设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2068|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) P8 a5 T7 w: k9 R: t/ K- r* O: N+ U; H  z' Z0 B: w% P
    解释的不错  z9 b! j9 l4 R, a, A9 N

    ! }  E# ~# b# J7 b# V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: k1 E: C: P' J+ l0 F
    4 }- g4 V9 c: S& i
    关键要素
    0 A4 ~- y3 o. \* d  R# ^1. **基线条件(Base Case)**, F: h4 u: W+ V$ i* g5 q
       - 递归终止的条件,防止无限循环
    8 m1 Y3 X% p9 |- ?% v8 B, h8 t   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " s  v% f" k% ?" A
    / a0 i6 g. O6 v8 z3 j8 k4 Y2. **递归条件(Recursive Case)**
      m0 N& l( D6 k   - 将原问题分解为更小的子问题
    - r) O! ~) v3 {% ]0 j$ x4 b; M% \   - 例如:n! = n × (n-1)!$ w8 g. S9 {4 ~  `+ b8 W# e" Q

    ( \% Q& r( R2 K' v0 Z( m5 p3 h 经典示例:计算阶乘
    $ K3 H- }  a8 S; k% {python
    5 y$ F6 m* I: adef factorial(n):
    + u4 V# L  E* O- I. z9 ]# G" `( P    if n == 0:        # 基线条件1 @! l' l, W! @' T( B
            return 1  Y" R2 I+ |% M3 W6 U
        else:             # 递归条件  ^: q+ c$ E/ i2 O# u( W7 h
            return n * factorial(n-1)8 U1 S9 V  r) P. w
    执行过程(以计算 3! 为例):
    / q: C4 g. [# y0 G3 Q% b) [factorial(3)
    + y3 k& }& g1 V0 ~+ V, K9 k7 n3 * factorial(2)8 }/ w. H) C3 U) x5 \
    3 * (2 * factorial(1))
    & ^! H  Y. p/ f! d2 D7 V- f3 * (2 * (1 * factorial(0)))8 k& a* d% v. ?& P/ t
    3 * (2 * (1 * 1)) = 6
    7 M0 n5 E6 u5 S) ^) {& l5 c6 w
    4 ]' R0 A$ c! E- Q( H; s# A 递归思维要点+ e0 u5 w  e! @" g9 o! ^
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % G2 V7 }. T7 ^* e$ ?9 p# \2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 {/ ]+ D5 Q0 z3. **递推过程**:不断向下分解问题(递)8 A8 J# v! ~' k
    4. **回溯过程**:组合子问题结果返回(归)
    6 }* t% _6 B) P# f0 s
    : t+ P5 Q' t8 t" | 注意事项
    / a7 N3 f+ ^2 g% f必须要有终止条件
    % n& E/ x( s- e( L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + l& c7 |+ M8 E8 `某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( i* a- S, d: d9 ~5 m; t尾递归优化可以提升效率(但Python不支持)
    9 J9 `* K+ C& I  Z' V6 K1 G3 n) T, c9 U$ U" E% T2 _: K0 g# a
    递归 vs 迭代* X  u" H: B3 L0 B( I; W
    |          | 递归                          | 迭代               |, s/ }) Z& ~! n) M2 s+ w% {5 |
    |----------|-----------------------------|------------------|
    + m1 e7 D. x, V/ ~! k  || 实现方式    | 函数自调用                        | 循环结构            |1 H7 J, ^! o( A" D
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' g- Y2 e: K! B0 [) h- u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) g2 U  C5 H  Q3 b. K) W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; n: }. }+ K4 u' i4 q2 \4 t! Z! w! H4 L! B2 K, }% E
    经典递归应用场景6 n2 S# F# G$ x# e- N4 ^
    1. 文件系统遍历(目录树结构)
    4 w2 P( L) T& e% u2. 快速排序/归并排序算法# T1 q" |3 Q3 ~
    3. 汉诺塔问题
    # L: L% K. w1 o9 a* D4. 二叉树遍历(前序/中序/后序), O6 R8 J. o/ L, V1 Y  x( [0 k, ~2 D
    5. 生成所有可能的组合(回溯算法)
    0 C1 ~2 Y/ D2 S" [( {, d; _
    9 R1 |& E$ ^  j试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    10 小时前
  • 签到天数: 3170 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,, ^  x5 S% _# V4 U. z# k
    我推理机的核心算法应该是二叉树遍历的变种。2 D2 p1 d( n. ?( m) D1 }
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" Z6 i: M  z8 g* `9 m% q
    Key Idea of Recursion
    : Q1 m; C$ I2 E9 q+ U/ O
      ]& J% Q$ Q9 _& k3 p3 s& u3 p4 iA recursive function solves a problem by:
    0 z9 x' B: T' V) z( \8 y' p$ I$ q) @2 k5 J7 a
        Breaking the problem into smaller instances of the same problem.7 B9 n/ Z2 L( v

    ) c$ F$ m  |4 m* Q8 }    Solving the smallest instance directly (base case).
    ; B! U7 z, u) p4 L3 g( X& @6 C" H4 A/ w: N5 I- o* N6 T
        Combining the results of smaller instances to solve the larger problem.* M1 M, L% |, l( W# X
    # \3 @2 P' G% N# t: B& T5 w
    Components of a Recursive Function
    : z- W4 _/ I  ^
    0 h+ U1 a) G* g1 P7 M6 }7 Y    Base Case:
    . |$ g: d# F+ j; S: }# T/ o0 z  H( J: l
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : i! {, F% ?2 q/ J. v6 Q, L+ E
    ' ^: ]; m% ^9 l2 b        It acts as the stopping condition to prevent infinite recursion.
    * X; f$ P0 p$ r
    7 F* ]$ O7 J  N! \2 Y# I$ K        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% j7 ~) v7 t  Z6 A7 m
    # p% ~) y# t% U, o- S: @9 |4 W
        Recursive Case:
    + b' m) D3 e; k' R
    ( [9 S  ]% I/ n( q  K: i" N3 l        This is where the function calls itself with a smaller or simpler version of the problem.
    ( w' [. T! G# E5 S% |9 i, E5 s% \- r- J2 I' v6 H% j3 ^
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 e9 S, K# v, D0 l7 q  R" T

    & H$ o/ {; n$ y; B& P5 G4 ^# C) fExample: Factorial Calculation
    ; C* ~3 s0 i' L; Z5 ]) {0 a) M; H" J. {3 f: ~
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 @# Y# g" k" v- {1 }

    / z. ?# [# B/ [! o6 E    Base case: 0! = 1* o1 ?! ?4 ~  Q5 H

    5 s$ X7 N3 e: j1 \" ?    Recursive case: n! = n * (n-1)!  \, u, z, N" z, ^/ ^$ R1 ]. f

    + W. [3 t7 v; V  q2 kHere’s how it looks in code (Python):
    9 L2 r0 i9 E6 A* ]( R  spython
    0 a* I  j7 ~; q5 l% W- N) p
    7 y  F9 N8 Q- V% ^+ J+ \; Y3 G3 {, q/ e7 {8 G. n9 t
    def factorial(n):
    5 p( u: n1 I& R3 j, Z$ w    # Base case6 {, H7 Q& f2 W  a9 d3 z
        if n == 0:$ Z: g! U! H1 q' |5 o/ _
            return 1
    4 v) k, n' H6 k5 T    # Recursive case4 f. ^4 \5 n3 n+ r( V  o- s
        else:
    ) f) u& j% f) M5 C; U* V        return n * factorial(n - 1)* m/ b- J6 Q1 S+ x. j8 r- {) d
    / L7 q  Q# s( F! b- I
    # Example usage
    1 b; X1 i0 M! q% D9 @# d' Jprint(factorial(5))  # Output: 120
    $ y, `/ o% k9 s. l8 q! z" B
    4 H! Y; j7 T) B0 T) i( m/ ]How Recursion Works
    . ?# h4 @, p$ u0 M
    $ k, C/ o6 n& z2 I/ `    The function keeps calling itself with smaller inputs until it reaches the base case.
    % ^0 y* B+ v# K5 |" d6 s" _' h6 L# I5 G4 v) [! t: O- X
        Once the base case is reached, the function starts returning values back up the call stack.
      R2 F; o, V% Y: Z/ Z# o8 Y& O% z) x2 o% h
        These returned values are combined to produce the final result.1 S- o$ l+ @$ t* _
    4 R8 r2 Z# ?, @* u  z4 v" r
    For factorial(5):
    ; q/ k0 \: W# H0 R4 [4 H: B) M" v- [9 X' O. _. I: A
    : F+ n* T5 g$ `: r, W5 O6 y1 Z
    factorial(5) = 5 * factorial(4)  S7 P9 W6 ]% [% j
    factorial(4) = 4 * factorial(3)3 ?# k. h% E! i, ]4 p
    factorial(3) = 3 * factorial(2)$ L9 d: E- @3 R7 D/ q$ u% ~7 z
    factorial(2) = 2 * factorial(1)7 e& z+ y8 V  e: H) Z/ N4 z
    factorial(1) = 1 * factorial(0)
    6 u  W3 \* K/ P+ f2 \factorial(0) = 1  # Base case7 l5 A1 m1 H& W, u( @

    5 b6 ~0 A9 v& x7 q1 Y4 XThen, the results are combined:
    + f. I+ j0 R% f! m
    0 \# b' L! \4 H/ x/ Q
    4 a5 T$ {8 f! G9 P4 m) ^  @factorial(1) = 1 * 1 = 1" s/ D  H. w; M2 d6 i: Y
    factorial(2) = 2 * 1 = 2$ J2 L4 r! O4 g% M4 ]6 J  P, w
    factorial(3) = 3 * 2 = 68 Y) U! B6 C/ ~' r! I' ~: f
    factorial(4) = 4 * 6 = 24! V# q  ]7 W' f( m3 O1 r
    factorial(5) = 5 * 24 = 120, O# F5 S1 e* Y7 ]! u& ^% _4 M
    ! R6 i6 V3 e. T, f8 J" j- g
    Advantages of Recursion- ]; ~8 w* J. Y5 b/ i9 h+ m. p  b

    + D6 n1 z% z  t  V( O5 o    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 e# H0 c- x) Z! ?. |8 z8 D) i

    5 Y2 W! Y* K' j* P0 V+ _    Readability: Recursive code can be more readable and concise compared to iterative solutions.- L4 |3 j' s- L4 k9 L/ H
    1 i* I6 `5 I7 D, ^: Y/ }
    Disadvantages of Recursion% U: X) l  w% d, H9 a! v5 u8 v1 a& u8 g) N
    . S' k' p$ h$ W
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. h2 a4 p% V4 W1 C/ L( E

    ; @+ }, k2 n  @2 A    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    6 ^, n1 [. {% r; B: k+ U$ T" F* M$ S
    When to Use Recursion
    & u3 ~. ^  _: o5 ?
    5 R, A# _1 f* R0 p    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ o/ i2 B6 ]. H1 K  b" t2 r& J4 {
    " N+ b# l/ x6 x% Q! v4 w
        Problems with a clear base case and recursive case.! }6 a# M* T# e( E$ {

    ! y6 R# E' }$ ?& |- U5 F, XExample: Fibonacci Sequence% X; I5 |" g4 U/ E" ]
    ' ]2 W: k' q, A7 L) Y" f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! k4 M( h; b8 B- _* o
    3 V% y: i7 X* T/ B    Base case: fib(0) = 0, fib(1) = 1
    5 a) X5 J) G. U. E8 `
    * M4 H& u# P  c    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ' h2 e3 {3 i  F6 `1 w& e4 B8 n7 f
    python
    : M5 z* J1 ]6 ^+ L+ n  B) N. x* U' `
    8 {9 Z+ d: i; T  G$ W9 [8 V& y0 @
    def fibonacci(n):
    - d. @6 _6 C* `0 m    # Base cases
    3 I% j7 a' j7 b% K' k+ f$ q    if n == 0:
    7 z( z9 x/ A- [) q! m# h( j        return 0
    5 U7 R' g4 p% {0 D' X6 D7 m# P4 k+ q    elif n == 1:
    " v! Q4 _, u4 g& ^3 Q        return 11 V% q5 P- E4 U
        # Recursive case
    % U8 f, N3 d2 i- W8 j' @+ Q8 @0 g4 B    else:
    8 A0 q+ {8 ]! V4 d) L- d# t# m! o        return fibonacci(n - 1) + fibonacci(n - 2)* d4 m) |* t& J5 e/ \" B+ z+ x+ @
    - C! H' R# m# f$ a4 x# O
    # Example usage( r5 @/ A6 @% I" G- ^  E$ T
    print(fibonacci(6))  # Output: 82 \/ n7 o2 F9 _. }* z' E1 v9 B

    % a' _* r' c- A9 L2 r' y' |, |8 tTail Recursion
    " y5 J4 c2 j. S. E- F  X4 u4 w7 x# }
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 |1 ~) X5 S+ _9 e: z% a0 U3 |  b) F! D& F- G9 {' _# M8 i7 y8 p
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-11 18:58 , Processed in 0.057330 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表