设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1753|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / t9 N& P* j9 J/ [+ {/ p" O  I6 S: W0 F) C  v
    解释的不错4 @! u) M" O! A' O' C1 r

    $ v' x7 l! e, o* V8 w! ~递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      g! P9 V, M3 U+ N0 r1 ~5 Q+ S  c# T* l$ }1 U
    关键要素0 r/ G$ s, m& Y5 X, P$ q; A
    1. **基线条件(Base Case)**
    * K* w7 W0 k0 M4 j   - 递归终止的条件,防止无限循环; @! O% {: ~) Q, {& y  j; ]
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ s$ n6 M0 u) w/ q* i2 b7 ^; S& x. c0 |* B
    2. **递归条件(Recursive Case)**
      a1 k1 C! ~4 k1 @   - 将原问题分解为更小的子问题3 K$ N+ d+ A/ L) @( [- B
       - 例如:n! = n × (n-1)!
    3 |8 u+ I) j2 u0 O
    & N" \/ K4 \7 X) A0 U$ z2 I 经典示例:计算阶乘
    - M" c, }8 z# r+ |python& @. ^) c5 p7 S  p
    def factorial(n):
    " H2 `% T; a6 S: \1 |" N    if n == 0:        # 基线条件
    . v9 W- D" V, m" o        return 12 X9 V  h7 K: O9 l
        else:             # 递归条件
    6 a- z4 Q6 U3 }        return n * factorial(n-1)
    ( _6 U, G7 x4 ^: P# E, l执行过程(以计算 3! 为例):" q8 n0 h* D2 H' ]7 d% i9 B
    factorial(3)) ^# l7 m# b  L3 {
    3 * factorial(2)
    3 ?6 p" }. m9 E5 o: v3 * (2 * factorial(1))
    $ x! V$ Z2 M$ Y5 l0 j' r' [3 * (2 * (1 * factorial(0)))# F) v4 o% E+ v" A) k( S4 H7 A
    3 * (2 * (1 * 1)) = 6
    2 u  V, ~' `1 O: w  L. M: }; H1 I0 N
    递归思维要点9 D5 s% f$ R$ G, \3 ~5 I( w9 S
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & a) s4 w) `. e5 G2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : G6 e. n' ?: [- c9 B$ L" ]3. **递推过程**:不断向下分解问题(递)
    8 |5 B- Z( t8 ~; r+ ^4. **回溯过程**:组合子问题结果返回(归)
    6 j3 I4 X! \. ^! j; I" t) T8 H- B; F6 O9 q' R2 f+ |9 w; @3 w
    注意事项$ `8 q# y, v# ?) V: Z4 j( A; b
    必须要有终止条件
    3 y% A; ~% z4 ^4 q5 l& v递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    $ P$ c$ I. ^$ Z$ O$ K2 C某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ X7 k, \+ u4 j& Q: H; @尾递归优化可以提升效率(但Python不支持)2 V- N* b3 c( E4 [( P+ T8 c
    * r- r+ A" S4 v2 P- [  X0 t$ z
    递归 vs 迭代
    + m6 Y% }% u/ v2 E1 _$ @|          | 递归                          | 迭代               |
    ( _" |( N: t! X& l6 H6 c: |. `* ||----------|-----------------------------|------------------|3 ~3 ~/ \, Y# u! r. C
    | 实现方式    | 函数自调用                        | 循环结构            |
    # H; W% V5 I. J2 X1 P$ c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    # @; Q2 q- D7 R: ~- }6 V( g! j| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |; ?% R2 o- {- I8 I
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . p, h) N) h- S% f! r- f' V+ u) n& ?1 }) W
    经典递归应用场景+ q- @' h# a% m4 Z7 _2 `
    1. 文件系统遍历(目录树结构)
      n8 E! @& }0 n& l( P: ?5 K; y( _2. 快速排序/归并排序算法: x+ ~. c9 G& v2 S( I2 B$ H0 n0 O
    3. 汉诺塔问题) T& u3 p$ v+ |- P1 h
    4. 二叉树遍历(前序/中序/后序)
    ; |+ g5 |/ u) x" _/ G- r% {5 \4 x# Z" l5. 生成所有可能的组合(回溯算法)- O' \% E1 P' q% D
    " M7 l5 d3 c3 `# J
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    9 小时前
  • 签到天数: 3139 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # C1 C- v! ]- v  U. R* K( W9 y我推理机的核心算法应该是二叉树遍历的变种。
    0 @& I8 Q! r# b. z. _# R* o" J) f另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 q7 |+ `; p" [2 H3 H+ {, dKey Idea of Recursion2 Q- y3 \) K0 v# R4 {' f
    ( P% I4 E! a$ n' _
    A recursive function solves a problem by:0 _- ?: Y7 m+ k6 Y/ W' J0 l
    3 W& @& d& q: @4 E
        Breaking the problem into smaller instances of the same problem.: X  e! Q& v( I; c# f5 F
    : Q! r) I. u7 Y# s, m8 b# B0 Q
        Solving the smallest instance directly (base case).
    ' \- Q* j4 F- ~- n& F& L& \5 Y
    5 V; E0 j/ o, l0 t' M- \# B! J5 Y( j* D    Combining the results of smaller instances to solve the larger problem.# {( g. I% C9 n
    $ V; @' v1 e" C
    Components of a Recursive Function1 _: v0 o$ L% L+ @( p

    ; C. Z6 o4 p; ]    Base Case:
    : Q# c; G" L  L" a) e3 O
    . f. a$ D6 z; G( ^6 W        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # C& M5 F8 }5 E. L* A* @: n! g  e
            It acts as the stopping condition to prevent infinite recursion.
    / Z: R: z6 R, t5 \% B" n* @4 S) W+ Q% [  |3 X# V; L* g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  P7 O& W( t& [

    ( M! x! B5 r4 W9 _- Z$ J1 S& {    Recursive Case:
    ! K% Q% u0 l' C. o8 m. Q
    9 R; r( y: n, |! A5 |6 P1 K5 R% t        This is where the function calls itself with a smaller or simpler version of the problem.( T( o) F3 H. s& I6 X! U0 [

    8 k; M# \( w& e        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).. u7 b; {6 W4 u3 t

    ) i7 w, S; Z* D$ G( I0 H' {! d. hExample: Factorial Calculation* P% ^' k0 M8 `5 R
    + Q8 J  |* |6 `- X
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & W1 J0 }; v. a: e! S  ^
    " P; U7 l9 x7 \- s    Base case: 0! = 1
    ; r! A7 M0 c- ], |  V' y3 x
    1 A3 y" n0 H! A4 q    Recursive case: n! = n * (n-1)!" {) j9 P. G; g% h3 N# J' J

    0 M& C" K' ]! EHere’s how it looks in code (Python):4 ?; x: i' m$ f1 a+ X: o; q
    python$ o, i+ o/ `1 K- l( k

    2 W  ]2 h. M$ U/ E( M6 ?( q0 k- n& @% x; ?1 M; [
    def factorial(n):
    ; H) O7 ]! A- z& V* k. G9 k2 z    # Base case# q6 R4 ]8 m: `. h1 W" G
        if n == 0:
    / ]$ ~# a! q+ w2 W  q  C& \- P$ c        return 14 s* R, @- K  }! j/ b
        # Recursive case7 e/ o4 L; E$ O
        else:
    3 X! ~# S2 m9 t" e# S) X6 N; x        return n * factorial(n - 1)4 k- r- w7 e# m

    8 K: h$ P+ N& ]. H' g/ g# ]# Example usage
    8 L0 _' n2 b* J* mprint(factorial(5))  # Output: 120' |* h/ _2 w" w. R
    9 P  o. b  N7 J8 G
    How Recursion Works+ ~1 `' o0 T- h5 X" e- q

    ' Q$ Q9 S$ b, O. B8 }9 g" b3 M    The function keeps calling itself with smaller inputs until it reaches the base case.
    $ `" ^# n, }4 q$ D2 j' }! S' T4 l, W/ K- b7 U* k! ?$ p
        Once the base case is reached, the function starts returning values back up the call stack.' p- {- s+ n) H

    . E& L$ e: u7 D: k9 O( `    These returned values are combined to produce the final result.
    # D/ p( ~1 k* \- a9 [2 {1 z+ v, G  P) M, }/ ]
    For factorial(5):
    8 }% F; n1 h# E! {2 ^+ K- }! Z( X( f

    2 G2 ^' _* `) h7 \factorial(5) = 5 * factorial(4); U, @" I  ]* Y6 ?
    factorial(4) = 4 * factorial(3)) L/ ~. x8 k6 J5 k- r. B
    factorial(3) = 3 * factorial(2)
    ' l3 l1 _1 d0 J( O* V6 K3 cfactorial(2) = 2 * factorial(1)
    + g+ H) D$ h" K. W+ K7 K! W9 Tfactorial(1) = 1 * factorial(0)2 c# h" E' R6 C2 G
    factorial(0) = 1  # Base case
    : n1 f) B. @* S/ M% I* i1 d: R: j! Z  D% Q- @; ]4 \
    Then, the results are combined:
    : X" d& `0 ^3 |9 v& ]
    0 z/ g, H3 p, ]% X. v9 J  f. E$ [1 F8 {) B' q
    factorial(1) = 1 * 1 = 1& u& X/ Z& Q7 C% y: x: p
    factorial(2) = 2 * 1 = 2# D  O* _) a9 N  y2 g
    factorial(3) = 3 * 2 = 6; _: S/ }. S8 O; L7 Q, g
    factorial(4) = 4 * 6 = 24: t) D9 A+ @, g$ k
    factorial(5) = 5 * 24 = 120
    ) |! b) w! X2 ?6 f7 ?
    0 z* I1 p/ w: K* C7 l$ M/ B' |Advantages of Recursion
    6 j, |/ l5 A* T$ ?( x
    , F; `2 b4 }6 P4 {, y6 v    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* Z1 T$ `( W; t; W. G5 \
    + C* B9 S0 v: e1 \& Y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.& j1 z, S' B  I3 W+ b/ S2 i

    ; F5 w' K0 N) BDisadvantages of Recursion& Y& O0 ^# [( `! x. r2 g3 g

    : }6 i6 ?+ n- s3 Y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " ~* A% C6 E) L" y1 V; A' h& ~; m3 ?7 i& L- q3 b
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 L3 |( m/ h8 u2 b2 _
    9 R+ W+ U2 c2 |% K# u  S" HWhen to Use Recursion4 o+ ?/ T8 V& w* s
    2 s& P2 y* m! H$ d
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ) Y6 {1 p& J0 l; S7 r. e6 y& P; o) W& ^( Z8 E9 V) }
        Problems with a clear base case and recursive case.
    ( |% n. s3 A. d5 b; T4 n. G. C
    , R% e# q, E$ _1 R9 {2 vExample: Fibonacci Sequence
    ( Z" P3 P& O: n- g
    $ D( {$ P9 T4 b# ?3 q4 q0 xThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ l' n4 g$ ]9 C' [. |! K& I0 F* q1 D8 E; H0 e6 l# _6 v
        Base case: fib(0) = 0, fib(1) = 1
    + \) C3 T; c  D: ^& J/ c% d  k  y+ y* v% B1 v- p6 A% \
        Recursive case: fib(n) = fib(n-1) + fib(n-2)/ p: ~; b1 K# J; U1 ^: R& |- }- I

    : h' P& l& [$ m0 cpython) G- G& Y8 B: F; M( B( H

    + p) Z2 J5 q5 C4 C1 ]! a5 }
    ) F2 N' o4 D! kdef fibonacci(n):
    5 c/ V' |: b, H2 {; L0 U    # Base cases- B9 \% ^( E1 K- E! y
        if n == 0:
    + `$ N  v" ~8 n% J( O        return 0
    ' u) u0 V7 n% A1 {3 Y; `+ Y    elif n == 1:
    , t& G7 D+ z! Z1 v6 L7 h9 _        return 1# K% h6 w: M' {7 K4 J
        # Recursive case
    ( o' J) [" _! \$ k# H    else:
    ' |' V* _) {3 \        return fibonacci(n - 1) + fibonacci(n - 2)9 `$ [0 D! _5 t' c- y+ l: T2 N

      a% `* \+ u" ?9 z# Example usage1 S% H2 b! t5 }" z9 {$ u
    print(fibonacci(6))  # Output: 82 d2 c5 j  ]) Y& Q7 B4 G

    " v5 V2 z# T0 M% p+ aTail Recursion. `4 U, y6 E1 T( A/ s$ {# k
    6 Y) D- _0 l: R) F6 d% b: b
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% f5 c* t$ ~9 i7 p
    8 F- ?( e4 n4 Q% A
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-7 15:54 , Processed in 0.031656 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表