设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1229|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # S  w* ?& g; y0 Y, ?
    + N$ H" F) V6 P3 J解释的不错! Z6 [6 p, f% r- B' M

      J/ u  _: A: s8 F递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 V- y4 ~' e% A& n, X' s. m
    & r5 a, q1 f0 Z6 K% C9 H
    关键要素
    - q& Q: m/ O. m! Y5 m1. **基线条件(Base Case)**
    # {# i/ Z7 g- e& s% b$ |   - 递归终止的条件,防止无限循环: ?/ u6 `6 V/ l; m
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      O! z. \1 K0 z9 V5 L$ |& P
    ; D5 b) z5 ?- B6 o* z, w2. **递归条件(Recursive Case)**
    . ^5 ?5 \! Z& ~% V3 |& M   - 将原问题分解为更小的子问题
    3 K# {: x2 o/ e, H  ]/ e; n   - 例如:n! = n × (n-1)!/ A  Q, [# I5 m! R. r/ k/ y; n

    . ~3 b8 ~4 [8 Y2 u' T6 Z/ s 经典示例:计算阶乘8 C5 h1 z, ]; ?' h8 {0 ^9 H' D  e
    python4 b5 d& {# a! d* x
    def factorial(n):
    2 e: Z/ v, ~9 |    if n == 0:        # 基线条件, a1 c$ h) [$ t% O
            return 16 d! [" C+ a% |
        else:             # 递归条件
      @' ]- F) h" I( |        return n * factorial(n-1)9 r% f! l8 v2 V  l2 T" p: V& l# Y
    执行过程(以计算 3! 为例):
    ! a+ d) X+ A! L' efactorial(3)
    ; H: {( G5 U  }! D$ L, v0 N  z, o3 * factorial(2)
    - \/ z; M) a- e( ?; f; A3 * (2 * factorial(1))' j- f/ b' S# m1 \
    3 * (2 * (1 * factorial(0)))9 |4 s8 B! Y* ~! o0 r9 B+ P
    3 * (2 * (1 * 1)) = 6) H% V- o! R9 u7 I# S% t8 a! \

    ! [) K! X" Z+ }% x2 v 递归思维要点
    1 |9 W' I+ |. P- r/ C% A1 `) {- T1. **信任递归**:假设子问题已经解决,专注当前层逻辑; f4 a1 s+ p* ?# J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)' ~( k0 x: ~8 W+ y
    3. **递推过程**:不断向下分解问题(递)
    + Q1 \7 x+ `. Q6 `/ ?8 o, Y4. **回溯过程**:组合子问题结果返回(归)
    5 L% h4 X" S( v# t- }7 O; y& J
    ' {1 ]+ e/ j4 _7 w 注意事项$ f! K3 I( j9 V7 C
    必须要有终止条件
    - O0 ~5 B1 |4 ?; a% B3 B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 L) G/ v+ i& o) h: b* o& g某些问题用递归更直观(如树遍历),但效率可能不如迭代1 x2 {5 h* z9 G
    尾递归优化可以提升效率(但Python不支持)6 O! k+ M7 u* T% N, i
    ) u  P) L+ c; j9 p9 b, U
    递归 vs 迭代
    + V' ?! w- ~0 }|          | 递归                          | 迭代               |5 W' C6 A5 S$ e; n% M
    |----------|-----------------------------|------------------|
    + x! f5 I: R, F9 c8 @8 c; ^. }5 h8 d| 实现方式    | 函数自调用                        | 循环结构            |# ?2 F1 U& b" ~1 e) J! @( w" o
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    0 J/ m, r. c) y. Z# ?' p! P% H| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ; r1 H2 n2 b- l5 h. l| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 |2 X1 b3 c- r- q8 c8 _; |3 Y, J) O4 J
    经典递归应用场景
    6 \) T: s5 \4 z9 v; w8 S1. 文件系统遍历(目录树结构)& J7 B" d/ D9 u+ z6 K% t# c5 G
    2. 快速排序/归并排序算法3 `# _2 J. C+ W# X; R
    3. 汉诺塔问题
    ; @7 Z5 A3 j$ O$ T4. 二叉树遍历(前序/中序/后序)
    0 D1 W/ W, N, j& J2 I6 S' F, ^0 v- D* G3 v5. 生成所有可能的组合(回溯算法)& i, b! y' A) p' @' A
    8 ]4 j$ O* r0 i. A! N
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    6 小时前
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 R; s" P! [- X
    我推理机的核心算法应该是二叉树遍历的变种。+ [( ^/ x: ~' f; R0 B  {/ h
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: j% I& H0 ^8 M" z
    Key Idea of Recursion
    3 w: B8 {4 g5 R; ^2 n% A! X, ?' U# @. z& Z5 E9 I. b
    A recursive function solves a problem by:
    & ^& c% N% s( }+ ~( P* F: q# G9 n2 b% x. T9 _+ @
        Breaking the problem into smaller instances of the same problem.0 |& V: O7 k3 ~  p3 T. R

      L5 }9 H( ~/ {: k* U    Solving the smallest instance directly (base case).7 M3 `- ?. Y4 p. }7 g

    0 Z2 _0 [! U" ?6 m    Combining the results of smaller instances to solve the larger problem.
    ! i2 E. {) t; q0 W+ S' h- g9 c- v- Z6 r2 T9 p' o' I: V
    Components of a Recursive Function
    * J8 M! ]' m  a* R# D& F8 M7 ]# w
    3 ]( \: l; o; ~6 `' `+ F! L+ l/ x    Base Case:
    0 g* W% e, U1 ^) J' Y5 m( M8 d" I7 u8 b3 J" N3 P  h; d
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' c5 s+ C( K- |5 o& ~$ h

    ( e$ k0 b+ b! v2 X, G7 E        It acts as the stopping condition to prevent infinite recursion.' k, l5 p1 E/ A& M  ?/ p
    & A4 Z- K' i, v7 ]
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ p5 g: l9 |( }0 ^$ x  k) |: F
    : [1 H% ^* z7 ?2 D  r: T: L    Recursive Case:. I, ^- k6 C9 {0 n8 L2 d
    - v! O$ b8 h. ]0 x7 h$ a+ ~$ n
            This is where the function calls itself with a smaller or simpler version of the problem.  O5 U* T1 C  J* X4 Y

    7 m* V, Y- w* e        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).) F, y- s- A. v' t( i! q' G

    2 o  G+ U  ~! h) r, Y; hExample: Factorial Calculation7 ]$ t- R6 Q9 u* C7 T- D& R
    + S  b- i- h4 K7 }( {; d- b
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( p: V/ B2 ?8 }4 F; |, p
    2 C% t" m/ P3 W# B    Base case: 0! = 1
    ' {7 k8 ]' s# v2 o2 T. F- k
    ! D: w9 \& `9 O, t    Recursive case: n! = n * (n-1)!
    % h+ a: b7 O. e9 O+ r2 \- q. ]' F, w6 C+ ?
    Here’s how it looks in code (Python):% u  A& ~' S! x" ]& [
    python
    $ H- e& g, E: n7 w- }( I4 m/ e- n# v6 K1 h

    % H, l$ k% q* d; Udef factorial(n):
      j+ m) @" F) B2 z    # Base case
    ( Z# z* z+ Y3 u  E    if n == 0:
    1 `$ ^. W- [& S1 f; R2 [        return 1
    8 [, L4 o, [6 U8 @! E' ~6 }    # Recursive case9 b& D& H/ H3 S% C  f( D
        else:
      o$ t& O# J% X' s2 B0 U) a" G+ a- E        return n * factorial(n - 1)
    $ N5 p9 e( x# Y& o! b
    1 B0 i3 F( y# i# Example usage
    " s% u" _6 |- V: Wprint(factorial(5))  # Output: 1204 b$ ]. {6 Y+ l2 D# w2 G3 D' \
    . H# }+ m6 D+ O! F
    How Recursion Works7 z% G& h! _! |: A4 O# N  f5 Z* Z
    8 m( m" ~- J' }$ c% N
        The function keeps calling itself with smaller inputs until it reaches the base case.% x0 Q, T5 U3 k, s4 d9 {

    , Y7 q3 ~# E3 A3 r3 F1 e    Once the base case is reached, the function starts returning values back up the call stack.
    $ {. h, g9 G5 _4 k* \2 d. O5 c( v0 W; ]( J
        These returned values are combined to produce the final result., d1 @8 K  h& C$ D$ C

    + P5 w% F" E! o! o3 x- eFor factorial(5):& S2 o0 G: u6 {2 I" f$ I
    / C! l5 D8 ~2 E% h: n4 l
    ' a* ~6 T7 e* Z' w' A
    factorial(5) = 5 * factorial(4)
    1 F' k9 {1 C0 G8 A: }# A0 Tfactorial(4) = 4 * factorial(3)
    + ?1 d1 c0 Y2 \4 Q3 dfactorial(3) = 3 * factorial(2)
    ' [6 G; i1 G9 G) {6 W( q: Nfactorial(2) = 2 * factorial(1)
    , R3 h3 U' W* u5 t5 Xfactorial(1) = 1 * factorial(0)% J1 @2 s: S- Z, a* |* J) @% W$ @
    factorial(0) = 1  # Base case
    3 G# e* [0 E0 h, A5 o5 |6 v" h5 \+ }) _( u
    Then, the results are combined:
      P1 u  S$ N9 \
    / I7 X$ j# \' j* c' B( V  x& w+ L9 Y, U
    factorial(1) = 1 * 1 = 1
    ; f% `. |# E/ Rfactorial(2) = 2 * 1 = 2
    9 T4 v4 v, y$ x2 A* h2 x: D0 ~factorial(3) = 3 * 2 = 6
    ; e& X3 |+ A, l; J# Z9 [factorial(4) = 4 * 6 = 249 R- H# d5 w  h2 i' B, B4 Q
    factorial(5) = 5 * 24 = 120$ M% o5 M( ]# F* c# c. {1 \

    ( c5 @7 I% K; h& ?$ b! @$ `9 `Advantages of Recursion2 l- }6 j6 q% q. E2 ^( w" a$ U
    ' f0 Y0 u0 h8 r! R' g
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) S1 C) u8 o3 c! A6 L; y3 _. C3 S

    5 x$ [  f% Z7 S    Readability: Recursive code can be more readable and concise compared to iterative solutions.* h3 \; V. d" v: l1 K6 |% @6 l- p: a
    # b5 T7 x. t6 Z  b; B# J! S
    Disadvantages of Recursion
    ( q& Z% ?" L- S; X
    : U5 `' q6 U' |, `    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. L( \: c) q& E7 m" i3 t. S& l

    ; M2 y. o% W! s2 R+ p* R    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 @3 V. L4 X/ H6 g

    ( n1 ~; [! a4 Y' c) n9 g6 Q# ~  A2 YWhen to Use Recursion
    9 ^* M3 s4 X/ \% T, i# ^: p) i9 ?
    , \; ]- F5 }* ~; a    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ y* q8 I; \9 d' O
    % n* ?7 @( P( e
        Problems with a clear base case and recursive case.& V- J0 S6 |+ S' I8 B2 S* i

    ! g: {) \4 b" T) s' L7 }Example: Fibonacci Sequence
    % H8 h. `$ V, H3 I5 Y; w0 ]- ?) P( p; ], z2 I5 F+ F8 |" }& y
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 ~  W, M# o5 ~$ U4 I
    , k+ S: O1 q* m
        Base case: fib(0) = 0, fib(1) = 1
    * v+ @5 d$ s2 B% K1 I+ Y
    5 r5 @( M7 ]3 H0 f* L  r* x    Recursive case: fib(n) = fib(n-1) + fib(n-2)) h% p" A1 c: n) v3 c0 k& f
    1 V% F: S! v" `9 r1 j  R
    python8 ?  ]& k8 X1 X
    . u* w1 ^. O1 V6 z7 \2 {
    * u7 \- W$ A- U& L' |( B, z
    def fibonacci(n):
    2 @+ V/ k: u, [5 A    # Base cases' _' }& a, C2 E5 m2 [1 N" a$ r: o$ K
        if n == 0:' K! i6 e" ?* j* v5 u5 i; g3 ?
            return 0" z0 \" I& j' W7 z& |# J
        elif n == 1:/ I0 z* P* M& W. `0 l
            return 1
    # L+ n) k7 a$ c1 l# I    # Recursive case
    8 I% H. j  b! ^; {" |1 _9 P    else:3 I0 A* A9 `& `) C
            return fibonacci(n - 1) + fibonacci(n - 2)
    ; s" c5 t% o1 ?8 L
    8 v6 F0 Z4 g9 t. A) T* ]# Example usage. K! F- S& a  b8 k7 N6 U6 p9 n
    print(fibonacci(6))  # Output: 8" A3 p& K: c7 @* x

    ' ?1 \8 d4 b0 E9 L* R  yTail Recursion
    + @4 o% T. t" i9 |
    4 N4 e% \. ]' I2 j" M- N7 jTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 Y5 R* U/ x' \* t

    1 F0 i: t' h% D2 e+ \0 h5 jIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-29 13:23 , Processed in 0.036707 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表