设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1844|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    - j2 ?9 c7 a9 ~6 P  D( f; G7 W  F8 F. s. i; {
    解释的不错
    # n8 f2 v$ |! l9 J2 g& n3 y  a0 y  O$ E% A, K9 C( x  M0 o( A6 i5 f
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 ?/ X) i% N- W( A9 A; ~  k& J( R! ]2 x2 ?1 p
    关键要素
    , b7 R) U! k7 }; o3 ~0 T. T9 \1. **基线条件(Base Case)**" N* {) A- {4 l( q  e
       - 递归终止的条件,防止无限循环
    0 P4 O" o; t# j3 f7 u' V$ x   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " \2 R* ^- f: u1 `) F! u5 v- Z( P" u8 v
    2. **递归条件(Recursive Case)**8 Q) H3 N. ]- ~. P& X6 u
       - 将原问题分解为更小的子问题
    + N; `. A5 o; {" D$ k. I   - 例如:n! = n × (n-1)!
    & u# C7 ]6 o" ?
    ) l( W! Y/ s- F6 l% [ 经典示例:计算阶乘! M2 m% W4 b  a# c' ?
    python
    9 Q% O4 R- C3 ^; c4 f3 vdef factorial(n):
    & v' z  Q7 F  e: Z% E6 f    if n == 0:        # 基线条件
    * K0 z2 `/ q$ |, t# V        return 1/ V& E/ ^/ S) D% x
        else:             # 递归条件  r; {" `+ L2 e' i
            return n * factorial(n-1)1 ]2 Z. l! o" M* d2 L
    执行过程(以计算 3! 为例):
    " H: ~( z6 B! p7 v5 X: p; I  Rfactorial(3)" O2 x1 `+ O/ p& k9 w: S/ f7 k
    3 * factorial(2)6 k2 l. i; w% r% O- b; F( _
    3 * (2 * factorial(1))
    7 v% s" A' }7 W4 r& d3 * (2 * (1 * factorial(0)))5 @; J  p+ W& N1 O" |
    3 * (2 * (1 * 1)) = 6& P- M( K" T  v0 W  H

    1 i4 w% ?. A5 {5 n' U 递归思维要点
    # [% K6 t* {( e0 z1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 I( Z5 i% Y6 |5 U/ {7 J9 g4 H2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 ^6 `" J4 v2 i0 t2 ^# x
    3. **递推过程**:不断向下分解问题(递)) G# ~+ ^: \) ~  P0 E
    4. **回溯过程**:组合子问题结果返回(归)
    ( ^! p& h  m/ j4 i0 @7 k0 r5 X: B! x
    8 e$ r* |+ S; p) G5 w 注意事项
    - U7 F3 c$ e* N+ I6 t0 M  [% J, Z必须要有终止条件
    6 ~& O+ [* @1 v- d' m, d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 W$ x8 U' e8 b1 I' Z9 Z
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 Y5 E  z+ u) D6 Y1 Y$ q  O尾递归优化可以提升效率(但Python不支持), `( q# F% N, ]
    . Z/ b' s) O3 U  f: ?+ Z
    递归 vs 迭代
    2 B$ E* n% ?" V7 V|          | 递归                          | 迭代               |
    ! ~4 W) J5 v2 X0 k0 z. w|----------|-----------------------------|------------------|! H/ D" g3 n* C3 x
    | 实现方式    | 函数自调用                        | 循环结构            |1 P1 q9 K/ S! H' s7 u: {4 j
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; S1 E! E$ x0 n1 o7 v1 V
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    : E3 q. f! W) r4 V| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; \# Y2 w2 ~% s0 X5 y
    : r3 l1 c: [# E1 X7 ~7 G1 H 经典递归应用场景8 p: T; o  ^  K+ \
    1. 文件系统遍历(目录树结构)
    , S. ^+ o! y% U: P# @2. 快速排序/归并排序算法8 \+ r5 R0 H$ p
    3. 汉诺塔问题) g1 _/ C/ z; j& Z
    4. 二叉树遍历(前序/中序/后序); U9 p" y( B( _: M; X" L
    5. 生成所有可能的组合(回溯算法)" r; Q( s, ?! |; l
    1 D! D2 }- x* E: ~: E, t3 r
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 06:31
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ y& E+ G: O! {0 N+ e2 V' ]% N" y* Z
    我推理机的核心算法应该是二叉树遍历的变种。
    6 H5 d+ D( |- k另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 O! W; A6 l# E) s1 u6 u- u
    Key Idea of Recursion; h, Z- H$ x! o( P2 b
      g2 L! p$ M* O
    A recursive function solves a problem by:
    8 x2 B; b- V6 Y# G
    ; Y4 {& `& {, u: `% L    Breaking the problem into smaller instances of the same problem.# R) X" V! F1 j- G7 o6 @& o& S
    6 p0 P4 I$ i% D
        Solving the smallest instance directly (base case).! q8 U' b2 |0 U- G& ]8 j" R

    " C5 V" b% a2 ^    Combining the results of smaller instances to solve the larger problem., N( t) X- G# |) [

    * e( v4 s  }  U# @) EComponents of a Recursive Function. D7 N8 \* d- F1 E6 G4 W; W

    / x  k2 U$ p3 l3 \    Base Case:7 Z% _9 {% \3 Z& y- u

    : l& \" _# H1 i: l3 g" x1 c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    8 S2 V! O% ^: T$ p+ K. q) V; |" @+ P+ b* S
            It acts as the stopping condition to prevent infinite recursion.$ o/ Y) Q' H6 p& w. \- k" w

    . }1 p8 a6 }( u! P" z0 H) f6 J        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    6 E( n% L! z& t: @7 }2 w! ~- f+ o0 B- s" v; M8 D" H- A7 W
        Recursive Case:% n9 c( q/ c! _

    , c7 a( n2 W2 Q7 d2 l( e        This is where the function calls itself with a smaller or simpler version of the problem.
    - J/ _5 O0 h& w; s, ~. M8 z! D7 c5 B! }* Z1 d4 t: Y! Y6 w! W1 Q& a
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( ^( |% C7 _8 D8 A

    5 ]; q, Y3 C# @Example: Factorial Calculation
    - L8 a0 @4 Q& P% T5 g5 D
    2 }/ H: V1 `- k0 yThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( w" y. q5 p4 j8 P9 I
    / S( p1 _9 S2 h1 ^+ T& }
        Base case: 0! = 14 n& e/ ?6 `- ?  d, E
      z' h- ~! v; a9 k" I
        Recursive case: n! = n * (n-1)!1 M" e1 A: Q7 Y9 F1 T
      f; t9 r- [0 F0 @) O( D/ X  k
    Here’s how it looks in code (Python):9 e$ V$ W0 z3 a" z
    python
    6 A0 P( d, H2 t6 \4 O0 f
    : L" H5 y0 f' f! G& ~
    ) l4 @$ N& x4 Wdef factorial(n):
    - Y! j# V) C" g    # Base case
    - u+ {1 F. Z! F    if n == 0:' i% n+ X. b- x, s. `# X6 X! ?
            return 1
    % n. v0 N# Z( T8 T; A& O    # Recursive case: |" v8 T2 i6 M* `9 c0 }9 ]
        else:; b- g1 R7 Q9 M- G5 u
            return n * factorial(n - 1)& H# \" s  n" b4 q4 Y

    * B' I$ a) m1 U* ^4 [# Example usage' V% |4 @+ s2 J
    print(factorial(5))  # Output: 120  a0 S- a/ L" \9 Y7 [. k
    : g+ ~6 @" S# @, g; u
    How Recursion Works- q0 U3 S# c* p8 t& y0 b

    & Z( w( x' E: g$ \! Q    The function keeps calling itself with smaller inputs until it reaches the base case.# p! |5 @; R: C
    2 y7 V  F4 E/ b! t% J
        Once the base case is reached, the function starts returning values back up the call stack.
    , N) J$ T; g! |; {9 w1 j  z( N; M6 r+ f) j1 m# W  \
        These returned values are combined to produce the final result.1 ?' b3 t5 N' m- L
    3 ^0 Q% L! ]9 e( ], r
    For factorial(5):
    1 E9 @1 o& z2 [3 @, d- k, _# E! f  A: m( ^7 M' u7 q0 C
    : a" J# V% l5 c3 M# }
    factorial(5) = 5 * factorial(4)- L8 p- `5 ?* ^; J, Q. c
    factorial(4) = 4 * factorial(3)
    ; @* x1 }+ r2 ofactorial(3) = 3 * factorial(2)
    2 F9 \) f; O  A* Ufactorial(2) = 2 * factorial(1)# E3 j7 P1 G8 k2 c7 m
    factorial(1) = 1 * factorial(0)
    3 C. H1 {3 i/ Q& ?) @factorial(0) = 1  # Base case# L  f) r! A- _3 ~! Z

    ; V$ E& F2 ^% ]Then, the results are combined:
    ( Q( Y. ?2 H% b9 H4 }5 r; \# j) [: {  \7 W! o

    & k/ k+ b! B4 _; v$ g) s- Q" F  N! Ifactorial(1) = 1 * 1 = 1
    9 q7 n5 T4 V+ Y/ G5 m+ C8 U" Q! vfactorial(2) = 2 * 1 = 26 K, e5 i' x0 g; z" ^6 \
    factorial(3) = 3 * 2 = 6- X8 Q: [* A' K; ^' d& f
    factorial(4) = 4 * 6 = 24# y6 c( O( s" ]4 _
    factorial(5) = 5 * 24 = 120
    . m2 K8 b% M# k/ q4 A$ t/ U9 ?( s+ @
    Advantages of Recursion( W9 _9 g- G& k( S5 H7 _+ ]7 D) D
    2 u9 `0 U! I$ x% E9 o/ [2 m2 K
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( k2 H; Q. @5 l! ^. h( |& l3 ]/ {

    / R( x/ c( G8 y    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 k, y; y$ ^# X9 o
    ( o# s0 z5 f- O7 _2 H) Z
    Disadvantages of Recursion
    ) i) S0 ]$ I' f7 L! @% e1 E. t# r" A) O+ O: I4 e8 r3 l+ R# W
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- G+ m0 h. d  A* B) ~1 y
    ' L1 ~: ^( P8 ?: O& W2 @2 |% N
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 F7 R: ~8 ~9 R+ {9 y& ?$ ~1 B2 a# R2 [
    When to Use Recursion% B1 g5 H5 y3 J2 t0 L/ _

    4 d; {/ h8 S- r: u  J    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- E# l9 o8 @' p% ^1 S5 k. ?
    . v) d. T: b! A! D9 M. t0 N- ^/ t
        Problems with a clear base case and recursive case.
    . d- f( K5 e4 [5 P; e% J6 f) c/ Y; J" q  H- Z  B1 n& I9 O
    Example: Fibonacci Sequence
    + W$ a/ |7 {/ `2 g
    ! D* U6 B1 L- \7 \3 F5 ]0 t' Y( FThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:; ?3 t; P  [: y6 O5 n" H8 U
    + E' Q! g# j  O" w. i
        Base case: fib(0) = 0, fib(1) = 1, B- m2 N: M5 I$ S. B" w* m: C  Z  H
    + A/ N- m$ k: X
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) {- M/ L3 b% V3 x- x9 r9 {, v; \7 R. G
    python0 ^/ U) _6 j- ?, y' s) R; d
    5 D+ ]& D, p& N: w5 [) `7 G
    1 a) b1 Z! ?- L3 w9 M) r5 m* ^2 Y
    def fibonacci(n):
    1 V) u( I. M0 J    # Base cases2 B3 R! U/ M$ U# A
        if n == 0:
    2 f/ m+ y( M- Y% R6 l        return 04 @  l# [. q( L: d& F- P! X: ~" a
        elif n == 1:0 V  U  R5 |0 \
            return 1: {6 L) F/ [3 D& K6 u
        # Recursive case
    1 u; L! a: O+ `* W4 j" D    else:
    . Z. O& f' c' @        return fibonacci(n - 1) + fibonacci(n - 2)9 Q) ]- Y6 w; V- D; N

    & u4 r, {8 \/ t# Example usage/ Z/ L6 H8 K' C2 N% e
    print(fibonacci(6))  # Output: 8
    " ?; c# c  V) e6 s( [/ A9 T9 T; q! L/ L7 y3 E! M/ q& }
    Tail Recursion
    * c( Y& \4 _0 R  ?
    - p9 y- ?% W- o3 P" j9 z4 \Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    & Y$ \; M% e$ X* w7 V* e5 k* {# B7 ?
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-16 06:41 , Processed in 0.028857 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表