设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2097|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 # n" }# z* E0 U4 @) r) }: w

    . a* Y( A7 W1 d# x解释的不错
    - h! C5 I! T" S, j& h0 A( C9 d6 t: D" d
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) e# n6 y# e9 ?2 O) G1 J, S$ Q6 l- G1 M  Q
    关键要素6 b: X* K" t! {* I( A0 K4 u7 p
    1. **基线条件(Base Case)**
    5 e$ p  T$ ]' O( d& n9 H   - 递归终止的条件,防止无限循环
    7 ~" |5 q; p1 n! R7 @   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) m1 M/ t% b0 ~. e7 ^

    : H  p: N& N0 T; E4 Y3 ^! `% x4 z2. **递归条件(Recursive Case)**. g# @& I1 J1 B
       - 将原问题分解为更小的子问题3 |0 g$ P; T9 B: L0 ^$ t
       - 例如:n! = n × (n-1)!
    ! ~9 \7 r  P4 o6 X. J
    % o( J6 Q% e$ s 经典示例:计算阶乘9 _; H# e* G( V" I& d
    python' X/ c$ s2 j; p) p  a
    def factorial(n):
    % s6 r. l/ B& X+ @" s* Q5 q    if n == 0:        # 基线条件# Z, r, \% m+ l8 ]: l
            return 1
    1 ?) s+ f5 g) M    else:             # 递归条件
    5 [8 |& o8 D- F  t: g9 z        return n * factorial(n-1)2 w& Y/ m' `1 |! n7 V1 ^* ?% z
    执行过程(以计算 3! 为例):
      ]$ ~- [# I3 q; q; A, m  Tfactorial(3); F  u5 s( t! {; G8 T3 G  n: {0 [
    3 * factorial(2): U  K7 z' V0 u* v* M7 m" E3 [
    3 * (2 * factorial(1))
    ( K& Y" v, Q* S. R3 * (2 * (1 * factorial(0)))7 ^# K( g* T2 d
    3 * (2 * (1 * 1)) = 6
    8 x, B3 v# A% u- a' J1 L/ @
    & d& H9 `2 L$ h% E) J8 I, c. ^ 递归思维要点
    " C+ T6 a  u8 n2 B& K1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 l, \) e6 T% F& X+ q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( B% {5 l! H3 x5 c  ?
    3. **递推过程**:不断向下分解问题(递)
    5 \  v( _8 x# e4. **回溯过程**:组合子问题结果返回(归)
    ' X! M- _$ l# H1 l2 c/ X! k% y2 m) }. u( q  h8 I# W4 s
    注意事项
    , |4 Y- l1 O& `# {1 F必须要有终止条件) c' |) @1 b) P" Z. Q: J
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    & j: B, i2 T: K+ x  m7 ~' g3 j某些问题用递归更直观(如树遍历),但效率可能不如迭代- ~# s9 \" ]" d2 ]- Z) q% H$ }
    尾递归优化可以提升效率(但Python不支持)
    $ ^( ]) q# `4 u- K) X- O0 k9 p& m& |$ r
    5 {5 p1 Q4 f$ b2 y- m. e 递归 vs 迭代
    & l3 q1 A2 X! v7 V$ d& D) @|          | 递归                          | 迭代               |
    ' d3 ~! q+ e. _, i- K$ X6 H|----------|-----------------------------|------------------|
    ( D  ]* [$ Y  W| 实现方式    | 函数自调用                        | 循环结构            |
    5 W2 g" Z0 `) v+ h8 U; m  S' F1 N; [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |. e7 C( V5 ]2 H3 j1 }( v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 U/ }% M9 b: m
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 X7 \2 z; L# V

    * H: o/ Z0 M* G  _, L) A$ A& C 经典递归应用场景! @: {+ e9 p, u3 R9 j$ I
    1. 文件系统遍历(目录树结构)' \( c. O; o  Z, n: h
    2. 快速排序/归并排序算法
    , S' N8 D* M- ]) v8 l5 G; G* V3. 汉诺塔问题
    5 L! Y5 x% F" C+ q2 n$ {2 K4. 二叉树遍历(前序/中序/后序)
    $ G" R8 ]% w0 L$ p$ k% N5. 生成所有可能的组合(回溯算法)" i, ?' i6 g5 C. L; v1 X( e# O

    % U6 m, c4 y  X7 J5 h- j试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    9 小时前
  • 签到天数: 3175 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,5 v4 ^  i3 `7 B' l) U& j) ^5 M+ q- K3 U
    我推理机的核心算法应该是二叉树遍历的变种。3 I2 H( @6 |/ o. d8 D# L/ k9 s" W* ?$ c0 C
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- Y3 ^( d4 K4 {1 }1 g
    Key Idea of Recursion' H4 l6 ]- v- D9 E" F7 e
    . s1 z- q, M8 S+ V
    A recursive function solves a problem by:
    9 d. Q" g( ^' `4 G# \; U1 x  F( h1 b$ \1 O) A" y6 L
        Breaking the problem into smaller instances of the same problem.8 @1 K4 Q' [9 T+ r' V$ u. M

    3 {* l) r9 ^2 _5 c6 w+ K5 _- Z    Solving the smallest instance directly (base case).
    0 h. a" C( x& k) k  ^# J# i( M( Z$ V- w# [0 D0 j' u$ G7 v
        Combining the results of smaller instances to solve the larger problem.6 @0 X1 `0 b& K) E, c

    3 C1 O6 O/ G, VComponents of a Recursive Function
    , [8 G9 b& [' Q% J& T% k' y4 \, m; F
        Base Case:
    + q( i2 c3 g2 r; a! w
    6 ]& ]: n: L  c$ U- p+ }9 F        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' Q& T. z; T; j
    8 l  Y( X8 ]# Q7 @7 ]
            It acts as the stopping condition to prevent infinite recursion.1 t. a% \$ `0 a( E6 \

    . |, L, g" X! D4 J$ x( {% |        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , v% V" U$ ], \* e5 n
    3 |0 w/ |2 a& T( g" U! ?    Recursive Case:
    : |& D3 E5 d2 U2 i& c2 Q. u. P5 i2 |2 I# b
            This is where the function calls itself with a smaller or simpler version of the problem.
    9 }5 a; k* L* a/ t2 b  \" }* J: u4 H9 T  O5 H" u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 ^1 `& s0 R0 {! n: F% Q; X4 Z. B2 S$ q
    Example: Factorial Calculation0 ^7 X! b) ~8 C% x
    6 G) n; p+ K# O" Q; _; ], A
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 i+ E& P6 i* |
    * ]) _- z/ h; j    Base case: 0! = 1/ z" _, \0 Z" A) E+ ?
    " V* C$ n0 U' |
        Recursive case: n! = n * (n-1)!" j+ k) m% y# }3 X/ d- P
    . B5 J; \! v2 ^
    Here’s how it looks in code (Python):
    " l" T, z+ i: J! i4 V1 Cpython
    - }" |& Y: c2 }5 z. Q  b: |4 ?& _/ `5 ^0 |% U0 u5 e* G/ N
    " v$ ~. w" l! ?7 p% U
    def factorial(n):
    # ?! C# P2 f8 ]  Y9 o1 E' v& ]    # Base case
    . K! D9 Q- R0 u    if n == 0:. P- \7 n& I6 p/ Z6 w- e% K5 S
            return 19 w# q& r8 J( g' [' ?9 s% p
        # Recursive case
    ( ?: `" `2 Z+ U& z; S    else:
    , A. l' v2 m3 C' {3 E2 u        return n * factorial(n - 1)
    # R! H) Y$ y. i& j5 r# ~; D7 G! O& B( o0 ]' r3 ~' z( O4 `
    # Example usage% j5 T' d. [5 [/ J; {
    print(factorial(5))  # Output: 120. E: _& e6 x" }5 {
    8 l9 G' {: z8 Q  S* }! F
    How Recursion Works) B% X, a6 h+ l3 }; I1 L  d

    3 \5 t( r- A7 n# v( o    The function keeps calling itself with smaller inputs until it reaches the base case.' w9 W& j* v. l4 J0 {" e

    9 A4 K$ B+ S3 I9 c+ T    Once the base case is reached, the function starts returning values back up the call stack.
    / B2 Y( l8 d2 E5 g' Y5 C1 g! N8 }
        These returned values are combined to produce the final result., S8 E! u8 B' j8 ?$ O/ v  O4 n9 m
    - d$ L3 V& F# c8 T) ^  k
    For factorial(5):$ F* k( q7 ?  Z/ A5 l% e; J

    0 y( ^3 S6 H. M5 I" k+ c4 k1 u/ l  e% D% T
    factorial(5) = 5 * factorial(4)
    0 S7 ?: W: U# lfactorial(4) = 4 * factorial(3)7 y' M) Y- Z4 U& R! M: R
    factorial(3) = 3 * factorial(2). H  K( J4 f; B8 R
    factorial(2) = 2 * factorial(1)' p- o. \$ c6 Z$ e3 k0 x+ @; o8 q
    factorial(1) = 1 * factorial(0)
    1 _+ f8 K6 _' ^$ t% m. F5 _2 n+ Cfactorial(0) = 1  # Base case" W% R% r. [) f4 s& Y3 H6 P4 \

    ( T! R0 |9 q; a7 s0 M; D2 A8 l# yThen, the results are combined:6 q, m9 R( y9 {1 U9 {  H
    : E" G1 F7 j& Y, _3 ~* R- _0 F2 B3 o

    & ~, S3 ?! P- Y. m6 n, cfactorial(1) = 1 * 1 = 1, k- E. d  C* P4 O9 o
    factorial(2) = 2 * 1 = 26 E8 M4 l4 H. B2 I9 Y) }4 q
    factorial(3) = 3 * 2 = 6
    - S& Y0 r0 Q3 ffactorial(4) = 4 * 6 = 24
    # L0 v! j1 L4 O7 Ifactorial(5) = 5 * 24 = 1201 l1 A( a! i" v- ?; o9 z% s2 x7 z9 f
    ' r' D' I! E1 d) l6 u4 u: p
    Advantages of Recursion: S; D- j! j; U- V, a! c+ \
    , _/ h4 u: N0 {$ H( J6 l6 \: ~
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    # m3 G; ]3 }, z1 u: E% R4 j  \
        Readability: Recursive code can be more readable and concise compared to iterative solutions., |0 V0 |& U. ~9 p
    $ J8 {/ v  U" g: O. w6 K
    Disadvantages of Recursion
    ( L* |8 o0 E) `" {/ N" ^8 K8 c8 ]4 r6 @0 P; g
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 D) ?3 T: S+ i. c0 w$ P
    $ ]/ [' \5 c7 y7 ]% B    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; C+ B* t1 i: }$ a5 T
    ( B. f' b: V  g3 {4 A- Q- T2 nWhen to Use Recursion
    , o7 S8 x" h& _7 r: Y
    , t) k9 L6 R5 a" K1 ?    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." c2 e* C( A$ J/ X0 A+ O3 V
    % ?& p; F$ m' Z1 j% i5 i1 [; P5 a
        Problems with a clear base case and recursive case.- B( }; r& F6 O! b, J
    . m) |# Q8 W* w, [1 m9 w
    Example: Fibonacci Sequence
    $ _$ K8 S; e9 ~" h' r' M
    % Y! \9 }1 w$ o5 o. _/ K. e- yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:: b! t* K0 N  D) I( h# M9 w4 R

    - Q/ k" c# X6 p$ g4 b  D& o1 x    Base case: fib(0) = 0, fib(1) = 1
    8 Z2 N/ |9 D; w$ Z, \
    3 v1 I7 H$ X7 d. y$ x' \" Z1 Z* x    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    1 ], L/ l& \+ g
    + ?8 o9 l9 v4 E# ?, t* Opython: M6 m4 l/ n3 O$ _$ E+ @1 |6 P

    " [7 _" [. N% F4 ]' ?& t" l7 I7 i, r( F1 Z" _
    def fibonacci(n):) w) d+ L$ v2 }& Z4 k
        # Base cases
    ; ]- m1 M7 H9 c4 }! x    if n == 0:
    4 W0 Y4 B. h/ e5 H% U2 ]' b        return 0( D) d% _0 f) `; ^& L1 C3 m. Y0 W
        elif n == 1:0 u" w: Y5 [, N# M; Q$ H
            return 1
    # E6 ^8 \. |3 o( m: k    # Recursive case
    : U) c. J7 _5 ?9 V    else:* Z* _, ]( W: y! G# E5 y, I) C
            return fibonacci(n - 1) + fibonacci(n - 2)
    , C6 @! s( t* ^" N; X2 ?* W
    - z) G" L; s! B* E7 r( W* n9 M# Example usage
    3 w$ l9 _) J9 a1 b; O1 v5 ?print(fibonacci(6))  # Output: 8' L  a8 S5 k2 |+ K
    & i% s( U( K, [" C, C
    Tail Recursion, A& [  P0 i5 p) y2 G) r1 c, m
    0 B1 }6 [$ M; l: V5 G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ o7 _- o0 `& j. d  A1 a3 n

    / W' k- B0 w0 @. S+ Z$ fIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-16 21:40 , Processed in 0.064850 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表