设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1922|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . \4 i% D5 F( ]1 V. W7 ?
    : D5 P( G$ n7 l9 \% a+ f, I: f0 r7 U
    解释的不错
    " q7 t6 N- Z' Y" s# ~7 Z
    7 l5 }) L! {5 D/ Z递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    7 y* l  ?. O$ m
    + J/ G+ d  d0 z( ?: q7 u) u 关键要素
    + w9 ~1 \1 O3 m5 S; c1. **基线条件(Base Case)**; O* S! J6 D2 R! V" r. x7 _
       - 递归终止的条件,防止无限循环
    % C6 R2 ^: m* m& o# a  M   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 d. |4 C. x5 l
    3 s2 y: }+ a9 ~1 V% L* Y2. **递归条件(Recursive Case)**
    " A( C2 d2 M3 U; n8 S3 y/ c% h   - 将原问题分解为更小的子问题
    7 L+ H9 Y7 I. @5 h+ x( I   - 例如:n! = n × (n-1)!
    , z6 {0 m4 e: [& M+ K* e, I7 t  S2 v2 D, X( Z
    经典示例:计算阶乘) K9 n2 q0 K* [+ {  s( k7 D1 {6 }
    python
    . V- I) T9 z0 y3 D. t/ V  ]$ xdef factorial(n):
    ( D& k9 @8 F; s5 I6 q    if n == 0:        # 基线条件
    ( _0 x" w+ f5 M( f! M' ^: Z5 r5 r        return 15 I( I1 i9 A. d* T) H4 b2 d! W% o
        else:             # 递归条件
    $ R: \: c2 h# ]: |1 A# s( }+ e        return n * factorial(n-1)% ^% \/ d: U$ H0 |( n+ ?3 ]* s* C
    执行过程(以计算 3! 为例):
    , ^  ~; D  j# V% L1 O  Nfactorial(3)) M0 D9 Z) a, m- B# S/ c$ c; M1 |
    3 * factorial(2), t; b/ `  S3 P9 Z( y$ q. i
    3 * (2 * factorial(1))- G7 s) b. L1 M3 ]
    3 * (2 * (1 * factorial(0))), _' Z2 E( \4 j. f6 {
    3 * (2 * (1 * 1)) = 6
    ) ^/ C/ z9 A5 t9 P
    & @; m2 o: m$ Z4 M6 J% O% | 递归思维要点
    9 h# A) {+ H2 h/ S1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 r! X' B' y6 u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    6 q- T' Y) P9 Z* T2 K, l3. **递推过程**:不断向下分解问题(递)
    , A7 U& Y$ A4 T: k4. **回溯过程**:组合子问题结果返回(归)* p' U7 [  O5 `( [  ^% T# Y" ?
    $ i7 u/ [4 p# r- O2 ^
    注意事项
    - j7 W" r+ A% f$ u' u. y7 x必须要有终止条件
    % T  f' v) L' H2 V9 T: @# C3 m1 j递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! q. `- K  F' O' }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代1 a! Z7 k5 Y; M% Q0 @
    尾递归优化可以提升效率(但Python不支持)
    - a% [" @' t) o+ Y, l. ?6 E
    , h9 I0 N7 Z" Y! y) M( P2 |, g: o 递归 vs 迭代
    % L8 z1 E: w, p9 _|          | 递归                          | 迭代               |- Z% Q" \) u6 G# f6 Y+ b9 s- ]% M
    |----------|-----------------------------|------------------|
    2 n' e" {8 z% H- p/ L8 y& X; T| 实现方式    | 函数自调用                        | 循环结构            |
    ( `' U/ [% s$ |- C) C# G: Z8 |8 U| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |/ `3 F# Z  P9 N8 {# h4 j2 e% y- r, P
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 T( B3 Q' |  t' I* p. ]+ r) E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ A- |% b5 T: T3 o: ^7 r: x
    9 U9 B% U6 Z# I, ?* w# b8 V! R
    经典递归应用场景0 S1 ]6 g! t, `
    1. 文件系统遍历(目录树结构)
    - y" r0 \" `7 [1 U, Y. o2. 快速排序/归并排序算法4 Y/ e; D' f/ h; i4 X
    3. 汉诺塔问题
    . h0 _9 Q" p, X4. 二叉树遍历(前序/中序/后序)
    4 k+ w9 q6 P0 @6 J8 h1 G5. 生成所有可能的组合(回溯算法)3 Z4 r; b) b. F* w# w
    + ~* ]7 s, Q* Z& `5 b$ M# c
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    1 小时前
  • 签到天数: 3152 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ r0 S# |  b1 }1 J5 [, a8 c% N
    我推理机的核心算法应该是二叉树遍历的变种。
    ) v# B: `! }" E0 m2 ~4 g另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:8 ?( Y# a) k) p  L+ {; j
    Key Idea of Recursion
    ) d6 {  R$ O) p+ c2 f
    ' I3 B0 n/ ]8 U4 @A recursive function solves a problem by:
    - U* a1 `0 e: [8 U6 {
    1 r5 w% M  S; j0 F4 \  h    Breaking the problem into smaller instances of the same problem.4 {( ?# G/ l8 @5 l5 `4 |
    * v2 Y4 ^% I5 M- |+ D* ^9 J
        Solving the smallest instance directly (base case).
    ' i$ Q; T- \5 A/ ~( M
    7 E, p) I7 C8 ^" B! i    Combining the results of smaller instances to solve the larger problem.5 T2 G, i' z/ p: r
    ! m' A# T7 ]. a: d8 W" ]
    Components of a Recursive Function
    + d- B+ T+ M6 S4 {) c* k7 P
    & j5 g1 }! q/ c7 I    Base Case:
    ' R, y' O% _- Q
    % W# \) x0 R8 y& ?4 a8 h, T* h        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ E' N9 Z0 H7 W
    7 O# s. c2 b2 j* n6 A3 E
            It acts as the stopping condition to prevent infinite recursion.' n+ d# S1 f0 P: x$ `

    * B/ ]9 k* _! f5 I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : g2 D( c0 D: I4 M: ^( t; i! c' C$ M- c1 m. c) }
        Recursive Case:
    & Z! e- l1 X$ B: u* ~
    1 k8 ]0 z! ^! Z+ m! _7 G( G% d        This is where the function calls itself with a smaller or simpler version of the problem.
    + O9 G& @8 c# q& C0 K4 U8 J7 O- z2 ?, z1 [2 i5 w; Y) n! {- s
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% ^& L, u$ Z$ M' W
    * I& o2 |; [- `' |8 l$ o3 F
    Example: Factorial Calculation
    : ?% O0 b) t$ U( d8 a
    - k4 `, L/ }- g' s) EThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # y' x0 M' K9 P& ?/ e. B" D( R) R4 b( c# E
        Base case: 0! = 1
    3 [5 p5 L$ A/ {9 a, W9 ]# x
    ) w. h/ {& [5 p, `9 p    Recursive case: n! = n * (n-1)!
    # t* s, Z' q9 [5 ]9 k! L3 z
    " W; `% n( @7 N+ a7 e/ D) m. z2 V0 PHere’s how it looks in code (Python):6 I- f7 B4 ]) q- o: c# M. e0 ^
    python: R  g  [' v: F  |" b  W# A
    4 a1 @  j9 \! g3 _

    3 |6 X1 w9 h/ e+ n1 ~def factorial(n):4 a- n# R( b! G& g$ B2 X2 k2 m
        # Base case
    " a6 k- p0 W3 V+ Q; ?* Q6 u; J4 `    if n == 0:4 I4 f8 q8 ^3 D6 d0 ?$ h1 T1 G
            return 1% {3 e( P  `) l& l; ~. N  g" }
        # Recursive case. H. J3 I& D% {7 @# b: m5 Q: n) i
        else:# l/ @" V, r- L, |
            return n * factorial(n - 1)# f7 X9 y+ T7 G2 @% ?; t. D

    4 ?3 z+ K7 O% X- v# r+ t# Example usage1 j* Z. V! L2 g
    print(factorial(5))  # Output: 1205 e9 `( q$ [$ U: n  e) `

    ( {$ A! `' ~* y" }8 F, g' rHow Recursion Works
    / ?! i& q* k9 v1 H: B  u. j
    . W( h6 p8 j- b4 D    The function keeps calling itself with smaller inputs until it reaches the base case.
    7 R$ Y+ ~8 t. \3 \/ d: c
    , U5 v! |9 P% S  V    Once the base case is reached, the function starts returning values back up the call stack.2 u5 D# j3 E4 x. h

    % H* O- C' J8 d# ~8 d    These returned values are combined to produce the final result.* z- N& d( n1 N7 i0 T  A! n
    + T) J* b6 u. o8 }6 n% ]7 A9 H% j
    For factorial(5):$ k+ J+ }* h0 ?7 t

    , L% z. Z( {% M, K" K
    * {! b! i& H5 Ufactorial(5) = 5 * factorial(4)( g4 J; H4 |" Q& J* I$ E
    factorial(4) = 4 * factorial(3)
    4 O9 L& Z: D$ g9 Jfactorial(3) = 3 * factorial(2)
    , V: b3 W" B( T" Jfactorial(2) = 2 * factorial(1)
    + A# ]0 k; @! l, M6 B4 kfactorial(1) = 1 * factorial(0)
    $ i- f9 j% s2 y; G! }# @0 efactorial(0) = 1  # Base case1 ^7 c) h! p8 O1 h; _' u( ?

    ! _. J6 Y: u, PThen, the results are combined:
    3 J, h: q: u8 g; u6 [  I- M  O' X. B  O" m6 ^
    * m4 x& d3 d5 `7 }% s  m$ E5 A6 b
    factorial(1) = 1 * 1 = 1! o+ ?7 p, x  ~/ n
    factorial(2) = 2 * 1 = 2
    / V; N; O% T7 k% n/ @0 |factorial(3) = 3 * 2 = 6
    * a9 h6 U  m; v& {2 @' m+ Afactorial(4) = 4 * 6 = 24
    8 S$ @7 ?. h. |0 L; x. Yfactorial(5) = 5 * 24 = 120; _2 H) {; r# o1 F9 Z

    8 H3 ^4 ?7 p4 C5 XAdvantages of Recursion
    + c0 y& A5 k2 k! k5 {# U8 Y5 y% X, r, c3 G! W& }5 ?0 g  t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! x# u" B; i1 |# V4 E3 d* P$ b/ E5 M. @7 l8 m2 h) R: j( M
        Readability: Recursive code can be more readable and concise compared to iterative solutions.; K; [# T  p8 K( G3 h
    2 m3 i) \& @6 q/ S1 u+ N
    Disadvantages of Recursion
      i$ R* V5 b3 D$ g9 ?& E/ S1 \; N! q5 j8 j# j+ p
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    $ d1 g3 ?$ }  U* P
    8 t% ~4 ^- C$ [) i, O: Q" w6 l    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 ~/ @/ G3 w8 t5 }3 T! _0 ]3 A) \

    / C8 T  n$ D' S6 |  NWhen to Use Recursion
    * B, Q2 E3 S6 |( A1 [; B- L3 |2 Z/ \' F1 z
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 `0 a* ^" z( s+ P2 }) [  D+ d% M
        Problems with a clear base case and recursive case.
    $ T& Q& i# k( z5 K
    + k; Z  ]$ F9 @+ W( RExample: Fibonacci Sequence
    4 s& V9 O2 d/ m) d2 V# m3 V
    - Q+ Y/ k1 ]& fThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , Z6 S$ {- T3 m& g% o  R
    " |9 ]6 `& C: \    Base case: fib(0) = 0, fib(1) = 12 ^5 o1 z/ Z0 e' z+ J
    5 W  l! J8 t& g$ g; |5 q
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 g) M6 l9 m9 I3 t8 I; }

    5 ?  ~2 N; J" Mpython
    ' I- G' k' G+ ^: M# H# n6 q2 n6 T5 M

    . ^% d& a' @& m6 C) T& zdef fibonacci(n):
    9 A" i2 S1 P! M1 m8 d3 ~0 ^    # Base cases# t0 k( W. ]& ]6 |8 [; n9 ]
        if n == 0:
    1 o( o# L  }4 ?% b        return 02 w% V! p! e* Y! b5 E" a
        elif n == 1:
    ! W, g- _/ |) r" ~+ `+ J. h/ t        return 1
    1 g/ E2 F' @. u; c/ l1 j2 q1 a8 H* J    # Recursive case
    ; q% [* K4 u7 {( v    else:
    9 A: i! d2 v8 a) w" d$ @, K        return fibonacci(n - 1) + fibonacci(n - 2)8 P3 [  E) z' p' \2 g# v- U

    . G$ v. r+ G0 a0 E9 b' }2 u# Example usage
    $ y+ f- j- h# ?print(fibonacci(6))  # Output: 8. J! I, M- f0 Q( u  f, {0 x

    8 S% t4 L" m& J: J1 ]  aTail Recursion
    2 m( a3 w) y# W' H3 m# Y1 j
    " j5 ^0 V& \; W' _( C7 d: LTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 n. p9 h, [- k* R' w

    9 p  n7 \- p: T0 i- ]- IIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-23 08:37 , Processed in 0.063604 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表