设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1370|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    - Z! b! u, ~4 i) M$ _6 ?- u! l% P! k2 V( Z7 \
    解释的不错
    9 k  p5 v# {6 u+ m3 B( k  c; W) }- U4 d, @
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; I, w0 C1 A+ o8 ]$ z
    # f- M3 P9 H# {0 v+ a
    关键要素$ B+ y$ z/ k# o% d$ e0 d
    1. **基线条件(Base Case)**
    % Z! F2 Y8 l; l! }4 u! l/ f   - 递归终止的条件,防止无限循环
    3 u" K. m$ d5 w" ?/ a; {' `1 g   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 ^% k$ y2 H& A( d% @/ |# j3 W# D# X$ Q- L
    2. **递归条件(Recursive Case)**
    * w' B6 S, Z5 y) K$ ^   - 将原问题分解为更小的子问题
    : K- ~& I9 C5 d% H& ^& J2 J   - 例如:n! = n × (n-1)!
    % \9 z# c  P, l# v' X0 @1 W& N$ U# R4 p, G1 a* q& A
    经典示例:计算阶乘  G7 A: a: Y1 X9 A$ @
    python
    8 E) l' L+ \: @def factorial(n):
    / B0 [, \: U% j& V" ?- \9 G7 S    if n == 0:        # 基线条件
    ) n; |8 ^: i; S; x) {5 k/ H        return 1% n! j4 o6 I' s# @" P5 R7 h- _5 r' b
        else:             # 递归条件9 ?: ~; H2 ^( E$ ]$ [1 O
            return n * factorial(n-1)
    5 s- ?. w; A0 L( l& K" E; ^执行过程(以计算 3! 为例):
    9 r5 S2 C+ G$ ~: ~. Hfactorial(3)) T& [+ c1 q" f5 a3 b
    3 * factorial(2)8 k) ~5 w# D0 R0 e* A, t" D  C- P8 ?
    3 * (2 * factorial(1))
    # _, k$ }1 ^; R; N3 * (2 * (1 * factorial(0)))& o0 E. x1 T+ F/ t5 h7 [
    3 * (2 * (1 * 1)) = 6- w9 p5 Y: @/ R- z
    7 J' W% r7 G2 Y) Y: _( `
    递归思维要点
    ' M1 ?8 d2 L& |; I1. **信任递归**:假设子问题已经解决,专注当前层逻辑& J. @$ a8 c1 o& Y  o
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    3 q! P& k  W/ Z* ?5 E' W/ B3. **递推过程**:不断向下分解问题(递)% P- x  z# q& {, O6 B1 w$ S* @
    4. **回溯过程**:组合子问题结果返回(归)* j9 G. o3 p: S$ g
    * g+ ~$ T7 C; `* A8 w" F! E: P* A1 u
    注意事项
    ' N: _' B/ C5 @1 g- p$ ^3 C必须要有终止条件
    * w/ W/ R' N# D$ N2 W8 R$ ]; s递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' c) a" S8 z* B; r3 g+ @4 w/ ?某些问题用递归更直观(如树遍历),但效率可能不如迭代
    & R% d5 S& D8 D# R尾递归优化可以提升效率(但Python不支持)
    # l4 _: ]9 I8 I) R) w/ W6 C
    7 ]7 P/ T" t  x5 @; \' k; I 递归 vs 迭代
    . X6 m: e% u: `7 A! h|          | 递归                          | 迭代               |/ r) h1 _5 x4 z4 d8 Y% ^
    |----------|-----------------------------|------------------|
      [4 G# d5 Z4 R, B; ~| 实现方式    | 函数自调用                        | 循环结构            |
    1 i8 J( @' X! T+ g; y, E4 j. l| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , g! b4 m0 ~% Q+ \4 D" R& s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    2 B$ M3 p' T1 Q- _+ P9 g) a| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : T* ~; ]0 y7 V: D% F% G5 U) B+ K. ?* X. M( i- f" N; Q2 q
    经典递归应用场景
    # Z; s9 X6 W3 n$ E, G, w+ K1. 文件系统遍历(目录树结构)
    7 J8 o% A# f( V  A+ o/ ^2. 快速排序/归并排序算法! F" n! H1 `+ Y
    3. 汉诺塔问题; m& t+ W5 S4 p" B% O/ y+ B
    4. 二叉树遍历(前序/中序/后序)
    ( X: G0 E5 s, a( Q$ t5. 生成所有可能的组合(回溯算法)3 O; O+ F/ l5 t7 k7 W( V" k& w
    2 a) i  b" e$ h+ l/ ?$ C* M- T
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    15 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) Z8 ^4 h" ^4 I0 V  y7 U$ O我推理机的核心算法应该是二叉树遍历的变种。/ g4 J$ v/ U& K; j
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 _. M% ]: M( c6 SKey Idea of Recursion
    9 [$ l+ _! S* P
    & l9 v! b& c3 c, [: ]5 GA recursive function solves a problem by:% @9 K  [+ A/ T/ ]4 `+ v
    0 B* R1 _! N) N" r
        Breaking the problem into smaller instances of the same problem.( h1 e: y9 |: D" y. k& i

    + d; ~+ _7 U2 Y* a( z" X) N# S    Solving the smallest instance directly (base case).
    & J) a, v; i, |. p2 ^8 |- J4 M1 Y! \3 J; T2 p* m: E
        Combining the results of smaller instances to solve the larger problem.5 Z0 o( r- S: _1 D, y! I
    ! n3 u* O1 O9 G6 A4 ]
    Components of a Recursive Function4 y) Y# x: D. k7 |

    3 J, P) r- i' U    Base Case:
    9 [. S4 x9 A: A$ N
    / Y! h) j7 O  y% s/ |        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    7 Q7 M! b' a- ~! J( D. Y' I% V  b
    , B/ ]' A; ^* q; o; q2 B0 d        It acts as the stopping condition to prevent infinite recursion./ ?2 z. D# Y  U+ @5 V

    7 F0 S$ ]! h! w6 _3 r  }* ^        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    9 K" F; }. S0 A' v4 K9 _
    ( L3 @' V8 @" g' B0 |% x    Recursive Case:
    + s$ t8 w+ J% A. H# f7 X# k! Y
    0 a8 _9 ?) h0 c! ?. z        This is where the function calls itself with a smaller or simpler version of the problem.3 g; B/ @) |$ W2 m

    ) i$ t7 _$ Y. Q4 A3 @; a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 T' B4 s* b' N) B- X1 G
    % ~6 Y0 M( k. h' _( u# e& X9 ]Example: Factorial Calculation3 @. X0 r$ g5 @; L) J% S: v
    5 F3 |$ X& z# u( Y0 d( j
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ q# m: `( E' x2 K
    " H) x2 D5 j( c4 v7 o2 O
        Base case: 0! = 1
    " X" p+ K3 ~! w
      I. ?* l5 L8 |, l: `3 R3 v    Recursive case: n! = n * (n-1)!
    ( e" R( v! |: q5 j$ A
    - J0 u9 a! z4 [+ H4 p) J& FHere’s how it looks in code (Python):5 _; E# A4 p, w6 w2 a
    python, k4 X/ W. y' ?4 _! X& C! E
    * i& z7 _) L8 p2 Q7 f
    ! ~3 @0 T- F6 E! W  g* U
    def factorial(n):9 I+ @6 M4 b, z8 u+ B- c
        # Base case
    * W- I( ^; A' S    if n == 0:9 h: Y1 w5 r! f$ O% D( `
            return 1& I$ N+ h. ^) y6 D- o0 M9 y* f
        # Recursive case- ~  r+ i* J- d! ~( m! h
        else:/ X) M$ @' A2 D# v! P6 x! d+ A
            return n * factorial(n - 1)' Y; W8 V. q. d: S2 s

    3 W9 @6 C% r: {0 Q. {# Example usage
    . Z1 k9 ]1 V+ T  z# \print(factorial(5))  # Output: 120
    # x. H$ v  a# N+ B
    5 D2 l! K% z6 @  J3 L0 b" A4 K; n$ sHow Recursion Works" |/ p$ L! _4 ~7 h$ Z
    ; D# R( q* N7 O0 Q9 c! i
        The function keeps calling itself with smaller inputs until it reaches the base case.
    " q0 f! D6 w$ y' `
    1 a6 C- w' L- p/ ^, g    Once the base case is reached, the function starts returning values back up the call stack.8 v6 G. U3 |* Z$ f- I* a
    8 E' j  r! ]7 X+ q1 U
        These returned values are combined to produce the final result.
    8 j9 a7 w- y& i( u' O
    # I9 E' k- E- V1 W# `For factorial(5):
    ! S* `  s" W% e$ ~. d& r" q& ?8 P4 T! A* E7 s0 j

    - P: p: f6 I5 ~factorial(5) = 5 * factorial(4)! T2 o' \% V9 H& e( {* \: I4 T5 I$ `
    factorial(4) = 4 * factorial(3)
    : b% m, {3 I3 q, J) E- w( N& Xfactorial(3) = 3 * factorial(2)& ~/ `4 g3 g0 i' f( y- p$ Y
    factorial(2) = 2 * factorial(1)4 j% K; }# c; B( C' Q" A- v( @
    factorial(1) = 1 * factorial(0)
    ( R5 P& z6 w2 u  lfactorial(0) = 1  # Base case" \, H  V1 C! ?( ]* S
    / W  V; Y2 _8 @0 F# B6 d
    Then, the results are combined:' S5 _6 Y0 Y- a# c
    3 x- T- V8 m# l( j1 i
    $ {# M: \+ @3 y+ S. \( F" k1 j
    factorial(1) = 1 * 1 = 1# ?; p+ o: W0 O' W, q, M
    factorial(2) = 2 * 1 = 2
    8 s, j( ^9 A: s% e3 xfactorial(3) = 3 * 2 = 6
    ) P) x; O5 }! H! T( sfactorial(4) = 4 * 6 = 24- v8 E% f! F- O6 K9 _' b
    factorial(5) = 5 * 24 = 120! i6 \* M) k% }2 W2 q

    " Z. f( Y4 m0 h, }- @; sAdvantages of Recursion1 q0 ~  l5 x! A/ a

    8 |: O8 V: v+ V; n2 B( Z  S    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).2 G4 w; Y$ D3 g* J* P- u

    2 `. }7 M% \% j8 Y1 N  A& Q' P    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    1 x0 i5 Y( v" r! m) ?" ]2 N( j
    6 R6 e/ I3 j/ Y7 `* JDisadvantages of Recursion
    5 i3 G& ?4 Y# F5 s7 a$ P# F+ P8 ?9 C: t
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ x2 ?" L7 S/ ~5 y( @4 {
    / T, X- G8 T- [  ?( s* |
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# K8 O1 R7 ?0 i5 ]/ C( B* B& I

    ; q# ?& H) w4 K( V7 b! `When to Use Recursion
    ) V# l4 P; ]( H& x6 ~  Z# _0 ]' e: n5 r8 }5 v5 e
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).' `" A& S) h( r, f( T* }# H
    . `8 H+ c: L& k) B5 k/ z6 M: P( u9 o3 g
        Problems with a clear base case and recursive case.8 E: o+ Z' a% G9 S; f
    : P: ]$ q7 c3 f, Y/ M7 _( z
    Example: Fibonacci Sequence
    7 r: [% P4 Z* t# e! M0 f7 q/ B; B5 y5 s6 Z3 f. N1 |! w
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; x, Q$ ^: ?. y9 m: N# n6 |# @3 p" E0 x: p$ q9 k
        Base case: fib(0) = 0, fib(1) = 1
    ' O# s  {& f4 J- H7 s
    , e0 W3 E8 k  c- @3 a    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    6 g/ T/ \6 t. P, D4 N8 T
    / p% X# g2 U4 @3 ^- qpython' H7 ?" T+ _/ X# ?+ H0 O
      \  x% A! `  ^  K1 p

    ! l: @7 \# D+ ?3 m' P% cdef fibonacci(n):- \$ _9 j8 I. u- U3 e7 `0 h" ]4 X
        # Base cases$ Z0 y; H8 E; {) w2 x6 x* d9 x
        if n == 0:0 {* u% E; {+ B& u# ]2 K
            return 0) s' V7 h% f& P
        elif n == 1:
    0 \" _7 T+ J8 s6 r5 p0 ]        return 1; X8 S; f4 J; f+ n# Q# M
        # Recursive case0 ~% O0 R! H, t+ F" Q% Z$ _
        else:: l! W8 O2 C. \! v3 `  F5 A, ]
            return fibonacci(n - 1) + fibonacci(n - 2)+ T: J7 o+ W+ E3 b( J% U4 G7 f2 s
    / ~" ?) F3 U* j$ y( Q& D* F+ M
    # Example usage
    1 K" ~4 F3 e4 |8 _$ Hprint(fibonacci(6))  # Output: 8; s8 q4 y3 F1 U1 _

    ' w; S8 X4 N6 @8 {; X" gTail Recursion: }, Z( w4 N: \+ V
    - K6 t% Z$ E% l( T# U( L/ r
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    : t+ y9 j% R  r2 j2 `6 I
    , I( k- f5 G( U1 O7 s+ xIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 22:03 , Processed in 0.046041 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表