设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1954|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 m9 Z9 O- j! j* @6 T+ x4 d' C& u
    ' }" S" b: Y. T# Q
    解释的不错+ E  g* u$ r: V) K$ x

    9 Y* G# E  Y* }: Q6 k( p+ Y* B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. W  v0 ?" l( Y. Z! m
    $ j% t' {+ @7 X) \( L
    关键要素
    : C, I0 m! U3 N: [/ n9 i* g1 e& X  l& x1. **基线条件(Base Case)**6 G* t7 R, f$ ^) T
       - 递归终止的条件,防止无限循环
    # y4 n7 T# J9 U; D4 d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 t/ U# w9 K7 }5 L* B3 g% X; Y
    ( T+ I# ~& ?1 y$ E3 ]7 t# u2. **递归条件(Recursive Case)**
    * y8 i' m, Y0 t4 G- _6 H$ @% @   - 将原问题分解为更小的子问题
    / c0 g- j2 I- Y   - 例如:n! = n × (n-1)!
    ( [/ o: j: B; \9 x; C3 n, a  A9 t9 J* Q# {) n! T6 h- U
    经典示例:计算阶乘
    & S0 e: |4 f% }' h7 Kpython( m& x1 n% A0 l
    def factorial(n):& A% D# y- t, s
        if n == 0:        # 基线条件. W4 y4 S! w9 s8 Z$ |# M; N' u
            return 1% T! u3 R$ B, J
        else:             # 递归条件6 J; H/ H0 U$ u* V" t
            return n * factorial(n-1)5 k6 j1 G3 p+ ]+ w3 t4 Q
    执行过程(以计算 3! 为例):4 d% t7 p3 Q. k7 R0 P) }
    factorial(3)% X! w4 N+ T0 o( Y
    3 * factorial(2)" U- u& w: W- k4 M+ Q- Z; t
    3 * (2 * factorial(1))
    2 a( H1 Q6 z; ?: Q, |9 T# e3 * (2 * (1 * factorial(0)))
    ( }$ @6 K3 I' o8 |5 N, r3 * (2 * (1 * 1)) = 6/ k7 k2 F" K! ~" q7 A, [" ^) B
    $ Y& [& n% X3 v$ _" N. Z% _* F
    递归思维要点
    1 J! \# H6 C4 e9 h0 m. F1. **信任递归**:假设子问题已经解决,专注当前层逻辑: k: q" {  K. n8 U) D1 S
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( M) l" y) E; {& V
    3. **递推过程**:不断向下分解问题(递)
    5 X# |5 g+ Q( J1 D" Y4. **回溯过程**:组合子问题结果返回(归)
    5 \' C9 q% c( h/ b
    8 P5 E( T# [" F6 `" V) ?- p) Q 注意事项7 t0 ?% q) h, _( a( D
    必须要有终止条件% O% _% {- t3 q/ d" D2 K$ \
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)4 @: b# H8 E: J' c  c. e; I) N
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ' k* x' u" U, Q! l尾递归优化可以提升效率(但Python不支持)* Y  S: O- \- \% s& Q
    1 E) S1 x) T: o) O9 F
    递归 vs 迭代, a! F  O9 o" b* e( Z
    |          | 递归                          | 迭代               |
    & E0 P" @; P. k/ [" u$ Y3 Z) N|----------|-----------------------------|------------------|% w& g: v3 w1 X  u' T4 c# I/ [. |
    | 实现方式    | 函数自调用                        | 循环结构            |% D4 ^8 _/ E, i( P7 A2 L' N
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |' q$ k" R$ j! T8 p! v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |3 G8 b5 ?4 v, a) G2 s7 `( m4 N
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |, p6 A6 ^! |8 S/ k% _2 Y* U
    7 z  p% P4 T1 [( D9 ~+ U7 U
    经典递归应用场景
    3 N! b1 [) E6 P$ Q* w6 ~9 D1. 文件系统遍历(目录树结构)  z2 j5 U1 a2 w" I- D( u
    2. 快速排序/归并排序算法
    , d: @( O+ f. B4 x/ P3. 汉诺塔问题& B& u: V: z; Z
    4. 二叉树遍历(前序/中序/后序)
    6 `, w7 W, J% f% [% p5. 生成所有可能的组合(回溯算法)
    , m% B2 ^& x- e9 [' U5 G
    0 a/ C$ Y  {& I* P6 ]试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:22
  • 签到天数: 3154 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 r$ M, E) n9 ~- [3 d, ^. C我推理机的核心算法应该是二叉树遍历的变种。
    9 k* H: |& g( N另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 ]0 k& N, F/ q* ]2 XKey Idea of Recursion
    6 m, C/ e+ X% D4 S7 [5 e* h
    0 N9 l( d8 k) `A recursive function solves a problem by:/ x' r. r% A9 ]+ t1 u
      q: N- S8 \- {/ T; @2 A
        Breaking the problem into smaller instances of the same problem.
    ! ^, M' F  l& X3 e' U# L0 c! b6 J; B5 p% b) w) I1 {
        Solving the smallest instance directly (base case).; m8 @1 A7 @( z/ u$ Y
    ( I7 k( g9 R% P5 E
        Combining the results of smaller instances to solve the larger problem.  M$ V7 i+ S9 U* ~4 p5 w% r  P

    & R- b# x) ?6 g& M2 F: y2 l7 Z7 P! ~. uComponents of a Recursive Function
    9 J" m. Q9 B" }5 X# U* e0 {
    ' Y, A: {6 _2 q& }% t( a    Base Case:7 o  |- e" A# w0 r+ w7 x* G
    # U, F8 `  N% x/ v6 T) ?8 `
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& k, [( C( s) X! T
    4 u( H8 Y) O8 D6 v7 ~. R
            It acts as the stopping condition to prevent infinite recursion.4 `: f/ J, k4 S- q; `2 h

    : {$ [* B; r/ B        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    0 ~- @9 \8 y% K# O
    3 y+ p/ k) O$ Q4 q5 M0 g    Recursive Case:
    - V  ~& o  P7 z+ I4 M
    5 h, I) M9 Q8 Z. B        This is where the function calls itself with a smaller or simpler version of the problem.' ~, s, n7 H! W" }, p
    - J2 s  G9 ]1 j7 j& H3 y8 n* q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% {. M/ G- W# q2 J8 G
    5 g7 _3 y0 K8 D5 K
    Example: Factorial Calculation6 M1 g! r! A# t" [- j9 f

      V# Y! y' r  _6 D( C7 m, oThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' |5 R2 ^. q) V# `6 |6 v
    , ~# \* p, x* a! l' d5 i" I
        Base case: 0! = 1
    6 Q* H7 {+ E& J9 c3 K0 d* i! c2 e0 Q/ I
        Recursive case: n! = n * (n-1)!' L4 u3 J$ A- m% F& K9 C, I
    1 h7 R# a/ Y9 A7 E/ F
    Here’s how it looks in code (Python):
    / ?/ ?  Z/ x  l4 E' W# upython
    " R8 t6 P; e& Y( {; |
    1 H7 {# o2 G+ q2 E) i3 ~  l  R$ ]( f# \1 h( {. I! u0 Q
    def factorial(n):
    ' g, V+ D1 z2 E5 f0 r+ |    # Base case$ c! G- V/ Y8 e" \" q  w
        if n == 0:# m' p) C: \3 C3 m
            return 1* p7 B' E* [% L4 f0 H7 b: B2 F8 h
        # Recursive case
    3 @) h$ b1 S/ I/ i; v    else:
    - ^) e  b4 B5 {        return n * factorial(n - 1)
    3 B+ _" B; |( y" ]
    2 q0 S- w; I2 J4 k# u& m, N# Example usage
    , S: F/ Q( a+ e% Z( V% n( H5 Pprint(factorial(5))  # Output: 1205 ], Q- A9 ]7 b9 H( y3 l/ W8 D0 H
    0 R, p; w) p+ B' r$ D0 @+ F2 d. ^! h; S, H
    How Recursion Works
    ( j; O% `) b% s; a
    : `" \# Y+ P+ V: E. N) t" F9 Z# {& c& U    The function keeps calling itself with smaller inputs until it reaches the base case.8 B( w) ]+ w' W

    8 X) ^: b. ?( \; F) ~1 K- ~    Once the base case is reached, the function starts returning values back up the call stack.5 u: N) ?9 c/ t2 K& U& G
    ! ~) L9 ^; y% T# c+ H
        These returned values are combined to produce the final result./ i6 }; z# z2 ?5 M  j! A2 w$ n) u
    # v9 i7 C+ w. k* a- }
    For factorial(5):
    ) R- C3 |6 u; `$ D
    - t9 Z( L( }* }# N3 k4 ~; w  F  K8 L3 N9 U$ g6 O
    factorial(5) = 5 * factorial(4): Y, K: ]* [5 y# |# D) P& A
    factorial(4) = 4 * factorial(3): [' _9 [; t0 {$ G4 F& k& g
    factorial(3) = 3 * factorial(2), N( Q' \( h  B3 }. T: [
    factorial(2) = 2 * factorial(1)
    5 Y$ R  ?  h, S- ?( o" P; B3 G+ ifactorial(1) = 1 * factorial(0)2 a8 i1 c: ]7 h0 Q/ K2 P
    factorial(0) = 1  # Base case
    * K% G/ Q" q5 Y2 a; R1 X5 G4 x8 r2 W1 u, t1 z# S
    Then, the results are combined:2 ?# d) x+ T+ i! e8 F( s" `% d

    * r% C) p. X" E, i  y9 }0 z! F' e: D4 {& H2 Y
    factorial(1) = 1 * 1 = 16 s9 b# o9 B9 \3 l
    factorial(2) = 2 * 1 = 2* m  t- F" N& k, A$ z
    factorial(3) = 3 * 2 = 6
    # \$ f# i) e% y* C. u) j4 }1 }5 d" @  Gfactorial(4) = 4 * 6 = 24
    9 b: H9 m& }/ @factorial(5) = 5 * 24 = 120
    / T; h/ K3 A3 U; [
    * w7 }: a# Q4 {1 j7 `, i  TAdvantages of Recursion
    9 I( `5 o! W. b+ n. Y2 I& P$ c7 ~0 U
    5 K3 Q8 b& F8 l7 M" H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ s$ h4 R5 T; Q3 O3 u$ V

    : Y) y9 @! Q; i& ?/ L; H    Readability: Recursive code can be more readable and concise compared to iterative solutions.5 z; k$ G* Y' A+ u

    ; H; t) `  u# mDisadvantages of Recursion( r6 v5 c: S  d6 m; t9 A' X; F' c
    ; \# ~! V) i1 E, O! I5 K6 i$ c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 d" a  N0 n2 w* x( K
    $ |* Q/ f$ c" t! b' K
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).+ Q  I0 ~( O# y% ~/ a

    & |9 W- D$ P( Q9 |When to Use Recursion# d/ X* r" t8 S- B

    0 }5 }) F) n! g; f9 f    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 {4 T( t1 x6 C- }; [$ A' Y: K) @
        Problems with a clear base case and recursive case.
    ' b7 N$ G! ^/ \$ ]/ T8 F! Y/ ]! d9 y) p4 {
    Example: Fibonacci Sequence
    ) j: c" Z* u' ~' m9 @' C- `( F. q5 f- Q  Z; w4 l8 g8 C3 j2 m4 i
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& ]" R0 c* J; t& ~

    + A" ~. L7 l( Y4 p# i$ O9 U    Base case: fib(0) = 0, fib(1) = 1( F" r. _  \4 k* |# y6 p

    . `2 M& B# \$ U    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 i5 n4 g( w) n/ Z4 ?1 f* l% [! i
    python
    0 p- K* H" f: S) C. [2 G' i0 M' B  F( H- [! w' c3 z/ x

    3 K9 s. j, a$ x7 s- s0 ldef fibonacci(n):- s- e9 P3 M( ]* E9 x, O7 ~$ n+ X
        # Base cases
    * H, M. z4 W1 c7 x6 O    if n == 0:
    ' ?. H+ W' l& i: H        return 0
    ' U3 _; d/ l; b7 r( u    elif n == 1:1 Z. Y. r; E* Q% M3 Y6 k
            return 1# d) h* e3 U! j/ i
        # Recursive case
    & V2 B& W/ K3 q% H    else:
    / d9 Q2 Y1 h  ]( `* v% b1 \' D  o        return fibonacci(n - 1) + fibonacci(n - 2)5 o+ e0 i; Z( r2 Y7 h' n9 l. N
    : v$ ]* c6 t; [5 k4 r) K
    # Example usage( n$ @3 v' H. D$ B% G" M# K% |. H
    print(fibonacci(6))  # Output: 8
    ; [" x' e( v$ u! I! |9 s! V
    ) j- h  s' G9 C  OTail Recursion, R  I- D5 b/ @3 O7 B) I2 R

    ; E, Z4 ^) g; a* \' ?Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& z8 W- E7 W9 K* Y  ^% X

    $ M+ u& R! Y2 A" X2 B% n! y1 d3 nIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-26 16:12 , Processed in 0.056212 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表