设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1191|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 1 I' |6 I; M9 h) @9 A( Q. D; R
    ' I) ?7 {6 I8 |; F: i% F3 s
    解释的不错
    6 v4 D( J: a, Z% s% }0 w7 }
    1 B6 U4 X5 l4 I& D递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, _  j& X0 S; w- X
    + @3 O# Q: H, e. n  x0 F
    关键要素
    # Y0 b2 s* p" x0 d1. **基线条件(Base Case)**- @: f& K0 P+ B  E) S* Z
       - 递归终止的条件,防止无限循环
    6 y# |+ h& r, H   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 S/ l) B1 f6 l9 X1 K8 I8 k9 u' q& A" D; ~2 Y. L; R
    2. **递归条件(Recursive Case)**6 k  O8 b8 [  a6 \, V
       - 将原问题分解为更小的子问题. Y% x2 M3 x7 K2 |) C6 ]
       - 例如:n! = n × (n-1)!$ m% }: D  k' @7 o

    ) J8 I/ M% S: f! [0 G2 @( X$ }2 o1 m 经典示例:计算阶乘+ p5 @6 k( p; h, O
    python& f9 \' R$ o; U8 |* ^# Q
    def factorial(n):
    5 a8 G5 D; Z: [7 l7 b    if n == 0:        # 基线条件
    ' \, O, k$ F9 t# O5 ~, f        return 1) |6 C7 g9 K# m- j- \/ A5 g/ Q
        else:             # 递归条件  u4 f; d% F/ h5 {8 K: m0 e8 C1 ^  b
            return n * factorial(n-1)
    0 Z9 K3 m3 O5 l) _5 t执行过程(以计算 3! 为例):
    * X" g: c1 g2 c- d; V% lfactorial(3)( m8 n+ Y# X0 \: P
    3 * factorial(2)
    % i9 K8 W* @' D) {' {7 Y3 * (2 * factorial(1))$ ~5 f' l. n  C
    3 * (2 * (1 * factorial(0)))2 U. q! _7 E# A5 z/ T9 _$ I) {# b
    3 * (2 * (1 * 1)) = 6
    " ?+ [9 \. E# ^: z6 b( E$ D( F& ~0 e  k# g; m( J
    递归思维要点
    9 {" O3 e) b7 c* g0 h: B1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & N" f9 J( ]' c2 a2. **栈结构**:每次调用都会创建新的栈帧(内存空间): M6 j( o2 n# Z0 R( A* X
    3. **递推过程**:不断向下分解问题(递)
    7 {: \( K1 m5 b" \% E  j  y* d4. **回溯过程**:组合子问题结果返回(归)( u* u& }; R# F. H$ L6 [
      ~/ }- F5 v& @) p6 T
    注意事项
    : A3 r' L! y1 S6 m必须要有终止条件
    - W9 Q$ p* d0 r2 e1 h递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    $ a- v( a- G% q某些问题用递归更直观(如树遍历),但效率可能不如迭代) s9 C: N& C2 M# F8 @
    尾递归优化可以提升效率(但Python不支持)
    - m7 |6 |8 M. F5 Z, W- M
    & b- l1 L" h( A; h+ W" B0 q1 e# u/ P 递归 vs 迭代1 B* a* D  X, o8 h: X# M  T
    |          | 递归                          | 迭代               |: W4 y* K& x- v& k9 h
    |----------|-----------------------------|------------------|
    1 J3 z7 K. ?% W9 y4 A| 实现方式    | 函数自调用                        | 循环结构            |
    . N/ p- B: o! @. _  c! N| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    - M7 |# V" a" }* o) E, D& n| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' w, Q& j4 k* d) Y6 R/ l6 e% X
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; @  b3 U) e) [! \  `) b& _- s6 M" t9 z  ]9 r" Y
    经典递归应用场景6 B! E8 N! ]( B1 m
    1. 文件系统遍历(目录树结构)
    " o2 l; M' X. ]1 B0 o! M9 H% w& v9 ]2. 快速排序/归并排序算法
    * R4 F+ L' K& q' p" g3. 汉诺塔问题; z/ X* t7 b: c" P% N9 [
    4. 二叉树遍历(前序/中序/后序)3 b7 {! e. g* a" b6 G
    5. 生成所有可能的组合(回溯算法)# f4 U; k( T& J/ h
    # z; l. }. J3 V' D! s
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ x) S! P! _% A4 i0 x9 r( U/ j
    我推理机的核心算法应该是二叉树遍历的变种。8 ^8 U4 _6 k! U: ]2 T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 z) ^' ~8 p* d: |5 U2 _' h. g
    Key Idea of Recursion- {! d; r* m* _- X6 K

    ' |- c% o) A4 E( ?' RA recursive function solves a problem by:0 R# Q( y* Q) u# m
    ' n/ F  x9 E& B4 O2 `: h2 g
        Breaking the problem into smaller instances of the same problem.
    % _7 x9 n) }9 E
    ( s" `$ T( s( _, s    Solving the smallest instance directly (base case)." H4 C6 w/ R8 D: \
    2 o' `3 p: B' `* l6 J+ t1 X
        Combining the results of smaller instances to solve the larger problem.
    ; q! y4 H, t3 V# [1 u
    2 ?  b1 ]5 O: r* @# H" ]Components of a Recursive Function
    5 G+ i; w3 i" a( ]: R! y; k! S  r
    $ l7 e3 G+ @! F* J) J    Base Case:4 |% F) N8 {- u' @) b

    1 L$ Z- K, M( @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion., x( K" L# {1 M
    * ^: T# T' d2 \# T1 U* W
            It acts as the stopping condition to prevent infinite recursion.
    , [& {" G% J7 W
    5 ]! }% o$ @, V  S$ ~6 I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 Z: p4 g$ I* A

    " a0 p/ Z5 B* p    Recursive Case:
    3 ?% h2 l3 c2 E( [. r2 c, i: C
    " @, C2 t- s+ U        This is where the function calls itself with a smaller or simpler version of the problem.
    + N. K* X% h1 I+ e# s$ b0 t& D
    + o0 ?8 Z- F* v) }. ]- Q: l' Y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 k; z2 O% g/ }2 Y4 ^

    - J0 t8 f5 N, R: I8 ]$ r% H) q& PExample: Factorial Calculation
    . j0 \+ w. q6 w+ j" D
    ! x% M6 I' S0 x* hThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, Y) y4 K: E3 n
    - ?7 c" j, `4 f
        Base case: 0! = 1
    4 a7 D: W& d7 Q- b7 e3 U/ I+ G% e8 M
        Recursive case: n! = n * (n-1)!
    - g* C; K# `5 x
    2 ~6 Y# s* ^* ~8 z+ ^5 r* U! `: v7 DHere’s how it looks in code (Python):/ ^6 Q1 M5 G+ m+ z4 q$ q
    python
    : [  g- ]+ |1 ]: B7 m! X8 l- E* q( b
    3 G# V0 _4 F: C
    0 c% u6 Z* z+ _4 t3 r$ qdef factorial(n):( l- [: t! d9 c* X
        # Base case7 W5 B( R3 B9 w; f0 a) L5 i
        if n == 0:7 Y3 o2 t/ E8 F/ B0 V
            return 1- q0 y( [" `( G! E* g9 i
        # Recursive case5 q; e! {  t! B3 Q# [
        else:2 }+ J3 W- M6 U' ?. M4 q# X7 C
            return n * factorial(n - 1)! c  N/ ?0 X2 ^' y% W# a% k
    : h8 s1 k% X, t, S7 M
    # Example usage0 R+ R& {! V7 s. m) [
    print(factorial(5))  # Output: 120; J& t# w4 b) H0 e' f# `1 V) J

    5 i! Q4 B2 q- ?5 k' {) Z7 Z! GHow Recursion Works
    8 O! ~% K' w. v; Y/ T5 U) f
    6 Z: P7 @$ Y7 x" z    The function keeps calling itself with smaller inputs until it reaches the base case.
    9 o* a, \7 x8 t! E! {' ]$ A# |0 T8 `. Y) j0 N7 j6 q8 V/ M; j  J
        Once the base case is reached, the function starts returning values back up the call stack.6 ]- B+ N3 R$ b* x5 M% a8 K! u

    ; @3 a& M; u! n$ z" [$ x    These returned values are combined to produce the final result.
    . ~- Q: f* z4 L9 T: y; _# t  q: i( g( _2 |8 L9 k
    For factorial(5):
    / H3 T- n  q& \% x. i! `' |$ I' I& \  p7 W) M, W
    $ Z/ p2 p. D( J
    factorial(5) = 5 * factorial(4)  Z8 Y" Z+ M* {  u
    factorial(4) = 4 * factorial(3)# p) U& v+ W3 Q" A6 P
    factorial(3) = 3 * factorial(2)2 E! Z9 z) l' P/ J! X1 S
    factorial(2) = 2 * factorial(1)
    2 u9 y% N, h6 O& r0 R# S: Pfactorial(1) = 1 * factorial(0)
    8 l- K# D, S# T+ y  @% Q1 R) F3 qfactorial(0) = 1  # Base case
    7 M) b. R* ^- g: N, c8 c
    6 H- H, ^1 P7 p: g6 n* WThen, the results are combined:
    ( A! a9 m; C7 n& \* @8 Y7 V$ a2 ?9 Y' I

    0 Y7 i" @3 @* w( P  ~+ @6 ~factorial(1) = 1 * 1 = 10 @; O6 J1 G# G8 P1 J: H* ^
    factorial(2) = 2 * 1 = 2; ~. T2 h3 X! b- s' M7 V! ]$ t
    factorial(3) = 3 * 2 = 6) I! [  b! f& I. W4 T! \" L
    factorial(4) = 4 * 6 = 24
    % R. T, c4 ^5 \  |! E4 |5 k3 zfactorial(5) = 5 * 24 = 120
    ) f1 U: x! V! p- ~# `5 j: r+ C) }8 W3 f% R* o- y+ b
    Advantages of Recursion* w- R6 O+ m/ k* h4 s
    2 O/ P9 T! K& d* A; F
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! Z/ b8 _! k& x* J
    " e4 ^7 B$ q! F# b1 y, M# K    Readability: Recursive code can be more readable and concise compared to iterative solutions.' a0 p; @+ C/ T( M. U4 B

    / J; t( y$ A* dDisadvantages of Recursion! ~5 J* G0 ~: v: Z1 b
    9 ?: I' V. P# V0 Q! G
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.' E4 J1 p: m' R$ N9 G! a  j0 k! X

    " i3 x8 L) Q' c; S( @1 ^1 p    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) a& t" |% q+ V) R9 N
    ' w( t* {: ~& _& V6 E) X4 k' G6 l
    When to Use Recursion6 N, `. W: B: h9 S$ G" L) ~

    0 Y2 b0 G8 k( N& [    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ z( }5 I" z% V- {
    ) Z2 b; s  G7 e7 R) T% b% T: A
        Problems with a clear base case and recursive case.
    ! Y% r0 w% j/ c6 u  X
    2 Y) T1 T9 z+ s( v2 o' VExample: Fibonacci Sequence
    - Y3 P0 i: T0 H( K4 S' }' j" u5 y# [1 t- ?( k# C' `3 A
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 a0 I( T5 N5 b) q) a( _6 T( W7 Y' A$ }1 x4 U# X) {
        Base case: fib(0) = 0, fib(1) = 1: y8 n+ w; I- q) ?9 j( s
    0 a2 Q" i* o" ]4 F' R
        Recursive case: fib(n) = fib(n-1) + fib(n-2)4 p, g0 ?0 M) e* T
      U' E/ R- C6 i6 w
    python; ~! Z( ^6 @; C0 C" |3 j6 u

    % t5 I( Y! V- `2 _) A; V- C# R& @  l( W$ G- @+ |% m/ e7 u! f
    def fibonacci(n):7 Z+ x4 \: J: Q8 N. s- `  v3 E
        # Base cases
    ; v2 O& i: Q7 d" p; S- I    if n == 0:
    0 S* n! \6 f, k- m4 O9 _! [- H        return 0
    4 F: d# y5 a2 q    elif n == 1:
    $ T% O7 ]* T! [7 Z' q) h( }        return 1' s+ D5 h! s8 U, Z, @% f& ~, W
        # Recursive case
    # t3 ?' [4 Q( C; w% u# g    else:$ T& o6 q8 S% ]: F+ u' F' F
            return fibonacci(n - 1) + fibonacci(n - 2); |6 P6 I& ^, J4 O9 ~% P
    " z/ k" j5 G- ]+ r  w$ f( `( O
    # Example usage
    2 o5 c* \7 S, d3 {print(fibonacci(6))  # Output: 8# x0 U4 E: K) [

    ( A: E# ]) E( q6 r% vTail Recursion
    4 |1 [' n, j% [1 E# A6 `& T' c! w; K/ H7 ?! W: V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ C) T5 c, V- M4 P: v

    ) d; a& G1 C6 pIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 05:01 , Processed in 0.039838 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表