设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1902|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / H6 C/ J- M8 V- V! [9 f) \, F9 H; @6 y3 H. \! \# s' N8 [2 w: a3 ~: Z
    解释的不错
    5 {& Q8 u! m$ H9 T$ E  [6 {( M1 [4 N* z
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    % b7 x) I2 |( q8 S- v0 x
    , p! J) Z( e  K 关键要素
      x$ k9 g& ]: M# ]: R1. **基线条件(Base Case)**& o# H# b- W  _: d+ s% w7 U8 P5 b
       - 递归终止的条件,防止无限循环. ~1 {! P% x; F* r2 j
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    : I" s4 [( T. X4 b8 a* x5 g7 w: D% M! f0 z7 ~
    2. **递归条件(Recursive Case)**1 x  U+ G2 U3 u) Z2 k8 N
       - 将原问题分解为更小的子问题
    , V" I% A1 y* v0 J0 y; Z   - 例如:n! = n × (n-1)!
    . r# i* {" @4 i5 }; p
    1 j! Z( h% r* W 经典示例:计算阶乘& ]- |$ e8 O& }$ N6 x% {
    python
    / d. ^  t! i; h) c1 q  g9 ~, ddef factorial(n):% P; t7 }" E/ c
        if n == 0:        # 基线条件
    " o+ c% i) K* W' ~! L        return 1
    + N1 x# H$ o3 U4 |1 X3 m9 ]# j    else:             # 递归条件
    8 W) W6 o# H$ p6 r, X% i/ o# u1 R        return n * factorial(n-1)
    " m% \9 \% k% z" \. m& A执行过程(以计算 3! 为例):8 O' Y8 y( j9 x6 A# d& u: d. e9 T
    factorial(3)! F  u* f7 ~6 O8 c7 |" A$ z0 [
    3 * factorial(2)
    ) M1 x- e. B- l0 L6 {3 * (2 * factorial(1))
    * E0 M) I2 u1 S  n' c. s- C: Q3 * (2 * (1 * factorial(0)))$ ~9 P1 ~& x( Q. I6 m* `1 n
    3 * (2 * (1 * 1)) = 6; n6 w8 S+ U8 ~
    8 V9 m9 p- h- j) A! u  D; d3 U
    递归思维要点7 V  O$ l; {. M8 W) I
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ ~7 K4 N2 l- a- u  m! ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    # K! \' I# g1 b# Z- G3. **递推过程**:不断向下分解问题(递)# N9 k* ^7 y; {2 u
    4. **回溯过程**:组合子问题结果返回(归)
    9 _, E% i* x. Y5 u9 m1 \9 t1 W  v; H4 J9 _0 d
    注意事项! p7 v7 P$ J* |3 Q3 d' P
    必须要有终止条件# w' `& {( A9 X
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 v2 w6 U& M' q9 i1 x0 O
    某些问题用递归更直观(如树遍历),但效率可能不如迭代( f; b( u  c+ @8 T
    尾递归优化可以提升效率(但Python不支持)
    : \% o# y! s: ]4 K! f0 I1 G6 k: X0 E2 v9 j8 {# d8 Y' a
    递归 vs 迭代6 P* p% z3 }- N; A6 @
    |          | 递归                          | 迭代               |& ]. t* z( p) r; ~- y5 v8 {
    |----------|-----------------------------|------------------|
    0 r0 y! M; L) q8 y( R3 {; || 实现方式    | 函数自调用                        | 循环结构            |
    - m( f. U; Y* l$ N! `; m| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |, m* L  o: s8 W. G5 z" b
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
      }' ^5 W# K* `* K8 y/ @9 {3 J| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; T' @" z) @9 M9 g* x2 x' P- H
    . W. A7 h& J. v 经典递归应用场景
    9 [. {, L. x3 R+ Z( S1. 文件系统遍历(目录树结构)1 v5 l% O) ?# a
    2. 快速排序/归并排序算法
    ; ~% t/ h+ Y" I9 j3. 汉诺塔问题% R: G. X7 x" D" }
    4. 二叉树遍历(前序/中序/后序)" J, s6 E3 _" @! ]
    5. 生成所有可能的组合(回溯算法)
    6 n9 H# }' A  P4 O% p
    & f# a8 V9 f* N( c% @9 V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:11
  • 签到天数: 3150 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& \4 Q# q0 L- e$ T
    我推理机的核心算法应该是二叉树遍历的变种。6 G$ x) P, L/ [" p. b) p" @
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    : ?# c; `, w- Y5 _7 N) [; ?6 oKey Idea of Recursion$ I" t5 \3 o5 ?& `

    * l! W; H3 E5 d: ]* t- n9 ]1 ~A recursive function solves a problem by:1 Z5 L! @) Z2 m5 f' d9 y4 S% G

    + G' E& T* Y, i4 E    Breaking the problem into smaller instances of the same problem.
    7 }2 w7 N$ N7 j) n3 e: g2 H* ~- L0 ~# f
        Solving the smallest instance directly (base case).
    5 f( w4 H! P& T6 U5 C. N) Z9 S- n: N7 i1 {, i- i  j: H
        Combining the results of smaller instances to solve the larger problem.
    * K3 U+ q$ D/ O$ f" [4 e4 h' N6 G! z/ n! D8 L3 ~! J
    Components of a Recursive Function
    " d2 c3 z" n& u+ u: x2 f+ p
    ( Q, ^) s. O/ h' H" y5 `    Base Case:# A! y! V& D  |
    4 H5 Y) o" q- I1 r
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 f; n: C! w; ?" @9 H' ~0 i  ~+ I7 U2 e8 V( s! ?" F
            It acts as the stopping condition to prevent infinite recursion.9 z( X( a& a: _" L4 G' M, p) Z, s+ x
    6 p2 p* S3 V/ [/ v, p
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 b  G7 D( m! V+ ~& Z# s% {4 {( `
        Recursive Case:+ M) k) s( p# V1 V- W
    + K) z1 Q& h8 B& p2 v3 p5 Z
            This is where the function calls itself with a smaller or simpler version of the problem.7 v- L" R, L: M/ G! F% Z( t* {
    ) b0 }4 v9 e) p5 {& I. m4 O
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; m+ c0 i8 h% ?+ v# r
    ) w1 {/ {6 T1 N# t; gExample: Factorial Calculation
    * L2 K. E  ^, k' g  e4 F. q8 T4 I2 H5 Q8 y! g& Z7 d8 ~+ C3 k5 Q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    3 I  O6 C3 S+ x8 z7 m' ]5 N
    % t; [; {7 G* g4 e" C* e3 `    Base case: 0! = 10 ]5 M* Y  R! x, U) i
    . T0 R6 W+ F  R5 Y
        Recursive case: n! = n * (n-1)!3 y# @, u8 W* C2 H, \6 @( v1 U9 Q8 ~7 w

    : ], I7 I+ H3 yHere’s how it looks in code (Python):
    + x6 s* K) A& g/ ^. Opython1 N; F5 f7 x8 d- |/ x' ]) l$ ]

    . [4 e7 v  J- A* Q% V
    % O% ~" \6 ~2 z  E9 _2 R+ k  Fdef factorial(n):' J" J. I4 [5 c% }
        # Base case, ]; r* L( S0 ?$ j8 {% b, G: ^
        if n == 0:
    0 ^6 W7 x) R% i' X' r        return 1
    ! T; p  b& F" C    # Recursive case) t6 T! r: N5 Y
        else:
    ' m  X2 @" G9 Z) f+ x        return n * factorial(n - 1)
    9 ], H5 e3 S& L7 g" B% A1 ?6 e3 [: S8 d
    # Example usage
    4 I5 W6 n+ n( w7 C1 ^& Y4 ^; yprint(factorial(5))  # Output: 120
    , p; C0 z4 I7 v- h- b
      Y& @$ V& B- Q5 x* s/ ]1 [  GHow Recursion Works$ W" u) |6 |) e  N* U

    " a2 F" W; X0 o: H7 |    The function keeps calling itself with smaller inputs until it reaches the base case.' a/ h; ~( b% u4 I
    5 U7 v$ A- L' j, b2 b6 L: z
        Once the base case is reached, the function starts returning values back up the call stack.6 A. h. ~. U' }; Z3 u
    3 y) ?! Z0 \' C
        These returned values are combined to produce the final result.4 M- j4 g7 A7 c& R  b
    0 @$ Q5 a* Z9 p6 Q
    For factorial(5):0 I2 q' d5 w! ]( W! i& D' m

    ! D1 ^7 k/ m& c, ^3 k
    0 q, |8 V0 S5 {6 A& L1 j' y- Wfactorial(5) = 5 * factorial(4)
    5 z) x8 j% \! ufactorial(4) = 4 * factorial(3)
    4 {0 p0 D5 Z- }1 F2 _2 Q2 Y5 ffactorial(3) = 3 * factorial(2): h7 Q. j3 s, M0 p' }/ p
    factorial(2) = 2 * factorial(1)( W0 B, ^6 R& M
    factorial(1) = 1 * factorial(0)5 x. c9 p  G' G9 e" o4 G- A
    factorial(0) = 1  # Base case/ v/ F9 f* z. W; u

    % J: \# X6 G$ }% JThen, the results are combined:; t3 u! q5 `" a: s
    5 Y% D- j. m  k; o% ]  o

    & o! g( f" [# W7 \7 f  bfactorial(1) = 1 * 1 = 19 g: l" Y* n8 N" H) m- b0 G
    factorial(2) = 2 * 1 = 2
    4 U: {5 Z! a0 x8 cfactorial(3) = 3 * 2 = 6
    ( H- F' k2 r, n, L+ ~factorial(4) = 4 * 6 = 24
      V2 q1 Z" N, Wfactorial(5) = 5 * 24 = 120* Q7 h# N' o1 \2 h3 _

    2 q" p+ L& U- F3 P2 R" I8 e( X. N  zAdvantages of Recursion$ e7 G3 ?* h' H) R8 K
    : a2 v; F, I0 ]! |, B& d% ~  [
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    / ]- h# l1 N' J( m# `$ A6 ~
    0 F  `0 e8 L% z* C6 e    Readability: Recursive code can be more readable and concise compared to iterative solutions.8 Y% r. f8 C7 ^$ m3 `

    $ |1 J: n7 C5 ~, F. ZDisadvantages of Recursion+ T$ C2 x9 \4 l; D6 b) ?  |$ K

    ) Q* D: O& C, ]' m" j    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 ^* ^+ H; C' F
    / Z0 l: ?3 U! T2 k: Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& d$ |, C- O7 P! q, d

    $ W5 s9 T- `  p  ~! N; L  ~# e0 zWhen to Use Recursion. ~$ e( D3 M! i" k1 L1 P
    ) M# D/ b( Z. p4 w
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! M& T0 ?0 s8 v! ]* @$ b; M1 g4 \9 a( G
        Problems with a clear base case and recursive case.
    4 W5 [2 {" C9 R6 o$ ]# C* E; L5 j1 R% J; t& j  e+ w
    Example: Fibonacci Sequence
    + }! d1 B! B0 _7 r/ s5 ~4 I7 E8 Y$ h& ]) X# U# D) W+ X
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:; x& F2 Q! J* [7 h8 Z# W2 ?

    8 S7 Y* B* Y2 e; @* H2 B& N4 W0 p! t- D    Base case: fib(0) = 0, fib(1) = 1. i, ]2 e5 B% }& x0 V

    0 x% k# j" c: Z, R. j; f+ l    Recursive case: fib(n) = fib(n-1) + fib(n-2)" C9 o3 U6 L( ?/ P( ]" U8 |
      [: C! }% P) B3 F2 Z1 Z. C; H
    python6 Z# i* Z$ {& _; r

    2 q! g# C. W4 P
    : n+ ?. ]; V* F3 rdef fibonacci(n):
    & L7 ~% }1 y! [6 P    # Base cases
    , X, u0 B1 `0 ~5 _2 \% K    if n == 0:
    4 u* j, i8 C' T' y# w" S        return 0
    7 ~1 |. X( z2 a) Y  }" G  q    elif n == 1:# d  O# ^" A' J  ]. t& t
            return 14 U2 o6 {( G+ B# J; [) ~; o
        # Recursive case
    ' e* N$ y% L& r3 N: [( a    else:( r5 E, N  y1 p( r) v. x1 N0 G
            return fibonacci(n - 1) + fibonacci(n - 2)4 |+ j( y+ ?2 a: a5 q) q! {- w
    0 P% t0 i$ I% R2 y) Q! A' w" a$ D
    # Example usage
    ! Q# D- I7 P: L' j- o* A& qprint(fibonacci(6))  # Output: 88 b# e" @3 G9 d, K& ^" s! M
    : T0 T9 p2 L/ D1 V/ Z* o4 l
    Tail Recursion# c$ l# C! R+ u3 h: V( C2 a- Y# |
    5 H: e& U/ Q6 s% Z. Z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( [  `2 L" x# ?

    5 L2 n1 L# q4 E% s& O& ZIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-21 08:05 , Processed in 0.057146 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表