设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1677|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 # z# I# l2 V0 |5 H! |- p/ d

    . f  l% ]' p# ^  D( p解释的不错
    & S2 j, i' g) q7 N5 M' w
    7 \% W6 ^2 H, Q0 e& D8 O2 }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. F1 ?" Q# H( M6 ~" V- Q/ ~2 t. `- M
    , k' e; U+ m9 ^9 A. P6 _# z
    关键要素
    $ V% n; E! e5 |  X1. **基线条件(Base Case)**
    4 G: p7 c1 P' E$ [" u# g. ~* j   - 递归终止的条件,防止无限循环
    / f  p% c; C. d6 {' O5 i2 X# D; e; @   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ s6 I/ l( W% ?, W  A0 N$ i

    2 q7 o' w( f5 q7 l2. **递归条件(Recursive Case)**+ R! K" \# _: i) P* W
       - 将原问题分解为更小的子问题- s, d" @5 U: b$ H
       - 例如:n! = n × (n-1)!
    6 c7 [1 t! H1 \0 L& ^3 x; ?. r
    经典示例:计算阶乘' e( t( @8 f& F4 X1 y" T& v! t
    python
    # ^; K2 M0 X. d- D: Wdef factorial(n):' w9 g: [' y% |
        if n == 0:        # 基线条件
    8 B( y1 T' [2 o  K- ~# e" I        return 1
    1 l7 n& p) k; c! W6 L    else:             # 递归条件
    0 |6 D+ Z/ G  C% g" X        return n * factorial(n-1)
    * g4 T& a1 t6 S+ {% W8 s执行过程(以计算 3! 为例):
    6 b! c* B6 q0 @1 ^factorial(3)
    / G. N: \; K' J9 n8 m1 Q6 _3 * factorial(2)( ]/ x7 T2 i/ O; X! i6 c+ t
    3 * (2 * factorial(1))' _' z) O) o* ^$ K5 Z
    3 * (2 * (1 * factorial(0)))8 I( @/ w. h* R  d/ ?* n. }# ]
    3 * (2 * (1 * 1)) = 6% f' X" l/ a; z5 j# b* s
    - m5 L+ A6 ?# D
    递归思维要点
    5 z3 Z' f2 e' L* p7 r/ a0 P' b, q1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 W5 ]" C) }% f2 N$ f2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) `( a0 x) t: [. Z6 c3. **递推过程**:不断向下分解问题(递)" k- {0 @' d3 N1 g0 a( ?
    4. **回溯过程**:组合子问题结果返回(归)
    . y9 H" |, G, {( Y7 n! L
    ; }! u0 T; B8 J4 `0 l 注意事项
    3 L! X/ U+ y0 V" L! E3 Q必须要有终止条件
    & G7 C$ ?+ I  h7 G( R7 S* g, s; }+ O& ]递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + S) |1 y3 j: `& M某些问题用递归更直观(如树遍历),但效率可能不如迭代1 |; U! F! Q1 i6 ]: ~7 r) H: g
    尾递归优化可以提升效率(但Python不支持)+ N- I& e; e' a1 k% J9 j8 u

    $ C' u- a$ q9 z0 u 递归 vs 迭代
    / f, F% a/ g5 Y|          | 递归                          | 迭代               |5 ~# n6 L- p8 h  ^" P
    |----------|-----------------------------|------------------|: ~! N# z' {  G+ m5 m
    | 实现方式    | 函数自调用                        | 循环结构            |
      N7 B( n( m! u' ]1 Z; q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |6 t4 Y/ s/ c2 O+ n# D0 D
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' c9 v) z; H( H4 R! d$ A5 T; m' J
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ C7 D. q8 V+ H
    - u% |5 i: i5 K8 p, A! _ 经典递归应用场景
    ! _4 D: ^5 f( E* V4 k1. 文件系统遍历(目录树结构)
    . }& b  d  [9 d" V$ {3 N2. 快速排序/归并排序算法
    5 ^1 a5 k2 `, z. H3 `$ J3. 汉诺塔问题+ E1 t% i: z2 r
    4. 二叉树遍历(前序/中序/后序)& A8 _" I# q' c# R+ w5 r2 J) \) j
    5. 生成所有可能的组合(回溯算法)
    / ~& I1 {% |- L+ c$ C) f0 P2 C
    6 |: X. s7 M1 L试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    5 小时前
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& |" y3 B+ O, X9 {2 C! D4 a
    我推理机的核心算法应该是二叉树遍历的变种。$ d7 |/ S( d! {$ g1 B' U& T
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 _( N- E( q8 q0 t9 j5 I
    Key Idea of Recursion, I; J2 M0 @% G2 b* s" h) j
    9 w  k; Q4 x: s# f7 E: }
    A recursive function solves a problem by:
    : d; b  _& b) e' k& X  q9 m  m2 W0 _+ K. K: B1 t* F2 Z, q* ~4 I
        Breaking the problem into smaller instances of the same problem.
    . t6 e, e: f5 b8 ?, N4 t* J1 V2 A' C( I* ^; }
        Solving the smallest instance directly (base case).- H5 D7 Y8 [) q- J1 X: A3 X: A' W8 M  }

    * e+ }" V; s' n- m7 I    Combining the results of smaller instances to solve the larger problem.8 Q; l) Q4 u- R" o4 k1 m, `

    8 ]0 n9 a, J; s# b8 L- O% lComponents of a Recursive Function4 k* q) ?6 O6 c3 L! b# Y

    8 G( X8 K- x" B6 s# c) G* ^  W; T    Base Case:4 O4 _8 _* C& `8 r
    9 o+ m( w3 y. Y" \
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 u0 |" k! `& [8 l; _
    5 J- B" s; i2 [' ]/ d& v" q        It acts as the stopping condition to prevent infinite recursion.
    2 r2 [/ u1 b4 @' p9 [/ _: g6 g
    9 u6 i8 i* v1 p+ E4 x3 N8 Q        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
      b6 C; x: F5 e! ~! u% |
    5 q3 a; t- R# S3 }* y! p    Recursive Case:
    & k& b& j" k" e# S; a- `" n, }: {( c5 {
            This is where the function calls itself with a smaller or simpler version of the problem.
    6 F3 |2 m" L: Z7 \0 D, T, P' V' ~% G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% f1 K  U/ s- n5 B  W
    & i& U* K& R- v
    Example: Factorial Calculation
    7 f- s. r9 I' A3 H% j& X" c- B3 f* ~. H3 \9 |6 W7 ~2 I- u
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 P7 r5 z( K5 I7 G' v3 ]

    5 _2 d8 N+ Q8 d8 G    Base case: 0! = 1
    # @: o$ G% J& S4 ~6 d; s1 Q0 S5 Z8 m& }( j
        Recursive case: n! = n * (n-1)!) x. h7 m% ?3 j) O/ q* o

    . b, \) e8 h5 RHere’s how it looks in code (Python):% o! k) ^% m% B6 ~& `3 @9 `
    python6 Z$ [& s  b( \# K3 C
    * t$ I6 |! x; N  a7 P( U" b
    ! ^. f& i9 v5 D8 Q
    def factorial(n):# u  W! @* I: K6 X9 Y# K
        # Base case
    , e3 k5 Q* x( D% d6 R1 p, N( G- O    if n == 0:
    6 N% V6 @5 }* h8 U        return 1
    " k/ `, P& I2 R6 E3 l1 G2 c    # Recursive case
    . U" F  G7 `' Y4 U" ?    else:
    ( U5 O2 {; B# `; p- u% Y, z        return n * factorial(n - 1)
    # [! g3 f; o8 l9 u4 w" S* l( {: y. n; U# }8 v
    # Example usage
    ! l4 T% c$ I' i2 r) \print(factorial(5))  # Output: 120
    4 W2 m8 V3 S; [! Z1 [: Q2 @4 s! B0 y/ x& }6 M7 B+ g) d
    How Recursion Works
    $ G% r/ c9 ~  Q8 h( ^  p2 F" A4 `4 U% ?6 X" g& g7 A# n6 f9 c
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ' v6 c3 {# f' ^: C) f8 E1 g; {0 Z8 u0 S9 b6 j* s
        Once the base case is reached, the function starts returning values back up the call stack.2 b: Z4 [8 V# x% g3 e( B" T3 H0 a) |
    # h8 s$ o* _) V6 M) z
        These returned values are combined to produce the final result.2 I+ a- ]$ r+ g# X/ `0 l$ U
    & r! r" r; F4 ~) W$ ^- A: ]) I5 a" S. ]
    For factorial(5):
    7 |4 l% q# Z* @" _/ u$ R0 Z- n+ G4 N& O- h+ ~
    7 B  S& C) r$ j9 o8 }$ Z1 o1 u: t
    factorial(5) = 5 * factorial(4)2 Q) y$ n; F+ P( n! g: f% V
    factorial(4) = 4 * factorial(3)
    / r) G9 Q& I; m( L6 C7 ^factorial(3) = 3 * factorial(2)
    - K8 `  O9 @* f  e( ofactorial(2) = 2 * factorial(1)
    / t* V, _4 Y1 J  m+ ]  afactorial(1) = 1 * factorial(0)8 }$ R& Q2 h2 I  x
    factorial(0) = 1  # Base case: I- r; n& C" |# P( ]( Y3 M0 y) a4 D

      }- p3 B1 T3 d$ R+ p' lThen, the results are combined:/ p9 b: i& |; @( S! Y, ^
    9 w* L8 b# v1 k" {( G
    / O, E4 }* u4 v* m! n
    factorial(1) = 1 * 1 = 1. d$ t' J( H/ o. @
    factorial(2) = 2 * 1 = 2# z3 X: ~% U% K9 I% |; A' f$ t& {3 V! X
    factorial(3) = 3 * 2 = 6
    2 u7 W# ?: L3 `0 Rfactorial(4) = 4 * 6 = 24. w4 \% [# Y4 P# w0 Y2 e& Q$ W3 l* f
    factorial(5) = 5 * 24 = 120
    1 u2 w- s9 D* E" `" a) e: k( w1 [1 b9 S5 l, P+ Z* y8 G, W! q
    Advantages of Recursion, l0 z" C0 d. u7 l' f' u

    $ R) n9 \' B8 N2 T, k: c    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).- n8 u# I2 t6 J

    ( O/ N$ f8 i! E8 ~    Readability: Recursive code can be more readable and concise compared to iterative solutions.' N6 L: Y/ V$ @" B+ A$ i4 r

    : w# m% }" |4 f; w9 RDisadvantages of Recursion4 n; p+ ]. X8 Z) h! A/ L
    ; C: x! u$ J8 Z& @4 s
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % f4 x! F- k8 m  ?! h5 s" f# N$ d1 G' p' q2 F% H
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( N9 D) p5 t, v/ S( Z9 m6 z1 O) u2 k+ A
    When to Use Recursion5 J& E5 P7 v" I5 D  H3 a
    / z1 s8 F' ^- q4 Y* E; |
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* Z& a2 R& r) S) u& ^3 [6 m: n

    ! i5 W7 a0 ]6 e5 }    Problems with a clear base case and recursive case.. {! g; j1 p( u1 b4 p& P# r" l

    6 A) F5 w1 N6 T& H: ~* @+ S$ k9 x' _Example: Fibonacci Sequence
    5 X( i% f1 o  w% I; D8 c) L* g5 x' C) I. k
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ H5 ^; f, M6 ?3 `8 E7 m2 Q

    6 B: L& v& H0 Q& U; A    Base case: fib(0) = 0, fib(1) = 15 O2 x( q7 }; e4 G8 d" C( y
    . ?6 r$ t5 O$ M# G- O( M, L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 y7 }7 G+ Y7 {' H4 I3 M  q3 P1 w+ N! C0 L0 E6 q
    python
    3 G( [& y$ S8 C: E. X, x( ~6 u+ h# j
    2 z% F9 @6 S2 n. n+ v& K: _
    def fibonacci(n):
    : J7 T0 T1 S; ?1 L  c    # Base cases
    0 J. f. E$ v( {/ T3 g    if n == 0:5 N6 g3 J4 D7 l1 Q* F1 y
            return 0
    $ D! G2 e. p5 z, B8 f+ d$ e( e- o+ M    elif n == 1:
    5 y( G7 L0 C$ P' j0 Y& b; F- N        return 1
    + n: X2 j3 s4 k1 I    # Recursive case
    5 V/ l: t. C) s1 S1 U    else:4 M  N) Q( B/ z9 Y% {9 m
            return fibonacci(n - 1) + fibonacci(n - 2)( Z3 R) D5 V+ F; J) J

    3 J8 z& _/ _% q  ~3 ~# Example usage
    6 O5 N1 w& H( iprint(fibonacci(6))  # Output: 8
    - F; J! r4 F$ |/ U  [7 r4 g! u9 A% N8 B) N
    Tail Recursion4 |: k6 N+ X% M8 L+ k) P: n- K* M+ Y
    $ r6 R- |) K. M5 W) Z, p2 G/ m0 ^) Q  F% T
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ F7 s& P7 H+ h$ Z$ ~+ N
    " z$ F: \$ b8 g' e' h
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-30 12:43 , Processed in 0.032984 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表