设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2003|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( J7 e  u5 d$ f5 `  `5 ?; s  b  C0 m/ @* A' X3 P/ t
    解释的不错( @) S' A9 P" k2 N  d
    4 f2 w# r8 q  W) Y9 M) c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。/ T) b& V' |: q) L0 x: D
    + b8 u+ |+ o. t; T
    关键要素) k/ N. C  M, t' q+ o* [( ]0 G
    1. **基线条件(Base Case)**: X0 l( d% Z! v- Q+ f+ g3 P+ j
       - 递归终止的条件,防止无限循环
    " \* T9 }) Z1 Q. h3 d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 13 @& [% t& _" U% W2 M' _  b

    + y* i/ \% U7 r' j. v* S2. **递归条件(Recursive Case)**8 ?0 T$ ]( K% D) R* t1 S* W1 w+ I
       - 将原问题分解为更小的子问题! o+ W7 q: }% _% |9 y7 e# `  O0 x
       - 例如:n! = n × (n-1)!
    * _$ x3 P) x: l* t( m) K
    7 k9 ~. M0 Y1 r. K 经典示例:计算阶乘
    ; ^! ]: n4 j- S8 G# L6 ?  G% Rpython
      z3 U* X& p3 Z2 f+ O9 @! [9 N: Sdef factorial(n):
    ! }$ J$ l" }2 ~* `- z" n* c    if n == 0:        # 基线条件0 u5 ]. k, q! c7 z+ f/ f
            return 16 \+ U4 T" i6 ^
        else:             # 递归条件
    4 q( g* E# c; v        return n * factorial(n-1)) Q; e0 y9 k! {) ?, _5 |5 z0 R
    执行过程(以计算 3! 为例):
    6 N6 ?/ D) N: o) Q9 Pfactorial(3)# P3 @! A+ u8 J2 `% J+ F! V% @# H
    3 * factorial(2)% c* Y- v/ ^. j) ]% [$ @5 \
    3 * (2 * factorial(1))
    4 J: @1 Z+ q4 F3 * (2 * (1 * factorial(0)))8 p6 x) {1 M6 K3 O
    3 * (2 * (1 * 1)) = 6
    . o, N9 I. a% k( V9 c, F2 v/ ~3 Y- r2 \$ Z% }! @8 n- O
    递归思维要点
    2 ^8 p$ E7 X! u4 D: ?1. **信任递归**:假设子问题已经解决,专注当前层逻辑; h, o3 p/ E- W  g
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' O, `1 U- L8 ?/ D4 K! v3. **递推过程**:不断向下分解问题(递)
    0 E+ {* ^' D7 A/ _4. **回溯过程**:组合子问题结果返回(归)( s( @' V' U9 e# K! \3 i

    % z% o8 l6 C1 S 注意事项
    8 X$ A  x2 ^9 D2 V' C- c必须要有终止条件
      a2 j1 j( h1 X2 b4 }递归深度过大可能导致栈溢出(Python默认递归深度约1000层)4 K6 Q, q; w( x! b, M
    某些问题用递归更直观(如树遍历),但效率可能不如迭代9 V  D# R, \( Q" C( B% X
    尾递归优化可以提升效率(但Python不支持)5 A" f: ?! n& {3 L) w) g  K7 k0 R

    ; ^( h( ]' ]3 t6 h. J5 \$ p+ b 递归 vs 迭代8 X! y' R0 S, ]' ~5 I$ t1 E
    |          | 递归                          | 迭代               |
    - K5 E# R1 m7 I6 _$ z9 P1 r|----------|-----------------------------|------------------|
    6 i" l8 Z% d' s) G! b" P1 ?5 W0 L| 实现方式    | 函数自调用                        | 循环结构            |
    . J3 h' X# H" m7 v0 U7 P, s| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: T$ O' j- f' f- m  R. n8 l, k- O
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ [3 N4 r1 b$ ]! p2 I4 c
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 a+ Q) T% C$ Y; I' T, B

    , x: R5 ~0 D2 L0 \9 f% k 经典递归应用场景
    # z. h/ Z2 U. A: z5 V0 ~1. 文件系统遍历(目录树结构)8 q8 `, _! M0 q/ m+ C8 ~. T
    2. 快速排序/归并排序算法
    . h, w0 B: t8 r& t. A0 _3. 汉诺塔问题. p9 C+ Y, w5 @) Q7 s  {7 @, X3 l
    4. 二叉树遍历(前序/中序/后序)
    1 q! ]3 b2 @) t$ D% K; J5. 生成所有可能的组合(回溯算法), A2 h4 o- z/ u
    , P  t- B$ A3 U% C0 e; o3 G
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:51
  • 签到天数: 3161 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * c& Z$ Z" C4 D. w; ~& _我推理机的核心算法应该是二叉树遍历的变种。% k" Z* L: ~/ {/ z
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& j2 T6 f, a4 L
    Key Idea of Recursion
    2 t, M' {+ [3 U& Y; ~, h
    5 m6 E4 R$ I" _0 \; A8 ]A recursive function solves a problem by:2 r, u1 J/ c. t, o' A
    9 M' b" Z1 ~2 F7 R% z
        Breaking the problem into smaller instances of the same problem.
    0 `6 A0 f5 H5 c" F; k
    $ F5 B' U# D( b    Solving the smallest instance directly (base case).4 h9 z; B; _) L9 n3 Z( k
    ; ~9 i; L9 s" p& [: E! e' f- m$ ?
        Combining the results of smaller instances to solve the larger problem.+ E+ E0 I* o, ?* o8 m

    ! h% ~: a6 M1 ^* W1 Z* aComponents of a Recursive Function
    ) M% P6 l% X, x! z/ a! n* A) U3 d( o6 \; W
        Base Case:
    : M! b! t; A- k! q6 {7 @" a) i) X
    9 P3 r& _' O# t  A) X        This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ Y0 C$ x% T. Q) K  B

    7 [3 v, f+ k4 o" ]' g0 k        It acts as the stopping condition to prevent infinite recursion.
    6 |- A  [% w/ f/ k, x! t$ h/ X7 S9 ?3 x0 [
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    # r1 q3 v6 q5 x" ?7 L$ g9 k, O, H  f4 L; i2 e
        Recursive Case:
    % U% r) s0 |* r3 Y2 e3 ]+ B+ l  N$ p2 x8 o' G
            This is where the function calls itself with a smaller or simpler version of the problem.+ Q  i) h% O; h% C, X
    . b. e3 H8 l5 m$ T; q" H) Z2 d# o9 C
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' v1 W6 ^9 K$ z; U; u$ H
    ! w$ e" r  a7 Q5 s- w& hExample: Factorial Calculation
    ; [% r! k* F* n% I3 `7 p/ I; {( N7 B( h" v/ y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 q/ a5 l$ r" d, r! ]' T5 N) @8 ~7 s" R0 U; q& i
        Base case: 0! = 1& w7 G! G* e  c0 a

    . K+ ^0 S. P" s, L2 l3 h6 D$ d1 v    Recursive case: n! = n * (n-1)!
    5 f' e* T" \$ Z5 @. o- g" L6 G, i/ {, f. J0 q
    Here’s how it looks in code (Python):
    ) f& O( x$ `" zpython8 A: Z4 R7 g+ ^. G2 j
    6 X2 N7 O. ?: Y& v

    $ |* C( w: L6 [  T9 \" ]+ ldef factorial(n):
    * \2 q1 }# l6 q% a3 Z    # Base case; K& T3 W$ J, ]* X3 v
        if n == 0:
    $ [8 z+ ?% M" n- g1 O        return 12 t0 ?8 [4 F$ F$ K
        # Recursive case
    . t% C+ Z( o: s    else:0 y0 e7 ^: W2 k. N- B, R
            return n * factorial(n - 1)& o  l) M4 ?, a' ]

    5 N, t% \; W, [/ A0 n0 _# Example usage; N# j1 e% o; N& t+ c& {: a
    print(factorial(5))  # Output: 120
    5 g6 [: v: x2 i* {& y
    6 [1 A8 c1 o3 P2 R( N0 Z  ^How Recursion Works+ Y+ }( X, s1 B
    2 z  i; a: T) j# w+ {
        The function keeps calling itself with smaller inputs until it reaches the base case.  h1 S+ Y1 X- V4 H/ W
    + Y' Y0 k1 O& y/ c4 H
        Once the base case is reached, the function starts returning values back up the call stack.  f' c( ^, \+ w
    2 I- U" \: a/ @' Y
        These returned values are combined to produce the final result.- \) @$ {8 m7 W- m

    4 V- i0 w& a: \9 f7 e% O; @For factorial(5):, Y  G3 J- w" V8 K+ d

    * |4 Z4 F, o+ V. b, K
    6 ?4 ?6 o/ h: s8 ?- ]7 Q( ofactorial(5) = 5 * factorial(4)
    4 [& ?/ w9 p+ o  O( dfactorial(4) = 4 * factorial(3)
    5 f7 _! C' B0 ~& P) Hfactorial(3) = 3 * factorial(2)
    : Y$ W8 m  @3 u9 K' R1 ffactorial(2) = 2 * factorial(1)# X" X0 q9 L2 W
    factorial(1) = 1 * factorial(0)$ B  v$ D/ ?+ a) r- S5 X: |& X
    factorial(0) = 1  # Base case
    5 Z! C: }( u5 a; g( }0 A* \7 Q+ `1 D% M* ^0 U
    Then, the results are combined:8 `1 w% \7 L" y9 x: E$ ?) B

    1 v/ B: W! ^4 c& E7 m
    7 x% |- i/ [$ d% K$ V5 Y& Efactorial(1) = 1 * 1 = 1& \% n/ \- ~3 a# T6 L
    factorial(2) = 2 * 1 = 2) B7 W6 q1 K; T/ f
    factorial(3) = 3 * 2 = 6
    ( D$ Q( P/ S- P9 _3 ?- r; C! _factorial(4) = 4 * 6 = 24: Z* x8 C! D+ C8 H! [1 B4 Y
    factorial(5) = 5 * 24 = 120
    & J3 k( \# f$ _, ]4 P6 @$ |5 \7 N  q2 `5 u8 \; u# [
    Advantages of Recursion0 E9 |; a+ ~! _7 i7 M8 T3 o
    4 |8 y3 |' @7 H' q4 N& E
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    * B7 d' h/ V2 ^+ b9 t  ?- {6 M  F1 h
        Readability: Recursive code can be more readable and concise compared to iterative solutions.+ @! c3 g4 Y4 G% S

    ( r* G) i$ u" L8 ^. E% RDisadvantages of Recursion
    ! [$ L& }# L( M; y3 \" h* _+ Y0 v: @# a9 L2 X9 H
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    1 W7 s: t$ [" T% k6 |7 ]. Q& b) S% ~, b: H/ ]2 e) J* M
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * t) f! i+ j9 w8 j# j. P( j. o! l( k6 p5 S
    When to Use Recursion
    8 g) A; z: @( }
    / B7 e9 t8 o  |0 |! P    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# a6 V. `3 b+ X& A' \: B1 Y

    # w0 B6 f+ v% o9 {% I' O    Problems with a clear base case and recursive case.
    1 B+ i% x0 r# e" Q" E+ V+ V8 D# ^( G( j1 V/ \# P( k$ O! I
    Example: Fibonacci Sequence
    3 h& w" ~# Q, O$ ^, s& K. L0 B9 H( S, C% X6 R: |/ R
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 K8 [2 Q$ T( f; W; v# m
    & ]3 S* f6 c2 ^$ t* g2 K
        Base case: fib(0) = 0, fib(1) = 1
    % j9 b6 _8 g5 w+ y* s* P' X7 r3 D0 w2 b7 b, ~
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% B9 V7 L9 v# V5 m9 v. R" x0 E
    + ^& E* x  i. @8 F1 l/ O5 z
    python% U7 u3 ?* J4 E* z% u

    : _/ E/ @+ N! m! g- [& V1 D0 ?' ?4 N8 h* t/ W" L' g
    def fibonacci(n):
    1 T1 i1 j3 I' @6 {8 r1 z% H    # Base cases
    % Q4 g- @0 S# h1 i" X$ O( Y7 r& b    if n == 0:# ^$ A1 F6 _( y/ d3 K: W' Q1 j
            return 0
    4 x  n* L7 ^' n    elif n == 1:1 q: \5 s6 \4 l
            return 1
    ) d4 P! z) M# s/ d  T; {' ^    # Recursive case& W! x' C" N9 i' O& _* T2 o" g4 b( H
        else:
    9 k1 K; {7 p. \  R- @        return fibonacci(n - 1) + fibonacci(n - 2)) p# R0 |0 n2 F# R& a

    8 Q6 N) i* t2 C8 E+ C# Example usage+ k* L! L; ?9 r
    print(fibonacci(6))  # Output: 86 B0 F! a& S' F/ E; x3 x
      ]* ~3 n/ f: ], E* b
    Tail Recursion
    - C! Z2 O8 T" e9 }5 i' G% ]
    6 k/ Z3 g+ P3 U- l3 M/ S( UTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( x) X+ V0 u# [0 R0 {, ?' L( G; n' a+ a% R2 V; l
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-3 09:00 , Processed in 0.054992 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表