设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1268|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ; Q2 o6 b6 n$ z
    6 `" c; m8 Y  K2 \1 O* j% T解释的不错1 y* {9 ^5 c8 |( a4 s) h! _

    ; l; \! M+ [. j' [: T! m) M2 R递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" j7 ~- F! T. b0 h
    ' O6 q. @# Z# _8 G* [& ^0 x
    关键要素
    * @. B% t( s( [  e, T1 f/ m1. **基线条件(Base Case)**
    ) u6 l7 t  p, \) i* }! B   - 递归终止的条件,防止无限循环
    " T* V2 k! I- o( H8 h% T% |   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( c- J4 T+ {5 V/ w8 ~
    # \$ E4 I' a. m' f
    2. **递归条件(Recursive Case)**
    2 Y& S& Z  ~1 @: I/ ]0 J) I   - 将原问题分解为更小的子问题
    4 U& Q& M# T1 T% p5 e# r( Y3 t% [   - 例如:n! = n × (n-1)!: e# u! q  M6 C

    ) i9 z+ K6 b# _9 x9 d; g# z4 @, T 经典示例:计算阶乘* n# S4 E" c/ q0 ?# o* u4 D1 z" k
    python
    1 h# D. ]) C4 }! H  l  Z% b2 d+ zdef factorial(n):! ?. Q4 x3 D1 z1 W( Y
        if n == 0:        # 基线条件
    6 Z  v+ o2 s. M6 u" n3 g8 i        return 1/ D' t7 g' m1 a) h, W
        else:             # 递归条件* C1 {$ [1 n$ Z+ a* R0 |
            return n * factorial(n-1)% `- L; `6 r7 y( U& G! Q- y# J5 @
    执行过程(以计算 3! 为例):
    ; o3 U& {$ Z- k4 @$ Gfactorial(3)
    8 H0 A' ^( O0 {1 Z( ^3 W3 * factorial(2)8 T0 H2 [1 O1 [# u, H- k) V
    3 * (2 * factorial(1))
    & `* |3 v% v% z5 t4 |% v3 * (2 * (1 * factorial(0)))
    8 N7 t6 u( K& N5 d) Q( h$ i, V3 * (2 * (1 * 1)) = 6, b5 e) x1 z, _0 V! _0 o6 Q! c! J9 V

    $ y( M! Z5 z6 x; O) ]- P 递归思维要点- w* S( F3 g% w
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % F- u$ a( x3 r6 Z: f2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 K0 L' x- U. R+ ?9 O
    3. **递推过程**:不断向下分解问题(递)1 g9 s' @  y5 `5 g; t: x& ]
    4. **回溯过程**:组合子问题结果返回(归)) _6 M0 w6 _( |3 @, c
    $ Z' g4 l2 u* b( n$ a& P7 p
    注意事项/ F( q% b, s" f9 F) L+ ^5 E
    必须要有终止条件' l+ X5 _2 M- k7 y( u8 A$ n# M
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ [! l/ q. r! \- r  t7 ^
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - p& w& P( K" e$ B尾递归优化可以提升效率(但Python不支持)
    & K1 b- C/ ^: f  T* |0 \7 H7 q3 c1 Z" I6 O/ Z: J, p# m. U! O# i
    递归 vs 迭代
    & o! {* O- C8 Q6 W7 R% Y% |$ H|          | 递归                          | 迭代               |
    6 `( X6 g- d6 c2 d; Z; c|----------|-----------------------------|------------------|4 @6 f: Z$ F$ X; d4 T6 b
    | 实现方式    | 函数自调用                        | 循环结构            |) V  s2 l0 U) |! a  S
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" t4 |6 q7 w' q- K% |/ ~
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |4 Y+ ]) R2 ?5 F+ W% B6 o3 J* ?
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . a6 N7 Y# s  X$ b  t: F
    - K) W7 i( N; L- _, t  z 经典递归应用场景
      H& [& K1 F: E/ F" @1. 文件系统遍历(目录树结构)7 m% ]/ N$ J" ?7 P
    2. 快速排序/归并排序算法. U0 J5 d/ \- F0 c
    3. 汉诺塔问题% ]) u. A2 j; s  @; T4 L" J, v
    4. 二叉树遍历(前序/中序/后序)
      L2 V; ?& z- N5. 生成所有可能的组合(回溯算法)
    * U8 |& ^1 ^% f3 o5 {3 J
    7 m% f1 z& B3 _6 ?试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:39
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 W1 W9 M$ p# }  N我推理机的核心算法应该是二叉树遍历的变种。
    ( q8 N  R' A0 Y) r% D  v另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% R7 c9 b$ X( d. \- f3 a4 G
    Key Idea of Recursion$ o) i- b# W% {. W# y% @* e; P
    3 Q8 m2 {4 @# @7 F4 ]4 F+ d
    A recursive function solves a problem by:2 [7 N% C. G9 P6 r, s
    # b0 L# R4 W. e1 Y$ M
        Breaking the problem into smaller instances of the same problem.9 |6 M5 [7 a- N
    ) ], N. n/ T9 F' I6 p0 p* z
        Solving the smallest instance directly (base case).
    8 ?' W- C$ o4 g. ~4 I
    4 ?+ I, D0 P5 }! A9 H    Combining the results of smaller instances to solve the larger problem.& |: Q( Y: u8 h- k. i8 F

    7 e( i$ Y, @% C3 Q* t+ k% LComponents of a Recursive Function
    - @* }" P! z" W, e2 I
    & U# `( a1 G) z  ?  q& S, @" K    Base Case:: v0 l5 f+ a- G

    7 b/ N% {/ G/ _; F- {9 R        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: e: W0 }1 J9 ^, _1 a2 M
    $ x5 l5 ]% y4 l
            It acts as the stopping condition to prevent infinite recursion.
    # @9 @4 X. f4 O* J6 r2 h6 c" \& G
    1 B& C- {9 L- i" F        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % o, G, e6 I$ j  q  r) k) m
    : j/ a+ ~' q( l# y9 ?6 z    Recursive Case:4 I  E) x8 U2 _+ [8 l

    ( L4 K( D# x7 e0 O8 t  P        This is where the function calls itself with a smaller or simpler version of the problem.
    ) |0 M& Q8 k0 K- p9 {
    - Q! @* H  G5 n' A7 O& b        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 x. e6 G: ]9 V  a

    . J# u+ R) L$ I& H, ~1 d) n& vExample: Factorial Calculation# R- A7 ~" @& P/ C8 Q* [, Q% G; c

    6 u# T! y$ ~% j: |The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# D; U+ ~$ Q" h

    ! P9 D* w4 p/ T+ q+ F& ^9 a    Base case: 0! = 1
    5 S, K6 }. |, P& L( T& e
    1 k/ U8 E# V% @* J- B/ A+ ~, R7 v$ |    Recursive case: n! = n * (n-1)!
    * G, L1 B, O9 w5 e9 B8 \5 Q0 R+ v; W2 F
    Here’s how it looks in code (Python):" C* H! e5 O; r
    python& I3 X7 c2 \3 ^; h
    ) G2 ?6 \6 h' |9 H+ y
    & N9 J& B- W0 @. j0 r/ f; S
    def factorial(n):
    $ w9 p3 _; \* ~# c    # Base case
    ' c% J& e! A2 w* s( }    if n == 0:
    # R6 O1 w; [+ o# q- ]" B        return 1
    ; V2 z" _  [; O; ^( a    # Recursive case
    & ~5 v# K- @# _$ B+ V' t    else:
    . M# R, j: }& z& W+ B        return n * factorial(n - 1)( K: `. y7 P$ o1 r8 R: M3 K& o& a* v
    " O- i) T! h' \! k0 {2 ~
    # Example usage+ E) g4 k3 H2 O& F% `, Y/ N9 D/ U
    print(factorial(5))  # Output: 120: x) O5 z8 g1 ?
    0 R( e2 Y' N9 m& q  ]
    How Recursion Works, f! d/ v, C$ }7 u' ^, \) ?) a" O

    : |" [  j  o; {* B( i/ `    The function keeps calling itself with smaller inputs until it reaches the base case.) N- G( ~  d/ e# l$ Q) o

    ! q9 k+ K6 |1 ~& Z0 Z& q    Once the base case is reached, the function starts returning values back up the call stack.
    ( X0 X3 E  e' M( p! Z( D% o: B, t/ V# w* Z$ F7 T6 y
        These returned values are combined to produce the final result.
    9 _  e& p, {; D/ v$ o
    ) z9 U9 s5 @( M9 n/ Z% \+ c$ u" SFor factorial(5):
    6 @* |1 g1 t! }5 L; e7 V/ f2 }# y" B1 M9 R2 Z7 W' z1 l

    5 Z6 f5 G+ v8 ?& Gfactorial(5) = 5 * factorial(4)' y5 |4 ], }* f0 Y! W* e
    factorial(4) = 4 * factorial(3)
    * u4 z6 i( F* n  [( t9 Ifactorial(3) = 3 * factorial(2)/ w: ]; o% ]; m  B7 H& S
    factorial(2) = 2 * factorial(1)
    : C1 p, h/ K( C  W, @factorial(1) = 1 * factorial(0)
    / d% D! Z$ e% R$ q9 Mfactorial(0) = 1  # Base case
    / i# r. o' U9 H+ }/ _& s$ z3 g- D8 Q6 t9 ?
    Then, the results are combined:. `3 ^; ~, y  T1 d5 E+ W* G' |! m
    5 ^; H" X& h6 M$ |

    + H  O2 v7 d+ D2 z. ]/ u+ @' Wfactorial(1) = 1 * 1 = 1
    ) \+ Y3 N! ]2 i6 sfactorial(2) = 2 * 1 = 2
    + X3 p) ^0 }* p4 ~factorial(3) = 3 * 2 = 6
    " r2 u9 l: v$ a! Y* Efactorial(4) = 4 * 6 = 24
    $ X5 A4 V2 S# d% b. m; g2 q- hfactorial(5) = 5 * 24 = 120
    " Y; [; F' E, D& r' A$ m1 I& H  [! E2 @
    Advantages of Recursion
    2 O! M: \: F! e% m
    # h. @' d9 Q& k8 i% a( }, h    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : D; Z5 t$ B" o; ?5 c1 k
    7 I5 o: r0 M, ?5 R    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 h0 F! k6 z) d& G, |0 K) j4 b) C# P; P; Y) y+ p. O
    Disadvantages of Recursion
    0 `- i0 Q7 \9 S- Z9 L) [: Y- s0 E5 E+ x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.4 K3 O3 d0 h/ f4 a: g) E0 i
    3 K' n% `# g. B0 s+ @& X1 x/ _
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ }+ }( J. Y& C5 q9 @" z

    7 Y9 S; _( J2 Q0 ]: a( N! NWhen to Use Recursion) C3 D3 d# h8 g9 M

    4 {& G" f2 \0 U    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ v* C8 k' J* }1 r. H0 [

    + E. k  e; w$ y7 j- L$ C) p, R6 Z! n    Problems with a clear base case and recursive case.
    5 z4 `% [! H8 W
    8 ?) R' b! {# E2 Y" P; k* p4 e( H4 XExample: Fibonacci Sequence0 p4 ^/ I  I" D8 Y5 X% K( R7 T

    5 M/ y% R9 w; S' I5 e% _5 yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + }. X& z0 W' J) n1 Z. m+ g/ E# e% D! _
        Base case: fib(0) = 0, fib(1) = 1
    5 L# y' N# t7 D* p9 A, ~! c
    $ z$ m- W9 F: f    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    " C, e5 I: ^; N0 j" C2 R: M; j0 {3 ^2 n2 C/ i
    python
    : k/ r1 [5 E4 y8 b. s. J0 O/ V/ ?* ^$ I- w$ `; `: i. k1 i
    % I' E! _8 C# c- R. ~7 g3 r
    def fibonacci(n):
    0 H6 S0 G# [2 q: R4 m- G    # Base cases
    5 w" r# I' s( \9 T( |    if n == 0:
    1 g* h1 ?6 g1 ]% c& c) y3 R        return 0
    6 t! t5 k/ I6 y& v5 Q    elif n == 1:! E. P. E) C, C# L' s8 J- I
            return 1
    . b! B& Y2 k* @# b$ F  T0 y4 t    # Recursive case3 t3 D* z6 ?) Z9 f0 b/ j" g
        else:4 ^3 u9 H/ t4 W: J% I1 x
            return fibonacci(n - 1) + fibonacci(n - 2)
    0 I$ B) j1 }: ]0 Q  ^
    5 R7 d! T9 J; ^4 s# Example usage
    " U' n5 K0 j; o# \7 n( h6 w. ^& Oprint(fibonacci(6))  # Output: 8
    0 V4 T. |2 `2 y1 \) N9 Z$ V
    / L  k" s2 ]% D3 ]3 Z3 d5 L( p, JTail Recursion4 H  @% z% W6 I, a) x0 F3 _
    ( Q  _* `; M/ I
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 }% f& a, x. I6 Z7 F
    # e/ p: U1 e: h" E& cIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-1 14:12 , Processed in 0.033016 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表