设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2119|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   c3 R' v- w; S% ~9 l7 r

    9 x/ ]0 s- a; d解释的不错
    / S( b9 t! f( a3 i% b4 h7 B- a+ z% c1 V, |1 p- y# p
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) _1 l1 L' k: h1 S: [$ T+ U, ?' u" \1 K3 ^7 `. o! t2 x) b- \! b- ^
    关键要素
    / [% Q% w$ Y, ]3 a: `/ K1. **基线条件(Base Case)**1 E2 J  V' E7 U1 e& l) w
       - 递归终止的条件,防止无限循环
    " t" Y  n1 j4 W  O# t5 C   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    4 V6 ^3 r/ p  ?" o2 x. Q3 A2 i
    % e; ?% |% }" V2. **递归条件(Recursive Case)**6 A- f+ q2 r4 h* R0 E) d* u
       - 将原问题分解为更小的子问题7 G! s# G+ r6 k. S
       - 例如:n! = n × (n-1)!
      m: n9 S/ D6 J5 e# u- J" P1 t8 u4 K. n" z' E
    经典示例:计算阶乘2 E' r! k$ }7 ~! R+ v
    python9 s+ V  r% Q5 c/ p' w
    def factorial(n):, V  v! T: P, y5 n1 s6 U  M( ^2 e
        if n == 0:        # 基线条件2 e& W* B0 ~+ e3 y. ~
            return 1
    " ~: w) g. m& W7 V$ c$ h" [    else:             # 递归条件
      }$ X: J5 a# i( x        return n * factorial(n-1)/ S8 ^; S. R# z; p* q. E9 c. e
    执行过程(以计算 3! 为例):, Y: G  c  l. U& Z. U8 v# E
    factorial(3)
    6 K) n, l  e, t3 c# e  W/ F: E! G3 * factorial(2)
    & ?2 ^' M" C3 l% z" H7 X9 u3 * (2 * factorial(1))4 `- {# O' K' T5 H  L. f9 e
    3 * (2 * (1 * factorial(0)))
    * ^5 x1 x% ~$ {' a4 A% M3 * (2 * (1 * 1)) = 65 S) J  I* M8 o! e( i
    : i- O) t. u4 n
    递归思维要点* w2 F  Y" b4 g# c
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑: v+ A4 U* ~  F9 J/ i- E4 {9 P
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& J3 k! M* Y. K# }7 e6 l
    3. **递推过程**:不断向下分解问题(递)
    2 ^7 f5 }) f& P# T: `+ o4. **回溯过程**:组合子问题结果返回(归)
    ' z6 \, L; R. u( }2 S
    - O9 R6 Q! y; h% O 注意事项2 N5 z6 W3 W$ ]- Z2 k
    必须要有终止条件% E- M/ P# y; K4 Q( w+ z$ c/ T! u' P% m9 R
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 o: }% S: {" n: u3 @: w+ v某些问题用递归更直观(如树遍历),但效率可能不如迭代
    / ]' |" y& l; D4 H$ }& f, V# E$ W尾递归优化可以提升效率(但Python不支持)$ p1 }$ A1 P& S: w1 U! C
    1 Z' q: v( Z$ g: G0 j; q8 o
    递归 vs 迭代& G7 m5 K6 W6 I! q
    |          | 递归                          | 迭代               |% _, ?* Q0 A; z* Y8 h; c. f! ~" F
    |----------|-----------------------------|------------------|
    / ^) Q. b/ U  F1 r! }  z| 实现方式    | 函数自调用                        | 循环结构            |
    ; M5 L! a( A& [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 R' S( j2 k4 O2 q' N7 J
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    / @) Q* z9 W7 L| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    $ F+ i* v+ s4 E7 Q, s
    2 |- ~( c6 \+ ]( ` 经典递归应用场景+ ?* w# e& H  H& R7 K5 ?$ _
    1. 文件系统遍历(目录树结构). b3 l8 j1 u$ H$ u; D9 x$ Y6 N) H1 ^
    2. 快速排序/归并排序算法
    5 ]( @8 ?7 _4 U3. 汉诺塔问题6 D8 a; H8 a. g6 l/ ]! |
    4. 二叉树遍历(前序/中序/后序)) ^" q* o9 S/ k
    5. 生成所有可能的组合(回溯算法)# {/ V0 F2 x, x
    : ?" N8 r0 g! s& S7 c5 o+ Q
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    11 小时前
  • 签到天数: 3179 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    $ Y3 m, u) d' k, C6 H( ~) C) Q我推理机的核心算法应该是二叉树遍历的变种。
    . j# ^2 ^$ e+ f; d; L. H6 j* b& T另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( M( ]2 K3 r. z" hKey Idea of Recursion2 Y+ ~, D: V; q7 O5 T

    # Q/ O2 b( l& j' f8 {% \A recursive function solves a problem by:5 H  w* v! ?+ k% r

      I9 C" T# M: ?- H8 v* Q, V9 F    Breaking the problem into smaller instances of the same problem.
    * Z8 K8 J. C; G( n( a& X
    : c8 O/ k$ w- q3 C  p" a    Solving the smallest instance directly (base case).0 F, x8 B2 T3 M( \. N& [
    : W9 M8 R9 v+ s& s: b6 s, }0 ~
        Combining the results of smaller instances to solve the larger problem.6 j9 ~# q- S& W. J3 c
    # F7 a- P& M2 t% s
    Components of a Recursive Function1 n0 J1 N7 p% g& f7 P: _
    * k& r& C& T+ @% d6 q1 z
        Base Case:
    0 e8 p0 }; G5 H% d  Z4 I5 r  n& m9 A' f8 m. C6 C' N# F6 O
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    $ q3 B! }4 G% M  w! }9 o
    - v9 h: u3 B9 W        It acts as the stopping condition to prevent infinite recursion.7 ?; G% K5 s$ y) `2 k) _! N
    5 @9 r9 O+ o8 L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - c/ C( M  {; K8 a3 k' K0 ]/ p" r/ R
        Recursive Case:% z! g5 ^, c2 }. b$ h) _& k# h  p6 }
    4 O( U8 n. D$ \2 u+ }
            This is where the function calls itself with a smaller or simpler version of the problem.
      L. F0 I) L( R' u! f4 a5 |/ O2 f, w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      i+ N% E( t& L+ m6 D! o$ l: v' v3 A% r. X8 o' }" @, B
    Example: Factorial Calculation8 F& g0 Q* n+ l; f' ?
    4 F3 D  E, X: f7 w
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # d: O( r' g9 X3 ^! s' s- Q$ F6 s4 ^9 W4 d4 |
        Base case: 0! = 1! O( x, f! ]8 k! x# K( h
    9 P  x: v" B/ X, t( t& q6 A+ b& t
        Recursive case: n! = n * (n-1)!+ O; }" g$ j. @% q" V  ]! a

    + r# v* _  ?  C& q, w8 EHere’s how it looks in code (Python):/ l/ g0 o; j# ^3 H* S0 `- p
    python
    5 X; k' j5 {: X  x" |  K: `! s3 f

    # e+ `+ c  C, f# V8 Sdef factorial(n):& D& M' x. c9 e* f! k$ g. ?
        # Base case
    $ H, u2 o2 f! ^$ n. c" x3 j    if n == 0:
    8 s) q8 ~7 W! a* u& s! B% M( e        return 17 P1 M" R; }( q( N
        # Recursive case
    / m! h* O/ P# w5 H8 t1 k    else:
    ! n  P$ R! o4 P9 B" Z        return n * factorial(n - 1)) d+ K8 d7 u  p; N- X' K: \, q5 v
    0 x: {4 [, {) N' H) q% g3 @
    # Example usage, E  f+ |$ p; {$ S0 H
    print(factorial(5))  # Output: 1206 Z8 O* K6 }* n. f( E7 H: R

    7 n+ ?8 M  Z! D! EHow Recursion Works
    : m6 f* g) ^5 W2 v9 @- k& Q5 ?9 n- S/ X
        The function keeps calling itself with smaller inputs until it reaches the base case.
    9 L! I  C+ z, R. U4 v! K9 |
    2 s$ {7 _+ }9 v  [% E    Once the base case is reached, the function starts returning values back up the call stack.
    , T3 a' P. s% c! l9 H& E7 H/ R7 I' M( u
        These returned values are combined to produce the final result.
    9 \5 r. t' o1 K' r
    9 Q! n4 N( }7 t+ C; @For factorial(5):8 B! y: j/ ~2 N1 z
    # l& n7 V; c  e. |5 D2 H

    8 z$ a/ W, v/ j# Nfactorial(5) = 5 * factorial(4)
    3 R  h, |. b, V) _factorial(4) = 4 * factorial(3)4 y# f% A& G2 A' ~0 G
    factorial(3) = 3 * factorial(2)
    3 a/ B% }4 V4 cfactorial(2) = 2 * factorial(1): R, P& |2 G% ~% c+ N2 |. m3 \
    factorial(1) = 1 * factorial(0)
    - L! w/ b2 N: xfactorial(0) = 1  # Base case
    , X& t5 _9 Y' f8 r( s- k4 c- f, f
    4 d" |1 l- T' L  xThen, the results are combined:$ c- \2 y& g. c) F. H
    4 V) A) ?  ]2 S3 j+ {: Q
    " f9 Z- @: }# F4 j; ?3 g
    factorial(1) = 1 * 1 = 1
    % W9 z+ Y4 J1 S9 c+ Ufactorial(2) = 2 * 1 = 2/ {" a6 U. u5 |9 H4 n
    factorial(3) = 3 * 2 = 6# E. O! |$ `: L3 t; g
    factorial(4) = 4 * 6 = 24+ T" W7 I" K  V$ _6 u
    factorial(5) = 5 * 24 = 120
    # F- k/ p: h1 s
    & B, x( }! j* S  k& b8 dAdvantages of Recursion# X* M9 P7 {$ [2 V( M

    ' H! f. w1 k& e7 c" q) M# B2 P    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 X) c! W* M" e" H
    0 b: {. E1 A0 B: B5 }) \$ o) ~4 c, \    Readability: Recursive code can be more readable and concise compared to iterative solutions.) M+ x" x+ u/ q% }+ N, J7 H! s) k: d

    1 H; _; \( n" P& m6 QDisadvantages of Recursion- N. s- R, M2 i0 c  f6 F  q$ ?$ P) H. l
    * m7 ~6 S1 I5 Q' ]9 s3 \( P
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% B5 |6 N/ O2 L! u! g3 C' U: N
    4 s; \7 i# r. Q8 t! @$ I7 |9 u
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    % W* p/ D6 l" V: |: J; o: G2 ]& v' j8 ]0 _- a/ K. q
    When to Use Recursion
    ' {0 V# O' w  {0 G5 b0 ~2 i7 ^: G  h* w  |) h
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ( ?0 r$ I5 f, N6 E9 s/ W6 |
    . H& y6 N2 V& Q" n. N7 \    Problems with a clear base case and recursive case.
    $ x! j: G; H) I8 z' o$ I' H) @3 [  ]) u7 M7 v) v6 e
    Example: Fibonacci Sequence: X: [3 Z& x8 w6 O

    ) c% j+ t* K# @The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + H' e) m2 t# x$ S- X
    7 c, U/ h# y9 |# U5 i, b    Base case: fib(0) = 0, fib(1) = 1
    : q& g2 o4 q- F$ [
    0 q) K# O7 \% ]/ ~4 x. E! q    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! i: P9 ?, k0 c! T+ q/ r5 `2 A! }- c
    python1 }! ^$ f* O% d6 e) [: n

    + }3 u. o0 L/ u+ O. r4 r  Z0 ~% S  D- T* Z
    def fibonacci(n):0 _! F& M& K3 b8 _: `
        # Base cases  t" E* M/ x  l" L$ D/ W1 v
        if n == 0:! s$ a1 S3 ~8 F3 K  K6 w3 s
            return 0
    2 A  I. K4 B! X4 P    elif n == 1:2 @3 A/ ]1 I" {- D9 L7 _
            return 1
    3 Z7 P7 [/ Z1 v$ q, k/ |    # Recursive case8 A2 V3 x" I; b3 i2 r
        else:
    8 o# m; q) f) v' y# k        return fibonacci(n - 1) + fibonacci(n - 2), J* T8 O8 N; Y4 y- f

    3 d. m0 _, g. s& P5 r# Example usage
    & m  S8 L8 R9 f: L: D8 `print(fibonacci(6))  # Output: 8
    3 W: b4 r: F$ Q; H4 ]/ b( V9 {# y" h. ], i* z3 H8 Y" j
    Tail Recursion( M* k& ]( p8 N) t
    3 P0 ?6 g* R$ O: W) V6 s( G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).# x* T" e% W4 l5 K2 q) b, M

    ; I; L7 Y; @# x) N! d# P8 cIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-20 17:11 , Processed in 0.059160 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表