设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1675|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' A( ^7 s5 n; j6 h& p# K& P. a

    7 N- \1 e, X! x& s" x解释的不错7 `: A  t# Z- z" j! {
    3 w) a$ f& L- l' i2 e5 E# H& k
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 k+ W  L1 g; d1 E, G
    5 k8 C8 r% b1 y2 O
    关键要素9 r' M. P5 J. _' o
    1. **基线条件(Base Case)**' h8 I8 K7 S. `3 ~* |. a( i6 |
       - 递归终止的条件,防止无限循环/ g* D6 a* v% t. L- s% q5 K8 x
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 E* B4 i6 J* m( ~5 h  t" F, U. ?
    ; O5 A5 C5 a& i- E/ }
    2. **递归条件(Recursive Case)**
    9 @# T3 h. `7 c$ O, P# F   - 将原问题分解为更小的子问题
    4 N5 ]. t( o+ Z! b& ]1 K/ h   - 例如:n! = n × (n-1)!
    8 |" K. Q! e  b7 r2 @/ W
    0 c5 Z9 b( l* g5 v. s 经典示例:计算阶乘) r( P/ e8 k" A+ G/ \* ?' M
    python! s# N6 @+ ~$ T- y: C& \) q
    def factorial(n):1 f) d8 h: y. ?+ w- L7 N
        if n == 0:        # 基线条件
    & N. `9 d( R' y! [" l8 N7 ^        return 1
    8 l7 E7 g$ U) ]* z    else:             # 递归条件
    - b! E5 Z4 H! V. E6 Z$ _# \        return n * factorial(n-1)8 L" H9 P4 }6 T% C3 @; n+ b
    执行过程(以计算 3! 为例):
    6 h: w/ g1 F& q* Efactorial(3)
    # S" P& {* N( E6 A3 * factorial(2)
      U9 v+ E& f- V8 R" b) {, \6 m3 * (2 * factorial(1))
    # M+ F1 ^- U$ r- D3 * (2 * (1 * factorial(0)))
    6 f4 `1 f# J' B2 T  @0 X/ W* s3 * (2 * (1 * 1)) = 6
    0 o. z/ p& r  i" N
    ) r5 J% v% ?: C; j. M9 ~- J. D 递归思维要点
    1 r; n8 E' T* m) F! D8 G( Q1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " r& h1 p: G, y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( S! H* e' }  b* J* V4 N+ @3. **递推过程**:不断向下分解问题(递)8 f5 S1 U  _- G# J* ~5 P$ ?& I
    4. **回溯过程**:组合子问题结果返回(归): C/ U4 t" A% i/ h+ N

    6 S* F" B# `6 U6 z. {9 U 注意事项: R( D2 x5 Q  D2 _/ J. S, x
    必须要有终止条件
    ! m' T  ]: v0 \" [* a递归深度过大可能导致栈溢出(Python默认递归深度约1000层)" y% r, l( O! c
    某些问题用递归更直观(如树遍历),但效率可能不如迭代1 `& c. {& @. P3 U
    尾递归优化可以提升效率(但Python不支持)
    ; I4 E4 K, M8 s# x& K. A1 g& e, z0 Q6 {! k1 f) l
    递归 vs 迭代' }- v( f, h1 v% S" ]: J8 p
    |          | 递归                          | 迭代               |
    % w. b( _. U) f|----------|-----------------------------|------------------|5 D: R: h2 v) I% m
    | 实现方式    | 函数自调用                        | 循环结构            |
    : E; A" \0 R7 ]: ]* I| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! l, d$ O- u9 E+ L3 h5 _- y( o
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ }  U& `" J6 l* q9 ~8 k1 f; C| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |0 E4 ^3 I% \, o2 M6 J
    # l6 k, t: x5 n* B, k5 ~7 z' W6 S
    经典递归应用场景  C$ r0 ]$ m& K& |  b
    1. 文件系统遍历(目录树结构)
    , w: h" R5 V/ j2. 快速排序/归并排序算法" r6 E, K$ U3 F1 N$ e- J
    3. 汉诺塔问题* ~( M7 a! H/ W& D6 `1 P
    4. 二叉树遍历(前序/中序/后序)& Z. u" t1 Y1 W/ x, m& f+ F- E
    5. 生成所有可能的组合(回溯算法)8 r6 q, K7 }/ B  n. g- u- ~

    ' A( l$ l: ^  N6 u试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    前天 10:05
  • 签到天数: 3130 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 n. l/ L# {0 [
    我推理机的核心算法应该是二叉树遍历的变种。
    4 J' s/ |& r4 F另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' O- i: ]; ^8 j7 g+ U5 H, n
    Key Idea of Recursion
    . `% d; ^' y6 N! s# {
    ! M, ]2 y& O& n7 r0 FA recursive function solves a problem by:  c; V0 Q4 |  e4 {0 y% }
    % x# b& a$ p7 h0 y" ~; _% n: {$ q  t
        Breaking the problem into smaller instances of the same problem.' n$ u1 {0 i9 P3 i

    8 q3 e2 j$ U$ |  U; Y, X    Solving the smallest instance directly (base case).
    9 C( g* f1 d/ m) T7 A5 [0 ^5 {& g! ]
      {4 V$ a# M( u5 v1 Q: a( s    Combining the results of smaller instances to solve the larger problem.& F) a0 h, E1 R/ K  l
    ' n' b9 U# z( y; s) o5 t! f$ w
    Components of a Recursive Function% `% T, H4 C9 |' x
    * s% ~1 @5 w* Q/ s! @' ^
        Base Case:
    ( h; M5 ^$ _, Y
    7 b5 D' a" A9 Y/ p3 h' m( e/ ]$ t        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ y+ _9 ?6 y& k/ Z: B
    % }5 {3 `4 |) e  I4 G& f" Q
            It acts as the stopping condition to prevent infinite recursion.0 l1 h$ l, d+ V; U2 E, u, H

    4 f5 ?! B5 ^( ?6 I" R$ o) n        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- f3 y2 l# ^4 Z( |$ m4 q& h
    ( r9 h. ?% M) O7 G
        Recursive Case:7 P" x  s, g& x
    3 q# A( g8 q6 f. d4 h
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 F0 l7 q- p. v  Z, N5 O) d  c, J. M5 i. l2 {
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ z. V2 p; `0 y  K7 c
    - h4 G6 ~- H9 ^$ ]# k- F' j
    Example: Factorial Calculation
    ( Q$ e6 x% u+ v- X7 `, }" T) o. U0 Z- _3 h9 H
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:' P! ^" ]( }& n/ O  b

    , Z& ^# D$ m1 o    Base case: 0! = 1
    $ K; Z9 i; U4 X( t  q, a
    $ u* n8 B/ ?' A* A# Q    Recursive case: n! = n * (n-1)!( b2 [0 M8 n5 n7 O& c

    0 T: E! E9 [2 V# e8 VHere’s how it looks in code (Python):
    8 ^7 |8 V* X. P9 |* mpython; A. r) n1 l9 c' I
      S! K. s; _  U# V
    : |! i4 V& i) p9 B& r+ b
    def factorial(n):
    5 D8 v6 d1 B$ U0 v; r. C    # Base case# w+ L+ P5 z# Z
        if n == 0:
    / d: c! Z9 K/ W/ ?6 `        return 1
    + l) A$ {$ u% A$ v$ V- ]7 z# _. ?    # Recursive case
    1 `: A% ~. \3 k9 X+ f( U    else:
    , v( E1 u7 N2 c, \1 ?9 h. I        return n * factorial(n - 1)% k+ \) [# P/ l8 F
    . F. O) P( [# D
    # Example usage
    ; S2 |% l( ?2 g8 w! dprint(factorial(5))  # Output: 120
    5 I, J8 J3 o6 m& c3 f: T, S- U1 k+ Y1 l
    How Recursion Works
    3 e/ c7 {( B0 U+ ~7 P  D: ]& i6 U! Y9 _  u# w- E7 ^
        The function keeps calling itself with smaller inputs until it reaches the base case.* D* I9 m& t7 j! e! V
    3 C' l% M* U+ X9 p
        Once the base case is reached, the function starts returning values back up the call stack.
    ( w/ y8 H/ \9 [6 Q  B
    $ L' A; W8 I0 Y) O    These returned values are combined to produce the final result.
    . z5 h+ |. X7 Q1 k  C
    ' U9 L1 A$ q6 c' Y4 u, A$ uFor factorial(5):
    ) Y/ b7 k$ S/ n5 t2 B3 D/ X0 y6 C: }% U4 d7 ]' j; i- S: s- L

    ) f  p! m# @! z% E- \: rfactorial(5) = 5 * factorial(4)8 Q" b* G- |" O
    factorial(4) = 4 * factorial(3)9 Y/ N- ~1 f" Y; L2 o0 S
    factorial(3) = 3 * factorial(2)
    7 r! s$ u% @8 ~* U" Y  S( Ufactorial(2) = 2 * factorial(1)# M) N/ p$ t6 Q. K! y2 ~
    factorial(1) = 1 * factorial(0)4 A4 X5 _+ T  G/ L* |
    factorial(0) = 1  # Base case4 _2 ?" I7 J8 D, l
    & _) h  X& K2 ^( b( c' \
    Then, the results are combined:
    ( ^( k$ y6 C; u* c& _& \0 c
    , _4 y% [  ^4 Z* m5 Z4 H2 |6 K# [9 L! P% e" h
    factorial(1) = 1 * 1 = 1
      d3 P+ R% v( ~* Wfactorial(2) = 2 * 1 = 2
    ' P+ F3 Y  w, P; m. vfactorial(3) = 3 * 2 = 6, A* P4 l; Y$ i9 C
    factorial(4) = 4 * 6 = 24
    ! z- F" k- r1 [9 K% T# H) o3 bfactorial(5) = 5 * 24 = 120
    4 O, @- y+ a: d- K
    3 ^$ d: Q& F) a, R2 yAdvantages of Recursion
    ! I5 a8 [* y7 x& V6 f. i
    9 b$ p  f- J  g; C# C; O8 j    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).: W5 d6 ~+ {- m* n  T0 g

    + m! L7 `1 M& N+ r# n    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' j. ^% e+ b# }; H" F- d# e; Z9 \9 ~! U' |
    Disadvantages of Recursion. s- `/ e9 P* ]: y: h. H
    . k0 T9 }; @5 B$ m* S
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! W! `! U. N9 `2 w9 o" U( T' l" l2 d7 k% W5 m$ Y
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: v3 O5 [. i% P# l

    6 }; p" J0 s, I  h; U0 F; X. w+ n$ YWhen to Use Recursion
    9 ]& `3 v" u7 E: F9 ~) D( d! M: i8 p/ @) Z4 f) V- {: P
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + |' q4 P) c. O% N- ^7 H9 {5 f9 G" A, Q  P* r
        Problems with a clear base case and recursive case.
    ' }1 u# j: w! o& A8 q6 P7 j4 f* y. x: ]  I+ h& _# i
    Example: Fibonacci Sequence' [' a8 @) d2 ^! r3 d% Q& u1 T

    4 e- g4 {/ d; bThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:; B' T0 ~* h/ \- b

    * A4 u- p7 P' c0 M' p( `: R    Base case: fib(0) = 0, fib(1) = 1- p# `9 Y( T$ s9 b! K- R. U
    8 s% v! ?1 v1 O
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    3 q# s$ ~+ c; ]" Y: l' j9 G  h: ?3 {/ D: u; P
    python
    6 ?2 E- d( J( Z6 r3 T$ `- \
    ' t( T$ j+ t+ t# u; K6 i
    ! ~  H) s7 n$ O* j5 P6 |7 {  Zdef fibonacci(n):
    # Z' |  B* a; {- o$ n    # Base cases
    $ _. {7 p  u( O5 x, y    if n == 0:
    3 P$ z. f) p- v" X; x        return 0
    3 a4 O+ S7 E& V1 Z    elif n == 1:6 ~4 j( m6 s- `9 H" o2 g  ]- @8 _% Q
            return 1- t' ]8 [( R, I, `3 J; X5 o
        # Recursive case
      g8 R& X  B4 r    else:
    7 l" Z* k3 ?' Z3 [% I' V% {$ L        return fibonacci(n - 1) + fibonacci(n - 2)
    2 \- G# A8 p8 |( ?, e, _9 w* ]' s
    + Z" q% F$ d, O0 p" q6 D. M1 {# Example usage
    + d. E6 g1 F# n* S9 Y2 uprint(fibonacci(6))  # Output: 8
    2 `. P4 P0 D: A
    . m% X, [  @) K# PTail Recursion
    . y3 [% }! O8 R3 m$ I( _) ~
    6 v# o4 f9 H, g/ N+ VTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 l- W( }* n  ^4 I8 m3 l9 \0 C' @
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-30 04:38 , Processed in 0.033725 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表