设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1303|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + z* f! J% S3 |. E& `! j* ~  Q
    ! [, V/ t) u& m, E) T) U, }: r* g
    解释的不错) Z1 F3 N1 q9 Y; H9 a5 E& M" |
    ! L: a. \! [0 y! z  H
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ! `$ l+ V- j' t: Y" K3 H  \, ^5 s
    1 F: b( H6 Y3 `3 }9 d 关键要素: k) S# B  u/ L! j, B- o+ [4 N
    1. **基线条件(Base Case)**
    4 p8 o6 s* w3 g' t5 H   - 递归终止的条件,防止无限循环' s3 K- V# R9 |* U
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1* D0 q/ c$ B6 h: K6 P
    4 R# W6 o( a0 R& Q1 u
    2. **递归条件(Recursive Case)**% m# H% [* o, c8 b
       - 将原问题分解为更小的子问题( X- u& ]" m' n& \0 T+ ^* Z
       - 例如:n! = n × (n-1)!
    9 `- `* e$ `  A) m& l' D
    8 @9 B* ^. V$ Q 经典示例:计算阶乘
    ( I3 m' U. ~8 d, W2 [9 ]9 mpython
    " ]0 o, w: A* V* B8 h$ Cdef factorial(n):
    2 G$ r1 O: E* @    if n == 0:        # 基线条件2 I' ^: H/ o( r2 d. q7 e' c
            return 1  M9 C. Y3 b. o+ g
        else:             # 递归条件
    7 e  F' c( f$ |, N        return n * factorial(n-1): K9 z+ g6 n9 P7 @6 E" t
    执行过程(以计算 3! 为例):
    - n* l, }, I4 U7 r  M. L7 Sfactorial(3)
    : i& `/ O8 R: T* X- q( u; s% r3 * factorial(2)$ e5 g. _: r7 k4 E% e0 G
    3 * (2 * factorial(1))
    # N7 `* m5 f7 s+ [/ A3 * (2 * (1 * factorial(0)))! G5 [. ~$ J2 A" G2 n, t
    3 * (2 * (1 * 1)) = 6: {  \, b$ Z7 {8 @

    $ m/ ?: M$ L1 Q7 D) {( C, ^ 递归思维要点
    & Q# v/ X* X" s; [1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 ~$ q- b, G1 ~( l2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& C4 i  C  T8 S
    3. **递推过程**:不断向下分解问题(递)
    / Y* t6 k8 m/ o0 N4. **回溯过程**:组合子问题结果返回(归)
    # Z- p# }+ a& M% j8 O" m4 s
    : V, e' w" g9 m( E 注意事项" d% f2 r( L( V: v' x4 m  A/ q
    必须要有终止条件
    / a( v; t- A4 x3 O3 K! R. `递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 G, n% W4 r& t# I& M
    某些问题用递归更直观(如树遍历),但效率可能不如迭代8 g# ~) g5 b8 ]# M* _
    尾递归优化可以提升效率(但Python不支持)
    8 a6 Y) y) a  d$ ?2 _3 V" B$ M
    4 c( \# T9 F* ^; l" h6 [ 递归 vs 迭代; N$ K* u$ N' X, Z- h: a& X3 v
    |          | 递归                          | 迭代               |) m/ s$ u1 |# ^" L- P
    |----------|-----------------------------|------------------|! s. E; Q  e8 z. |2 c
    | 实现方式    | 函数自调用                        | 循环结构            |' |* `  p( ?! \. U* I
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 {1 @( Y9 `* W/ l. L" m6 Q
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    & T- q) Q& L: _. }; q) a6 || 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; N# N# E0 L  H- b/ E
    5 f* m" ~8 G+ T! l 经典递归应用场景$ H% B1 f& Y: I$ i/ e$ t. o" |
    1. 文件系统遍历(目录树结构)
    6 }3 l& p! G2 ~/ o4 \0 Z8 W: q2. 快速排序/归并排序算法8 f. b3 B, d  G& D# H  v
    3. 汉诺塔问题+ ]9 S, T% w" l* P/ c+ _: I. X4 V
    4. 二叉树遍历(前序/中序/后序)0 @1 Z2 g4 T5 V" `" ^
    5. 生成所有可能的组合(回溯算法)
    . ?) Z$ s9 z/ ?& K# k! S: e+ ?; V' k
    / u" C) `3 P' g1 q" v* D3 ?试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:29
  • 签到天数: 3106 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 U5 c% @3 b5 J: {我推理机的核心算法应该是二叉树遍历的变种。
    ; E( X4 V7 ~& H# m) `) C另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) p8 s9 Q& `* w
    Key Idea of Recursion
    / R$ N' M) a' D$ Z: f% t
    ; G( ?7 v, \4 ZA recursive function solves a problem by:
    ; ~2 w$ W$ o8 B! X
    0 `" O4 H# H' o    Breaking the problem into smaller instances of the same problem.% K; |4 Y3 F, }0 B2 \/ i

    ' s: _) Y$ R+ X. W- c6 W& j    Solving the smallest instance directly (base case).
    : B' v# X4 b& l  ~# \5 Q: I: m& v1 s# E5 n# x- |
        Combining the results of smaller instances to solve the larger problem.
    4 C1 M- m" g$ e; I
    5 v; J4 g1 e" q( y" q' iComponents of a Recursive Function  e8 ^! }: ~% g
    3 a) G+ M. k2 N9 w" H
        Base Case:
    1 }1 p. d* n& R# O5 V
    % p, E3 @; I7 ]& p7 n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( N% O* A* }- `, ^& I: |
    $ ?5 }" ^* m5 G2 U* z% L" s
            It acts as the stopping condition to prevent infinite recursion.
    ) `* B. d: }( U! @  I& g9 w& ~% C
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 z; t. ], t6 g; n8 v5 `

    * j! b; y- [7 E2 {- F3 u    Recursive Case:
    " ^3 W, w) U' B& o/ v4 g; w5 w; R5 k
            This is where the function calls itself with a smaller or simpler version of the problem.. u; V1 A* X; A: I5 t) ~9 a

    7 ]0 f. Q3 s. t8 q* Y: ^0 R        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ U& q! j; I) R* l# R& }" x

    * G5 o1 ]2 [! }Example: Factorial Calculation
    ( V* b- L  l0 [5 l) v- i$ Z. y. \1 x# J. Q" t
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 w+ v/ o  V" G7 ^+ v% M8 i9 q8 [; Q) n8 V* z" V4 f
        Base case: 0! = 1
    8 `8 t/ |: U6 ^, u8 B, X: v- v$ P. f: X
        Recursive case: n! = n * (n-1)!( l8 Y$ z! {. s. ^  r9 h
    - f; j+ V; |$ U: z5 G, x
    Here’s how it looks in code (Python):
    ' Y( T- n: s9 N* P! c; Q& ^python
    6 V3 Y( V/ l' E8 N" t) y3 z" ~4 J9 H% ^( A1 y+ @* q6 n9 G9 w

    4 B; V/ U2 m3 M1 [8 p& M3 Mdef factorial(n):
    9 _1 a  ]9 e4 J    # Base case
    : G* b4 W. z; \/ ^    if n == 0:$ y' x" e8 ?7 y( g3 @2 _" ^
            return 12 i% t5 \0 ^8 Z0 R, a6 a5 F
        # Recursive case
    $ Q9 W) E+ d' f% V* _0 Y; Y    else:* H# e5 t' j& Y$ E7 v
            return n * factorial(n - 1)8 [* g9 s* J- g1 U4 A/ w

    * C: J' P8 v$ k3 Y+ x% b0 v# ~# Example usage) I8 `. y3 Y2 D3 |. ^, U0 x
    print(factorial(5))  # Output: 120
    8 S; w* f5 B, L" {0 U# h' [* E! e5 B- H$ \1 d
    How Recursion Works" M  J# L- Q$ K! o0 T! c
    4 ?! y& m( @' U; e- h
        The function keeps calling itself with smaller inputs until it reaches the base case.
    6 F0 i8 |/ E( V2 \( ]
    ; O, X4 K" W/ Z, H8 \5 n    Once the base case is reached, the function starts returning values back up the call stack.
    # _0 ~) L  t1 Y8 L
    5 Q9 J) F  b7 W    These returned values are combined to produce the final result.& `: `/ M( ^# z& |/ X! m

    7 `( r' o1 q+ f. e8 T. c. [: j7 YFor factorial(5):
    0 u- M% D1 ]4 R# I* j  T" G
    , |: t/ [# w3 o  c
    / T0 S6 \3 k9 k( mfactorial(5) = 5 * factorial(4)
    1 L0 e! B7 T5 A: c# Dfactorial(4) = 4 * factorial(3)% h, }" |; _  `8 n
    factorial(3) = 3 * factorial(2)# H2 B9 A; U3 z" \: V1 q
    factorial(2) = 2 * factorial(1)
    * d, u0 d1 p* l2 x5 P5 Rfactorial(1) = 1 * factorial(0): d$ P& p: t* u- X
    factorial(0) = 1  # Base case
    5 A- W0 k* f+ Z# l) _7 t& ~# G% ?. \- X% \6 `
    Then, the results are combined:  W% `# g: R) s1 X8 ]
    5 [1 R) h0 K& @6 _7 q- P
    0 J0 F+ Y8 }8 Z" a# x' h* A9 j
    factorial(1) = 1 * 1 = 1
    5 {6 a- H3 m& g" {* Hfactorial(2) = 2 * 1 = 2/ i% c; x- H! H% r, J# {) F" A
    factorial(3) = 3 * 2 = 6
    . G$ F$ A* b0 t# S5 d+ N) @9 ^factorial(4) = 4 * 6 = 24" ^6 B* K: {5 G1 X9 V0 M7 j
    factorial(5) = 5 * 24 = 120
    ' U+ e; n  i8 ^
    6 |( H- w3 E* u" B# H3 q& P8 DAdvantages of Recursion/ W. W6 ], Y5 T0 b3 o7 `

    & d# z: E! x( Y- x; p    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# K% J; r$ M, }$ K( g
    ! P9 p( J' `/ y) s6 _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    $ u) {: k3 t3 c" \$ s+ C0 E9 a
    - ~7 ?. X  f* L4 T# v5 zDisadvantages of Recursion
    , y9 Y* l3 z% X0 ~9 ]- c6 n' Y3 J  ?5 Y5 P* L% a! c" Q
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    , w: h" t; W6 ^/ u' E) N' n
      z* j8 R; U, i; B4 W( ?) n    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    7 r; z$ y  U0 J5 o. F9 Q0 w6 X2 a$ ]& d( q! r6 a0 F, R
    When to Use Recursion+ O3 G, E- C2 e1 @1 L' M
    & I. }  j5 \* ~8 h: f) s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." H# M! Q7 E. F" {8 R8 n3 x4 V% M( z( i
    ! x2 M' j% I6 y
        Problems with a clear base case and recursive case.
    8 d/ t1 U9 Q8 V; i! I' g- |3 T! n
    / l+ q' r7 q6 U/ F) `Example: Fibonacci Sequence
    * Z- ]" A) ~( T( {9 C, `
    ) n0 ^! K# h2 w( {The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 k: ?' h' {! {7 ~; Y, K* Z, V& e3 p( A. T/ g8 X) g0 H
        Base case: fib(0) = 0, fib(1) = 1. B5 L( i- s: G6 D- c

    ( I- z9 c5 |6 R/ q" V8 d    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) K8 Z5 z5 f% Y8 ?' B* Q" ?4 t5 B) m1 m: r* Q
    python& \* s; _, t4 g) `$ N; U. p" O
    $ v2 {! Q  z4 A8 _+ h4 h

    $ t2 e$ I, \$ V! }* z% idef fibonacci(n):
    $ M, ]$ b. Z4 L2 \    # Base cases; x" c* x4 O! @/ q5 H
        if n == 0:
    6 ?( p- u6 ]4 W' a. c6 J, y. L        return 06 w: s6 f0 }8 J( i2 i" W
        elif n == 1:0 _9 n$ d6 G' Z. V, j* v
            return 17 }+ G' T# s) K3 i, L$ ^
        # Recursive case
    " ]' X( C6 ~5 U8 r    else:
    ( v$ r) y& m/ ~1 i        return fibonacci(n - 1) + fibonacci(n - 2)- O7 l6 X5 N- X2 I9 x

    2 X0 H9 d* t, Y1 i* @5 s* ~5 L% _3 i# Example usage: U& ]. r/ \( w. K
    print(fibonacci(6))  # Output: 8
    , r: a8 B! c: h, Y4 m3 O0 K* |4 G5 a. R& j0 n7 u3 M; }
    Tail Recursion* }5 F) d! B7 j& r. Y5 w

    * ^! F- ~  A9 n/ WTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- W8 a1 m) m# B. o" E9 T

    # K* E8 z9 a( p0 OIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 06:55 , Processed in 0.034617 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表