设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2061|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 I4 A; J  R, w* @
    ' ]" g" \% c+ Y, Q+ Q: n2 |) \
    解释的不错
    ! |6 K, R6 {. N) _: b+ J. R* j
    * V5 R, k% _% Q8 |递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    $ x0 W% f% m5 |) H; d
    1 D/ ^' Z1 V- ~ 关键要素/ w+ N  R! f2 z+ `6 I* c
    1. **基线条件(Base Case)**
    ! D: M9 M% z, ?) P6 E* l, [  `   - 递归终止的条件,防止无限循环7 j; O" Y- _8 F
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
      Q) V! {$ K6 L( {. J; l- b" i6 V- h3 P- n+ G8 y
    2. **递归条件(Recursive Case)**+ T! }: d* }: R7 ~* u  s2 ]
       - 将原问题分解为更小的子问题7 o5 c) n3 [* }1 E7 k$ x3 [4 e/ G+ a
       - 例如:n! = n × (n-1)!6 d" [) b1 I) T* \) Q4 V

    * p9 G- R0 `1 b6 V8 p6 L$ l 经典示例:计算阶乘& R- K* u5 n5 }* w8 f4 c
    python  p) \  P/ u. R; M# q
    def factorial(n):. K! U) Z" i0 `6 f% J
        if n == 0:        # 基线条件" z! e* }2 a: I. f6 z0 f
            return 1
    " A- `5 M8 l  v    else:             # 递归条件
    + y" ~$ |, I/ B( D. J) l4 U        return n * factorial(n-1)) O* l- W9 w$ \+ N0 _5 B8 Z( d' y/ y
    执行过程(以计算 3! 为例):, [5 l2 Z& m; ]* T, D
    factorial(3)
      F: [- A) D6 }9 c, e5 Q0 I  f3 * factorial(2)
    0 K$ w$ \6 C( t" S1 R3 * (2 * factorial(1))
    / w( O6 V6 m4 m" h; t3 * (2 * (1 * factorial(0)))7 }/ G( V+ e1 @% N
    3 * (2 * (1 * 1)) = 6
    ) ~- O9 k( {! \9 P8 t
    9 ?5 h# B: v" I! {' H& i$ Z. m. w( o 递归思维要点+ S1 h6 f7 {6 G( ?" B8 g+ B7 a
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 [, I5 G* Q5 [' f5 h1 X9 i+ T5 M2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . N) @* R1 _2 b* C* G8 h2 c3. **递推过程**:不断向下分解问题(递)
    7 m; O0 E7 L+ D$ |, P8 X4. **回溯过程**:组合子问题结果返回(归)* k  Z( J# X+ r' X6 G, X
    ' }9 Q; B4 F% G
    注意事项+ }! x+ L) g2 S  k4 p
    必须要有终止条件" l' c8 K# O" k8 y) t, \+ i
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 A: Q" Y& I( e
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    / ?) u: _  L1 ^- b. J, C: d6 n+ Q2 \) {尾递归优化可以提升效率(但Python不支持)
    ( D1 ]5 U; E7 Z/ B4 G, w8 p7 f- f# |/ }8 }8 E# A) ]$ L- Q
    递归 vs 迭代
    - P* K# F8 s0 M: Z5 F' p+ @1 Z|          | 递归                          | 迭代               |; j. y5 N- K9 c9 w5 r$ U. Z
    |----------|-----------------------------|------------------|/ ~4 o3 ?: J3 d) ~% f1 y
    | 实现方式    | 函数自调用                        | 循环结构            |: G" Q$ h- z3 @" R3 x4 S+ l0 m5 [
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |0 W) v6 X% `6 [
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& D& y: `2 W; j$ g. d4 m5 c9 o) @
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : r% f! g- }: i7 D& a4 r7 @
    : r  v' i4 F" o8 l, Y6 t5 I  R 经典递归应用场景1 @) p/ c7 |0 N" O
    1. 文件系统遍历(目录树结构)  ^& P& X+ q3 S$ O! l
    2. 快速排序/归并排序算法
    ; k2 B+ Z1 t; L/ t3. 汉诺塔问题
    ; U* a& u' l, C" X: }- P9 ^4 t4. 二叉树遍历(前序/中序/后序)# U; l, X5 B# I# _5 Y
    5. 生成所有可能的组合(回溯算法)
    : p9 ^! q& t+ i7 d
    # s3 Z5 }* V1 U# I试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 10:43
  • 签到天数: 3169 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: f3 M4 [' @# O5 }1 N6 {% d7 |
    我推理机的核心算法应该是二叉树遍历的变种。
    * ]0 ~; B- X1 F另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 n1 N4 }! N) u# W
    Key Idea of Recursion
    5 f, `% f6 e' U! z% M/ I# H
    ' g2 |8 W0 y6 m$ _, ]  U& g3 m/ E0 lA recursive function solves a problem by:/ q3 K  R0 A8 P% K% T) T% P  X

    " V) Y9 w, z6 o& M9 d    Breaking the problem into smaller instances of the same problem.
    1 D- P3 u& \8 i: g7 S0 R# o  ^0 G0 B3 ]5 X
        Solving the smallest instance directly (base case).
    6 v. m# Q9 }# b3 [% F- [! K- r- ], Z6 q2 x! }' u  \' j8 Y8 f8 L
        Combining the results of smaller instances to solve the larger problem.
    . S1 V, g# i/ V0 d0 q" n' I" n$ V' P* r3 w( }
    Components of a Recursive Function  R* d# F5 K. Y3 n! E4 s

    1 V, ~/ n) R- p( y" L0 n    Base Case:
    ! y6 Z: ~4 l! ]' S% y2 U1 A! r$ G) e; ~2 C  l
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    5 Q  o$ W+ p0 S4 ]9 m. r/ Z/ |3 {
    $ ?9 r- {$ ~5 u" R        It acts as the stopping condition to prevent infinite recursion.# q3 P/ F; n3 L6 G% P
    ; E) D7 z- D( ]* M
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & u% n' p2 C  j; j7 f8 l5 F; m& y6 }! I% M6 t3 i8 q
        Recursive Case:
    . l8 l& M" F6 o* B, z; n6 T9 `
    : W7 j0 B! n. q1 C6 {/ Y& X        This is where the function calls itself with a smaller or simpler version of the problem.
    - d' a/ `* L8 \8 h. j  N/ b$ r3 V% o* y, R1 r( u6 K5 B* V
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # E" z. }" u' ^4 s' T5 K9 a: Z: N  T8 d' N8 l. x
    Example: Factorial Calculation2 V# H& N5 q) L# A. Q5 Q

    : r% Q2 n5 U, E' u+ v) \3 x6 [The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:# N/ R4 u+ L  {9 n+ O6 M6 z9 i
    & I% ~1 T  Q% a+ Q" D' Y9 K* a+ e8 U
        Base case: 0! = 1, a9 I, w' T7 y( m

    ( Y- Z% J' e7 z/ h9 O4 C    Recursive case: n! = n * (n-1)!
    ) i( D& t* L7 I; n+ y' [! }2 X  v& g/ g" H
    Here’s how it looks in code (Python):
    3 z1 {) [+ Q( `7 _: {python" E/ T& @9 N3 S+ b6 J( m

    ; x  S9 N$ o8 a' f# t. n9 Q! S) K4 E. h! O# i( L/ K" x) a4 S
    def factorial(n):
    " {& {& r: Y& |; e) G! e    # Base case
    - [; Y: ~) |6 t% E6 ]+ S: M    if n == 0:- v# u7 g9 Y) f  I! j1 @, p- |7 h
            return 1  }/ E& P9 |' J( W$ S
        # Recursive case
    ; U: Y% U& q* H2 W% y; W    else:
    " K2 H/ a& F* k( ?  `        return n * factorial(n - 1)0 Q/ ~% s/ i6 p6 W

    3 S. d+ ^. J. ]2 Z# Example usage
    " p0 `2 w; C# ?5 |' n7 p* `print(factorial(5))  # Output: 120: U$ H: \3 j+ Z  I
    ' H- ^) o' K* S, L& O
    How Recursion Works
    / y; w6 ~8 j4 F; ~% p' p4 q+ _; H. P  M3 T- |2 o
        The function keeps calling itself with smaller inputs until it reaches the base case.
    . f" c4 \7 C  k3 L8 c
    6 `; C2 W- @5 A* d8 x9 O    Once the base case is reached, the function starts returning values back up the call stack.1 O6 y( X) f6 Y+ n7 \/ r
    7 z% H& }+ |  ?  w3 H& u
        These returned values are combined to produce the final result.
    % {/ H! c* i. Q
    $ p  |1 m2 w5 t% t4 ~1 d2 w: RFor factorial(5):( N' D5 H6 L2 ]

    & e7 ]# M3 ^: v& `1 a
    ( |% T8 w& B# _( Kfactorial(5) = 5 * factorial(4)& O* M0 j$ t5 n8 X8 u! `, Q4 D; e
    factorial(4) = 4 * factorial(3)
      y( M9 z8 S# C. \/ Rfactorial(3) = 3 * factorial(2)
    ; C6 r$ y3 w! d' f$ v4 n  I# lfactorial(2) = 2 * factorial(1)1 W; r( o3 C: s' r0 A7 N# X  h) ]
    factorial(1) = 1 * factorial(0)
    7 F. b  V. z! S# ]4 V3 S$ V  mfactorial(0) = 1  # Base case. ~" w0 _# ~3 q5 B
    , X2 s9 }  A- u
    Then, the results are combined:) O; V! U  f9 s! e: D1 _

    & p! L" y% L$ z0 l9 H: y5 s4 k5 X; f
    factorial(1) = 1 * 1 = 1) k# C7 N, w2 f
    factorial(2) = 2 * 1 = 2
      ^+ {. c4 J7 [% w0 xfactorial(3) = 3 * 2 = 6( V3 c$ R$ r3 d7 }7 h, w
    factorial(4) = 4 * 6 = 24
    / P! A& D" [7 E* e3 }- Efactorial(5) = 5 * 24 = 120$ \& j1 N! i% X6 |- C' n
    & R( ?% e( ]/ N. w$ R3 E8 w
    Advantages of Recursion% b- S2 s0 Z) _% {$ R1 v: a

    + h$ `# w2 B& ^0 S) h% ]2 A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# v4 \, o' _3 D7 x

    3 J9 c) ]& |7 c. ^& g. U2 W. J    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 d! a9 l6 u: K- _5 K0 i4 W, O+ u5 ], D5 |% p
    Disadvantages of Recursion
    0 `+ I( P* s/ _- I2 F" c8 q( X# _; T9 Z7 n4 T3 t
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.1 K  d; }5 D/ W! @
    3 B0 F% a4 c5 S- s5 L: u5 u4 h
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; `& E8 w/ Y) X$ y1 R
    0 N6 Q( g1 J2 E; [  D) j
    When to Use Recursion! B: F" m( J8 ]5 S/ i1 C
    * i/ z% b' O$ N. k  w+ H6 F) E
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 A" t- ?1 B+ D
    7 }. \* l/ ?- v* C9 U    Problems with a clear base case and recursive case.- R! F( }# V' [8 _5 o7 d# p/ ]
    9 R; ^: Q  E' }* N# q
    Example: Fibonacci Sequence
    " T+ ]! {7 i# H6 @. E
    % Z6 }4 e# K+ @' iThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # x) m& u0 ~3 F+ _( g: S- U/ q8 v) r& f" m: X+ R
        Base case: fib(0) = 0, fib(1) = 1
    , ~1 ~) |" p4 E! w
    + {/ a( }* c: U  \2 B    Recursive case: fib(n) = fib(n-1) + fib(n-2)+ ]; Y3 V6 M4 G4 I+ `! U3 T
    ' X9 I  K0 j9 i5 Z5 q. F
    python
    - z% k) R# A% S1 J
    , e7 X$ l( [  L2 C
    - I) M( i) y* n( \def fibonacci(n):
    * w. u! M  B( k' M+ b0 g8 E) l; `    # Base cases
    - w, p7 [; P7 \; w* P: E  }. _    if n == 0:
      P% p% V4 u2 ^) n# [. T& [6 N        return 06 O( K8 L& p  L
        elif n == 1:/ t  w. r! O+ D- \; `% S
            return 1
    2 @* d  D$ @9 m  v! @( G    # Recursive case) Q" i8 l7 e; }" i* x
        else:7 j- b) ?! O( [& h: P  h
            return fibonacci(n - 1) + fibonacci(n - 2)# K" d& U, z0 a9 Z! D8 v

    + c6 S! G3 N5 \! {# Example usage
    / I7 F  J0 z5 h$ o6 \' s- a0 Cprint(fibonacci(6))  # Output: 8
    - B$ O2 f  E* [, a- Z' s1 D
    ' U# L2 |! N9 q9 `) z; cTail Recursion
    8 o: D0 n" n# o$ |
    - O4 Z3 v1 Z; DTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* O8 o# \3 b0 d3 Y/ q) Z
    ' L6 r- _" T, x
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-11 00:28 , Processed in 0.059460 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表