设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1735|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 2 Y  U2 q: C3 o! [2 Z

    " e' l9 e3 H7 ~, g- ~2 p解释的不错% ?( g# W- a, L3 K) c
    - t* Q; r: ~4 v, e* C+ n' a& Z* s
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( R* ]* L3 u; a4 D, F9 k* Q8 s

    / W( V4 Z) q; Y 关键要素
    0 @7 \' s/ y; z& M: _) M8 n1. **基线条件(Base Case)**3 G% N+ ~2 J, m6 _3 I$ K
       - 递归终止的条件,防止无限循环
    5 |: \" G/ g: S6 A   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 b) x# \5 |& \- n. I  K# T2 ?  s  N& i
    2. **递归条件(Recursive Case)**
    + N- b/ K$ P1 {! N8 T   - 将原问题分解为更小的子问题. @% g# N; c8 n1 @. S& s' J
       - 例如:n! = n × (n-1)!# G7 ^& h4 M4 c6 X9 |
    ( I7 [' F: B" Y& Q5 G' k: `
    经典示例:计算阶乘
    & D6 h2 Q. U- b8 x& {' ]python
    ! e! t% j- f, k0 ]" Kdef factorial(n):5 ?, r# G8 {% d9 L
        if n == 0:        # 基线条件# R2 I1 T2 X4 V) \4 d9 f
            return 16 j8 ^4 D- \. M/ n! I
        else:             # 递归条件
    / k6 s; H+ n1 d6 ]        return n * factorial(n-1)
    2 X4 L3 S  ]6 @$ e' @% N# O执行过程(以计算 3! 为例):! u+ b3 u; Q& B% x# W7 M
    factorial(3)
    - S, |1 Y6 Z* J3 * factorial(2)
    # i1 g; F) G% N6 Q0 Z' u( X3 * (2 * factorial(1))
    & y) b+ b+ j! m9 n/ ~. _0 K3 * (2 * (1 * factorial(0)))
    5 j0 V" i, R' x0 X3 * (2 * (1 * 1)) = 6) V/ ^, w7 A* K5 o
    ; H1 I! U; v  u. u/ U! g
    递归思维要点
    / y" Y4 w: _2 p; r. \1. **信任递归**:假设子问题已经解决,专注当前层逻辑: c5 `! ]! I- }4 F" F
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    8 q0 e% L- C9 i' T$ I5 K3. **递推过程**:不断向下分解问题(递), g7 z0 E; w5 T6 T, }
    4. **回溯过程**:组合子问题结果返回(归)
    7 k$ X2 J# i" @
    0 A; j4 j( k. S6 Q7 V. [1 ~1 d& [' p 注意事项
    0 w% N2 N6 M3 |/ \& |必须要有终止条件6 M1 I0 F5 Q( z8 o+ w2 X2 m
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ {- t1 g- O. I$ m0 x, Y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    $ ]: p; r6 s) B8 F' h尾递归优化可以提升效率(但Python不支持)
    . u; I$ a5 d- j) Z$ s/ i- b
    - p% U, |7 r2 i) p" N0 ] 递归 vs 迭代7 P+ K+ t: W( m) ~; C5 p; D
    |          | 递归                          | 迭代               |
    # F$ A# ^3 w7 x|----------|-----------------------------|------------------|
    8 \3 z( M4 L5 L2 A2 C9 b| 实现方式    | 函数自调用                        | 循环结构            |
    9 T6 x. w  M7 r% B/ j  t| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 V9 n2 m. T: e2 |* Z* x
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 W* b& {. [$ a! X: q* c8 j* y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  `" Z3 j' V, ^3 b# x' s

    2 y9 t+ X! Q" r% K 经典递归应用场景
    . H+ V/ _. m$ o$ s8 a1. 文件系统遍历(目录树结构)
    3 r$ u4 W3 f8 d2. 快速排序/归并排序算法
      N# b( U1 s1 @# y- q6 n. o3. 汉诺塔问题/ g/ y6 G; ^# s- D+ f8 n# k5 |
    4. 二叉树遍历(前序/中序/后序)
    / K  C; i5 G" B6 J* K5. 生成所有可能的组合(回溯算法)
    & P5 H1 v/ Q* V4 B1 w) x+ h3 B: g2 V2 u% F+ @# h3 v, U; u. H
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    8 小时前
  • 签到天数: 3137 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 l% J. c  w; _8 i我推理机的核心算法应该是二叉树遍历的变种。  h2 m7 i, v4 ^- J: q, s
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , N; h' K7 s# j: u; S8 V% Z2 yKey Idea of Recursion
    5 p, I) D, Z8 l. u0 l( k% D9 i- o+ L: h# Y5 f: ^% U5 W- r
    A recursive function solves a problem by:
    0 }2 E7 F9 C3 a2 c; `
    $ K  A8 {' V. z$ ?    Breaking the problem into smaller instances of the same problem.
    3 W+ e2 V9 b" h: A4 Z8 b: N
    " x6 J. `: ~$ v) I    Solving the smallest instance directly (base case).0 D' r9 `# p0 N% w7 ?, N

    # M1 t: x* s+ T6 T& y% W6 T2 i    Combining the results of smaller instances to solve the larger problem.; F3 {: H% L$ \" B& |- t
    - ~( K4 K* K" U7 _
    Components of a Recursive Function
    : O# O0 Q  z- I4 t2 Y) `1 a
    $ S- S) z: ~) D0 y    Base Case:
    ) J) ~2 E4 L; o, ]+ F) Q0 E. l- G" b9 O
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 p' n- J* D/ ?% F6 ]* _" @, V4 V9 Q5 w8 K( N, d* q5 N; Q
            It acts as the stopping condition to prevent infinite recursion.
    + R( Q2 ^* {0 F8 p( _3 ]- P, q
    + |. ~6 P; |" `6 H9 i$ m        Example: In calculating the factorial of a number, the base case is factorial(0) = 1." p  D% T4 ?2 R* }- |6 e2 Y% c

    8 U  Z* O3 d0 F; l1 _    Recursive Case:
    5 j! u/ s: m3 [' G9 u: T6 V! F) Z% i4 s+ U) F5 _7 {6 p
            This is where the function calls itself with a smaller or simpler version of the problem.% _# t' @4 [. |3 {* o8 s2 l
    6 B6 s1 o! u9 Q. R6 a) C
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      {4 C9 T8 o2 ?) J/ G7 l/ i4 e/ l- d# K' x8 \  A
    Example: Factorial Calculation
    , ~# F/ |! i- u, R0 s9 V- D0 Y
    9 F  `8 P. S: a; z2 qThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) y% j# M4 C! ]5 [/ t
    ( m8 n( Y8 y' V    Base case: 0! = 1
    6 X& d$ u) f" s- G4 [' z3 @
    & T- M5 A- _7 W6 m4 C# S" V    Recursive case: n! = n * (n-1)!0 i8 I6 t. C$ O$ b. Z1 b
    - S1 Q# X$ d$ k  @, z# N0 f9 }4 q
    Here’s how it looks in code (Python):
    3 S; F) y9 g  W# G: L7 fpython+ w. h# F% R  M. ^

    . A; d" r$ Y4 Y  A& |& t- m
    + ^, R4 b  {3 z4 Q% Edef factorial(n):" J- ^! q6 e- O$ E7 |( b; `+ e
        # Base case# W0 I) Y- a& d  H1 F
        if n == 0:
    ( Q" \) Q  n- ^, G# D3 V: w1 @        return 18 Q1 ~' {3 T# W9 O7 p& J5 L
        # Recursive case
    ! i! b8 Y& R% i/ |7 K) E- _! d    else:) y+ y  M. x; v* P* n
            return n * factorial(n - 1)( j. O* i% i  X0 y3 d- K
    $ J+ h8 F) g2 F8 x& U/ d8 R' J
    # Example usage7 P' s9 _5 S  \" x7 M/ m! U
    print(factorial(5))  # Output: 120
    & U; r7 O3 N: B7 v: f9 y
    6 J8 g' m, h0 EHow Recursion Works
    4 q5 J# q5 _; S' l7 x! A9 J: s  n. v) X; n. T
        The function keeps calling itself with smaller inputs until it reaches the base case.2 F& D4 _' _; ]' @  z9 u/ `
    " O4 a* R+ k' D
        Once the base case is reached, the function starts returning values back up the call stack.
    ; |. j) b  P3 w- \. {/ C; Z4 j, o) r. b, |4 m
        These returned values are combined to produce the final result.% q) o4 L2 a( P% K- X
    ' m2 \4 u" m& I6 t2 K9 j1 l; D& }
    For factorial(5):8 r8 M' e. ]5 _) F9 G, o* ~; r

    6 `) W- B3 j4 X8 t7 i; _0 n  `9 j! u7 j% `% K& }; @* n
    factorial(5) = 5 * factorial(4)* [, m& y% q8 s# {5 R7 g0 s
    factorial(4) = 4 * factorial(3)
    * t8 w7 H) h7 m7 Z: ufactorial(3) = 3 * factorial(2)
    ) d0 J# x, h* l' ?0 R5 M' w3 u9 h. ifactorial(2) = 2 * factorial(1)
    " |4 b8 A5 S( ^, w$ y1 q% h" @factorial(1) = 1 * factorial(0)7 O& \, s$ i1 m5 ^9 Q. d
    factorial(0) = 1  # Base case' O; O: k1 r: G. h! S( z" }! X

    ' A" }  A3 k. `3 n. iThen, the results are combined:) x2 c$ i$ Q4 q, @' n( H
    : R8 i( P- R% i4 q# x7 r+ C/ L

    * [! T7 k# T1 j& Ifactorial(1) = 1 * 1 = 1
    / S. R" S( H# f2 [factorial(2) = 2 * 1 = 2
    7 @( K- Y: r4 |0 _' ^/ c3 b; P, Tfactorial(3) = 3 * 2 = 6" R/ @  e+ r1 W2 p- i# A% F" S
    factorial(4) = 4 * 6 = 242 i$ Y& j% n4 i
    factorial(5) = 5 * 24 = 120
    ; E8 v& T/ t# ]1 s( N: A5 c" o* W
    Advantages of Recursion
    & ^# X% ~! W4 G; r5 R( l1 A$ \" ?; j3 S! Y8 |( j6 u$ p) v
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    . K3 A' F% {2 m, n/ y: Z/ |' `& r  G& V# S: Y  a3 B2 X/ f
        Readability: Recursive code can be more readable and concise compared to iterative solutions.% h% Y1 b* T# \9 p6 R. _# m

    . t2 T  a; O+ |5 i2 u2 XDisadvantages of Recursion
    0 J: v8 W$ t  n( Q; ^
    1 g# f& G% N6 j3 n    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 j, c7 X2 h0 E# d' H" n/ D% b/ w
    ; D) ?. u; P! o8 v$ r
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    - u& j' F% V, T0 e6 l  l! E& F/ U. j: ~7 M+ Y* W6 O+ K; t. ~+ B+ j" t
    When to Use Recursion4 O8 A* s% D  {3 O' t+ a1 d6 R

    8 w! m: g& b) v& X( \  \    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  B7 _7 C! C4 h- [

    9 t- J; t* B' \7 y9 i4 d3 T+ g" z    Problems with a clear base case and recursive case.; v2 _/ l9 {  }8 M% n& g

    9 v% k- N% [6 o2 Q9 G' U, @) aExample: Fibonacci Sequence7 N/ C# n' f" G# R& ]9 l

    - f7 @3 y( S  j: _$ HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) @$ u3 Y4 h; Z3 x

    % x) m( h8 x& L: J) d0 ?& Y5 ?    Base case: fib(0) = 0, fib(1) = 1
    ( A# M  R' v; e5 }
    3 ]6 [7 K. d* v/ I+ E, I    Recursive case: fib(n) = fib(n-1) + fib(n-2)% s, |: c; K8 }9 E; k! g5 o. j% K
    " }& i$ @9 n% g  d  D" u1 R
    python. ^6 U7 L8 x8 T! \) x! g7 \

    ) I' V# [, W% @2 S7 Z. t. o9 o9 P. C' U  c4 m
    def fibonacci(n):
    $ d5 i9 k- t3 Q    # Base cases' m8 B: o$ m7 k8 \; Y
        if n == 0:
    # n- ^0 V$ W1 P' ~3 k        return 0
    % \, `& S3 N( y! O    elif n == 1:* P  v6 l  b; F9 }% U1 q! G
            return 1
    2 b! k/ [( ~- Q, r: K$ ], t/ B7 e) P    # Recursive case
    + ?9 v4 Y# y9 j9 X' S: |    else:& Q, ~/ ~, e- V' Y- O& Q
            return fibonacci(n - 1) + fibonacci(n - 2)
    ' ]% O8 O/ `2 S9 L0 e
    3 w- v( k$ P+ K# w, p# ]9 l. e# Example usage7 H7 W" z4 A" U6 i& Z
    print(fibonacci(6))  # Output: 8
    - Z( {7 d9 W7 h6 M/ K1 R
    9 Z0 `  N1 j' J7 z0 X) i. z! dTail Recursion
      j/ }6 l5 `& D4 M( r
    & d8 r0 ^+ k' V* K: p: u: nTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ j3 Z2 W& m  b/ a

    , y# W6 [) }$ b7 OIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-5 14:56 , Processed in 0.029304 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表