设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1859|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! `0 k. a  Z% Z
    . N4 Q/ n  J( K9 q* q: w3 \  ^/ ^解释的不错& i# H8 e2 S; Z! u6 Q5 {( W1 n
    0 q/ ?9 t1 R% D# F) a4 m0 G
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: E& v7 [- j6 x: O  y. X
    " m: s8 Q: U/ G+ Z2 R3 c; i
    关键要素. a2 R$ ]2 u! ^3 L
    1. **基线条件(Base Case)**
    ( v& ^5 i: L" w2 F   - 递归终止的条件,防止无限循环
    5 e- k: a! v6 k! R   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1' l9 z9 Q! R1 e7 g" U

    3 v* ]' M9 G6 \( [( V7 m2. **递归条件(Recursive Case)**
      x' x& X, ]  ~0 F1 D+ o% d9 O  _( c   - 将原问题分解为更小的子问题
    5 m3 l* h+ |; z   - 例如:n! = n × (n-1)!& g' X" [6 D# a! b& u- Z! R& [

    $ r$ }! i/ F" n4 m 经典示例:计算阶乘  n, ~- y. c. q: `
    python
    ! f; |8 ~$ m& m6 m1 V7 o: }def factorial(n):
      K1 \6 [, T5 q3 {    if n == 0:        # 基线条件
    # C* X% q+ x. s( i        return 1
    6 H0 y( A' t) x0 W    else:             # 递归条件+ L4 {! b+ g  ?. v1 H* X
            return n * factorial(n-1)6 e# L% j7 A* O. e7 j/ m) d  L9 {
    执行过程(以计算 3! 为例):
    , g  U# U1 M4 Jfactorial(3)+ ?9 I9 R) z" n7 v
    3 * factorial(2)9 N' x# P2 c% S" }
    3 * (2 * factorial(1))' B0 S" z% u- s. n; b- |  p
    3 * (2 * (1 * factorial(0)))* l# `! ?) m. w& O$ X* z+ o$ P
    3 * (2 * (1 * 1)) = 6. E0 z- b" Z: d
      s" s4 C/ l( o6 E
    递归思维要点, i8 }5 c& Q" [& s- j$ x
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ i3 x8 Q4 S  u1 ~  ?, x, \2. **栈结构**:每次调用都会创建新的栈帧(内存空间)! G( b: ?0 r1 Y8 ]# @8 p
    3. **递推过程**:不断向下分解问题(递)- n4 E# Q% a* |5 u, m
    4. **回溯过程**:组合子问题结果返回(归)
    : z8 H. ?& u3 Q' i' a) M4 ]2 o& h3 ?, x9 ^. k/ n* v9 {' ]
    注意事项6 q/ c' c  g* G2 Y9 j+ `: N
    必须要有终止条件; O/ n- ^4 `+ K% m6 A/ M, _
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 a! c  G' w* q2 j- D: C9 T
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + n; m9 W# Y$ n$ x5 k尾递归优化可以提升效率(但Python不支持)/ E8 \$ k$ B$ S* }1 Y# v. \" \) J

    ; ?' u9 d3 T2 t2 S 递归 vs 迭代+ L% \* Y% B* I1 ^+ d0 Y
    |          | 递归                          | 迭代               |: S5 u" m/ y3 M% U$ D
    |----------|-----------------------------|------------------|
    * J( s! ^8 j% z- N0 L$ h| 实现方式    | 函数自调用                        | 循环结构            |/ I  M4 J5 _% y
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ O2 v/ N/ l' n9 c$ u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 e9 e' t+ F# f+ |" I
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . G. p! K- z0 G2 r9 |) Y, u
    7 g# {# Q, [; A+ r/ A. ^ 经典递归应用场景
    ) D6 U3 s7 E9 v1. 文件系统遍历(目录树结构)
    3 |1 v. y" P2 B) C* C2. 快速排序/归并排序算法% E& G4 T3 b  H4 T$ O" s! u" U
    3. 汉诺塔问题, \8 r! g  v+ |0 y, |& h6 c% a
    4. 二叉树遍历(前序/中序/后序)& x8 H: o* E; h9 S& [. G
    5. 生成所有可能的组合(回溯算法), ]8 H" n* ?5 M

    : [  U3 w: F! _7 I1 o' @试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    3 天前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 l6 _+ l4 S& k- f/ c( Z我推理机的核心算法应该是二叉树遍历的变种。
    9 Z: w. K. }! {; b4 J3 I- K另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 n% K( S8 O7 K  Y3 s
    Key Idea of Recursion) ^4 n. u; M, Z, m

    1 n) `4 A( w$ Z! g4 I$ ]% wA recursive function solves a problem by:1 l! ^6 ?; f, L/ d
    & s2 m0 q% x! R" R9 R
        Breaking the problem into smaller instances of the same problem.
    ( g# n# d- j  a$ f: `* J: m* b# q  d! K  c* D
        Solving the smallest instance directly (base case).
    : u; d% E( c9 ]. y0 B
    ( z2 f7 Z, Q: S8 f' l    Combining the results of smaller instances to solve the larger problem.
    . Y6 i5 s9 d4 w9 s& `4 L# w& B  I& I
    Components of a Recursive Function7 y. y4 F; ^( C0 V2 k$ `: O

    * h) x* e8 w3 Y2 v: j    Base Case:. I- \/ x3 Z: _9 ]$ F7 d2 j% ^

    0 {* f. j: L& D# Q9 y: s        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# F8 f2 w' j9 p& u% z! W! G0 O
    8 l! p: }: k9 [, J6 }' Y
            It acts as the stopping condition to prevent infinite recursion.
    3 I& ~5 k' f. ^
    ! g2 d* `. J0 ]2 i/ a        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; h, E# F: \9 k

    ; w+ _4 x4 X3 S    Recursive Case:; B3 E- N2 e0 s5 ?% P# s

    7 T$ ~' s% a* H. F* Z1 a: ^1 @8 l        This is where the function calls itself with a smaller or simpler version of the problem.7 k8 @- i4 G9 O6 f& C% j5 i: [, }

    8 w  a1 P6 x, H2 E: [- E        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( r) S. L% [6 l3 n0 D# ^: i

    1 B! U; n8 Z) D: u; LExample: Factorial Calculation7 q& m5 w8 H3 f! U8 N
    # P) P# V" _9 M; R
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    * m' i2 Q, _2 S- n$ @/ }: L5 s$ c  ~% c4 ^- q0 c
        Base case: 0! = 1/ O# C" B+ x# k4 K$ v5 g

    - T3 ?$ n' U# `- x! s- C" _9 G    Recursive case: n! = n * (n-1)!
    0 a8 W7 `8 Z! y# z  k
    4 W* B7 T0 B. Q; l7 tHere’s how it looks in code (Python):
    ( t" L3 K) H2 {9 p( ~python3 @) J5 _  m$ v- S' y0 X4 ?* B3 M

    # \9 W* {! x# i, W1 O& T) e* ]
    def factorial(n):: P, O$ c8 ^# V3 T
        # Base case4 F. q) C/ g0 _
        if n == 0:
    / ?/ g3 F; L7 Y  K: V        return 1
    ! ], _" _2 f6 ?    # Recursive case; Y2 b- V5 M; n) u9 F+ ?4 U
        else:
    3 z/ o. ~2 z1 v9 e, M        return n * factorial(n - 1)
    2 _% [) i- V8 X" B9 N
    . N+ M2 h6 s* j" x; G. G# Example usage
    6 p/ J/ N$ R% a* f" Mprint(factorial(5))  # Output: 1200 Z9 \5 ]0 x% O

    " U$ ?# Z& s/ F# SHow Recursion Works
    + i4 w: Y( r6 s: g. N% z; v
    5 @. n  ~" ~3 \. z4 A8 M: j' _    The function keeps calling itself with smaller inputs until it reaches the base case.
    ! |6 {& E# M1 d5 t( `  s4 Y, u
    * |# S% M: V! h& m9 y/ A    Once the base case is reached, the function starts returning values back up the call stack.
    ) X/ q4 v6 \$ Z4 Z. h+ b  f7 h  c  ^+ k9 d* U7 e8 y$ n* z- N
        These returned values are combined to produce the final result.& m8 ^7 Q" f& W$ s% h& a# I- V0 _
    - z3 X; P( h1 a! z8 z! Q8 z$ a
    For factorial(5):
    . Q: D" `+ X/ J2 J
    : B; I# Y( w& W! o( @* ?' }
    5 D; ^0 }, `: I3 u4 ?- pfactorial(5) = 5 * factorial(4), {+ D% _+ X- N) V' w4 Q2 R1 D
    factorial(4) = 4 * factorial(3)9 y+ G# j* _$ I& g* z( B# y, `
    factorial(3) = 3 * factorial(2)
    ( B. N  ]; l  F8 D- k! Q' pfactorial(2) = 2 * factorial(1)
    / G2 i- O" {- d, j8 t9 @factorial(1) = 1 * factorial(0)
    ' s/ I' x" r* t$ G# Gfactorial(0) = 1  # Base case
    / G5 A# V) G- J8 Q/ A  j+ z! i
    ) _2 V( V$ |! `: }9 jThen, the results are combined:9 [$ Q% {% M" u* ^
    & I& B& t3 e  j7 Y: Q/ o
    ' F" V4 `: h) }% m# c8 y- [
    factorial(1) = 1 * 1 = 1/ @6 X4 E: p+ w, S( F9 \1 R
    factorial(2) = 2 * 1 = 2
    3 m% H0 @( K! n2 s$ u! d" t" Ufactorial(3) = 3 * 2 = 65 B% _  b* X4 H1 }
    factorial(4) = 4 * 6 = 24
    $ I3 E* q- C: v' J: H0 h# \factorial(5) = 5 * 24 = 120; U% n3 s/ r! H* h! R

    5 X- ^) w5 r# D& ?" gAdvantages of Recursion
    + }( b0 z& Y# f7 [
      F1 s( j) @: `( S7 P' e: l    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! Y. D0 U8 _- r* C# k
    $ L% c$ A4 V* `5 n3 G- ~
        Readability: Recursive code can be more readable and concise compared to iterative solutions." K2 F6 N/ Q1 n  U$ B9 m  [

    0 ~0 h6 b0 m/ R: J0 MDisadvantages of Recursion) [% m# G/ Q: N. m& d
    6 c3 t' S1 G( Y- b7 c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; Z( t2 f$ A+ r" \" I8 T

    8 S+ w" h4 v/ D+ \    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* D4 F6 K  H3 h. S" N( f
    - h4 d/ a" X8 N1 z8 f
    When to Use Recursion
    % P4 Z! _3 ~# Z+ G- m. R  L  A) Z4 X( W% r7 B: u
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ _7 k; S7 M* P7 g9 ?9 V5 i4 H" R9 |& X  ]5 d
        Problems with a clear base case and recursive case.
    1 U: @6 B% _+ h* x/ l) X/ E
    7 T& c9 m+ f  ]9 f: M$ Z! eExample: Fibonacci Sequence
    1 n1 ~8 c! `2 t% q" L- ~
    4 \, P, j% a# _5 hThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:6 }1 }+ w" Q) Y

    0 \" D, Z# ]% I7 B    Base case: fib(0) = 0, fib(1) = 1
    9 j& h' M% Z+ Q5 q0 ?
    ; b) o9 U! c: J6 S4 t; G& X6 J3 _    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) Z6 ?5 ^8 _4 K' p# N% y% F4 h" s; G$ o
    python! K3 C4 T% y" ]& ~3 X% H9 ]
    ' m6 ~# [7 s% q+ L9 h5 u0 i. \
    3 ^9 i& u: E$ A3 {* V) _" }# K
    def fibonacci(n):
    " Q9 W% x: H7 X9 ?    # Base cases+ x( }9 t+ p! X- ?) @/ U
        if n == 0:
    * s4 x" T1 ]) n2 z! }        return 07 D6 y( Q/ r/ H" |* e
        elif n == 1:, y- f+ a! g4 E3 n
            return 1
    + Q. b: ~, Z) ?) r) O7 L+ [    # Recursive case) {# ]; ^1 F; Y1 z; E% m1 w
        else:0 Q3 ]2 m* ~  n( _4 F
            return fibonacci(n - 1) + fibonacci(n - 2)1 s/ P, o) h: D( O" J/ v9 |

    3 ~# W6 d' G/ G# c5 {# Example usage* \2 {/ C0 x' z2 r( ?4 P; q3 R
    print(fibonacci(6))  # Output: 8
    % m5 q5 x, ?/ P. S6 V
    $ l7 \& X& o) r- S' w6 ]0 c* |Tail Recursion5 q9 d7 |. w# e* Z
    * q( d# B6 }, `- G2 q  K8 N2 K
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % G* J. \; d2 X: ~  y: u+ {( F  \+ x- }# e; M9 N2 b! {" u5 |
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 00:02 , Processed in 0.031002 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表