设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1257|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : {3 n- n) y  x. w; M8 f% O

    ' S+ S/ B- @# S2 Y解释的不错
    % q' ~: j1 n( O: `6 c
    ' Z0 H1 f) M: ?- M+ q! E& V/ r递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    8 ]+ P6 q& c! [$ @8 j1 F2 Z: D, }5 Q; i7 [+ w5 p0 [
    关键要素
    8 F1 n& q, s6 ^0 ^! {( G; _- `+ t1. **基线条件(Base Case)**; x2 P1 ?; W! U
       - 递归终止的条件,防止无限循环7 Z% d& _& U3 n. w  P4 o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# M8 _' U8 w: F0 I" v! }
    6 O" A$ h' r* k- K
    2. **递归条件(Recursive Case)**
    ) N! x& \( j+ t( W3 L   - 将原问题分解为更小的子问题
    . v1 E9 Y3 ^4 c6 @! g5 m! L! k, Y   - 例如:n! = n × (n-1)!) U3 c5 ?0 H. w

    ( j' s/ H. A& R; E& a 经典示例:计算阶乘! h, Q2 S6 }0 l) S8 F! r1 s
    python
    ( ]" r0 _4 O! xdef factorial(n):3 O% @8 N5 ~: w# }
        if n == 0:        # 基线条件
    4 E: D- ~3 O& M5 K        return 1: `: W  b8 Y: p8 e9 O7 u
        else:             # 递归条件
    7 X/ f: ?/ h9 g5 l7 l0 ?# P. U. d$ [        return n * factorial(n-1)
    4 g! k4 f3 T% Z3 X! G6 o执行过程(以计算 3! 为例):! z$ v& z5 I7 g/ D% Q, W& s0 M6 F' [' h
    factorial(3)
    . e% A, m4 H5 z; \1 A; M' X3 * factorial(2)/ G3 O* b& C$ k1 t5 T1 }/ m8 z
    3 * (2 * factorial(1))+ }* p6 ]  |) ]8 ~; T, F, C. _
    3 * (2 * (1 * factorial(0)))# a. y; d; U2 _- c3 m0 Y* e
    3 * (2 * (1 * 1)) = 6
    6 A+ R! T( |/ N; n) h- `( e, F. L, ]. G6 N3 M; \) O9 z% ]
    递归思维要点& m9 g7 |5 k" M0 C
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ @/ }7 W& O, {6 {0 J0 g' m2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% x% @7 Y$ e" M8 y
    3. **递推过程**:不断向下分解问题(递)6 W7 Q3 ?3 J% v  O! j6 W- }8 l) i
    4. **回溯过程**:组合子问题结果返回(归): _) a' e' h$ d, w3 D( h

    % K8 ^& ~5 d5 w 注意事项) i. D$ G9 d* W' S$ ?
    必须要有终止条件
    2 I4 u4 t! ^: {; F8 S递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      z: Z! [9 P1 k& g/ v, B某些问题用递归更直观(如树遍历),但效率可能不如迭代  k# N+ g/ ^' J$ n% }, m: V. S0 L
    尾递归优化可以提升效率(但Python不支持)8 X8 G" L! ~4 ]. q# h8 O$ p3 ~' ~
    , j& N; i& F& q: w0 g2 ?! Q
    递归 vs 迭代
    2 k: C' q! ^( m$ g# _+ g) I& H|          | 递归                          | 迭代               |
    # H7 F* A7 R' ^% ^|----------|-----------------------------|------------------|
    3 W* e2 F9 A0 E2 X! Z7 z; a| 实现方式    | 函数自调用                        | 循环结构            |# P; B6 [6 S7 r! v  T+ H: J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |  z5 Z7 R# \+ ~; y0 S2 t7 R
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  L- r, u! u- \, F$ \! W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 b4 h. }( t9 o. {" e1 L
    9 Q6 W8 I5 j( I/ w) ]6 t9 o/ V
    经典递归应用场景
    ' |4 i8 z; g3 ^4 l1. 文件系统遍历(目录树结构)
    $ V. q0 W* j1 B7 j/ n2. 快速排序/归并排序算法9 O/ {( p* f7 |& H6 s
    3. 汉诺塔问题
    2 W+ n( S; I/ W: P4. 二叉树遍历(前序/中序/后序)
    1 ^1 F( T1 }# [* b/ N3 B: n2 c; O. z5. 生成所有可能的组合(回溯算法)& ?/ s5 H4 Q# p  x2 u0 e# ~
    ! b) a9 r! H5 T
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:39
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- [$ @! b; r6 a
    我推理机的核心算法应该是二叉树遍历的变种。
    ; K  X8 e4 N- Q% B  G6 R另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:  ~& e5 M+ b; u6 ^( o2 Z8 C
    Key Idea of Recursion
    ' V) I9 J% ?6 x7 V( V
      D+ m7 u* e9 ]& kA recursive function solves a problem by:
    9 h* _9 J; H9 |- h/ N$ {; i9 j) |9 O# B: e( O+ J8 g5 z3 B& G
        Breaking the problem into smaller instances of the same problem.
    5 H9 T+ B! N8 W. C! M# W: f5 S( G- `4 ~$ b( L& ]
        Solving the smallest instance directly (base case).
    ( Q: J' K; j3 Z
    0 Z0 M2 }9 o5 ^" C3 N( ]6 W$ @- a    Combining the results of smaller instances to solve the larger problem.* |, [9 }4 ?# j* m4 N, w2 ?9 M
    1 t7 V8 I% [( \; h
    Components of a Recursive Function
    ( O* C' u4 a  x( Q" ^
      F. r; N4 o7 M6 _' v    Base Case:
      E5 b4 F$ s  o& ^
    - g8 M4 j# n# j4 j4 h        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 i, h' u9 ~: v5 l6 M
    * s! R! x  E. C2 E8 Q$ B, X
            It acts as the stopping condition to prevent infinite recursion.
    / m; a1 t/ ~9 r0 w2 d3 b4 t* A2 ~! {6 `) E6 d) @1 h" B
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 ~( O9 T0 o/ e- p. B9 d

      `6 j  h* t8 c" N    Recursive Case:
    6 b- O3 s0 t0 f( D7 x' w+ q+ Y9 m; T, G) r
            This is where the function calls itself with a smaller or simpler version of the problem.: {9 F) S" e* i' n) z

    ! i; ?+ O1 `0 S1 ~' L; Q        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' u- O' O+ {; U3 s4 t3 O. a2 U: Z4 d/ T6 s  A$ `& ^( l! j4 y
    Example: Factorial Calculation6 ~: B( z6 @$ ?4 W
    6 b7 B4 y3 d2 r
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ! A- x7 L4 E; Z0 J! [1 I; S' J0 v+ E: j3 ]9 k3 W, ?  R' m: |
        Base case: 0! = 16 ~6 i1 L. r2 \2 U5 }  u
    , z+ F' E2 S& B# [, |3 U
        Recursive case: n! = n * (n-1)!" G7 S( d  F8 @# P- S

      L8 H4 i; d$ O1 LHere’s how it looks in code (Python):: y$ n3 p8 }$ n7 e( h8 x! o
    python
    / V( b% \* s6 g& b5 _( K$ ]5 s9 T' ~9 C: v" g* d7 m* G

    / E, S1 l5 S3 Y' B0 `" [def factorial(n):
    # s+ A1 c6 {! c0 l) {    # Base case5 A, F8 [+ s2 h4 J* t
        if n == 0:$ K# i6 Y3 W" e) f& x7 V
            return 1
    + c! q2 {3 \! D- s6 n. n( ^    # Recursive case# c6 `& m- d9 G" O3 q/ {8 {
        else:2 h$ A  J3 m+ z( |1 c8 L
            return n * factorial(n - 1)* W% Q& n5 I. u4 s
    4 J( V& {, q3 ^
    # Example usage
    4 X" n4 q: U5 tprint(factorial(5))  # Output: 120
    " w. H$ ]3 T5 Q" x# F6 S1 _; u/ W) H8 ?# o3 D* z
    How Recursion Works
    6 [, d/ I; Q% i" Z" A* f+ n( g' b5 Y- f% q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    8 A: B, V# Y" _. L1 V& L" Z7 O# s: {* M9 R' A8 B
        Once the base case is reached, the function starts returning values back up the call stack.
    # ^5 k1 c8 e9 [+ T% y' V
    - Z/ S: f" p1 n  Y' F1 y- o7 Q    These returned values are combined to produce the final result.8 r# ~1 Y1 `" H1 X9 A

    ( L# ~9 t! D- b9 BFor factorial(5):
    : Y2 M4 Z" W, [" [: y( m! E! I2 b6 n3 F

    : _% D! [$ [$ y2 Qfactorial(5) = 5 * factorial(4)
    ( u) B( ?. u2 b0 w; `# H1 }factorial(4) = 4 * factorial(3), P! {' T/ N1 f4 k2 J' I" q8 o- h
    factorial(3) = 3 * factorial(2)+ A' e7 m8 Z5 S( G+ q6 [/ _
    factorial(2) = 2 * factorial(1). x1 c4 @0 b7 l
    factorial(1) = 1 * factorial(0): s/ ?) z; {: r% \' }0 Q
    factorial(0) = 1  # Base case
    - d4 Q! M+ I. R9 a" P2 w% {( R- [+ {7 N; s& ?
    Then, the results are combined:
    % {4 c) T0 y0 t4 X# h& R: M8 E. E
    % E; t- z4 q% ?+ _9 r1 U6 Z& _. v3 g: J; K5 r. l  Q
    factorial(1) = 1 * 1 = 1, L7 w, Y- W( g: Y- o7 y8 X, l" N9 O
    factorial(2) = 2 * 1 = 26 x7 X- [5 N9 N% i5 k1 e! e, Y
    factorial(3) = 3 * 2 = 6
    ) [8 i/ l( y& p1 {factorial(4) = 4 * 6 = 24
    + x, g- T9 w0 Cfactorial(5) = 5 * 24 = 120- y2 U& h: ?4 Z$ O

    6 T: f* V% P8 Y# V- hAdvantages of Recursion
    , d: ]' X3 T8 `
    " k' t$ o# w5 d- D2 X2 d# T2 n    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ x- n0 ^4 F" V- _: L
    " w$ @: J! l( P! ]  u8 t. e% l4 p3 d    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 e& g8 T" d! p6 `8 r+ y# L  j$ r7 @! N9 d$ `
    Disadvantages of Recursion
    8 z6 z  T# k6 O( g0 _! m9 K5 \" Y) j4 Q9 {8 ?
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    + g  c2 |' b$ i2 E
      U6 i- R$ b- d7 S. r    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).' Q! ?' f" U9 K# l1 Z! E" g
    , k; z: ^8 a: k" q5 i% Z
    When to Use Recursion
    9 A: `" k  J, z& _' Z+ C, c9 j
    3 t) v. h' {4 e+ g    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ M( C1 `: D- f

    / o7 H- ]" r: Q( i, j1 Z    Problems with a clear base case and recursive case.
    * C5 N- A7 A- e! A- |) m6 U; \' N) q9 s$ P' Y9 w6 \+ `
    Example: Fibonacci Sequence
    % F- ]) e! B8 Q- Z3 ~& G! }9 ?4 M" b$ [1 ?( M' g
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 R# R' ]) Y" v% I
    * R9 M3 r8 f: }/ i& p0 t
        Base case: fib(0) = 0, fib(1) = 1; T! o3 \) |+ C
    ; I% N3 }% b3 E! c& ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)* N; l. y6 v3 {" y5 i, k
    ( g# e0 z! G/ X( t- H
    python
    , I! a3 v8 W  X* }# Q0 m+ P9 |' d" f4 F

    % u0 C6 H4 \9 m6 tdef fibonacci(n):
    9 l4 {, ^) Q* O( A6 a; c    # Base cases9 a3 ]) z0 i( H
        if n == 0:
    9 X, F6 z7 X" R9 V- m6 U        return 0- z( d6 t' T" `* T8 [" R
        elif n == 1:
    + K+ \, m$ Z* Y+ _4 H$ j7 t! {        return 1% `( L- R, b; N& N
        # Recursive case
    . A! U) E' @+ D" l    else:
    5 s: I: e4 q8 [5 j9 U, ~% |7 e* H        return fibonacci(n - 1) + fibonacci(n - 2)
    2 O* [  ^0 n2 w' ~4 m8 r, `: |4 m% E
    # Example usage/ _+ r# w2 |7 D2 Q* s" D
    print(fibonacci(6))  # Output: 8
    ! I% ]3 y  ?/ o+ s7 u' o8 r6 N4 v3 v; K; V: ]6 A" ~
    Tail Recursion! P3 R" s# G0 }8 N  Q" s

    # a6 i( C6 I" Z/ Y4 h" O! f$ |' KTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., h5 @" ?# B4 m! i( ]; ^

    / H5 ^- T; N- R) w& A& dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-1 01:33 , Processed in 0.033215 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表