设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1727|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' e" @1 @3 R. ?3 @/ ?8 h, Y. ?# S. @3 a8 K$ L
    解释的不错* t4 v* Z' ]: |. `; v9 J
    7 T2 E/ a% N2 n5 A) A3 E, r
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 z+ b/ d/ B3 q8 V7 `

    # i/ [0 l0 D& x 关键要素
    , g0 w% C7 d8 c) b0 B1. **基线条件(Base Case)**
    8 i+ y; W: H7 a4 Z+ r   - 递归终止的条件,防止无限循环! v% D( C& B' |$ v" g. R
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 c% I" j. ^/ k' d0 O5 F- L$ q
    # x5 l. {: `1 ?# L  d, w: G
    2. **递归条件(Recursive Case)**) O; P6 k( ~; H/ e6 E6 r
       - 将原问题分解为更小的子问题
    6 C1 o8 P, G4 `   - 例如:n! = n × (n-1)!( F2 z9 j7 F+ j1 K5 x, G2 I9 i

    ) M) n/ i- q$ @! x: E. r 经典示例:计算阶乘
    ' n- k! F) ]9 }5 K. A  Ypython
    4 y- `; [( c9 k# f& @2 t0 mdef factorial(n):
    ' x% e+ l4 P' k" _8 D, p: H( t    if n == 0:        # 基线条件
    7 [& w$ m* H, R! x        return 1
    5 \4 o; y6 l% I: Q    else:             # 递归条件
    4 B, C3 ~$ s/ ~1 p* Z        return n * factorial(n-1)
    - Y4 N* P2 i8 C& {" |- ^* s2 R执行过程(以计算 3! 为例):
    & |; ~: S$ w5 _7 Mfactorial(3)
    ; c8 j* \# s* o7 Q) R8 |; a5 e3 * factorial(2)* R( W) m1 K* A( L: I
    3 * (2 * factorial(1))) ?$ I& c2 D8 [8 u9 W, R% k- K# `
    3 * (2 * (1 * factorial(0)))6 b3 {% C5 h% T3 S0 x
    3 * (2 * (1 * 1)) = 6
      I, N$ w. _$ |" i% [6 h* y" ?) g/ W8 A9 c* {
    递归思维要点
      _; ~- e; l) z4 T1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 F' Z+ d3 r2 c3 F
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    * z0 s- v& u) }7 f3. **递推过程**:不断向下分解问题(递)
    $ ~7 n+ T$ J! C- @, b$ t' q4. **回溯过程**:组合子问题结果返回(归)
    4 l5 ]1 v4 j. d1 b
    + X6 X5 G4 K2 M: O4 _4 r2 V8 l/ W 注意事项
    * K2 I& x0 q% I$ ]. y必须要有终止条件
    : s4 h! r6 @+ w; D: D5 \" u5 q# Q  e递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ; g$ X2 D1 `7 ^/ _8 F" f& Y. T5 V7 a某些问题用递归更直观(如树遍历),但效率可能不如迭代
    , h% N9 N% v- a+ |0 T6 a. M) n尾递归优化可以提升效率(但Python不支持)4 L# `+ N# Y0 Q$ K' }* {9 ?) Z
    : ~. u* i0 c7 x: z8 o& _1 s
    递归 vs 迭代0 y8 |- t( p$ E$ C- `* ]
    |          | 递归                          | 迭代               |9 ^7 f  h/ Z& r& _% ?2 t8 r
    |----------|-----------------------------|------------------|
    ( O1 @7 ~3 v# B$ c( l1 J  {: }| 实现方式    | 函数自调用                        | 循环结构            |
    ' a' Y* x( s, q) A' R: W| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |+ {0 \* L! }4 i5 I7 h
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + Z/ n7 I, _0 `4 A! g; N, O| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 W# @2 q1 V3 L1 ]4 ^- r

    ! Z# F( {% a3 z' b9 `, P 经典递归应用场景
    - @$ ^& \3 m& w1. 文件系统遍历(目录树结构)* [: h1 i3 e, P7 H
    2. 快速排序/归并排序算法
    ; U3 ?% S; z$ ]8 M0 e- n& U3. 汉诺塔问题1 |; m. S2 B! e
    4. 二叉树遍历(前序/中序/后序)
    6 `, ]/ I+ y5 R/ ]5. 生成所有可能的组合(回溯算法)) c; Y  G; P1 T& a+ {
    9 u$ j- a! j1 c! o" [
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 14:57
  • 签到天数: 3134 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # Q  o- E7 B+ E我推理机的核心算法应该是二叉树遍历的变种。" Z" Y+ E2 u: o3 l
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 j+ ?# l) B( M2 K; j4 c" i) K6 P$ GKey Idea of Recursion
    & z: x  t& @6 T! a) `3 r7 j
    / L2 k* _, k1 M6 j8 w9 C% Y& {A recursive function solves a problem by:+ t2 |. ]+ S- G" s: q
    % \8 C) d# o5 j. Z* Z, e! b) B
        Breaking the problem into smaller instances of the same problem.
    4 `# i1 b; K6 D* Q' k
    ' ^* D; y4 P! v9 v1 O9 _    Solving the smallest instance directly (base case).
    - T6 h* i3 z, s$ i; B+ s
    ! o) J4 ^* F" u4 m/ l$ N    Combining the results of smaller instances to solve the larger problem.
    8 ^, o" W8 v+ c. v& B/ B' K* Y, N/ F4 {! m
    Components of a Recursive Function& S2 j9 G$ A% Q5 _' ]4 h5 `
    ; b0 S5 J. l+ Y: X
        Base Case:- O; O* L% ?5 q3 P
    5 d. r$ [2 q6 p3 Q) a1 J2 ~. H, W! h
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ `5 P7 I+ `4 T  o1 [6 S. t

    2 S" w: R; Y, x' y. ]# y/ X8 w        It acts as the stopping condition to prevent infinite recursion.
    , X5 y! G/ ~- p( C; z8 K2 k5 A6 k' H/ B3 |. j/ K* c4 j% E& ^
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / [1 F& Z, `- e9 u+ B) _" i4 H6 c) ~
        Recursive Case:
    9 {+ s3 t6 d, k3 I8 L9 H5 e8 c: g* G" t0 I( t- P) _0 _
            This is where the function calls itself with a smaller or simpler version of the problem.
    ; ]4 G: C* S9 w% q) e( j0 u
    % Y% X8 O& v% @7 g% Q; I4 {# z* @        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( ]! J. t% B) R$ h
    " V. c4 P0 c  j0 @$ C  T0 Z$ L- I( TExample: Factorial Calculation- B$ v: G, A  o

    * y" g4 y- K2 B, j8 VThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % S2 C) ?* z1 ?# w6 @
    9 K, ~1 d8 H! v5 x6 H5 F% |* m5 V    Base case: 0! = 18 r# G7 [1 H8 D4 f, R+ V! f
    2 k6 H" i% a9 x1 ]$ |3 g
        Recursive case: n! = n * (n-1)!
    . q" I' M* l' e+ z3 Q, p  e
    4 v5 Y9 Q' v, b+ Z! h2 B+ @Here’s how it looks in code (Python):
    3 A" Z3 k) r/ |6 `0 ~python
    0 X3 O7 W6 X1 g% ^) z* `+ B) [; d) E3 K; A0 x

    , V" y. h6 s' r; F* q: r, i0 `def factorial(n):3 J; Y- e8 e4 A- m
        # Base case3 U) M: W/ E2 o6 W8 @
        if n == 0:$ E4 ?/ S2 L0 _8 t* t
            return 11 s! D" Q% V: b+ Y+ G$ ^/ `9 F- @
        # Recursive case7 O! e" ~( u" g) M) P7 L1 j( }2 i
        else:
    " \3 U8 g, s; l, @3 d        return n * factorial(n - 1)4 w" A7 e" ]3 l; n
    ) Q- q8 R# L) {8 G$ A6 Q
    # Example usage
    2 E& a* U% x( E  Z1 M  N/ Rprint(factorial(5))  # Output: 120
    8 e% X' [9 x* y
    2 d- K" K1 x; k, kHow Recursion Works) t# k9 n- R! n) w% F3 U; a

    ) H7 v6 V5 ^/ N    The function keeps calling itself with smaller inputs until it reaches the base case.  }1 f; Y& t+ S7 L& t
    2 Y, G7 F9 I& K9 T  r- R; v
        Once the base case is reached, the function starts returning values back up the call stack.
    + Z$ ~8 G- K, n' p5 {( l1 p5 E: E8 p
        These returned values are combined to produce the final result.: G. }' Q: Y# d; Y' z4 {' @
    9 m8 V- L! F$ g2 S  b6 x
    For factorial(5):/ A4 t  }9 ?5 D2 O  V* ~& P4 _

    0 b% ]  P% U+ D) D3 g
    , J: H2 L, y  m6 K, l9 pfactorial(5) = 5 * factorial(4)
    $ N- T% S( j# @! z) @7 Gfactorial(4) = 4 * factorial(3)& z% C; v5 H5 V# n# q7 E; x
    factorial(3) = 3 * factorial(2)0 p# `& q; @1 e' @
    factorial(2) = 2 * factorial(1)
    ' K3 H( J4 G* Q% B1 K# zfactorial(1) = 1 * factorial(0)
    6 H# ~4 m4 f+ r3 }( ?9 J$ o- o0 @factorial(0) = 1  # Base case# A  g) a, e3 @, c3 j% u

    % D7 u* k+ b5 jThen, the results are combined:
    # a: I$ d3 H, m5 q6 A7 h: @
    3 x1 p2 H8 q5 C( L0 H3 j
    5 |# V' p9 D+ {8 g( V, Nfactorial(1) = 1 * 1 = 1
    8 [3 l" v. Q; @% m+ A+ }factorial(2) = 2 * 1 = 2( k1 Y* |( p: k; e- h5 E; d( P
    factorial(3) = 3 * 2 = 6/ o! E$ z' X' P7 H, r7 s3 _) i
    factorial(4) = 4 * 6 = 24
    9 x- V( s' p+ N8 q; _factorial(5) = 5 * 24 = 120
    - m2 w5 i8 z+ B4 c. N/ n- f) Q% M4 c6 f6 \  P  t& ?
    Advantages of Recursion  E9 ^+ V+ E( @& |1 h8 p  e1 N% k: N% L
    3 v7 \- O; u5 Z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).2 W7 q% Y) d6 L5 Q( V. v# y

    1 r/ x( j  u8 u8 P    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ( d4 R5 j( N2 J/ e3 w( @" Y1 j- r$ U- W- j6 e+ |) `; Y- G+ L
    Disadvantages of Recursion* V* W# ^& n- s: w
    0 w! @1 [8 l2 D$ Q% U
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 a7 c* [7 f: ~" f8 o8 ]

    : s: ]9 N. u( d$ J5 b    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - n7 o! m4 i! i3 f4 L) T4 [) y8 H- ~5 j' Z' V
    When to Use Recursion
    ! _4 P/ M2 T0 J6 ?7 w$ P* ^% G/ i  Y" \
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    / R7 U! n1 U9 J8 \& ^9 o6 Z' O, I/ w7 H  U' T' H' k
        Problems with a clear base case and recursive case.
    / E: r: d& a5 ~0 ?
    / Y' S+ }4 y' C6 n6 E0 yExample: Fibonacci Sequence
    1 m0 \6 h# O7 t2 P6 o3 h( j; [# C
    3 x& |# r4 U+ Z3 OThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ p; D) V/ @! t8 c2 x- x6 P

    - a" W% H/ c; a0 X; }8 |. V' I    Base case: fib(0) = 0, fib(1) = 1( P9 N- M- U  ^' J3 P; V0 t

    1 a& m& |/ i  j& n# c    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 g6 Y& k! A7 x1 c6 N- i: M
    ) C2 f5 D) E! {& |9 Bpython
    5 U$ ], w) X! u; S4 `& `
    % f) D3 N' O9 R; A  B8 O8 X" ?
    3 |, P2 u0 k7 o  v! p, b$ X6 Kdef fibonacci(n):6 }* \1 {  U( L  |4 h8 k$ o0 W' C- s, o
        # Base cases, y7 R& c, b3 W1 U/ w2 p
        if n == 0:/ `$ v& U8 E# e2 y
            return 0, a. }, H% Y6 w7 G
        elif n == 1:  H9 O" v! e% Q5 x* w# M9 s
            return 1; w# A% X: v# P1 z
        # Recursive case. e# X0 t0 g6 ^, a& T+ d
        else:
    " W$ z; z. ^* @& ?" S* c        return fibonacci(n - 1) + fibonacci(n - 2)7 x; `  v  k$ u( Q2 A
    ; B5 N% H: C% ~
    # Example usage8 e0 Y1 V4 b* Z# d
    print(fibonacci(6))  # Output: 8
    4 }" |, A- a* P3 q) }/ }" `1 z2 H& R* t' |
    Tail Recursion
    # ^  p- b- B6 {8 k/ d" T  p2 t, g' j. q3 U2 e& d
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , Z9 y; W5 g/ `0 f; |5 ?6 I3 {. _  a! I3 L0 _, d4 g6 i
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-3 01:47 , Processed in 0.029250 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表