设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2022|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . I3 D3 J6 X1 k  r- ^* h* s: y! D) ~( x" p, N" i
    解释的不错& K* k2 f+ y; R% {. B  _
    8 J) D. U& F  l; }9 t' F% H
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( r! H1 H6 h; Q

    * ^- T8 h2 k, g6 c, ~ 关键要素# ]9 N8 x; }! u7 ?
    1. **基线条件(Base Case)**8 ~( Y- S/ }, ~" C6 o7 G
       - 递归终止的条件,防止无限循环
    6 A* M$ A9 g- Y* X- I   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    : E" L+ }7 N: D3 C- F  ]! |: S& d$ s: w: B$ {' k, x6 R7 K9 i, ?4 Z9 T& H
    2. **递归条件(Recursive Case)**
    - v) r: |3 ^: j8 }  |& V5 L   - 将原问题分解为更小的子问题
    5 h/ b( z+ g) I* @3 a+ w& c4 V   - 例如:n! = n × (n-1)!
    0 c+ u- K  o7 V9 ]& ^6 }5 ^4 k# t4 Z9 Y9 |- j- U, b4 U
    经典示例:计算阶乘
    ) Q: w1 ~# e/ A1 M6 B5 Tpython- q4 t/ Y, K% t$ U
    def factorial(n):! p6 J' L; _% ~5 f7 m
        if n == 0:        # 基线条件
    6 P1 G# q9 e' A$ u7 q, \* J! f* D        return 1
    " f9 m4 s$ A$ u% ^# b* }" _    else:             # 递归条件+ t9 N5 {1 x! R: D6 Z' l: q- v
            return n * factorial(n-1)
    . g2 q$ g0 e3 C+ N执行过程(以计算 3! 为例):/ e+ x6 s6 k, {$ ^" [8 w; w" D
    factorial(3)  _3 s9 \4 H5 I6 J
    3 * factorial(2)
    & E6 u/ N' O3 F) G  I2 n3 * (2 * factorial(1))
    # b! L3 U; S7 j: `% R7 y+ j3 * (2 * (1 * factorial(0)))
    % [4 V" W& y) s2 t3 * (2 * (1 * 1)) = 6, E4 E4 S% {8 f2 L! W

    $ e4 x$ u' u  d* s 递归思维要点9 w" [! k( b* o" i+ r9 t) q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑! L3 G3 h2 j+ T+ l
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); K5 W7 g1 N! q& [3 K; ~+ [
    3. **递推过程**:不断向下分解问题(递)2 D2 V8 t" K4 _4 A
    4. **回溯过程**:组合子问题结果返回(归), s0 r- R- a! E$ d  [

    . A) U( _0 O/ |1 N) U* S1 d3 [ 注意事项- ^& S4 M9 p! T0 \: ]7 K; }9 r
    必须要有终止条件
    / @4 j3 b6 h# r) t: u* S" [递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 C, r0 N. s* M( y' p某些问题用递归更直观(如树遍历),但效率可能不如迭代% X! A* u+ w. q9 |/ B6 x7 ^( f
    尾递归优化可以提升效率(但Python不支持)
    % ^6 {+ a4 n/ V
    / t( [0 ~! p5 d 递归 vs 迭代
      M; }- P( J, y3 p! U$ L|          | 递归                          | 迭代               |
    , `5 s% x" \4 J- C|----------|-----------------------------|------------------|! ~' z) [* K5 M! i
    | 实现方式    | 函数自调用                        | 循环结构            |
    * i6 F9 p; D, I| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " F' N3 h# X4 n3 x& D% v0 P2 a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" S( T" s) {) ?" L/ \8 r2 b+ {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / n. e/ ^* t- B, r% \1 ]) f: i$ w+ L$ m# P+ @7 s
    经典递归应用场景
    ! c1 E' ^% T0 q( l7 l1. 文件系统遍历(目录树结构)6 h0 |& ?, z0 P& p# H  j5 \
    2. 快速排序/归并排序算法5 q8 A7 i* a5 y9 g- q
    3. 汉诺塔问题
    2 u7 S3 a, D; o! ]% a4. 二叉树遍历(前序/中序/后序)) W+ s. l3 i* Z
    5. 生成所有可能的组合(回溯算法)2 t  z8 W$ c) m; P

    : m& Q  ?' o+ [1 e$ p( R, g试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    18 小时前
  • 签到天数: 3165 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , \2 x7 d% `0 ~9 |7 a! z" `我推理机的核心算法应该是二叉树遍历的变种。$ C" X$ I4 x" @. Y0 Q; D
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: U; y, d+ z6 C6 n, ^4 @
    Key Idea of Recursion1 r( c; ^, p- h/ X

    ( l+ z( x2 J+ F, j  A* JA recursive function solves a problem by:+ M$ u# y8 T+ h1 Q( `7 ]. K
    - c# ~6 O3 I7 j- [
        Breaking the problem into smaller instances of the same problem.
    % q8 J$ W5 q  n6 A9 _
    & `. @$ ]$ e$ c) M% K4 r  w1 a    Solving the smallest instance directly (base case).
    - H6 R% M7 \( ^
      W6 l$ e# X! S, n    Combining the results of smaller instances to solve the larger problem.2 k6 ^1 }3 Y( `5 P' f
    * q2 {" N& f6 ]( ~$ k
    Components of a Recursive Function
    . M+ d- h" e) ?9 Z8 O! Q$ C4 a/ |
        Base Case:* W9 S. ^9 ]5 ~8 k" s9 C( h; x2 w

    & |9 V/ C' Z+ A        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ m( R/ v7 E3 X
    0 M: N7 ~" r/ T$ X. t  b. N
            It acts as the stopping condition to prevent infinite recursion.; Z; C* H6 E- q& I
    2 Q8 n+ K" u" l
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( Z% L& S: z! [: O+ @' l1 `, s
    * @: _8 a8 ?# k2 z( f    Recursive Case:1 ^' X" p( M9 c5 E+ Z( Z$ J+ F+ E

    % `* k- G3 E& ]4 ?4 V        This is where the function calls itself with a smaller or simpler version of the problem.
    1 I, l& x$ ^) D7 c, w" Z8 u  }& D6 p$ Q" }5 }/ Q- {
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: J. M- }& `) V: a1 V1 i

    & ^! |9 G! A) VExample: Factorial Calculation
    * D+ D7 |' {5 ~& Y, K9 l3 _6 A- e) B6 i
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 P/ ~% Z( W& J0 M

    3 M) v- }1 S- r  Z& J, ^    Base case: 0! = 1
    3 D) T9 ?/ h5 P$ e3 a+ C& D/ d  x0 q
    . R5 J. m( `7 W% y    Recursive case: n! = n * (n-1)!
    3 o* }" N3 t* T$ j$ V( R1 d  W
    Here’s how it looks in code (Python):
    # m5 E+ i2 k  {* y6 E7 x. {% \python
    - ]0 r+ g7 {' F6 g1 R" x5 _' L+ m
    1 g- Z- T% K  H' Y5 m6 i( ~' b% ^
    def factorial(n):. t7 y) j$ s' L% ?4 d
        # Base case
    6 l) B6 @# w$ @5 z' e    if n == 0:. _1 j! y6 ?. B3 t5 T
            return 1: R8 V+ b, r: h1 h* \
        # Recursive case
    3 |( J3 B5 V) x% z    else:0 {3 ^$ l2 ~# y' d9 z
            return n * factorial(n - 1)
    ) C" U; k+ w) P4 N* I, B/ l4 @! K
    ( e% H6 w+ k/ F1 O7 x# Example usage
    " \7 R4 D5 z4 t) _print(factorial(5))  # Output: 120
    # Q! b3 U* h& I% O* {; g! L9 h$ t
    8 J: _$ H1 ^1 b! R3 u8 X( \/ P! dHow Recursion Works
    ' T1 i' h" o/ t4 q& ]- }! Q' I) D, W; J
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , }. X( n/ S0 r
    , Y( j) n9 I" ~' _* h    Once the base case is reached, the function starts returning values back up the call stack.' |! p) h' H* _- }6 U
      \$ P1 I3 A5 A8 ]) \
        These returned values are combined to produce the final result.
    ; q$ A& w5 {% [
    + A* B: F1 o9 G3 q+ j2 ]8 lFor factorial(5):
    - _& Y- o8 k* C' {" Z' Y* B5 I; O1 K

    + \# h3 O$ ?( F8 J  afactorial(5) = 5 * factorial(4)+ M5 H' I1 x: M" Y0 u
    factorial(4) = 4 * factorial(3)" J0 t4 L3 l- C7 [' g2 ]3 r
    factorial(3) = 3 * factorial(2)
    4 M8 l2 v8 _% Vfactorial(2) = 2 * factorial(1)( ?0 j- q! u/ q; ^8 ^  z
    factorial(1) = 1 * factorial(0)& M$ T3 q* G5 p3 a4 h7 H
    factorial(0) = 1  # Base case
    7 _, L4 ^- F5 d3 ^/ G- k( K4 B7 \* H
    Then, the results are combined:. L! x3 N9 ~! s  O4 w' ]/ {! w

    / ]8 C' h( o( R. u% D# r8 |& C5 |4 w4 c5 N" \$ P5 d5 F4 {' U
    factorial(1) = 1 * 1 = 1
    ' l+ p: C& i, k$ A1 Yfactorial(2) = 2 * 1 = 2# A9 [% e5 l* Y) }! |% m6 e1 T6 N+ e
    factorial(3) = 3 * 2 = 6
    ' N8 ?8 |3 o  B+ @* c) ]factorial(4) = 4 * 6 = 24
    ) g) T: ~$ m$ k/ U* }, q  d( \6 _; _factorial(5) = 5 * 24 = 120
    4 V- f9 @) r+ F! b) a# [! ?) m  V2 h( s3 l! `
    Advantages of Recursion: w5 i3 D" ?/ l+ U
    2 M7 k7 M& ?1 |4 F1 E6 M8 g, R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 b; i4 S5 ~5 Y4 D
    2 p/ e+ G, F; R5 {- o3 P    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    - n* h( }6 [& a; J
    ! \. n" E3 ~: E: e9 ]0 m  v! dDisadvantages of Recursion
    4 D# _5 N3 q) g
    7 q' v% ~6 z. q4 z# \    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 U( ]7 x( R/ q
    & N/ W: f' \6 d: a8 B- [    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    , S2 I/ j0 {! r( f1 W+ G& ^8 G' c9 ~
    . B" V& R0 T! d( o8 LWhen to Use Recursion8 E& U2 R# s2 F1 f0 C
    - T* K1 l; j3 U9 D
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! G" Q5 k. N# p+ |; _: `/ ]- G& Z. d0 Z: u8 r' {, _
        Problems with a clear base case and recursive case.
    3 \& q* Z3 O$ i) B5 _5 C$ r& j4 z! l! X/ K4 u' \9 q$ r
    Example: Fibonacci Sequence
    " X) j" M9 v6 u$ U' q( r
    ) B- |2 Y0 i2 JThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    4 \* ?/ m$ e% Z* m2 a
    7 L' K5 J# V' ]  K, \    Base case: fib(0) = 0, fib(1) = 1- M6 Q& R, B* s! D1 I5 Y
    & V6 n: {0 b( L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 Q! O+ J+ t! A8 b" @$ T  J1 z* U3 f* y" h2 M6 v
    python
    ( K, j; s) ^% a. |9 l: N6 V/ n9 E" U' Q1 ?; p& e

    0 S( J. m  J8 G$ F# L+ Sdef fibonacci(n):
    & C. {; Q4 {4 k( {5 `' z    # Base cases
    , J9 e* q; q1 p! G$ z: y    if n == 0:& z" C0 D* c8 L% Z9 x" L- G! h
            return 0
    9 g* {! j( ~$ Z* _- a    elif n == 1:  h( [% t& a2 b4 v' u2 t6 \
            return 1. q" r" j6 }7 W7 L) h+ {
        # Recursive case
    / ]* U1 h" ~# Q1 ~4 \7 y, v: H: ?    else:
    " S0 ~9 H( [+ E- g. H        return fibonacci(n - 1) + fibonacci(n - 2)$ [$ F( S8 @5 G4 W
    " U9 W2 R- f: ~; a
    # Example usage
    - c8 q2 N$ z: z7 cprint(fibonacci(6))  # Output: 8
    ) `( J# ~4 u: ]" `) J3 u% E9 m$ G1 f
    - m7 \: ]) _* q/ P5 UTail Recursion1 t* j  V9 p, L" A! f$ Y
    / h7 y6 P& ]% a6 F
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. n- ?4 A* n3 p, u; b8 B6 O

    5 }4 I6 z5 P  P0 S* o" [In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-6 23:48 , Processed in 0.056894 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表