设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1595|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + f: f5 x4 d/ }! }; O* _
    ! K( }8 t9 K* L* l/ Q+ X
    解释的不错4 q0 p/ a3 U& C+ i8 Y
    # N( ^- T3 V9 I8 A
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 v; |# ^$ z6 j; c  d: X# Z
      d1 Q. N( m; o) R1 R 关键要素
    " C& M  @# C& ]; k7 i' Z" U+ H1. **基线条件(Base Case)**% f3 J8 j% [6 _1 G
       - 递归终止的条件,防止无限循环/ K' ~. k2 `4 \7 T5 B8 r
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% k9 _& D8 o; n: D+ g7 Y7 h
    ( `. W0 d$ Y7 x
    2. **递归条件(Recursive Case)**
    & \" i1 ^6 @- ^. ?   - 将原问题分解为更小的子问题
    , }  u/ v! k9 q8 e   - 例如:n! = n × (n-1)!3 l. Q, _9 @) g' A. }

    0 o3 h- g# u$ J& h( t 经典示例:计算阶乘
    : ~# O9 T5 o1 q! Kpython! v, j4 R" c1 z5 t( I
    def factorial(n):+ u6 L" `/ q6 T
        if n == 0:        # 基线条件$ r& e5 N/ r* D, L, ~! V3 s/ o
            return 1
    " M9 s/ R& e1 t. I+ k    else:             # 递归条件# H: k' U) B: \, y3 N0 b; w
            return n * factorial(n-1)
    + X. n4 |# [; k  O- i6 N6 B执行过程(以计算 3! 为例):2 y$ N& h. s: M/ S& |4 x
    factorial(3)- A! b/ Q" z2 `3 q0 A0 t' e1 `$ A
    3 * factorial(2)  P8 E- K4 K# ?- _# }
    3 * (2 * factorial(1))
    # Y9 i& l! ~' ^8 z6 o0 S; x$ c6 _, `3 * (2 * (1 * factorial(0)))
    $ O( w- @1 g& t. B+ V/ ^! e3 R. w3 * (2 * (1 * 1)) = 64 c4 h! U. g) e- V% x3 r- f

    $ w5 b9 K9 P! H; ^  U6 g 递归思维要点
    8 d0 ^5 M( D* i9 d+ o/ |% x3 l) r1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ( h% |" f# a5 j4 N' [2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    $ P# c9 t/ K% J6 X1 \3. **递推过程**:不断向下分解问题(递)
    & A; B5 K$ I( ^) D4. **回溯过程**:组合子问题结果返回(归)) W. b$ M3 \) l9 C) C/ T+ j

    4 [8 j0 N& u) p# p" g) P 注意事项
    ; D  g9 r) B7 |- C9 X+ J必须要有终止条件
    ' Q; ~* t9 ~2 E1 ~# N1 y/ S递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! v$ Z) j* {. P/ D
    某些问题用递归更直观(如树遍历),但效率可能不如迭代5 h& Y% E. `# {& ^
    尾递归优化可以提升效率(但Python不支持)3 b& `; e+ f; B) p1 [) @
    : ]' \1 g; d) v9 o7 e
    递归 vs 迭代
    8 H- N+ x. ^; n3 [9 t|          | 递归                          | 迭代               |& O/ e( `* M( g+ r  L3 _
    |----------|-----------------------------|------------------|
    % G3 w7 e* w% \9 j1 J1 I| 实现方式    | 函数自调用                        | 循环结构            |
    ( q3 S$ y" K" D+ x$ A" p| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( t4 e4 _- Z7 h6 L6 g" D
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  T+ J5 Q0 d4 N' e% J, f
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 ?! t+ D" E' D- A

    1 D% S- `) U$ s. R- q3 z% S 经典递归应用场景2 m/ c; J. b+ t/ Q
    1. 文件系统遍历(目录树结构)
    $ a% D. R; z) A! t: u1 I2. 快速排序/归并排序算法
    : t. ?3 W" ]8 R5 z1 m& o+ F% Z$ g3. 汉诺塔问题! O; e# i% o" _; u: p! i
    4. 二叉树遍历(前序/中序/后序): J; m: H3 C1 d/ b8 z
    5. 生成所有可能的组合(回溯算法)
    ' N( W3 ], X1 Y1 ~) M4 _6 E
    6 K6 [7 A# S8 }" M. q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 08:28
  • 签到天数: 3123 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 `, W+ v( ]  n5 x* j9 M我推理机的核心算法应该是二叉树遍历的变种。
    5 |% `% @* @; z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    3 M& m6 Z- m/ o* hKey Idea of Recursion
    9 f; W) r' M/ h( O6 n7 D% ^/ E9 W, k) `7 Y; U
    A recursive function solves a problem by:
    8 k" f2 C! X/ ?6 M( w" C% `' k+ e& l8 @# ~0 @- @; L% u
        Breaking the problem into smaller instances of the same problem.3 ^3 r$ e, b6 `  U5 g% I- n

      a1 j. T2 U" U- y1 z" E( u, Q( i    Solving the smallest instance directly (base case).
    4 g* X( @! V* G, i
    $ r" D$ {$ f4 _; h: ?% l5 Q    Combining the results of smaller instances to solve the larger problem.- f2 I+ ~8 J+ o# \
    / q; K$ Z  e4 {; C: N* ^( i
    Components of a Recursive Function# u$ I9 c; K& A4 p4 ]' ]
    & e0 G4 n  ], K  R
        Base Case:/ G% ?8 @6 I7 b1 b" O' O
    . Q, @" R( `% c( O/ O
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 {, Q1 S5 ?7 K) z+ V2 A/ n2 a

    , @9 s) A; V( E9 E! x6 R        It acts as the stopping condition to prevent infinite recursion.0 f2 F0 h2 d; X6 R: h
    3 H. o4 P/ f, q0 V% D: G
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ `! ^- s6 X+ ^( x/ F9 t, f
    9 P# C9 D1 v/ Y/ o' H1 |7 v
        Recursive Case:
    2 L- B# `8 B& N+ l! X( }% c6 e6 O/ K& R
            This is where the function calls itself with a smaller or simpler version of the problem.. g* F% R  f- N* g4 P/ U

    8 a/ @: |4 f. p! ?/ E        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., B$ V2 c* T' T% f0 `9 j- E

    9 L3 i; G; c$ l2 D; T3 m" M! }Example: Factorial Calculation, G- [# r' K4 b
    9 f; V* ]5 K5 F8 K, y% ^; k" \
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 [3 h$ t; v5 t) M' {8 d, X
    ' N/ q: W: z) _5 M' E3 G    Base case: 0! = 1- l& m, O1 L1 U" M1 y# @' c

    0 b$ g  v; Y' L0 c    Recursive case: n! = n * (n-1)!& ?4 s& K7 [9 v' S0 h; x
    ' S8 d' t  c) T: A0 O& N6 R
    Here’s how it looks in code (Python):4 H  R* _. o* B
    python
    ! B& |" M8 x, @! R  K0 j; J7 x% \2 t) e, r
    " W/ w( h: D8 r1 V. r3 J7 z$ H3 q
    def factorial(n):' }8 p" X( x& P& b
        # Base case
    5 P! B& s- ^2 h% x    if n == 0:
    . ]: b6 k2 j" u7 W0 W        return 19 ?6 V0 G" V, k5 r# n
        # Recursive case
    . M/ W: Y1 _1 a( \/ o7 a    else:
    * m, f. G( h4 V0 n        return n * factorial(n - 1)9 K2 z! g6 C' S- k7 u7 o7 Q
    ) Y) p( w! N7 n$ J( W
    # Example usage5 c7 I7 Y! n7 q3 h' s) n' z: ~
    print(factorial(5))  # Output: 120& C' b) q% E- Z2 }6 Q2 A6 s5 W/ ]
    + r3 [/ _* X: B3 @" Z' Z
    How Recursion Works- g" V% t+ k" w
    1 d* y" {  P' e; j0 M% I0 h
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ) _0 Y# d' @/ m) I/ S8 N; L  c+ h: B! x# N( a; e; g) E: q  ~
        Once the base case is reached, the function starts returning values back up the call stack.5 O* a# b0 ~# b' Z

    . S& j) E! R: I- e5 y3 I  e* Y    These returned values are combined to produce the final result.
    $ q4 S+ ?+ k' o) G, G3 B- ?
    8 F* W! v$ G, J9 tFor factorial(5):
    7 ?# ?  ?+ m% b4 s# y( k; X- g
    & |  X: ^7 L* w& y
    8 p9 \  Y8 y1 X1 F! y5 pfactorial(5) = 5 * factorial(4)+ k7 B& d4 l/ ^; O! y
    factorial(4) = 4 * factorial(3)
    / w. _- d4 w; W7 f: _! cfactorial(3) = 3 * factorial(2)) g% B( x, M0 z9 M6 A9 V$ {, ^" D
    factorial(2) = 2 * factorial(1)
    + g, X) Y. A/ d7 F3 _factorial(1) = 1 * factorial(0)+ F2 |, v! w; u' l- [" ^4 h# X
    factorial(0) = 1  # Base case7 P5 _& U/ j' _9 J3 N2 m

    8 a% G5 g. t3 Q5 Y! wThen, the results are combined:
    # E0 q4 k- u  O( N8 k3 A5 C/ F) r2 J; m
    ; N0 M' l( K  }9 J2 }) G' b& f. S7 ?
    factorial(1) = 1 * 1 = 13 t  K4 f. T& _
    factorial(2) = 2 * 1 = 2
    : i! A! f, g; [% ^factorial(3) = 3 * 2 = 6) x& w/ B  F- y2 t, ?2 A" R
    factorial(4) = 4 * 6 = 24& e1 I4 B$ ?# B: j- [1 D7 s
    factorial(5) = 5 * 24 = 120
    . K' N5 w6 [7 Y, o( o& `3 r
    ' o# U/ \3 h" v" w& JAdvantages of Recursion1 `0 k( V8 U' V2 M  A! [/ V
    % k, B! F' W$ w' s+ ^( k  @
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    4 h: c- P' q; p; B
    ) ?! v7 m  k% e" v* a    Readability: Recursive code can be more readable and concise compared to iterative solutions.3 d' l- s* `! \( W) d
    ; L* `% m) b: i5 `
    Disadvantages of Recursion
    ! J0 ], c! g# \% R4 O# V, v. h6 M' V# F$ x
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 M' u4 }/ ~8 L% T$ ~" L9 v; p; h, A4 A; {  Z4 }9 R% ~9 p( J5 o$ v3 c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 G! h5 N/ a0 a) k  f! g1 b
    , w( n/ ?* K2 u  J" }
    When to Use Recursion4 b9 w+ `2 n8 k

    4 o4 k4 W7 ^* D; d  p# J    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    " y( D9 Y& T! }& s* C- X* D( Y+ n  `% {! Z7 e$ J" q8 d
        Problems with a clear base case and recursive case.
    2 u' t! D, k$ S* i2 }6 K6 j% S5 V  r/ {! ?$ g
    Example: Fibonacci Sequence8 l4 j% Q0 ^" w8 C8 T$ \

    2 [) l9 ]. Y  Q$ B" fThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 E# Q8 u* u" h
    ( k4 F5 X$ ?% {
        Base case: fib(0) = 0, fib(1) = 1) r" t, e7 ?9 T) Y( `2 o- @- `

    ; v) `  z; U* p    Recursive case: fib(n) = fib(n-1) + fib(n-2); ~5 T+ J" o' j( w* s

    + B+ x8 m% v! Y; L, Kpython0 F3 U* q  U- d1 g
    ) V( u5 U; Z$ H2 r

    . T' z5 u! I' Q. L5 ndef fibonacci(n):; C8 H* P+ `2 p  t- h
        # Base cases- N0 M% P7 x1 f- a$ z
        if n == 0:- d4 ^' k: R8 x' Q* O+ Y
            return 0
    2 T6 i' @+ ?. [2 X! z: @& P    elif n == 1:5 M9 `% m, _; ?) y) m
            return 1
    , A* x. {9 v7 B2 w6 n9 [4 |& _7 h! b9 G    # Recursive case( r( \( h4 ^: N/ j/ ~+ q
        else:, f6 `& P7 Q, R+ I/ a) }  s5 w  G; s
            return fibonacci(n - 1) + fibonacci(n - 2)% Z% w; M/ a& e( f
    ! R( d1 v& N/ ~" g0 e& j
    # Example usage
    ! n. z* n' e3 G+ h  T1 eprint(fibonacci(6))  # Output: 8
    $ u6 L! r6 Z2 s( k. t, N4 S% L/ E0 i6 R- _1 T' I! O/ ~
    Tail Recursion5 V, k! w/ Y. A( E9 x3 f
    . L% g9 |2 h  V. F* z: u5 _% X, @
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    5 `5 @# `9 d+ i7 _1 R' J$ w
    9 w' J5 u+ G3 H5 ^8 Z/ N1 yIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-22 07:38 , Processed in 0.030071 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表