O2 i
      m" G  j: F5 A% R
    # Example usage
    2 _) V: q% g0 R# l  F: jprint(factorial(5))  # Output: 120
    # r1 [9 I7 P& l  D+ y- L- f: E5 J9 ^+ e
    How Recursion Works9 `/ n4 y6 R' j/ I: D: G) t5 k
    3 z* g6 ]& n5 v1 k, c
        The function keeps calling itself with smaller inputs until it reaches the base case.
    7 Q. X: T: Y9 f0 H: A. R0 W3 s& U! r
        Once the base case is reached, the function starts returning values back up the call stack.
    + B/ M% J7 f0 o: ~0 [* w3 x& I5 \* [
      P2 O5 {+ l2 a. N6 }7 t* K    These returned values are combined to produce the final result.
    $ i4 V1 v1 o3 L
    4 L/ d( |( x8 EFor factorial(5):! `! D' Q* W% W' Y5 n

    4 Z. r& Z- h4 p2 L5 |1 [. p  E( C% t, U- n% c* u$ w
    factorial(5) = 5 * factorial(4). n5 g0 s+ {- s3 i8 i
    factorial(4) = 4 * factorial(3)$ [2 q" T% P4 b
    factorial(3) = 3 * factorial(2)
    ! Q: z8 q9 n* P! x- tfactorial(2) = 2 * factorial(1)
    3 \1 P* x, [! p: c. Y* V1 lfactorial(1) = 1 * factorial(0)
    , q+ [9 B& z' E6 [factorial(0) = 1  # Base case
    - m! W6 \% \/ w5 o# i# g& _) w& G' m+ w( }
    Then, the results are combined:
    4 h5 [& G$ h# V; v: A/ z- ]
    2 I3 ?$ `( l! n8 b0 A3 E3 `" j* X- g5 K7 b6 t
    factorial(1) = 1 * 1 = 1
    # h$ u1 M4 b) pfactorial(2) = 2 * 1 = 2
    0 b0 l; b  `* h2 _6 Zfactorial(3) = 3 * 2 = 6; g7 f0 ^- L# b% ?
    factorial(4) = 4 * 6 = 24
    - W& m0 s9 t4 s% ?factorial(5) = 5 * 24 = 120$ Q2 D) L3 t4 |6 M) X& Y/ }/ j

    5 y& X& I* S4 g5 K* [Advantages of Recursion
    % f# k) N: S$ v9 H
    2 O+ T- {: h) t" `- [% c( ?# A+ b    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! V# Z0 }: r' S6 `/ D& O
    8 o# z+ L. v5 P; m$ W1 S4 D
        Readability: Recursive code can be more readable and concise compared to iterative solutions.4 O! O5 Q- {! @+ D3 A

    % O7 f; m  v$ \Disadvantages of Recursion+ v9 E& L8 T! J. b% v1 v

    / ]% a2 \' h6 b) s( k    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ j0 v1 D* U; |, l% S
    & |+ s$ }8 s! B! }$ |% p: f" H  H7 q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 ~5 L  |2 M! R* K
    , k! @2 j' ^. c; C9 t
    When to Use Recursion# `- k& D( t' I5 W& M
    & t6 K& m1 @; N# _9 w
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    * @6 ~+ S4 ?( C& P% A
    5 f$ T/ N. E) f8 {    Problems with a clear base case and recursive case.0 k3 Z$ }! ~$ c
    / v! B" A# I; e% C8 L
    Example: Fibonacci Sequence' j: E0 x( e  I4 N( F  l; G5 s

    0 X0 t2 n0 ?$ v, Y) vThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    / O3 u1 E/ J! C2 {; Z$ b6 [0 y9 z7 @. u0 W! g4 A
        Base case: fib(0) = 0, fib(1) = 1
    ) I2 |: A8 U, a- v! p" Z$ v2 b# N! F- k+ d( E9 a; m/ b
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 Z- y# R& c2 s9 E+ T: B  `+ D7 v+ Z' R1 R  ?2 o
    python, @! K5 _* j7 v4 o

    ' _. J1 c6 u& z1 z/ I# O0 K! v
    6 r* G9 X! X2 |def fibonacci(n):
    ; r1 i4 ?1 c1 W9 T    # Base cases
    8 q$ K( I" a/ p" J% l0 e( \. V/ b    if n == 0:
    * u  u- \. j: t% C  v% \# }* O        return 0
    , Z# Y0 p! L" A+ S$ l    elif n == 1:
    3 _$ i6 G6 v! Q7 `  \/ A1 n        return 16 l7 d% ?1 ^' ^5 e8 h! v
        # Recursive case
    . a0 P/ k% Q6 o5 n) S1 |1 t- y    else:$ f) v+ t5 y6 d' d, k1 `* Q7 j
            return fibonacci(n - 1) + fibonacci(n - 2)
    & e! P/ [# ?5 f7 h% S
    & x' y( r. r" L& W& ]' \+ ~9 z$ z# Example usage1 i2 G5 ~0 g  C- g( X  ^2 |6 w3 T
    print(fibonacci(6))  # Output: 8+ Z# s& L8 Q/ n# t1 }/ n

    " _7 b% f+ }1 _& L, RTail Recursion
    & k% f' F9 B1 q( |$ |5 E) i" T: F% N( }' v( r/ \" ~1 g
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 X0 Z! v0 q: R* v+ Q. T
    4 O  [. b5 f& I
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 02:21 , Processed in 0.054890 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表