设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1715|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . l# C+ s2 R  J% @

    & Y- h- k- Y3 \$ `. b解释的不错$ _6 U6 o- H3 s" q' p& b# r

    * {  B. h& a& [递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    " F) `' b! o9 ?! y
    : }# B# P4 ^" ?0 O; Y) h5 N4 W; ~ 关键要素
    & ~8 L" d6 c* b1. **基线条件(Base Case)**( c  V9 ?, Z. Q1 F
       - 递归终止的条件,防止无限循环" V0 K" x4 k/ C8 i% K3 }4 U2 ]7 R& _9 K
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 W( m; P/ _% E: C& P

    5 l" j% h# s' s1 u- ^8 q2. **递归条件(Recursive Case)**- Y: B6 l( U7 @& x: ~. h. V
       - 将原问题分解为更小的子问题
    $ _3 F4 A. K3 f' W   - 例如:n! = n × (n-1)!/ E( `) r' N# ]+ F, H4 L

    6 ]$ T9 _% Q6 s0 Z1 g  k# } 经典示例:计算阶乘# b' }4 r+ X! E8 E" R5 ~. O( W
    python
    1 x& ^3 a3 P- ?! m) b- s5 h$ Edef factorial(n):
    ( d/ `9 U) r! P( q  D+ _7 e. j    if n == 0:        # 基线条件9 X) x9 M8 [+ F
            return 1
    " \2 t& u& r( i    else:             # 递归条件
    - y* C4 A; \8 e/ C        return n * factorial(n-1)
    9 L7 g5 ?# O3 R9 h0 D执行过程(以计算 3! 为例):1 r$ V) H! Y! Y( C, b
    factorial(3)
    / f% B4 l( H  ^/ W3 * factorial(2)
    0 Y6 b0 I+ R: w) _* ^1 V3 * (2 * factorial(1))
      ?1 S2 R) S" W) j4 e( g3 * (2 * (1 * factorial(0)))
    . R8 M! @0 [5 e& t8 e3 * (2 * (1 * 1)) = 6* U$ }' K: I) Y
    ! y+ e" b1 G  g& m3 E" P# e
    递归思维要点2 N5 `' J9 I0 l3 H1 y& N
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 w! O* H" k) B9 N! o
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); ^8 r- G$ u0 e( Y3 f
    3. **递推过程**:不断向下分解问题(递)# Z) O  [* v- [
    4. **回溯过程**:组合子问题结果返回(归)& h; k! P. S$ |1 o, f: L5 L$ j
    , d% ^/ W; R5 Q# E8 h% T! a  R
    注意事项
    $ d* R# \) `4 }2 e) I" X" e必须要有终止条件, h' h$ j# ~& }  c' G, A
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% m% Z7 ~, Q8 N, [: q& i6 W; N
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
      Q2 P1 k! L0 }( c+ w$ {4 P  K" M尾递归优化可以提升效率(但Python不支持); a% ^& R; \5 n# n
    0 A$ h' R3 k) ~/ C8 @* x
    递归 vs 迭代4 q) H' Y; p# m7 F2 D
    |          | 递归                          | 迭代               |
    - q1 C, c; C' H% m7 a3 l5 o) h|----------|-----------------------------|------------------|7 T; p( P; m3 i  D! t9 j; ~
    | 实现方式    | 函数自调用                        | 循环结构            |
    % {* Y8 G3 m4 _. v# a! W| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# a. y, L- M. H4 e
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- q8 d/ u% \( o! ?, n
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |8 G* ~; q: n# C2 ^* x+ D* S
    # f) o3 F" e' l( [3 ]
    经典递归应用场景
    4 }. P+ d0 G* P1. 文件系统遍历(目录树结构)) b  ^7 S. W* a
    2. 快速排序/归并排序算法
    # H$ B" z: k& G2 K, r. e& W' h3. 汉诺塔问题
    , J) E% D- V' q( g6 u' H& @4. 二叉树遍历(前序/中序/后序)
    * @! J: G6 J5 p% B1 c5. 生成所有可能的组合(回溯算法)
    + n  W. L3 e  V* x) j9 s
    % {8 L  t, H1 i+ W试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 15:11
  • 签到天数: 3133 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( g" C+ z8 ?; y3 U8 x- {  {- m我推理机的核心算法应该是二叉树遍历的变种。
    3 H  t, m/ s$ J; W9 a. M另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ) L( G# j$ d4 t) y6 T3 pKey Idea of Recursion
    7 b( Z9 `4 D& o8 r: }+ m) K" u& |  O/ H* T! W; S1 \& |' ?/ K
    A recursive function solves a problem by:
    5 h0 b) F7 f9 q8 ^$ R# I" `  ]. [; V9 l4 X
        Breaking the problem into smaller instances of the same problem., M/ l; i1 m& ^" r$ q, n) @, K

    / s, _! w8 v7 q3 c    Solving the smallest instance directly (base case).
    - b* }* o+ n- @6 l* Y3 T5 O) n, O' e. k: j# C# n
        Combining the results of smaller instances to solve the larger problem.  s7 W5 `2 l; Q. C

    1 N; ]+ {; N& [; H& P6 vComponents of a Recursive Function
    # K! o+ _* b& P( r  b0 m
    4 B- R4 e5 h" ?+ J6 O! d" p    Base Case:/ E. v9 T& T: }; p! E: u/ C
    , t3 q/ I% q  D+ o- b
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 r" J4 [2 q" ?5 ]. t- l; Z1 J
    4 J$ Y& x$ j/ x; N
            It acts as the stopping condition to prevent infinite recursion.9 Q7 N/ O1 m+ N0 f& l. g% T/ I) ]
    , Y3 s' k: ?- x1 a2 r! n
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.# O9 ]! C- ?$ [* X0 |0 o2 n
    3 c! U' `# v& o1 K1 X
        Recursive Case:% l  d3 c, W  H8 p8 T

    . B. A+ r9 e) Y8 {4 e4 n        This is where the function calls itself with a smaller or simpler version of the problem.! F9 f" G6 s7 ?) x( t

    " Z' _) V) s& s        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    & e- H  y; v' d" e8 W
    ) K0 n) q# _7 J, ^Example: Factorial Calculation& b1 b9 q( m9 c& `' W$ M+ l9 M

    + m/ H7 e* `$ |. f- HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# |# f: I2 z3 n

    7 T9 u+ ?4 D- b1 r- z% D  l    Base case: 0! = 1
    8 N# l( ]6 ^. e# O/ p6 ?. j+ R, N5 O5 o! B! n$ U
        Recursive case: n! = n * (n-1)!
    & ?3 e( b  K$ f% B6 h* k4 _
    % g) B7 x6 ]3 R2 _  ]$ p/ ~8 N& HHere’s how it looks in code (Python):
    6 ?# P; [9 ~7 A: ?" B1 B/ Y7 }" jpython
    + K9 \2 D5 m, M& `' }9 e% p  n8 H/ b
    / l" B, l- L" V, r: E4 m
    def factorial(n):
    ' Q3 l) @6 F# T    # Base case
    ; A1 a- {* [! C+ g( X8 O" ^* ]% ^    if n == 0:
    : A0 N) S6 t& y        return 16 o6 X+ ]2 R; r" \) [! B
        # Recursive case
    2 `) ]6 l, `3 {) G. O    else:7 B0 S) V$ ~: {: {5 y  ?9 G
            return n * factorial(n - 1)
    ( {2 {1 W! e7 z' P1 G/ z6 D. b! o" k1 X5 h" g/ `
    # Example usage
    - R2 q6 N% t5 G6 J0 [1 b6 ]9 Y8 vprint(factorial(5))  # Output: 120/ J# L4 G5 |# T+ v4 D
    , D, s+ |) r; N8 B4 L1 z
    How Recursion Works
    ( ?- e/ `; s1 {1 t0 e: j. q' m0 g/ L0 c( |4 S/ m9 H9 ]
        The function keeps calling itself with smaller inputs until it reaches the base case.1 f6 _4 t! q3 U' ?

    - o$ A" t1 T& Q8 D0 d- g& V: R, \, D    Once the base case is reached, the function starts returning values back up the call stack./ r1 j& I; P3 X5 ~6 A
    # M1 w( n' [0 A5 Z- I! A" {
        These returned values are combined to produce the final result.# i( M# O( J. E0 V7 @+ m; p

    7 q1 l5 X! {8 s  b. I0 K* j6 j0 {For factorial(5):% }2 Q; J' Q; }. l' O

    7 {8 O/ y7 c4 q- m2 o/ ^, |4 ~0 g/ [1 B4 o- w
    factorial(5) = 5 * factorial(4)
    * e& G: j$ |) w4 O. hfactorial(4) = 4 * factorial(3)" G/ H; t& P) R. U$ S+ K' ?
    factorial(3) = 3 * factorial(2)
    5 L, ~  J% g" u! p& b6 S) V: Wfactorial(2) = 2 * factorial(1)
    + r+ b: Y3 I1 M/ Yfactorial(1) = 1 * factorial(0): G& w- C5 A% L
    factorial(0) = 1  # Base case
    * c  N. t& V- Z4 q1 [. H1 X$ d. F4 J* R+ A
    Then, the results are combined:
    5 R. K, @- s, L+ B" M
    , Q% [% _4 s4 ]+ `' r
    9 q2 `: n5 l, H* T  S. u* n  Xfactorial(1) = 1 * 1 = 1
    " }& M1 T  d' I  |8 b0 u5 Vfactorial(2) = 2 * 1 = 25 S* T$ e6 f) O& I% R, o
    factorial(3) = 3 * 2 = 6
    2 U4 _6 T6 u& A' n+ Pfactorial(4) = 4 * 6 = 24- G& ^( h: s* z1 ^8 L1 h$ d: {
    factorial(5) = 5 * 24 = 1207 Q5 b# x  R  s, S7 ]1 t
    4 z9 m: q% _0 h& _
    Advantages of Recursion
    " t. `1 O' C1 [: v% F8 P
    ' z6 q3 b5 h: ^    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).3 C/ c# u/ X0 L/ Q% E. U5 O; j9 q
      K1 \5 G6 A+ H7 a1 {' L/ N
        Readability: Recursive code can be more readable and concise compared to iterative solutions.9 D; y6 A1 ]0 K* w: |- ~
    3 t1 P9 \. x: u1 H! t
    Disadvantages of Recursion# d: l# W4 m; ]- {! i7 h: G  N

    7 T* I# P/ W# N8 {  D    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ f- M/ P. G& r3 q8 @

    8 r+ ^. y, D1 m1 w    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    + c4 U' D0 A6 p( u4 c9 F
    ) r( \# v. ^2 `When to Use Recursion
    : ^/ Z, x5 ]( V$ S* E
    ( E. y- W  ?8 k    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 B  S' V/ n. C! h: Z% R2 y# \# [6 h8 h/ M3 k* m5 ^4 [6 _8 i8 a7 Z
        Problems with a clear base case and recursive case.2 w8 B! d0 m  V2 ]4 d

    ! f3 G6 L9 m; K! f5 G, sExample: Fibonacci Sequence
    ) {) L; u, _) _: o* H& s) L5 O* Y! A* }( J% a
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - F1 J& s, D( @5 N7 G) F+ U( Z  S: d3 e/ `" b
        Base case: fib(0) = 0, fib(1) = 1
    7 |  W9 _1 H" _' S
    4 D  Y: B' M3 R- M2 H) ~: M    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    + E! |) u! C2 L" S. ]: S2 v4 H8 [6 q8 x
    python
    - j6 E- ~1 r8 d! {4 V, N0 e. j! i! }3 w; S

    ( a. ]) _& A! @- d  r# I3 Y) a8 ?def fibonacci(n):" L4 w  e; B5 U/ i  z
        # Base cases8 }. M2 M; N& {$ r- o
        if n == 0:
    5 L" W9 ]; b! e) z* L8 F        return 0( u$ d: U7 i4 S$ R2 y
        elif n == 1:! J  N' T/ x( H3 e
            return 13 X# I1 j% O4 j3 |8 L3 i+ h. K8 E
        # Recursive case9 `: D; z% A9 S$ V
        else:- b' z. x" A- R8 L0 ]- C: [
            return fibonacci(n - 1) + fibonacci(n - 2)+ y! ]( u! o4 M) y+ e# y9 p

    - O+ F* K% _# M- w, l3 w! j5 r% G0 B# Example usage
    6 j* o) w. t; y4 n; @. w+ Z" rprint(fibonacci(6))  # Output: 87 Q  B; q# B2 X8 ^+ G
    * R( ]8 U: \8 W; ?2 k+ w. S, V: C: h
    Tail Recursion
    % i8 f- K- m7 a0 C  \: d% r
    & p7 P; M/ ^8 eTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( ?7 [6 [, W; A5 b7 D# O
    ; x; T. `( o/ E" Q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 00:37 , Processed in 0.034424 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表