设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1730|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 t% k1 f- ]' S# \
    2 a9 o' o2 H3 t& @
    解释的不错
    3 n( c  ]- D4 f. p3 G6 V& `4 I# H8 f6 H5 B0 p/ `
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ `; D( y, @4 \; a8 h
    $ H9 a6 a) j' \0 u- E) i, ^7 c1 \ 关键要素% i# D7 d, u: o0 E' M/ b* k" N
    1. **基线条件(Base Case)**
    . C$ r2 Q3 `( c* Y. R1 H   - 递归终止的条件,防止无限循环
    ' [: T& s% O3 p! ?4 V* [   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ' V; {* H5 G+ U9 b) c( W7 {+ d
    1 M* Q* o7 k: o7 V2. **递归条件(Recursive Case)**
    , p# x, t% e$ y& F( p. |   - 将原问题分解为更小的子问题2 \# Y: Q' m9 T( B: G6 m
       - 例如:n! = n × (n-1)!/ s/ Q2 t% J. Y) z% k3 F

    * S9 F5 F4 X+ |# v9 h2 v+ P 经典示例:计算阶乘
    0 S  o5 M& F# l, Cpython7 d; i9 e* v6 u
    def factorial(n):1 W/ b  r4 B$ U+ r
        if n == 0:        # 基线条件
    5 l  q. }" F& D! ^6 y- v: L# @+ [2 q        return 1$ v  |4 D$ o- ?; Z' J! t5 s
        else:             # 递归条件
    8 s2 Z7 ~0 L; e! K        return n * factorial(n-1)
    / q" e2 \2 M) q! x( H9 X, k. r7 D执行过程(以计算 3! 为例):, l0 u. w- _1 U7 d& ?, S) ?. p$ [, a
    factorial(3)
    1 X. X; W' ^8 J- u' ^* S3 * factorial(2)% s& |7 M; H/ R6 ~; W  O
    3 * (2 * factorial(1))" v3 U( x' o' C
    3 * (2 * (1 * factorial(0))); T* T) n, J7 n1 U
    3 * (2 * (1 * 1)) = 6
    + r3 V2 ^- t6 X3 I' e# q
    5 d7 y# L1 r4 M( \! a* V 递归思维要点
    9 b, ]; p1 d9 \' Z( E* O- ^1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & c, P' C" V* \5 c2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    + F5 I# `: ?( E$ P7 ]+ A) b3. **递推过程**:不断向下分解问题(递)
    : H2 u6 V1 o/ ~/ T4. **回溯过程**:组合子问题结果返回(归)
    6 a  q) r) t4 z6 l* y  ~! k0 j5 h; l1 T4 m3 e. h) |
    注意事项
      ~, o9 L/ ^; M  k7 `" K& j, d必须要有终止条件
    ) n- L3 _$ {5 T4 _6 Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 D. W/ `9 z0 D6 o/ O* J& J某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - K1 f* h: h9 U, w, O尾递归优化可以提升效率(但Python不支持)
    $ t( |% j1 R' l- m3 v) G# R0 t$ B/ O0 l6 j1 Y+ D- H8 v
    递归 vs 迭代
    ) z5 ~  x  H' a" m$ ]  `: v|          | 递归                          | 迭代               |
    $ Y# @/ m* u/ m|----------|-----------------------------|------------------|
    ' t- u' T0 I5 H' d" S# P4 ?$ j* X| 实现方式    | 函数自调用                        | 循环结构            |
    ' E7 Y0 E! }+ B) `: G$ b9 ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    2 B. G5 n( U1 L| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ K& i) B, g/ Y% s) l5 Z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ! O5 t( z' Y: T) [3 a. C. {
    ! N# a9 r9 Q9 U# r1 ?" w: i 经典递归应用场景
    - A, X. Q  M  u  x9 R1. 文件系统遍历(目录树结构)
    ' Q1 g, _  }$ c+ `8 V  q2. 快速排序/归并排序算法
    - g  `/ ]5 l' @4 E3 J2 G3. 汉诺塔问题
    7 A, z5 ]; a, L0 T4. 二叉树遍历(前序/中序/后序)" I  ~4 ^5 S1 u$ i: Q9 o6 n
    5. 生成所有可能的组合(回溯算法)( j" F1 V8 O) j$ F: e# P: P

    ' r- k8 ^: B( A6 B& \+ P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    半小时前
  • 签到天数: 3135 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( t, W$ J* x4 I# I. Q4 U# L0 R# U
    我推理机的核心算法应该是二叉树遍历的变种。
    - A1 \' x; Y6 C/ O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 Z% e. ]/ G/ o) K  z2 sKey Idea of Recursion
    5 Y, ]5 D" `0 S, i$ D5 M  ]1 ]' a& Z) a! H; ?2 N2 `
    A recursive function solves a problem by:& Z% U1 H( r  X$ i- c! s
    % C( f( N4 N  j1 {3 D
        Breaking the problem into smaller instances of the same problem.
    9 ^) u2 K) |7 G; A' g) e+ [
    7 }# W. H! ?! x) m& f, Y  ?/ z& `- L    Solving the smallest instance directly (base case).8 {. w. W7 E4 [

    & P! N" z' p6 q; S, M8 \3 P, s  f: v4 n    Combining the results of smaller instances to solve the larger problem.
    * z4 ~% m* y$ Z" U( X" F6 H" c5 l9 u5 `5 |5 R" Z* O
    Components of a Recursive Function! R/ U0 P- E4 ]8 h% O/ g+ V

    0 `5 V  n! g8 g6 b9 |3 S% C    Base Case:1 \' {/ l9 l/ F2 g

    % A, C: P9 }) E) I: c: Q& v        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; S- s7 O& h9 s2 q& w' w& Z& {# A8 Z5 }2 \3 v! H: x6 f
            It acts as the stopping condition to prevent infinite recursion.
    5 i' Y. ~: ?' c* H; g( s% g6 L- U# d2 U, G* S3 D; P% E! p9 r
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    . u+ ]/ k1 e) }3 O+ s$ J8 H. R' |
        Recursive Case:
    3 K3 ?* R4 ]+ T3 \
    3 I( W" f  _3 c7 K5 U, E        This is where the function calls itself with a smaller or simpler version of the problem.
    . x2 v: L! H4 a: h) h7 I
    7 d# X. V, m+ e- f8 ~        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ g: [5 M  f+ r  D; u" y

    3 c6 O5 U$ W$ V- [7 J  jExample: Factorial Calculation) I0 \" h( y# @7 Y" D

    - {! a. k& y* F$ h$ o' l2 Y1 nThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & n3 P, C& \! a2 f
    ; `7 ]- e/ D3 @# H4 [    Base case: 0! = 1
    8 [* N% M6 x' j) R# D  A; w; m  r* B4 q* {
        Recursive case: n! = n * (n-1)!
    8 X% j% ~+ g5 ]; Q9 N4 c8 y  S' S3 t+ _& K- [2 [' X+ H5 s
    Here’s how it looks in code (Python):
    3 ?& E! {$ q6 j, {python; O8 i# i5 a7 w5 |: N
    4 @" m: a5 `  ^+ h

    " T( ]% w# Y& W7 ?  `def factorial(n):8 c( L7 T% [) Q9 M* e
        # Base case
    ) [4 D7 F/ h7 j3 Z. D9 F    if n == 0:
    6 o4 H. d4 `5 p8 E& x, w        return 1
    0 D4 W2 s8 H2 l9 e6 P    # Recursive case
    ! {' ^# I- k9 x8 N9 z    else:
    / v1 g( V9 h, p  J" }        return n * factorial(n - 1): C6 j6 p0 b& M+ q

    ' y9 p9 a( b" k# Example usage1 D# Z) v/ O4 P  N
    print(factorial(5))  # Output: 120+ w; {& b( _) Q8 Z* R
    3 I- k; N1 {+ v8 ^3 W
    How Recursion Works
    5 @3 P* ~9 \1 w5 {
    & z$ l5 B, F. `' s9 l: z    The function keeps calling itself with smaller inputs until it reaches the base case.( d( m& O0 V& ]$ n( e
    4 Z. C4 j2 d3 P1 ^  A3 a
        Once the base case is reached, the function starts returning values back up the call stack.0 N/ F& H9 n# \3 }
    2 A. H+ L2 o' L8 P, S
        These returned values are combined to produce the final result.
    7 e  t( c. Y+ H& A0 p3 {7 B
    7 X' y5 \! l% t4 K8 NFor factorial(5):
    ) ^, H5 a$ n# R2 P
    # R8 R- p7 Q3 j# C+ V# D$ c% j* g# m8 b0 ?$ s7 N% U
    factorial(5) = 5 * factorial(4)
    ( _+ x6 c: \. [+ o1 n5 b7 C" O, O4 tfactorial(4) = 4 * factorial(3)* a- q( t+ ^% R& L" R* B/ Q
    factorial(3) = 3 * factorial(2)
    : V0 p5 r. M9 }5 y; bfactorial(2) = 2 * factorial(1): {' c! I: K8 _+ p8 @+ x
    factorial(1) = 1 * factorial(0)3 K: b5 `" M  X+ K* ~. j5 _* l9 @
    factorial(0) = 1  # Base case6 h6 i1 X0 g$ T6 p! ~3 t5 H
    7 D8 W- S6 T' Z( w3 e1 B4 g% Z# K+ B; t
    Then, the results are combined:3 p* X1 K$ C' V! T% c+ W; W: ~) w" m7 U
    / q8 N7 f# }, S/ \- Q8 h9 o
    / m8 E; H. `" u/ d9 J$ R
    factorial(1) = 1 * 1 = 1
    1 C& s7 p! {% y/ ]. T+ B, _' }factorial(2) = 2 * 1 = 2, m) g+ r- [  R# f' P0 V
    factorial(3) = 3 * 2 = 6: {( p; q8 y4 [
    factorial(4) = 4 * 6 = 24; i9 `4 O! k* \3 o
    factorial(5) = 5 * 24 = 120
    7 k& Y: L2 l+ E  E0 ~# g# T
    7 D. {4 |- Y8 z' O. S- vAdvantages of Recursion! Y/ d- \+ ~7 G8 a5 V/ X

    / E$ J% e; R: C' j& p    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    / d, P6 y0 M- |  A
    . f- _' `+ l1 ?, x! |    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * F% [( `/ J& @. X9 _9 Y; k- q1 a9 T. b9 \5 m
    Disadvantages of Recursion
    " e& p# P% o! {+ {% X: }+ k. u1 P# _7 y2 \, Q# _& o4 d! h2 {
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 Z6 N. o8 D3 A9 n

    / h$ j) s6 x3 `3 A% ^, p, F$ H    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! L8 V" b3 y* P! ?2 k

    ' t( s" h& y9 J) V- PWhen to Use Recursion
    6 E- l. U: y3 \7 U; l
    ' Q% f8 D+ k& H% u  u3 s, ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. V& O6 g, D, x; n8 G# i3 [
    8 {" d1 |# R' c/ u
        Problems with a clear base case and recursive case.- l6 _# y4 z  E; k, C
    ' _/ u8 y, `. ^& B
    Example: Fibonacci Sequence! f5 r) n, y+ ~+ x- L

    . E6 G% o$ ?4 g9 i, [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' T$ U# h# J$ b5 ]6 g, `9 O$ w) ]# U
        Base case: fib(0) = 0, fib(1) = 1
    - E( b9 i" n. C6 }9 W0 }6 Z+ L8 a" }& }  s% a- \% T
        Recursive case: fib(n) = fib(n-1) + fib(n-2)  h3 n7 d! a! S, a
    * v1 N; T" Y; T! F! F# T- n0 m
    python
      @8 g2 C3 r  r6 s  P7 z" F5 }! B) t
    0 t: p, z$ W" B( I+ e8 `4 P: J- {  d# E" P1 \; k: P
    def fibonacci(n):
    1 h* ?8 [  |( V    # Base cases
    0 b6 ^6 ~4 l* \( R. h    if n == 0:
    2 N7 D* C: U1 n; w: z" {        return 02 k0 i. p' f/ e/ A
        elif n == 1:
    . V2 `1 a* N1 S& N        return 1
    ( Y. v. B* S* D6 C3 P# r    # Recursive case9 m+ D6 J0 _5 K0 z& d: r8 g
        else:) F0 ?9 V# U' Q2 L
            return fibonacci(n - 1) + fibonacci(n - 2)2 p2 q; \) ~4 `/ L+ M

      h# f7 L+ e1 C7 |3 R" ^! i# Example usage
    / A+ Q( N6 V' Kprint(fibonacci(6))  # Output: 8* [" i/ m* [6 t6 ]1 N9 q, f5 U

    6 I# K' |/ S5 ZTail Recursion) W9 S' D7 @5 X5 p! b$ I& O
    7 t- d; |# i" m; V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& ~# H/ ]: n& Z5 f4 A9 v: }! n1 [
    ) F, C8 F, |7 B8 l7 I, S; P/ u
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-3 09:29 , Processed in 0.051765 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表