设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1138|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / X! z' d1 A2 X  s: s+ p. o/ W4 y- a8 ]3 ~  x
    解释的不错7 H4 D8 I  x+ I1 @" [4 _

      Y! L2 D1 b. d% ~% q# Q- m递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * ^1 d- M0 v8 e) c$ N, G" U4 o, R5 C9 |7 Z: q6 ]
    关键要素2 z5 _' r$ P$ U) c; y. w7 }
    1. **基线条件(Base Case)**
    5 d2 ~& t0 b/ O+ u" B   - 递归终止的条件,防止无限循环
    2 n- v, v" @' c' n$ x   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 ?1 Z1 b2 l" @+ f# j

    , w. o2 i9 g( r( G2. **递归条件(Recursive Case)**- t# ?" p: \. J9 I2 |
       - 将原问题分解为更小的子问题" t! b( E/ k. ~9 f9 B2 n, a' [" i8 m; {+ m
       - 例如:n! = n × (n-1)!$ o' \# h7 z9 T2 O6 u% R8 K  z8 i
    2 S. e! h1 a2 s3 y* j3 i
    经典示例:计算阶乘- x) E6 y  _) {, j/ P, q
    python  e) I1 G' v5 _# F" M) c2 h
    def factorial(n):
    " J# r2 D- c3 L) E% x& i9 Q8 W    if n == 0:        # 基线条件4 L2 F- @, }0 t5 `8 l9 E
            return 1
    4 o9 E+ K( m) ?$ J    else:             # 递归条件
    $ I  r4 [, W; n) z9 s9 h        return n * factorial(n-1)
    / V9 z0 h  t9 f) m3 Y. }执行过程(以计算 3! 为例):
    , O) }4 [% L& Y+ u4 E7 K+ hfactorial(3)
    % l* s# L2 G: C3 * factorial(2), }3 O3 I9 R# U3 x6 R9 D
    3 * (2 * factorial(1))) K8 c2 ?4 z+ ^  |* S- {
    3 * (2 * (1 * factorial(0)))) J4 W: n+ u1 i, C; a0 `. `* {7 g
    3 * (2 * (1 * 1)) = 6
    & x; h6 N  j8 s: h+ A5 }- D& }/ u1 Q, [9 L5 g, T
    递归思维要点7 f/ \8 r) i' C
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑. O' O7 W) O- F- ~
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)8 V4 o0 y1 q: x  S" r, Q- V
    3. **递推过程**:不断向下分解问题(递)4 b: _6 K+ U: I$ ^3 e0 q) i
    4. **回溯过程**:组合子问题结果返回(归)
    4 L5 i5 }5 g( B* e( v( o
    4 E0 s$ K4 O% [6 g) D! X 注意事项9 y. k/ |3 x1 p4 H' ?/ d) `6 D
    必须要有终止条件
    ) M& h9 q" E+ E8 E9 X( w8 |递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) |; _. @0 e) o* O某些问题用递归更直观(如树遍历),但效率可能不如迭代
    1 H5 Q7 o. M, A! `6 w; S( s( Y尾递归优化可以提升效率(但Python不支持)
    3 `2 e0 j" O) X  n  R" u3 R1 |& j- o
    # t# Y$ o( l3 d; c; I 递归 vs 迭代- E1 s1 z$ z: g1 ?  E
    |          | 递归                          | 迭代               |
    + N7 h3 r4 @  L  q& j6 k& ^|----------|-----------------------------|------------------|
    0 f  s1 M" b% d| 实现方式    | 函数自调用                        | 循环结构            |
    9 K# S4 _5 ?4 g2 ?9 a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 V3 t& V6 r2 h1 G. _2 B* T1 @# O| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |( S+ a5 Y& L; \1 n
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |2 J+ H+ u, j& ?) O1 M" \$ Y
    # `, L) {4 {7 t/ c9 c8 O! r
    经典递归应用场景- K: x4 w. x* y6 V$ C& x8 @
    1. 文件系统遍历(目录树结构)
    % N, K' n& D) ?; q2. 快速排序/归并排序算法8 H9 Q2 a9 R6 v8 f' l8 D2 w
    3. 汉诺塔问题0 L3 x! v) d- M5 m2 N$ o/ Q
    4. 二叉树遍历(前序/中序/后序)9 U  e' [' p( }; |- ~  e$ D) z
    5. 生成所有可能的组合(回溯算法)
    & N7 N% `; a) g0 _
    " \: `) O& {7 {0 r/ B* z试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    昨天 00:10
  • 签到天数: 3100 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 J4 T8 j. K  t0 S) L
    我推理机的核心算法应该是二叉树遍历的变种。
    # X! |7 ^. n* X2 b9 Y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + j, l" U3 k& l5 v# Y% N: UKey Idea of Recursion
    & P$ ~" z  U" Q0 `6 Z0 V! Z7 Y/ [* H* ?
    A recursive function solves a problem by:
      t- c9 e5 S5 d
    9 P6 `+ P$ K- v& `& u    Breaking the problem into smaller instances of the same problem.1 S9 Z5 J9 |+ n8 u3 T$ j
    ! {$ u3 |9 m+ _5 P$ _
        Solving the smallest instance directly (base case).
    * |3 g" k, O' D8 T
    ) F( }+ Y; }  @! E0 G    Combining the results of smaller instances to solve the larger problem.  p0 B& L2 I" l0 q+ o: i% C

    3 y( u* s8 N8 M. s4 Z7 MComponents of a Recursive Function* \0 a! W* \8 b* |

    ) l) G7 W% F0 F' Z" |7 H) Z$ X    Base Case:
    & J9 D! z3 O2 n- G# f$ [1 v; j9 {5 Y- ~) r* R6 Q5 l
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# {2 m0 F( Q$ J3 D8 y5 x

    ( w* j. b& x! F  q! c/ d        It acts as the stopping condition to prevent infinite recursion.
    & ?2 P! @7 X1 J- p
    % J2 s; q1 J; {! j5 g        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( W; j2 V" y; n8 a( X

    . P9 W1 b: n! |& ^$ o, d    Recursive Case:
    ' E' N4 L1 l3 q
    + i1 R0 D& b. m* B3 `        This is where the function calls itself with a smaller or simpler version of the problem.0 f3 X: e- ^$ ^* h

    5 S4 P' D$ i0 Z9 I) C; L2 |3 Y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).4 p3 G* t/ |# Z# a1 A- H* N; s! W, z. |  s! q
    + X7 r( @: c! W! h
    Example: Factorial Calculation
    ) s5 B" v3 r' j( B6 R7 J2 p3 \: H* m% D3 |/ m( j' c6 ~: u
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! t* p8 R  z8 P" J! ]. y& \3 w# R- X
    % t6 P+ |, P- D  ?4 @
        Base case: 0! = 1
    1 o1 e+ X$ V+ Z- g$ `& T
    & l# f3 t. o! [: w    Recursive case: n! = n * (n-1)!' l! S9 D8 a; x. d3 ~5 Y/ M# t8 e

    6 b5 s2 r- b7 d/ a# {; ?  ]3 MHere’s how it looks in code (Python):
    ) ]+ i/ e! Q7 S" d, y* D, }. Spython
    ) v  u( j0 B+ u* l5 O8 ?% O) W# o# ~) G! r9 M( I
    / m: G$ U4 O" q" n+ s
    def factorial(n):6 F) E" n+ q* g$ @& d4 K
        # Base case
    9 g9 r7 f; H" Z+ f: g' N7 O( l    if n == 0:% Z( T- n" `# o* Q" v# j$ ]
            return 1
    6 p3 V% J1 S0 [' H! K! I1 ?    # Recursive case0 b' {" b; I( L" M) l( B
        else:* }$ P& M, |+ l
            return n * factorial(n - 1)
    + N+ h$ M+ n8 _* C& R0 c& ]# X& B  b$ [# z
    # Example usage
    ; ]7 A1 p5 y+ s* \! eprint(factorial(5))  # Output: 120+ m/ c8 D; b/ O+ q8 l2 R

    6 |+ t- y- s+ c& C, K5 U" D/ ~( i" ^How Recursion Works
    ( Z& A4 i& w# l& b8 a$ ?( ~5 ~4 r8 P% R
        The function keeps calling itself with smaller inputs until it reaches the base case.) w  r+ f+ A) I4 S
    & z4 S) n; b  a- q2 |8 S! X
        Once the base case is reached, the function starts returning values back up the call stack.! \! h5 @  \& X" x- L3 D6 z
    * ]0 c+ a, Z3 S
        These returned values are combined to produce the final result.4 U* c% q1 Y; R0 d; v

    ) a6 {. T' K6 {0 G$ I( ]For factorial(5):
    / ~# i1 R! z8 H4 L! c9 j8 r  @7 f% }; R" I
    & n* Q. x5 u- f6 d- v. }1 t* i  Y$ ^
    factorial(5) = 5 * factorial(4)
    8 r- j5 E& v2 C& hfactorial(4) = 4 * factorial(3)7 d# ]. Y/ D2 u; [
    factorial(3) = 3 * factorial(2)" \3 D' g/ {- f" f' w
    factorial(2) = 2 * factorial(1)
    4 z/ L' j+ ~% q4 ufactorial(1) = 1 * factorial(0)
    4 a- d4 B6 ^5 Xfactorial(0) = 1  # Base case
    # X" U3 I0 }; z) A) ]8 e* M% G- F. `0 i' R7 S. {  S8 J
    Then, the results are combined:/ s7 o% O. O0 y% e  \& N
    $ Z- X: F  t+ o- l
    3 \5 _; V* u: l; D
    factorial(1) = 1 * 1 = 1' B, D( H, U' [
    factorial(2) = 2 * 1 = 23 n% W( d; ?6 n+ v0 ]- r
    factorial(3) = 3 * 2 = 61 @9 o  C1 u( e1 W
    factorial(4) = 4 * 6 = 24( U' o  ~* m8 r1 a+ c6 e$ z
    factorial(5) = 5 * 24 = 120
    * j- |6 W9 ~0 L- [7 Z! K5 F4 Z% f: A9 R; }
    Advantages of Recursion
    9 P0 t+ g. l8 Q, I8 e! z/ W% I5 P4 I2 J$ y* z' f2 a  J% S
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ Y1 }1 X+ B' |! Z

    $ a! z5 h5 w" G' c, s  E    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + A( e( ]6 Y! k4 l* @1 \! H( q0 I: `/ L% ?* g* s
    Disadvantages of Recursion- i; C+ d- q' q. l% w
    9 v" s7 B( y& `0 h7 P
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.+ c- b4 M: X: J/ C
    + o% D0 }1 j: ]( m) g6 r1 h
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)." b/ V; X9 X4 b' s
      G/ j' l& ]2 u: H& w; ~5 V
    When to Use Recursion6 H. X2 F' c5 @: j

    * r) b# H0 R2 X" `- J% _& S. J) j    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. e8 H% Q. g- g, u2 u: r0 N
    6 h! c( \0 F/ `" B
        Problems with a clear base case and recursive case.. F: r6 N# K4 T3 n- F

    " ]4 F. V( J) i) \% G/ @Example: Fibonacci Sequence
    2 B% m" S7 k9 k% m" [. D. [2 J+ _! r/ Y+ Z, X/ U  d; F2 `
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % e. j( E. o) [2 G8 X1 W; b( ]4 f/ o6 X6 L2 d; \
        Base case: fib(0) = 0, fib(1) = 1
    0 E8 o0 g4 F' a5 ^, M0 K0 x: X/ J; m, i
    8 k! T% Z- p$ a# i; b& g4 G& U. X    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    1 Q" J. Y; N1 ~+ k( u8 s$ {# \, H1 o' f5 F
    python
    , w% Q6 B& W/ l& A7 \: b! f; K5 @% d% r* [. U0 ~% [& w0 S; I
    ) a) F! ]" V" D" C% \& j
    def fibonacci(n):
    , M' J2 y* u' f    # Base cases
    9 K9 {' O- [. q, [4 ?: i" y3 Y    if n == 0:) U( T/ K$ ]7 \; H) S# O
            return 0
    / c% A/ _3 o; C/ Y    elif n == 1:; l8 B* I) ^3 V- K) f+ n/ q% }
            return 15 z* p' Q$ ~" V" v: e0 e/ B2 a" B2 B
        # Recursive case
    6 ?6 I! S9 i, ^$ M( {+ s& ]8 s5 O    else:
    7 S. f# J# u5 z$ Z! X: Q2 O9 E        return fibonacci(n - 1) + fibonacci(n - 2)9 Q: V$ x8 {/ T+ T3 p

    0 B5 v  R5 t) N7 t# Example usage
    * z6 p$ \' z: L. L) v/ M* _print(fibonacci(6))  # Output: 8
    ) x3 N% F. m2 ]( N5 {, O6 d1 f& I4 f4 h" H2 j
    Tail Recursion
    % C4 R5 }: Z; \9 |/ |& R1 m& x7 i
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! ~4 q7 v' T% H0 Z5 Q' \1 F! c' C% K
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-24 01:24 , Processed in 0.035964 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表