设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1756|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    $ Z# {4 n' P6 P5 w2 ^8 x) z0 `$ E2 u4 B
    解释的不错
    - o/ N& K$ u* f8 p7 w7 g& a) l3 W0 }/ z7 E3 ]- @$ x% M" @% d
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。0 W' r. ?% m; |2 ?& S8 ^

    2 X. t5 K3 T6 `) U  ^9 X 关键要素
    ! H+ w' d* |0 E, k. \% F1. **基线条件(Base Case)**
    - z& c9 n" p8 M: Z' Z$ C   - 递归终止的条件,防止无限循环, k# s9 V3 N! c5 K
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1! [. M6 `4 p- o9 I  C: H
    3 P* n+ I% R0 r6 v' X: H, F* R
    2. **递归条件(Recursive Case)**- `% H$ d* ^9 y: U
       - 将原问题分解为更小的子问题
    + r/ o) R+ E7 G" d: q$ ?   - 例如:n! = n × (n-1)!+ b! ?  }" J8 d) k; s

    8 S# ]1 n1 m6 c/ J! l" g7 U 经典示例:计算阶乘$ k+ ?( M) h. B4 m
    python  u5 P& m$ K! s+ l8 Q
    def factorial(n):' }2 c+ i& U2 @: D# y/ c
        if n == 0:        # 基线条件5 V1 n) w9 z7 A3 b7 F6 H
            return 1' W3 V- ^: `0 h+ L& b8 n0 E. H
        else:             # 递归条件
    3 _3 R7 ^( q/ ?: D( G        return n * factorial(n-1)+ q, i& P  `' y7 d; b0 f: |
    执行过程(以计算 3! 为例):5 r' @9 [7 l# e# x! f# b1 ?
    factorial(3). O' J) A0 e7 O. X0 O
    3 * factorial(2)  v  I- d6 E* M6 F0 z$ ^/ u
    3 * (2 * factorial(1))4 l+ B  h- v+ c! y$ R9 d9 M8 Y) I% I
    3 * (2 * (1 * factorial(0)))
    : ?. [, r* r% H' j7 q* Q6 |1 b3 * (2 * (1 * 1)) = 6, S( g1 ]- `+ y# |' ^) c
    / y( e- q- R" o4 }
    递归思维要点% @, M4 B. u3 G$ l# r& l
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ X6 z' K/ |7 u4 N2 j1 }, E2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % S4 j  O& q: I% X3. **递推过程**:不断向下分解问题(递)4 F' O5 i! i9 f( e8 M* L- n
    4. **回溯过程**:组合子问题结果返回(归)
    2 l' M, H4 @" Q: ~" F' b5 F0 G) F% l" w
    注意事项
    + h, s/ j! w0 s0 n* `* [* {必须要有终止条件0 {) j- l  {0 k& X  a0 b
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# F8 u7 [& _! t) p$ z
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    5 A8 H- U, ~2 H尾递归优化可以提升效率(但Python不支持)% }: k8 D" b0 q7 R( p8 y

      f6 T/ ~: G8 L4 d* d6 X" X# X 递归 vs 迭代, `! d5 ?" L  x# v7 u$ h8 ?6 z
    |          | 递归                          | 迭代               |+ X7 t2 V( _$ z  a7 J. K+ H
    |----------|-----------------------------|------------------|
    % i3 P0 L% M% _# u4 Q| 实现方式    | 函数自调用                        | 循环结构            |' N5 Y! i4 k5 W; T" f' l+ t" K
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; R; [; c, o/ A4 |9 `
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 {& X7 O) C, M. s1 K4 a5 d| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  s5 s* @0 e, p  i0 K% L

    8 U; f& i' \; F5 N  q 经典递归应用场景
    + e. I1 T$ R9 Q8 a4 `: ^% ^1. 文件系统遍历(目录树结构)
    & ]* W9 m  i* D: W1 S. h" p2. 快速排序/归并排序算法& {( Z2 E% b! `
    3. 汉诺塔问题
    & E# p) N' E1 E# T2 e% e4. 二叉树遍历(前序/中序/后序)
    : ~4 C6 G  }% V+ w% i0 }5. 生成所有可能的组合(回溯算法)
    1 t6 I: s! q3 K4 h& [& C" C7 `/ G* ^" m2 b) k. y0 D
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    15 小时前
  • 签到天数: 3139 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ G, @2 }' b8 \8 D
    我推理机的核心算法应该是二叉树遍历的变种。) W/ U: f5 w( C2 ?$ V/ t0 L9 q
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 T1 s& O5 k; @( t" _7 i
    Key Idea of Recursion
    . c' F# R; j0 c6 [8 n( t
    $ l+ v- Q/ ~( MA recursive function solves a problem by:8 X, R0 ]- R9 {1 E4 G' }* E% v

    $ d+ Y; r1 n- R( V. y# p5 e    Breaking the problem into smaller instances of the same problem.
    & P; `7 B6 v" N- v. V/ F$ r/ [5 U; ^2 e
        Solving the smallest instance directly (base case).9 h: o* C6 c8 q

      I8 Q( M: Q4 |3 S  c2 d5 Y    Combining the results of smaller instances to solve the larger problem.; w, h/ z2 N3 F5 o9 J$ Q- |' H
    * O9 j/ R- Y- D+ e4 C& j) L
    Components of a Recursive Function$ l" j5 r. ~* f$ t

    6 E1 D, ?; ~( a5 u3 h    Base Case:
    5 s8 V$ A/ p# V, }/ ~& n& D
    " R9 k! O4 K  x' v% q, ?, {! a; R) c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 P/ o( }# c0 V+ J* z5 O

    % {$ A3 T( A2 _) e- s        It acts as the stopping condition to prevent infinite recursion.' R9 S, n: W2 {! w. g/ g+ U

    5 L- z, H4 [  @3 M: U        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    4 o- T; A1 @8 t8 X( H3 R3 E5 I5 p: |4 ]! g- Y$ W. A
        Recursive Case:
    + [5 Q- w" b# ?7 \) w- o! e5 O; j/ ~( b  r5 l5 Z
            This is where the function calls itself with a smaller or simpler version of the problem.( R! ~# A" C. `2 G0 i9 i' ]& I$ I

    ; o1 L! v  S9 |. O8 M, {& D) p: O        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* }  T! e; ^, J

    * K& g, U. D& o. M4 q$ `! W$ [Example: Factorial Calculation
    6 w+ G* m7 m2 s5 N# ~, H6 ]# @4 G
    / i* M1 _  o; w- @% WThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, G3 O+ {! J* ]$ ?5 p; H
    0 m5 r, T/ v# G. G$ I
        Base case: 0! = 1
    1 i( d: w6 p" ]2 [2 j! [& ]
    6 b+ S: F$ p! H5 X  s% i# T# S1 f    Recursive case: n! = n * (n-1)!5 z& Q$ ]9 R1 o% L$ @
    2 x0 d' W# L3 S. ?  O# N
    Here’s how it looks in code (Python):
    - Q' Z2 P4 z5 u1 F6 d: Lpython! K* T7 a1 X. R+ d) B* O
    8 g9 g: ?" z5 K+ Q
    : P# ~2 p& \+ H* c
    def factorial(n):7 P. q7 U! s  ^0 R7 K+ ]: `( t6 `7 f
        # Base case0 h- O' ]( \8 S. T; Z$ ^
        if n == 0:
    - R1 @2 l. j! o) i8 V9 k7 P        return 1- x' r/ ^$ e  q7 |1 V
        # Recursive case
    0 }2 D. k% H5 Y7 o9 m/ Z    else:2 i) S9 q/ A$ ?. @# t0 n4 ?
            return n * factorial(n - 1)
    " h/ x& B+ y1 G  N) e9 r6 s1 M
    7 p! y* g3 O  k0 `7 X4 d. W# Example usage# z7 k' @5 L4 ]1 I2 P5 _$ \
    print(factorial(5))  # Output: 120" c7 _- ?* Z; z! I# a
    5 s, J! y& H7 b. b) v" H2 t: F+ k
    How Recursion Works) J/ ^( R3 P& Y: D( b$ G

    " ~$ G* d) A4 l    The function keeps calling itself with smaller inputs until it reaches the base case./ O1 U( ], Y. Z/ E
    - p! j2 A9 Z' R9 ^6 ^7 L1 j: R8 U
        Once the base case is reached, the function starts returning values back up the call stack.
    9 a/ L6 t+ \0 [/ X2 N; V- F1 k! z9 C3 Q2 J8 }' v
        These returned values are combined to produce the final result.
    1 r# K" Z* M  o0 J# _# U3 ^, `3 v; r: W7 l
    For factorial(5):7 b' f# U* T3 s- U6 w: t* I" [

    9 q+ l9 u. P% L5 @, m0 h
    & r! ?8 a* y' K; W! k9 a" Efactorial(5) = 5 * factorial(4)0 J) L; u; O: g5 ?8 G
    factorial(4) = 4 * factorial(3)% g; _- n9 `! A* f9 U7 V" t
    factorial(3) = 3 * factorial(2)4 y1 C+ f: c3 M9 B! J
    factorial(2) = 2 * factorial(1)
    ( d! p8 |$ t! \, D$ Mfactorial(1) = 1 * factorial(0)! `- I" k+ E+ @% X$ ~* M
    factorial(0) = 1  # Base case
    : L, E: h7 \6 x( p
    3 ^, j( [& U" z6 |( ]# sThen, the results are combined:3 \9 X( h* ~0 b( r9 G/ A( d* {
    0 J7 o0 v. g* Q& l" A
    : n* V- a9 F2 d6 [) C
    factorial(1) = 1 * 1 = 1
    : V7 h0 Z+ W9 Q0 |3 Efactorial(2) = 2 * 1 = 2
    ; B- d0 V. L& h( B( k4 Rfactorial(3) = 3 * 2 = 6
    - L1 q+ L# _  r9 Hfactorial(4) = 4 * 6 = 24. P- G$ u- X# l, `
    factorial(5) = 5 * 24 = 120
    7 C& |* x9 F+ w) G3 z3 ]8 y. k3 ]/ F1 O8 Z( D
    Advantages of Recursion0 g$ x) |- o' a, h% e% W1 T

    # m4 B( x; D: [% V' n6 J1 @    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : n3 V# K& E  h( U3 w
    ) Q5 Q, V! @8 V4 [5 J. B    Readability: Recursive code can be more readable and concise compared to iterative solutions./ E6 \3 {; C& K' ?
    5 G" w) x! y3 I" x8 m4 K' l
    Disadvantages of Recursion
    : |6 U( Q! Z: l7 H7 T: d2 ]
    9 A7 \% @/ n/ G! R    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.$ @8 W4 V& d% V- F- M2 J
    . h% G2 v2 F1 M' C4 |& V2 z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    . J* d( l  v, a& {( y/ A4 C4 w+ |- D( M3 [7 ~
    When to Use Recursion
    " I% m% ]8 P* h* O# y' ?  X# G% W! j, B8 {3 g
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! @1 u4 s/ q( K( c& ]  |4 U* b3 l" v( R2 U  a* U8 H
        Problems with a clear base case and recursive case.
    0 @+ ]4 t/ r5 ~) v
    - {% F9 d% `1 l/ B1 F) G, CExample: Fibonacci Sequence
    , }! K& p0 n' K# U# [5 U1 s, r$ F
    # H2 Q1 p* C* b9 n3 eThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % ]# ]$ w3 z) l
    * _& }. t8 j& t! g    Base case: fib(0) = 0, fib(1) = 11 O2 `* R& H9 W5 k
    4 I+ j6 R' ]% E; v) \
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) U' a, y8 d1 Z* I% e
    4 R7 [7 ^8 n, k! v( u+ O9 xpython: S  h  `, F* C. b. r6 l1 L

    / R5 a+ U; t/ U% c- w! n! R+ @" t* j
    def fibonacci(n):
    ) S, ~2 I( @8 x, M, x% ^    # Base cases0 A: a! `1 h& E5 o! F" H! G
        if n == 0:8 p' O: N5 s. n9 g! r' b
            return 0
    : b& v! |- E3 o  O2 D+ W    elif n == 1:  z: n! G- P( s- Q' \( B2 B
            return 1/ s, H5 F/ Q2 r. C2 e# W: h: W
        # Recursive case4 I# _) D; V8 y% q  w& e% f
        else:
    , M! C0 j4 p9 t: `        return fibonacci(n - 1) + fibonacci(n - 2)
    + e4 e8 b  t* l, `+ }4 N, l1 O3 ^  ~, _0 I8 V
    # Example usage
    , o! d. P/ N3 G. x+ r  e* rprint(fibonacci(6))  # Output: 88 B+ w/ D6 N% Y

    ; `/ @8 E8 i% H9 L( t8 kTail Recursion
    : i) a6 ?# g2 ~
    , t9 \8 H& [7 ~. `# l, uTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    . }6 h. N+ c( [# ~) ~) i% [' Y) ^: s
    ; y+ L( ~) @5 p, x' x" P; dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-7 22:00 , Processed in 0.030871 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表