设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1972|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 {! N! [, l; H8 X, e
    - ?& K+ S% P) A4 D% l0 l7 a
    解释的不错
    & ^6 N: b4 A. y4 Y- {7 D5 X5 I* ~& b7 g5 c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ( u* d' R4 `' }+ U, V- u: w6 _8 ~" }  ]+ |* D7 y2 E: o9 W
    关键要素' Q* c/ p" ?! d" j1 Y2 y: z# U
    1. **基线条件(Base Case)**
    8 R6 ~% ?. Y+ n3 a5 W3 ?5 [   - 递归终止的条件,防止无限循环
    ' i1 Q' p% K6 Q+ Z% h/ ^5 k) C& l+ O" h   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      T+ Q8 ^5 n4 {( r# V
    / a0 V  H, T4 f1 f. \2. **递归条件(Recursive Case)**
    7 [: y) g8 M7 W$ Q0 k   - 将原问题分解为更小的子问题
    0 [- j% K0 ~; Y9 T  b   - 例如:n! = n × (n-1)!
    0 L! I9 y8 {- C- g+ \4 y* j, _& p. b& j8 {
    经典示例:计算阶乘8 @; a) \% y; S- V1 {
    python
    - L3 v) o/ J7 n  R3 @3 N, P( Fdef factorial(n):4 u& k8 u* r! S2 W
        if n == 0:        # 基线条件
    " k3 g  j/ T- j- n4 M        return 1
    0 j6 F# v& n0 U    else:             # 递归条件0 N. C+ K- C* |; k, l
            return n * factorial(n-1)
    " [: S  G& T, V执行过程(以计算 3! 为例):
      e' B% x& l4 ]) x0 K  |' pfactorial(3)
    1 D. |% w. R) U2 v; X3 ?8 K3 * factorial(2)
    7 Q- c" I1 U  h% r3 * (2 * factorial(1))
    " {) G+ `' S  p8 Z4 [3 * (2 * (1 * factorial(0)))
    1 w4 ]" ?- X2 i" ?# z$ j# u* N% C: Q3 * (2 * (1 * 1)) = 6
    ( q8 Y; s7 n8 O# F# @6 M  f: a9 g. J* \) v$ W
    递归思维要点: g, l$ }0 }/ {% o# Y4 m
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 Y3 W4 v8 ^8 E  ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) T: Q8 q4 D% q! Q
    3. **递推过程**:不断向下分解问题(递)
    # p* J, D* {7 v6 N5 ?# O4. **回溯过程**:组合子问题结果返回(归)
    / [" B: m- u1 `$ H
    1 E- t' D  ^# r2 O$ {$ o: ]+ N 注意事项
    / T4 r: j% N# t( [# M必须要有终止条件
    ' v. s" [* H1 ^! D' u; s; F4 h递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / w) S8 t# r- B8 X6 U- F某些问题用递归更直观(如树遍历),但效率可能不如迭代6 e! D  L; Z6 e  C2 a
    尾递归优化可以提升效率(但Python不支持)
    , F5 Y& s2 H  {7 _$ `* S" C/ Z7 ?$ r7 s; O  u4 r0 w/ H
    递归 vs 迭代9 E2 R4 S) K1 B: X+ G5 v5 ^
    |          | 递归                          | 迭代               |
    8 ]' b; f- ^! e* `|----------|-----------------------------|------------------|
    % o( n, P% W+ ?6 T' p6 z| 实现方式    | 函数自调用                        | 循环结构            |
    9 X- O: \5 ?$ l; ^0 g1 G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 c) s# Y1 E, ~' x% V5 x
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |, @% V8 [5 C- U& i9 [. e! J
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ q. T, H( a6 f
      c% G/ `8 l! j5 ~* I& L1 u# A
    经典递归应用场景
    & o2 |4 N. @1 t- P# ^% ?  |1. 文件系统遍历(目录树结构); J# y, k0 k) C/ d/ I0 E0 k
    2. 快速排序/归并排序算法  U/ H1 E2 W' w0 b+ @7 N/ ^! M
    3. 汉诺塔问题
    0 y6 S& p- [) k* g) `4. 二叉树遍历(前序/中序/后序)  d/ B4 S4 A9 f' J, L! T
    5. 生成所有可能的组合(回溯算法)* {2 U3 G' f( f7 g& E
    ! M% W: n1 [7 y. `+ M
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    5 小时前
  • 签到天数: 3157 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 r  ~2 \7 P  Y6 \. i' m# b我推理机的核心算法应该是二叉树遍历的变种。
    ! J/ @5 ^. X1 E另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - k8 z' T/ ?  S6 T: p3 `+ ^: aKey Idea of Recursion
    ! C$ ~) i; A" O- T; o7 [; t
      t+ H* {/ @8 U5 _% xA recursive function solves a problem by:: ~6 w( h/ _. G( I" p

    4 v0 u5 V  Z- R+ s5 y    Breaking the problem into smaller instances of the same problem.
    ) ^3 _# ]; F4 z0 ~: O, e0 Y. M  W) ^. w
        Solving the smallest instance directly (base case).1 s/ O1 ~2 I& G' }; e1 [9 p6 Q
    * s8 Y6 {/ p1 F: M+ x
        Combining the results of smaller instances to solve the larger problem.
    6 B$ c7 E9 A( n& y3 p+ H9 R8 t- I  A
    Components of a Recursive Function
    9 t" k5 N) G0 k$ ?3 N6 v! C1 `
        Base Case:5 T% m5 i) x) L

    + u. L% V1 `; _0 G9 s, S        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.1 v3 l0 ?3 G3 l# R

    9 H  ^! w( P$ p        It acts as the stopping condition to prevent infinite recursion.
    . ~$ ^2 I+ M# l2 m! \" A0 N+ p; ~3 y  v& _4 u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    # N& [0 N2 H$ m" T+ }% [! G# T
    2 _$ Z$ Z: j% @0 c2 l6 w    Recursive Case:  W/ x/ j6 B/ A; [. r& S1 m

    ' Y2 a( L- R2 |. M9 p8 _9 Z) N        This is where the function calls itself with a smaller or simpler version of the problem.
    4 t! a* f+ v0 {9 j- f  {; ^' w% A7 I2 d# Q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' ?2 ]0 |# k8 C- u5 g
    * O# [  @# B6 o0 K' ]- w
    Example: Factorial Calculation, H& I: A. O, h3 T1 ^4 d6 Q6 ?( f  w

    5 w( @8 m& j. b0 ?1 D4 S5 M0 hThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 Y  R8 ~: G0 G' i
    + k; k! B! P4 f8 X- y
        Base case: 0! = 1( Y$ E. @+ D  }  a
    2 l& Z0 u% ]/ S2 q3 T
        Recursive case: n! = n * (n-1)!, W- `& r5 ?. c4 x  p
    " W9 d! F& W. K
    Here’s how it looks in code (Python):
    3 a5 y! B8 t/ a# @" k7 }python5 M! u0 J# g0 m4 Y9 K* z: |
    / j& a- r' M& d
    $ U) @) T( [4 p4 J
    def factorial(n):
    ; u. w6 x/ M! A. d    # Base case
    # a1 w0 E3 y( C' P    if n == 0:& W5 D) [; V4 g
            return 19 H- f( Z$ p1 r! L  M5 c
        # Recursive case
    2 J; m! d" Q; a5 c    else:8 L8 _1 y7 |! g; g3 U, j: t  d
            return n * factorial(n - 1)
    $ _  u+ c7 ^$ f; e
    , i1 [2 T7 R' x2 w3 {6 V0 K4 l# Example usage  |# \8 b8 x6 ]# `4 }8 @( r
    print(factorial(5))  # Output: 120
    ) }+ ]* r& }" o3 M& H" i4 \
    ! m- }/ a$ \2 C* g  v) SHow Recursion Works" t( C) k+ V* f8 c- r% V& }

    ! G! A+ k, t8 u2 q    The function keeps calling itself with smaller inputs until it reaches the base case./ s; X' Z: j9 [, U
    2 ?$ n; C, j/ }0 _8 K
        Once the base case is reached, the function starts returning values back up the call stack.
    / b$ D5 E6 E# }$ w9 }, y8 b" W, n
        These returned values are combined to produce the final result.
    : |; e6 `$ n$ R( ?' f. F& }/ M$ u
    9 ]! a! x6 K% V7 LFor factorial(5):) l# x: A$ E: p# N+ [' ~4 w: j
    " H1 f; S7 S5 a: n+ A# {  Q6 q" c
    ( W, c8 E4 f& g3 ^$ b$ |
    factorial(5) = 5 * factorial(4)
    3 B. Q: E, _% i3 pfactorial(4) = 4 * factorial(3)7 m; E; C0 E/ w1 P8 b
    factorial(3) = 3 * factorial(2)" o8 p% a4 \7 P; I; W9 @- x0 t" `
    factorial(2) = 2 * factorial(1)
    0 O- r1 ]# p( |. M7 wfactorial(1) = 1 * factorial(0)( K/ l! U& U. f# [
    factorial(0) = 1  # Base case8 C$ s( c; x( O$ @9 m3 C: m

    * C. r7 w6 h. f  dThen, the results are combined:
    1 t( v" {& R% z; B
    6 q3 S- v# N: _9 \. N7 S) V5 y: y7 j  m: J
    factorial(1) = 1 * 1 = 1
    1 {& ~' }9 y7 [, o! J; \! qfactorial(2) = 2 * 1 = 2
    ( ^6 i& }% I! {2 W/ b1 Ufactorial(3) = 3 * 2 = 62 ?) U! H" t3 p4 j- h) K' m
    factorial(4) = 4 * 6 = 24
    / `" b; w+ ~1 }( o3 Jfactorial(5) = 5 * 24 = 120$ u* u) {. C& z$ S

    5 Y, K2 ^8 F8 ^9 o; ^3 yAdvantages of Recursion  h+ k3 R0 r' Z2 q4 n1 f

    6 `- g  m6 N7 z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 Y  |6 S$ M% i) F. K8 ?

    # ]$ i( @8 U2 E, P. v9 T    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 P3 B* @' d& c  ]" w' g" z& `

    ( e6 V& v; K& g, z/ KDisadvantages of Recursion
    - o. `/ P" k( W5 W! C. @) o/ t) \/ e; F, L9 }
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.+ O& |9 Y+ y; F& f( `! a. J

    3 q  \: s7 @7 S! \    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ E  d+ ]' z, e% [; r4 S
    % q( b6 R' [$ s
    When to Use Recursion9 x  a/ A4 {' n1 h- v# E

    ' h" @4 \/ P: ?" e, ^. c5 c, A    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    # a: q$ i) d3 f. ]8 E! E( h+ k6 e; g6 I) e, b  @6 @8 G$ [
        Problems with a clear base case and recursive case.
    # K1 `3 O9 a5 b5 ^. k# B1 f) S& C+ m2 p" N: k" H; m4 I& w  x
    Example: Fibonacci Sequence$ b1 t! |( T5 E# H$ ^! x* {$ K7 v$ g1 P
    0 X6 l  k: t- L, P8 G" F4 G; p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; _9 w( P- K3 |$ v) d4 f
    ( y3 g, _, m# A0 D+ q8 u) I    Base case: fib(0) = 0, fib(1) = 1) U6 o8 U2 N4 ^
    8 A' t2 T) E5 H
        Recursive case: fib(n) = fib(n-1) + fib(n-2)' `/ l, r4 e- o8 y$ S* y

    6 e# j. e! @! M! ]3 qpython
    * l) V, s( N( d7 h# ]$ Q* H' m4 R( L; E' V9 s
    & P% K/ w! I) V' n: J2 h
    def fibonacci(n):4 i9 V# f5 r' g" i5 ^2 ?
        # Base cases
      {( g& y) ]1 Z1 d    if n == 0:; V3 K2 |0 u) S' v
            return 0+ k' n3 w' n0 M8 x3 J
        elif n == 1:  x$ C" |/ s, {( ]$ t7 U
            return 17 l# J! E/ i/ e# [
        # Recursive case
    ( [0 U  e# j! P& t. p: S$ ]8 {    else:3 m" ?  s3 x) M0 F2 [$ Z% r
            return fibonacci(n - 1) + fibonacci(n - 2)
    ( M7 a+ l6 q- z7 x+ T) S: f, `1 _% F" y4 B. y+ U' I% l, ~+ ]
    # Example usage  y7 Z* S& ~4 g1 \
    print(fibonacci(6))  # Output: 8
    " \% C7 `/ [  O: Q1 A, w& F
    4 g  C7 [" K6 YTail Recursion, _8 \! \% U7 R, C

    9 u8 G9 Q3 w8 {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    0 X; _! Y6 Z- ^0 y8 {0 L
    0 z) R4 w; `, [: o- j% ]( g9 wIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-29 11:29 , Processed in 0.065047 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表