设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1787|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 Z0 T) k! O0 m. ^6 p. c5 E( \. P
    2 D4 G" \1 o% n% R) z4 J. c1 t2 l
    解释的不错
    9 t) d. V2 i# I1 L- X( H5 S6 `4 ~+ R6 v7 f8 z& \& Z
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 U/ k' d3 ~0 p
    % x) {; v) W" C 关键要素, e) E) y. [$ E- M! Q0 P0 [4 R
    1. **基线条件(Base Case)**
    / m- k3 c, N) B) M% N   - 递归终止的条件,防止无限循环9 ?5 z0 T* m5 U9 k2 `
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + V  }4 z3 w1 J& B
    ! N; ~9 X& ^" o& ^; h5 \2 W1 e2. **递归条件(Recursive Case)**( X4 w* }4 r  I6 r7 j$ i
       - 将原问题分解为更小的子问题
    # P6 q( m9 u8 ]; D8 ]) u) A; w0 y   - 例如:n! = n × (n-1)!
    / D9 P; @, V0 ]1 I: a1 y
    8 E6 t8 {5 w/ e. t  m 经典示例:计算阶乘' D% x' {( q; O4 Z, h, b
    python. N6 R( E. P; |! q. }: }
    def factorial(n):5 S6 C% ^( ^" D2 q: F/ I
        if n == 0:        # 基线条件0 m+ w4 n! L* T( _6 ^
            return 1
    ; {% ]' T: V8 @    else:             # 递归条件
    + F" g; A$ B# Q) r        return n * factorial(n-1)
    6 Z" m; [4 @6 p  E+ r执行过程(以计算 3! 为例):
    7 l! r9 {) {5 gfactorial(3)7 ~5 y/ Z$ O2 n( u) `. |
    3 * factorial(2)
    ( t: w; J5 v5 w( s2 ?2 {3 * (2 * factorial(1))" ^$ n& J0 Z- E9 q3 r! H* C# W( i
    3 * (2 * (1 * factorial(0)))
    & w1 T/ M) f# K2 k7 u3 T) \( s4 U3 * (2 * (1 * 1)) = 6& c+ n, R/ Y0 m5 x" w0 n

    8 Q8 \/ d- Y8 j) K3 @6 U7 L 递归思维要点7 [3 C- ]- U1 E8 O, g
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 V4 ^) J4 E# D1 S2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" h, ]& Q- l& ]: `( M1 ]7 w
    3. **递推过程**:不断向下分解问题(递)
    2 \/ w! }. @; {! I  t! b4. **回溯过程**:组合子问题结果返回(归)
    " r( h% `, w, T, H; Y# g' B+ V3 P- `# w' U- v1 i: g0 E0 v
    注意事项
    ' M4 ~8 y. o! j7 h必须要有终止条件6 Y( l' E; q3 F3 K+ ~6 T1 H4 I
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( M* ]& t4 y, \  V9 [2 G某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 O1 i4 F. V+ |. G尾递归优化可以提升效率(但Python不支持)
    . U8 B' N6 q* J# b# }: y4 M
    5 @5 N' d' e% c( R- E+ Z 递归 vs 迭代/ Z6 Q  q. z% t
    |          | 递归                          | 迭代               |' Z" w2 A# q- H6 F# r" A$ I) m
    |----------|-----------------------------|------------------|1 \5 G" s, e! D5 D6 F
    | 实现方式    | 函数自调用                        | 循环结构            |+ A9 Q: a  X6 E5 Q7 `4 v; u
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    4 V4 D4 W8 t+ ?" h- p| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ! |7 T3 g, w$ F9 Q* ?9 x8 s! v| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |, L) P& O0 G$ s7 s& A

    ( K- r; e! W% ~( |9 y4 l7 k 经典递归应用场景
    " @0 C5 t: T- N: z6 O3 m$ u1. 文件系统遍历(目录树结构)( D) k9 N! }9 {, o. R* F/ U3 i* G
    2. 快速排序/归并排序算法3 ?, r( `8 C; U; O' e
    3. 汉诺塔问题
    # ~+ M( \. Q- G" g2 F# U4. 二叉树遍历(前序/中序/后序)
    ! C3 N# t' l% O8 }" P& \5. 生成所有可能的组合(回溯算法)0 C& f+ b9 ~: j& [& ]

      W3 p0 p5 x2 ~3 E9 V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    半小时前
  • 签到天数: 3144 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( b) m! B0 l  r, U+ v" R
    我推理机的核心算法应该是二叉树遍历的变种。
    - @" Y5 x, R% V8 k: ?另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:2 f4 @9 p6 K' [) O. ]. _" ^
    Key Idea of Recursion! w! k5 ]5 M+ u  a3 d
    " [2 G( e7 A4 O9 Z3 \; V
    A recursive function solves a problem by:
    - A/ s8 X5 n! @: ~' K8 E) V* @; n' g5 _8 r1 o" _' O
        Breaking the problem into smaller instances of the same problem.
    3 l- J$ z  v: Z  e
    " |& J6 T, c8 _, b" P0 h9 K. p    Solving the smallest instance directly (base case).) h& }9 s8 U+ M
    . n7 V' u) w9 T/ Y# S  ^& ~
        Combining the results of smaller instances to solve the larger problem.) r8 t' Q5 J$ v4 w: ]2 N
    ( Z9 t. N) P7 W. ]0 s
    Components of a Recursive Function0 x  T2 H6 g; Z0 p
    / ]. ~9 g' i, M0 l8 }" ~- T% U
        Base Case:$ f: K% q. p7 c. _: e

    5 w4 P. J5 h3 J) w9 }        This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ Q4 T0 y3 ~% e# X5 K; L7 n  Y
      F# |1 ]  ?6 c2 y0 s
            It acts as the stopping condition to prevent infinite recursion.
    % L8 y& y; }+ j) w. ?
    ! \: o  G1 a( Y: }7 K2 S        Example: In calculating the factorial of a number, the base case is factorial(0) = 1." p; I+ R$ z, f! i# g( J8 S6 |
    * W# V, b! Q0 G3 f
        Recursive Case:
    0 V: ~0 d. V* ~- [* Y# [+ N8 I, h, J+ f/ T
            This is where the function calls itself with a smaller or simpler version of the problem.
    ' |- K# j4 n$ b6 y' l- N: F, l+ H4 F' \3 w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 A  S1 b, t; |. Z/ L1 E
    ' f; T) \0 L/ G3 Y2 @; O% i" ~4 L3 p
    Example: Factorial Calculation
    4 r) `3 @3 O6 L0 i( a& @% E4 B" L0 b
    ) G  F' D% w. N1 K0 M. k6 Q' DThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 j: m; }3 |, e+ i* X$ ^- [+ l5 c1 F# p% z: f. E
        Base case: 0! = 1& o7 j- q2 J; {: Q# A5 W
    + b, N* |6 [% @. b- D
        Recursive case: n! = n * (n-1)!# D. j: P1 U+ H% m1 H( W7 X
    8 B0 E# }$ R* P% F- A) s7 W2 N
    Here’s how it looks in code (Python):9 r9 h1 E. w8 Y0 a$ q$ r9 |2 L# O( |
    python
    ' t+ J1 K8 |( D( L; p% b7 V# N2 ^1 E5 G/ v# `, P
    ) U; w7 P- W( F* z4 O4 d
    def factorial(n):
    1 k8 l& F8 W4 x6 u    # Base case
    $ i+ V1 Y9 g0 g& X$ w6 y# ~    if n == 0:2 g3 \! r  n0 d  y! i2 e9 w  G$ z
            return 1
    3 Q0 o& W( ]" r0 m    # Recursive case0 _% a& N7 d; E' s4 o" k* l1 ~
        else:- Z% l9 K$ K$ b
            return n * factorial(n - 1)
    - k9 a+ k3 N6 W6 f) z, B! B% L. J& K' v8 q( L* @( ~& P
    # Example usage! S; U) h2 D5 C$ p3 \% n
    print(factorial(5))  # Output: 120
    2 y0 \: K2 H- [& f1 L: S. g4 `8 t/ n& m5 Q4 J: y2 Y
    How Recursion Works
    6 g2 M2 J& E4 z5 h
    ; ]: ]- T0 |9 G- W- x    The function keeps calling itself with smaller inputs until it reaches the base case.
    : S! b# {) E" m4 c
    / P0 b" B1 g/ o! j    Once the base case is reached, the function starts returning values back up the call stack.
    . G. w7 z2 H3 y, B8 w; b+ @: |& x& P7 K  w! U' v
        These returned values are combined to produce the final result.. P# g  `& [0 C( h% g  d

    ) e6 M8 {+ j* E+ a- B# EFor factorial(5):
    2 B) h0 B% w; P7 o% f& _. a
    0 {& \, k4 Z" C0 N6 H) F; g: l, J6 j% I8 }0 C
    factorial(5) = 5 * factorial(4)
    7 B- y# n$ e- @" R  W- r  gfactorial(4) = 4 * factorial(3)6 h5 H$ U7 m  c5 k/ x, e# R
    factorial(3) = 3 * factorial(2)
    " Z  |5 x2 }) lfactorial(2) = 2 * factorial(1)
    ' v1 h2 e0 P6 C6 r0 ^' q6 |factorial(1) = 1 * factorial(0)- U. h" t  E$ n- W' i0 X* Z) H5 F* f* B% f
    factorial(0) = 1  # Base case
    3 e) l0 E6 l1 b2 L3 m. K" O+ a$ _  W1 j! u
    Then, the results are combined:
    0 l* |3 e. s; v/ V' M0 f. M0 R
    - L+ ^6 |2 z7 B! M
    4 j8 f1 v2 J( j9 m# r, vfactorial(1) = 1 * 1 = 1* v, R+ K' [1 r* Z3 v* [/ F
    factorial(2) = 2 * 1 = 2
    7 L- [0 l' ~* u# Z2 Zfactorial(3) = 3 * 2 = 6
      j/ }/ c  S3 X6 o( Kfactorial(4) = 4 * 6 = 240 P8 n0 c6 n# r8 [1 Q1 \) B( X4 ^
    factorial(5) = 5 * 24 = 120
    6 r$ t% j2 E; [; m' B. s, T! {; y
    Advantages of Recursion
    % e; Y( b: L% u, R9 w, j& l
    $ U  S$ j( R$ e- x    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 P; s% N+ b: y4 B; ^  a. B
    5 z; _( v; c1 Y' k
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ; j1 e: o& I: E, R  G7 j4 `5 w5 V( T' i7 _
    Disadvantages of Recursion: N/ G$ n; [/ o
    * p+ n5 Z7 k1 Q& C2 _& q' y8 U. Q, a4 M
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  ^7 k9 Q  w- F- H( Q$ I

    0 E# ?9 H) s  C/ w' C    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 c& ^4 n( O0 G) c* ?7 `: I# f
    8 F, f: j: I) Z+ vWhen to Use Recursion
    9 l3 g( i+ c. R
    9 i2 Y  M4 P2 I3 l, d    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + C# }& E8 \3 F/ O9 k- n3 [* `/ [0 }8 r1 i5 Z6 v. |* a
        Problems with a clear base case and recursive case.
    0 b' @+ q4 F. }4 T8 Q2 X6 B  Q7 }' c1 d' e% t% c$ I" H2 q3 z/ c
    Example: Fibonacci Sequence
    ) \' A, e/ t, ^' J; y6 L
    - m5 f+ Q. s4 Y8 ?- A0 a+ k: I/ ~% R: ZThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:' C' d3 t) @- Q( M

    / e% ]) s5 B$ C- e! ^# z2 W% ]5 E  e    Base case: fib(0) = 0, fib(1) = 18 }8 ?4 V" ~  {+ Q  E/ o* ~! Y+ Q/ n
    4 B, ~9 O" L# U( |6 z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    & \2 w# f( y9 c: I& [* R1 |1 X, B0 z
    * i6 z& J2 ?' h( u9 e1 `* C- v* [python
    $ G; j  ]) `; A% L$ ]% X, A# ?0 X4 E" K, z+ K8 K0 V
    ) ]( @, S+ A0 [2 n: i/ I$ H
    def fibonacci(n):5 ?$ i, M' C, w; O% n
        # Base cases
    3 L" m; H1 [# L5 K) L! V; e    if n == 0:* l. P% m" D. |& }1 U' T
            return 0
    0 ~9 L. y5 Z) ^    elif n == 1:$ _5 {% b4 ^; Y. f& x
            return 1
    6 @% }1 P& g8 R+ q8 D- m    # Recursive case8 N% O5 ^; m& f' I; x
        else:' y1 K' o) y  s' L1 G9 P
            return fibonacci(n - 1) + fibonacci(n - 2)
      L! a9 k" E% L8 g) [( W6 {
    7 \: ~4 X0 M3 N0 I, y( j# Example usage1 j+ z2 Z( a2 E3 K- P+ K7 W
    print(fibonacci(6))  # Output: 8
    6 m! [. h5 X0 o+ C( g( Q3 |, j" Y' \- Y. B
    Tail Recursion
    ' Z  j) _; x4 l+ h: [, b+ D+ f
    1 i: p) f+ H* HTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." R2 I! U9 i% o+ B( P

    7 M- B  }5 }( F1 VIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-12 07:57 , Processed in 0.035002 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表