设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1125|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 H# R; S: c& g

    + G6 [' I: L3 S1 ]$ O9 ]. {解释的不错
    # r* B$ X/ V$ x: ?$ z2 H
    3 J# A. G' r$ m7 o; z( D! \( o; Z2 Y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 n* M/ ]5 v# M2 ^

    ! c; l3 h% n- Y& n 关键要素
    % T$ v" A: @1 z$ u  N) T; I0 q1. **基线条件(Base Case)**
    / ^+ u0 P9 K* r1 E1 H   - 递归终止的条件,防止无限循环6 c! f  M; ^! T& ?$ o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " @; C0 t. p2 z. {: @
    1 z% `# f. o/ w1 J8 ?+ U2. **递归条件(Recursive Case)**
    ) p7 d9 G. _0 c( C' [   - 将原问题分解为更小的子问题
    " Y3 ~4 z. M* K! G7 z1 _8 z   - 例如:n! = n × (n-1)!
    7 g7 u4 A7 r0 y0 A' J4 Y% k8 `" \) ]* A: o* g( r9 C
    经典示例:计算阶乘1 X. V: O. f& p3 R/ Q# w+ H7 G
    python6 l/ p+ Y" M; `% P! n
    def factorial(n):
    " w# ]0 |  W. Q( q( |    if n == 0:        # 基线条件5 \: f* J/ P/ R4 O: X1 ?2 v
            return 1
    ) n4 |* `  P, i8 T$ v3 I6 g    else:             # 递归条件
      o9 p0 W) e; h. T        return n * factorial(n-1), F, |" ?( o5 [
    执行过程(以计算 3! 为例):1 `1 O3 h- G# L/ _4 v5 q7 J
    factorial(3)1 M! Q* {9 N4 s7 g+ k$ g; ]0 g/ J
    3 * factorial(2)
    $ `& b& I7 p- z$ }6 C3 * (2 * factorial(1))* }, \1 g5 N& o+ x7 Q
    3 * (2 * (1 * factorial(0)))) ^) E7 d, b( V6 i' `
    3 * (2 * (1 * 1)) = 6
    " B0 B& F7 U) I7 t/ v, |  y; `6 P0 x% j) _
    递归思维要点& y1 l) n6 r# T0 z
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ d( b' Z3 W* `9 m9 R  |  n
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)! }( r+ `$ F- |# s* D  Y7 O
    3. **递推过程**:不断向下分解问题(递)( u- W: f) }0 h1 c
    4. **回溯过程**:组合子问题结果返回(归)
    1 N8 u  S) \4 G6 E) p: G1 L' C; ]3 t/ o9 @# Z/ C. G
    注意事项0 m* M9 }' v- i+ j8 }6 n
    必须要有终止条件
    / K8 H  Z$ V4 C! h8 x% Z* V, F6 D递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! K7 [+ `+ [. ?: [1 x某些问题用递归更直观(如树遍历),但效率可能不如迭代) z! S/ ?4 o9 ]
    尾递归优化可以提升效率(但Python不支持)
    6 q* f1 ^7 s2 K- N& [. Q6 m
    , x; A0 O# l+ }7 { 递归 vs 迭代2 ~! ~4 J0 M& h8 ?* a
    |          | 递归                          | 迭代               |# j9 b9 d' B9 w" L
    |----------|-----------------------------|------------------|
    " V# j5 i+ E: K) X; L1 H( B# }/ v| 实现方式    | 函数自调用                        | 循环结构            |2 Y3 l" T2 X0 ]
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 {0 G$ o( K9 A: e& C- t
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 C7 R7 ]" }# O# C# F. {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * f+ l3 T3 u* [/ N1 s0 ]; C) K, ]* @1 X# C5 G
    经典递归应用场景7 v6 W) f) a% C3 W/ T
    1. 文件系统遍历(目录树结构)  t6 L8 _/ l" ]6 o3 Z0 P6 M- r9 D3 s
    2. 快速排序/归并排序算法( H8 S" a6 L$ l/ l
    3. 汉诺塔问题, M" z- |- z' r3 n' r7 p9 {
    4. 二叉树遍历(前序/中序/后序)
    5 S, u$ w& I* U' }5 h- \5. 生成所有可能的组合(回溯算法)8 m, T4 H6 I5 p/ }8 l! y+ x

    ; R8 b6 e3 b8 W7 z) |! }试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    13 小时前
  • 签到天数: 3099 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) Q7 I* r5 z2 r% {2 D
    我推理机的核心算法应该是二叉树遍历的变种。+ |, S2 s4 A, q& S0 n5 `
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    : @# o. j0 W1 ^( l1 ~Key Idea of Recursion/ `# f4 A7 h$ B6 m  x& t( x* k. v
    & c% i* b( }2 l. e, B. s
    A recursive function solves a problem by:
    8 Z1 i5 A. _  y- I2 R: `2 X
    - X. Y0 u- |+ I- ^& f; S" Z    Breaking the problem into smaller instances of the same problem.
    7 v) L( A% b0 Z) ^
    ) A. Y2 L4 J5 o2 A7 p    Solving the smallest instance directly (base case).
    % {  x5 [4 ]: e7 g9 \- s* ?
    + W" X/ w$ c7 j% l/ A' \    Combining the results of smaller instances to solve the larger problem.. d% S1 ~1 \" Q$ v$ `# q4 U) g

    9 t9 g- w0 W# z" E  M) IComponents of a Recursive Function9 r  O% v" `# P: e$ z
    - v$ I% X3 ~/ g. y/ I  {
        Base Case:# P9 u8 J* ^9 q1 U0 T

    $ I+ }  C7 Z% H        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  Q$ b7 e: {& q# @% m, F
    2 G! s- H, D1 @! ~  M; f/ L" p
            It acts as the stopping condition to prevent infinite recursion.- Z& `* W! K/ U; }1 x( M  \3 k

    0 K6 f( l9 ?, Z' m. ?        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! x6 o' |& g1 d- y( c
    , o1 c0 {* m# c8 L- P    Recursive Case:
    ; N; U. [$ M% {7 Q1 E6 Y% t$ O
            This is where the function calls itself with a smaller or simpler version of the problem.3 L$ U* N: q8 @4 c: f

    3 n; i6 R, B  x1 z9 v* U        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    8 P$ z! Q* }3 Y- s  n5 |
    8 b2 x7 b( i  v/ EExample: Factorial Calculation
    / U$ u/ \% ^, Q. s: e& R# u- v& X) w: n: m2 k2 k$ y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 {# q& ~5 N+ v8 Q4 k3 Z2 [. ?5 A& O! K
        Base case: 0! = 1
    0 X" K" M: y9 m$ I+ k7 I) i% u% q. L8 p, Y4 N( K
        Recursive case: n! = n * (n-1)!
    / Z) @6 x- p& C1 m5 k- I. u0 ^
    . G- B1 y4 @9 B0 \7 a" A) YHere’s how it looks in code (Python):
    1 }( \( z7 ~+ T+ y* i, T6 M( P- g& bpython
    - j! X5 {# b# |0 U2 y, m
    / f- s* M5 e' w
    / F: x& g; p) _; J- Cdef factorial(n):
    9 h% [5 t# K/ S" `7 t    # Base case. _8 M) N+ [, ~& j3 S
        if n == 0:
    # P* w" }, p2 Z        return 1# |2 v, x5 |1 Y% p
        # Recursive case
    ; K1 [( r& x4 Z& A, R    else:- Y, g2 G! V# I
            return n * factorial(n - 1)
    ' ?6 v' e* s4 F. t/ |9 R& w, N( z# U7 i
    # Example usage5 x  E8 |/ t; d7 \$ N2 Q( Z# w" `
    print(factorial(5))  # Output: 120% }0 n4 m4 `  O8 y# N3 u

      C. o6 L5 u; r1 n7 mHow Recursion Works
    0 e+ w, y, F" b+ D
      Z/ h4 C; y) z1 y8 Q& x3 m    The function keeps calling itself with smaller inputs until it reaches the base case.
    9 a' V# N" ~* g, v* C* V" L: Z0 m3 ]  r! q% }0 D/ J
        Once the base case is reached, the function starts returning values back up the call stack.
    8 m. x5 \" W1 o+ E# K8 f8 k1 G, M; K3 J
    - d, e6 T: m  Q    These returned values are combined to produce the final result.8 f! T5 N' j2 R, T+ Z7 O/ Z
    2 l5 h0 p+ X. K3 T
    For factorial(5):
    ) p- Y0 o  e; Q0 X4 n! O6 `9 {3 E. M6 r7 m2 [$ }. m+ v
      _7 p$ L/ y0 ^1 C
    factorial(5) = 5 * factorial(4)
    5 r/ S5 V5 f% \& q) x0 d$ ]7 Cfactorial(4) = 4 * factorial(3)* Y8 _' b+ V# E" j) B/ S
    factorial(3) = 3 * factorial(2)
    & O& P& W( {9 Yfactorial(2) = 2 * factorial(1)
    - C8 H# Y4 g( U% \) vfactorial(1) = 1 * factorial(0)
    # _. J" U5 U* a6 Z1 [factorial(0) = 1  # Base case
    ! \: y* y- {4 @# R9 p2 u/ |  _* a& X3 b7 G# n
    Then, the results are combined:3 P  D3 z  N. }1 D7 U8 W3 s4 G
    8 f) b7 v1 Z6 q  T8 O6 ?* @) j; o

    9 ]2 ~$ l3 G2 h5 L: ofactorial(1) = 1 * 1 = 16 P$ F- P- ?! G6 w' G/ H
    factorial(2) = 2 * 1 = 2
    3 T" B0 K& R5 ^) B0 N6 P! p& _! Kfactorial(3) = 3 * 2 = 6
    2 h6 O9 I2 P, _, t" d# Dfactorial(4) = 4 * 6 = 241 F" G. ^( T8 f0 K
    factorial(5) = 5 * 24 = 120
    , f0 q$ t( v# o' x9 j6 [' `; d4 I% L+ ]% g
    Advantages of Recursion
    , N' |& @" D- M2 v! }
    5 x* U( y' v! d% A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 `- S. P' S0 Z- Q+ L: r/ e* m* R. o3 Q3 C
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    $ m+ m( Q" F9 L5 ~  K6 g: d1 K( L
    Disadvantages of Recursion
    1 F; G5 C3 z1 P. f7 f* U. d+ D8 |% C/ _
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.1 t# S" J1 e$ q9 U' I7 S, k

    5 O( Q% C& @( ]5 u$ A! j3 U- O- g    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
      o& a% C5 x+ v/ ^7 B! ~5 \* o8 n
    ) R6 _+ }' D- j. r, ~; \When to Use Recursion# D! C% E* i" d# N7 T: E

    * b! V9 k1 W+ ^8 u! u% O; h4 m    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    6 g, e4 U  h0 h9 v: e' M+ s! i2 R$ p
        Problems with a clear base case and recursive case.9 Y) }3 v% I5 k- C" U
    6 Q1 S$ l2 q8 J# A( T; ~
    Example: Fibonacci Sequence0 x0 f4 a- T1 C2 S, l- |
    / o" m% P6 n8 \1 P8 S' n5 }3 T/ [8 W
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . T3 i9 ], B' F; }$ M0 @4 q, U. A- x/ U* d2 j6 g
        Base case: fib(0) = 0, fib(1) = 1, Y9 Z7 ?) i# M1 t* q8 S

    7 O' I& |4 [  t* L0 Q" @, H    Recursive case: fib(n) = fib(n-1) + fib(n-2)  e/ `7 h& T! X  j- i. d1 ]! g
    " u6 ?! a3 y6 m. t2 P3 Q; b
    python8 G4 \' N5 J' T6 m- m' v
      z4 l" p! \9 {, m5 x" R

    ) r6 [8 H6 _/ zdef fibonacci(n):
    ) [4 P5 @! }0 G' P/ F# i4 i' e    # Base cases( g; ~3 z, S$ @$ o# j
        if n == 0:* M( Q5 `- l3 ]& d4 Q
            return 0: P7 ~. b, Z$ g6 O6 A7 B& U
        elif n == 1:
    : A4 b1 X/ H5 b5 d# r4 \( H7 l        return 1
    1 ]& q0 v5 N- Y3 u& u. V+ a    # Recursive case
    . _& p# g' c. X3 s7 `3 L1 _' H2 X    else:4 c+ Y+ w5 b7 m& L$ \) [
            return fibonacci(n - 1) + fibonacci(n - 2)
    + z( l$ }* \+ |3 E
    * ?$ J, N( E( W; h3 k) J$ T# Example usage* a  I, }5 y/ a( g2 @
    print(fibonacci(6))  # Output: 80 l* x' f( U- G4 C- Z3 [. J* P

    & g0 A( T( a- ?3 w' j( C9 hTail Recursion
    ( r/ `+ u, _' _- a4 G
    : s6 W# o* e; a( `8 N/ \0 cTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    3 f4 N' l2 f! X- c7 U% G) l
      n+ X! a+ V. D) VIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-22 20:57 , Processed in 0.030871 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表