设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2083|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) [) g6 S& \6 h0 P1 U+ d. F, ?  t8 Z9 |1 }
    解释的不错: b7 x) x, U  Q& A

    # H6 R! X' n6 n$ r, p$ S+ [递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。- a/ ~. O  {- ]" z( m
    9 q% N) J7 m; U% Q8 D
    关键要素
    6 _( S' H0 f, n% u# Q. h9 G# s1. **基线条件(Base Case)**! @4 J3 D  A4 P( w( ^, v3 z% [, V3 j
       - 递归终止的条件,防止无限循环; R+ [( w( C1 r4 D: \
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 ?4 N* y0 ~% W. E: E
    % ^$ p. o& k+ z
    2. **递归条件(Recursive Case)**8 k/ D: a' n. [0 P
       - 将原问题分解为更小的子问题6 F# _$ B9 T  l- f; ]: `- _
       - 例如:n! = n × (n-1)!
    ' G0 f2 N' z" h% V) U& ?3 x
    . F$ M+ h0 n. L# ]2 n 经典示例:计算阶乘/ k! O3 j- O- \! }  ]# ~7 b& t& O4 V
    python
    % O/ B) S: N: F3 F, A0 Hdef factorial(n):- E+ D- H! w/ o) i/ c+ V, R
        if n == 0:        # 基线条件
    & k3 p' V6 u" e9 t. G7 L4 p        return 1
    " j& l8 W& c/ ^  o( ]    else:             # 递归条件) [) s+ C  S3 [5 ?7 }; \
            return n * factorial(n-1)/ ~- P& K4 U3 A* a0 S$ i& h7 U8 ~6 G6 w
    执行过程(以计算 3! 为例):3 U# ^- K+ S0 w7 P5 R( z
    factorial(3)0 S9 j8 h/ D+ v6 `
    3 * factorial(2)) u6 ^* N+ B7 |) }% K( h2 x
    3 * (2 * factorial(1))% d$ _: t; Q& ]
    3 * (2 * (1 * factorial(0)))
    0 B) w* N6 E# a& E" D2 t3 * (2 * (1 * 1)) = 6
    , M& P0 z0 Z5 T. c6 o# ~
    ) R. w$ D- K; r7 S; P5 N# g. v( G1 F4 M1 g 递归思维要点
    1 }. V% S6 _. M! `' L5 N+ s1. **信任递归**:假设子问题已经解决,专注当前层逻辑& x$ I$ G8 C* ]
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : l# k6 g8 I% ]& G1 i6 Q$ B  V3. **递推过程**:不断向下分解问题(递)2 p4 J! z# ^1 K9 V- q% W7 i% k
    4. **回溯过程**:组合子问题结果返回(归)$ J2 l+ O' Q! N+ I) \3 L; F" N
    0 ]% \) j! n' a1 c/ p" y+ _/ |
    注意事项
    8 u2 V7 T' @: n4 r; F3 k: F% |必须要有终止条件
    $ k& W0 I# K% H6 E, h2 S递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 Q2 \+ W# q' a+ _某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # A" C# r0 L3 T) c1 e' }, h尾递归优化可以提升效率(但Python不支持)8 ?( N" N9 c' Y. j9 w4 m+ c" Y

    2 c0 p; ~: J4 [8 O 递归 vs 迭代+ F# h$ Q/ G$ I9 {/ a% G
    |          | 递归                          | 迭代               |
    * B% o% F" j  U' M( e|----------|-----------------------------|------------------|7 l, t9 |$ e+ |- U0 ?  y
    | 实现方式    | 函数自调用                        | 循环结构            |
    % j  p' n3 a! Y; ?7 d* [4 n& p| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    4 D  n7 \( A* v3 b2 s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |% @; v" ^, X6 y. A4 d& ~
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 D0 @6 Q* Y: L5 }( y+ M! N5 I. l8 l5 l' B! i* n4 n7 @
    经典递归应用场景* S8 Q8 e" Y9 ]  O6 o& @$ u4 d
    1. 文件系统遍历(目录树结构)' a# k3 x" ]3 p
    2. 快速排序/归并排序算法3 ?( h* G5 u6 J, X: E$ h) `5 P/ _( j/ a
    3. 汉诺塔问题
    0 a) [: B% p% r" j2 B' r4. 二叉树遍历(前序/中序/后序)0 w9 I. l+ U4 ^4 N2 g; Q
    5. 生成所有可能的组合(回溯算法)# ^4 p- W. w! U7 S, ^. Q# _

    ) w& \+ ^+ e$ k$ H$ B. P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    半小时前
  • 签到天数: 3173 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 P6 R; E% o4 G. ~  F
    我推理机的核心算法应该是二叉树遍历的变种。
    , f; f5 M7 h, W2 Y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    5 Z$ L7 w: L# a( \Key Idea of Recursion
    1 a8 n: d* C6 @- }$ v4 [  T1 R, l8 L0 ^0 ?, r9 z
    A recursive function solves a problem by:
    ) Q' m) c+ k6 W9 B: U+ O! W, O) P: i
        Breaking the problem into smaller instances of the same problem.
    0 Z$ n, j1 Y9 j4 K$ a* O0 I( S; y& n  B7 x+ c$ R
        Solving the smallest instance directly (base case).8 o. m! ^4 {3 ^6 v7 S% o( _6 y8 e

    8 B) C" y% Q. [% f    Combining the results of smaller instances to solve the larger problem./ L  k1 }4 v2 m3 V
    % b* i7 I5 ?/ N( h3 G
    Components of a Recursive Function  M/ t$ }2 _8 w' l- R
    - G  P; a( |7 u3 O
        Base Case:
    # b( s& `9 i1 j5 H: Q9 [7 K" ?2 l2 v  Y' s/ W1 x0 C' w, p
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) G% }2 [2 x& L. o& I9 D

    8 P/ r$ Z! v, F6 @& w- h3 n        It acts as the stopping condition to prevent infinite recursion.
    6 Q1 \$ H' M8 |& Y3 M, h2 {; w/ `
    + D. c  C8 v5 b5 Q2 k- G# H        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & S# p4 ~) Z5 ^, p' |8 r6 I) W+ W) K9 F6 N3 Z
        Recursive Case:) X0 m$ [5 D0 j

    8 K4 G- Z9 \  P, _. M        This is where the function calls itself with a smaller or simpler version of the problem.9 D6 u. ]( ]3 B2 Q( d/ ]1 [4 o9 g

    8 U3 H1 z/ I6 D" j/ c" n        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # u. g# M" f) W. r7 W: M% V6 o0 l4 u- S7 ]$ c, h9 Y$ T% `8 {0 @
    Example: Factorial Calculation' H) b5 f$ n# H( i  L
    ( a& \& a  ]7 c4 F' m4 u5 w! b
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ! ^4 c  Y4 {- f/ C% @& x1 ?2 Q5 ^3 s1 q
        Base case: 0! = 1
    # m  F1 ~; }& J& C9 i+ L8 t- @  y, Z  T8 T0 k- [' M9 q
        Recursive case: n! = n * (n-1)!
    . a4 S  s; v% ~/ I' b: Y( y6 D3 q0 p6 [- Q+ W' C3 r8 ?
    Here’s how it looks in code (Python):
      M) }6 L  ~* g  u  J0 h6 S- hpython
    , g# m+ g# L" [& ^, M
    # i: W& R1 t% Y! c' U/ s! v; j( ]& [# I$ |9 C4 y, z  f/ Q8 w7 y
    def factorial(n):
    , F5 y2 Q) A1 w2 R) V& V7 N+ N    # Base case
    3 G& w8 s9 e. u2 j    if n == 0:
    ) \5 g: ^0 n( f' q( m4 W1 _        return 1  X! h/ y& d- s3 K
        # Recursive case0 z/ u2 P- s* `- x3 K' [
        else:: o, z! h8 Q3 f, z5 z) |
            return n * factorial(n - 1)) X0 w" o: Y  f: X. Z
    2 b% b7 C# Y$ c' [3 q
    # Example usage" \5 k1 D. S8 F# M8 T+ ~
    print(factorial(5))  # Output: 120
    5 F  H- `$ F4 ~' B9 F% a
    8 B) {/ E9 q3 a* mHow Recursion Works1 H; Q2 _/ ^" j' t' Z

    + s. R4 N# n0 ^: {# [) j    The function keeps calling itself with smaller inputs until it reaches the base case.
    ( ~9 _* g1 P1 I: ]# Z; r' p  K& T( @7 z; h/ H
        Once the base case is reached, the function starts returning values back up the call stack.
    3 Q! ^: E/ I' C) z+ _" v$ @
      s2 [& @8 S5 v    These returned values are combined to produce the final result., A  K1 f$ G$ J
    6 d' j2 c* a6 h- }& ^1 F5 z
    For factorial(5):  G6 y3 V% G$ d# R: ^# @; Z$ i% c. ]

    9 ~. [, ?, [4 f- |1 e2 v* |. Q) b& i7 B
    factorial(5) = 5 * factorial(4)
    ! n7 E7 W$ Z3 l  yfactorial(4) = 4 * factorial(3)
    / z0 Y5 ^1 ]' g+ Nfactorial(3) = 3 * factorial(2)
    ( t0 v% ~& f: V7 ^+ _) @% d6 l( Hfactorial(2) = 2 * factorial(1)+ O$ w  [+ q" A
    factorial(1) = 1 * factorial(0): |( b' ~9 F' t8 I2 g2 J
    factorial(0) = 1  # Base case, `; r0 d, \' C
    # O% u: o; @, o; y/ F
    Then, the results are combined:9 b9 C6 U: Z  z4 x, h* {
    ( q1 R4 p- @. {! i

    ' N0 L( H; I  i) w% afactorial(1) = 1 * 1 = 1" S" _  V% y8 R& M2 _- V
    factorial(2) = 2 * 1 = 2
    / _% @5 {. m/ F. M* }# ]1 h7 ?factorial(3) = 3 * 2 = 6' a0 f: d5 d1 B$ ^3 \  N! N
    factorial(4) = 4 * 6 = 24: _6 _1 u: l; s0 g4 J7 V
    factorial(5) = 5 * 24 = 120
    & S  J9 M$ ^- e+ w6 O6 w: j7 Z, Q5 @/ }; o% a
    Advantages of Recursion
    4 C( U% p- n% z5 V1 P
    , t1 G5 r' p! b) \    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ @6 M* q" f# J5 b" _
    ! U% F1 `- q2 z; F, {8 v( R! p. j
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    # W% R7 p6 F8 z
      h; n$ f6 W0 _8 q% }9 LDisadvantages of Recursion1 `+ \7 v) f$ E
    7 U' }4 u0 Q; e# f& D' F
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ M- {9 U' t; P  P! q

    & F2 Z9 q5 c7 n2 ?* G8 C    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).; C3 b% L& G  H$ J  F+ p

    % J& f( N% P0 O9 z0 i, vWhen to Use Recursion
    3 i- q) L: k+ r/ w# A6 S# ~5 {8 `8 U3 }, c7 c! E; Q1 x! A4 z) r: ~
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 w% [# f8 U6 \9 P5 |
    - a2 p6 g* |2 S, V* Y0 b# \& Y    Problems with a clear base case and recursive case.
    + z# D$ K7 f4 {& S  ]+ k
    # w  E) j1 @7 e, n* g  qExample: Fibonacci Sequence
    * ~( a, b# c+ d) K3 R8 X+ s: i+ B9 p0 k& z/ L: e. W& t; k( V9 A
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ a1 V* \- x* I7 z. y. d  l0 Y1 b2 t5 l2 ~; a- O
        Base case: fib(0) = 0, fib(1) = 14 }7 f) J  @. b3 G( [
    ; q! `* J: A- G. A2 K; \
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    / o0 j: i; \% b
    ! }  e8 ?+ G2 K# [3 ypython
    ! O' y7 D2 ~) l7 F9 R# U# [0 c+ x  q

    9 m) T( b7 K# e, \! k4 O3 G( ]def fibonacci(n):
    $ H2 W! q* Q) }6 n    # Base cases
    3 V+ k& W1 V0 q+ F    if n == 0:8 \" y9 V# N! a2 Y
            return 08 E$ n- F, v6 J' ^( K* u; K
        elif n == 1:, h4 F6 X1 P0 \; O5 p! ?
            return 19 }+ C% \1 X0 ]
        # Recursive case) D1 A! N4 ]2 w4 ~
        else:3 M& x. P, H' Z" M, u4 C* @
            return fibonacci(n - 1) + fibonacci(n - 2)  x' p' @$ z9 s

    0 m- O% w! }, e  W' D# Example usage% m7 L& k0 y! a/ W* k% Y! d- E& q. a' F$ p
    print(fibonacci(6))  # Output: 8
    ) ]3 R+ c  A  K, G/ r1 R7 u  w4 E6 w" W# ]/ ^: r9 B
    Tail Recursion( J0 ]8 n" f0 b2 r- w0 C" O
    . E) H/ g) z9 c+ R$ A0 {
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    6 |1 ~8 l5 l: \! p4 r  E$ A
    9 J/ T3 v1 k9 |# V/ \- o! ZIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-14 11:51 , Processed in 0.056251 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表