设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1930|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) z' k- c- T: v; u( G8 m: {. Q+ b4 u$ W# U% j
    解释的不错
    4 l/ M4 l4 e1 Z' E2 p/ t
    * |7 z* \; \" z! p* c$ D) q递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * w; Q1 [  S$ x; d6 k1 z: R, s5 Q4 B/ Z
    关键要素( a/ v$ ?! Y5 n6 [* l. |& L2 Y# |
    1. **基线条件(Base Case)**, d: e. ^0 v1 I5 ]1 r' y4 W  h
       - 递归终止的条件,防止无限循环
    ; s  S0 }  N- Q0 X   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % U9 N6 [! \. T6 l. K. f
    2 j% D6 X1 H; B* s/ r2. **递归条件(Recursive Case)**
    7 K$ c6 L5 F2 c# m$ @   - 将原问题分解为更小的子问题
    8 U8 F: H  _4 V- e% B   - 例如:n! = n × (n-1)!
    3 o; X7 u" g2 k
    . C3 d/ B4 o; p7 g 经典示例:计算阶乘
    ( Y" P& f$ Y/ C0 \$ b; B" \$ }python
    1 x2 j, W( E" n; N" Edef factorial(n):
    2 a1 i5 M  d, a; ?( M# x    if n == 0:        # 基线条件
    2 c! J; V9 N4 T3 [        return 1
    5 b: O7 g" V& ?7 p0 L    else:             # 递归条件
    ; b4 E+ n; Y2 ?8 ]- j        return n * factorial(n-1)
    1 K& d2 R: I& H. ]执行过程(以计算 3! 为例):
    8 I+ j$ ^; r4 P3 A1 Nfactorial(3)+ B; V9 v) X5 }6 F6 C
    3 * factorial(2)9 e: Q# I" n' R, |7 H4 b5 F
    3 * (2 * factorial(1))
    - p7 ~8 H; k7 g! c! H0 t3 * (2 * (1 * factorial(0)))
    , N' `. w) f+ @: v& T; r- K8 m3 * (2 * (1 * 1)) = 6
    9 A8 G# `0 Q& G  `4 D3 e. r  ?7 h& m4 U: J# f
    递归思维要点
    2 [+ Q/ ]4 s* f" G7 v/ o- ^2 _1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 V/ w  M& f6 l# X! r3 [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ) _3 W0 {0 x( X+ q& Z3. **递推过程**:不断向下分解问题(递)
    " v5 f+ {; x" x3 f2 K. P2 ~- x* g/ `$ e4. **回溯过程**:组合子问题结果返回(归)
    $ \) y$ ^0 b6 |! E4 x9 C( s+ j; l; y$ C: ~5 _, [: I
    注意事项8 k! V& r5 h% W% D% I7 G& r
    必须要有终止条件
    0 b4 [+ Y: d! n5 q1 v: n0 w+ D0 P& w递归深度过大可能导致栈溢出(Python默认递归深度约1000层): S+ }2 Y& L9 I! U& z, l" ~. S, ?
    某些问题用递归更直观(如树遍历),但效率可能不如迭代5 m  G0 J/ Z3 u! M+ {
    尾递归优化可以提升效率(但Python不支持)! r( x% [* O5 b

    # _. b; @9 D2 }- Z( T$ G0 s 递归 vs 迭代
    ( J2 p% n% _# Y  }$ Q, m, {; x|          | 递归                          | 迭代               |+ F+ f. f3 A9 I  J' b
    |----------|-----------------------------|------------------|$ [4 j3 m" k& K1 l+ h
    | 实现方式    | 函数自调用                        | 循环结构            |
    2 i! C8 M, O* _| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# M6 ?$ i. S5 \8 T
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ v* B, q" Z) {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    " b7 ]& R$ ^0 s' W: `
    " O! c. j4 z0 b) ]# ~6 W 经典递归应用场景" _2 l9 f3 W7 `4 C/ x/ k, W/ ^
    1. 文件系统遍历(目录树结构)
    4 i. w$ v0 p8 ~& U! y2. 快速排序/归并排序算法# i& r- X* z! ?- y
    3. 汉诺塔问题( e  {  r7 y. V' O. u& U2 V
    4. 二叉树遍历(前序/中序/后序)4 e/ j  n4 b- N# w* h8 N; [
    5. 生成所有可能的组合(回溯算法)
    ! C: s. T& X* K' T2 i9 F# V$ S3 C3 \6 _6 h$ s% V9 d9 U
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    13 小时前
  • 签到天数: 3152 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    0 ?- l$ _! A0 R+ m5 N我推理机的核心算法应该是二叉树遍历的变种。
    / H( w1 ]+ q7 _% y0 A' j另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 C4 e6 t3 |8 t# O9 o& z, S/ E
    Key Idea of Recursion
    4 [0 V7 j' w  a1 G
    : p. `/ i7 W% a; _- dA recursive function solves a problem by:
    $ s  d  ?3 W- L3 j, f1 i
    1 u# K: k) v- ?+ p2 a1 b# J    Breaking the problem into smaller instances of the same problem.
    * J9 l( B7 N8 `* g+ |
    3 `* K$ J9 R- y    Solving the smallest instance directly (base case).
    . ?% j% _9 ^1 H/ z0 e2 O8 i5 C
    % P* Q  I1 U' t: B# _# W$ [    Combining the results of smaller instances to solve the larger problem.- S) L) @2 y8 i* r
    - m( v9 F' o2 {2 u  e1 {
    Components of a Recursive Function
    9 ^2 p" N3 K$ q; n% ?3 X$ ^# b
      G; i) ^+ P7 I    Base Case:
    ' d5 @; U1 C5 r
    ; |4 U: p0 ?+ N& Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 [# W; a! C6 @; T4 u7 n6 v0 |
    8 H6 Y7 h, ], ]' n2 n, x6 j* r        It acts as the stopping condition to prevent infinite recursion.
    " y/ v* t6 l- H7 b  r
    6 B9 C" o7 O" ]! C        Example: In calculating the factorial of a number, the base case is factorial(0) = 1., g! n9 ^) I* U: N5 A
    ; x( E+ q, I$ a0 f6 f7 E
        Recursive Case:3 Z2 I8 p/ G1 }/ i
    ( r+ `! G# z1 [4 C% ?
            This is where the function calls itself with a smaller or simpler version of the problem.
    2 N8 O! a) F& j7 `$ _2 _, l& i* _) L1 F( v2 ^
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).4 a9 o/ v7 a$ Y! O

    0 p( ]& w% L. Y# N2 e: A9 aExample: Factorial Calculation! e' Z7 c  O8 a! N( _
    7 j+ _( [. l; p- g9 W: A  k3 O
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. J* T# X7 M  t+ w7 n2 ~. E

    8 m! b7 X2 a& [    Base case: 0! = 16 y5 l" n+ s( e; j( z

    ; W* A2 H, _/ c; }7 P$ q    Recursive case: n! = n * (n-1)!& d# O- a" x& _, b/ \( o" ]

    ; w. L2 y1 P3 \Here’s how it looks in code (Python):* i. Z0 E# z* o( w( D4 S, c
    python( F: {( i1 V- G2 s5 c  I. u2 [# ?

    0 u! o/ g8 ^8 A' W
    1 V# S* D% L0 d0 L' Q* |/ Fdef factorial(n):
    ; m9 o! w5 I4 i    # Base case
    5 f0 @& P# ~5 o3 f6 U0 e    if n == 0:9 N: D0 S3 @( ]1 `" v' @
            return 1' X& F( I" R! Z8 m4 i
        # Recursive case
    ' x' m) @! t. q& k" F8 v( i+ C( \    else:4 [. i3 V2 B# c7 Z( N
            return n * factorial(n - 1)
    + _/ o' y+ v  g" C  r
    6 q3 @: b) w) g1 X# Example usage
    - X4 N' Q0 y7 Z2 Qprint(factorial(5))  # Output: 120
    6 o, H: T" O, D+ `* Q2 \* P+ T: A% q4 c
    How Recursion Works
    4 ]# D) G/ V" e3 j- o6 [' k' j4 i+ [' O
        The function keeps calling itself with smaller inputs until it reaches the base case.
    4 U, B2 u& b) {5 k/ w
    9 `: \2 l2 |1 K$ q    Once the base case is reached, the function starts returning values back up the call stack.
    ' N  }, ^* M: t2 J/ K* [  [
    7 f; e. O- E8 M8 s7 z    These returned values are combined to produce the final result.
    & P$ K  v  L& G5 v$ o# j7 [+ S# ]3 R8 _! F: ^
    For factorial(5):) T* i, b0 {! _& x$ j

    % Z1 E, w, _. K  L4 `/ r: V$ |: p1 p) E5 h2 W! m
    factorial(5) = 5 * factorial(4)
    3 B  q" Y/ l% |: [factorial(4) = 4 * factorial(3)
    1 G9 e5 e6 v; P! r6 J' O  @factorial(3) = 3 * factorial(2)
    " W% U5 w* b1 ]/ r2 g8 z" Z3 z$ e7 qfactorial(2) = 2 * factorial(1)! R- ^2 K# V4 c3 @6 P
    factorial(1) = 1 * factorial(0)
    % s5 Y! N- ~% [  h6 z# S9 f7 Mfactorial(0) = 1  # Base case; j" M. Y! t; r5 l8 P

    8 J# d+ Z$ E6 t2 d+ ]Then, the results are combined:8 G0 g' }- S) M9 A0 i, [0 c) V* w" V
    , R( m. G0 y* o, X, k, R  b( B

    8 ?% n  k0 B1 L! h5 Z; [" f& Vfactorial(1) = 1 * 1 = 11 T+ h4 u4 w" L# c
    factorial(2) = 2 * 1 = 2' l4 s* ?" M$ V: q! k' M5 I; K' b* b# ?
    factorial(3) = 3 * 2 = 6, V8 m! p0 _. N2 A0 I, s& |- Z. i
    factorial(4) = 4 * 6 = 24% k# R5 Q+ k% X6 j
    factorial(5) = 5 * 24 = 120
    ( \8 U8 ^! `4 h8 W: R9 j/ U- N* p* d' b8 m
    Advantages of Recursion
    2 ?/ \0 E1 [( O  ]" Y9 k
    / \) p1 f& k' ]( R! ?    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).- }  ?; T5 r. d/ J

    . W0 ~( r4 w  d* e6 c( m    Readability: Recursive code can be more readable and concise compared to iterative solutions.9 O$ l( d; c! y

    " L4 v: |, @' v- I& gDisadvantages of Recursion7 h( i( L9 ]3 B/ l+ M

    + V- v4 H; U. ~% N/ h+ Y    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* P) Y7 w5 J6 Y* B% @9 X2 A
    , j$ Z6 t! j& V- I7 Z: n2 \  A
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: c4 F  j  S7 q3 C2 C; [, E

    ! b5 l( |: V! KWhen to Use Recursion+ ^" ]: O* c. T# f1 S9 i3 W" z
    # t' S! r  `: z  x/ y& S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; \3 h. u& b/ B& R9 T' y2 ]
    & v  ]3 z* A& g1 Y, y) p( {. [
        Problems with a clear base case and recursive case.
    * s8 x$ p* n* ]1 n0 e' e* Y6 r+ }4 S' w/ K  R
    Example: Fibonacci Sequence" \8 Q- P; A4 H4 [$ g) P
      L5 `/ m5 t, ]  V$ I$ C* [
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ ^0 D  ~- D% k# W# k+ [, ^$ j  o% W. k, X' n& v
        Base case: fib(0) = 0, fib(1) = 1
    " s* d# l9 O- {$ U& S
    # O  L  u) C7 ?    Recursive case: fib(n) = fib(n-1) + fib(n-2)+ f& s& x- O  B. W1 |8 e$ O1 \
    9 U5 t2 I5 Q1 |# E& m
    python. u" c6 G& M. ]5 S7 L
    ! M# E8 [' z, v  Z# B# `1 F: P4 f- d

    / K  @4 H& k1 i. X1 ]def fibonacci(n):
    . o5 k" q! b3 s    # Base cases
    - ~. Y6 k, }8 d1 ]9 L% V/ n    if n == 0:( l+ A$ E6 P2 A
            return 0
    " K! j, g! P: y+ n0 v    elif n == 1:
    ' z1 h1 s1 T5 ^- B7 t$ c( c4 a( D        return 1
    9 I0 J0 j# Q# Q* J8 D% U; q: {    # Recursive case
    : k9 R5 C8 I2 Y0 ]) {7 U    else:
    3 @( G: D* V* z: ?: H4 W) S' o        return fibonacci(n - 1) + fibonacci(n - 2)
    1 E( u- P! V. S4 ?2 C& k' l; p
    " n; S* G7 m, k9 W! _# Example usage0 D; s) z2 Z) J2 u. ~, x# r3 p
    print(fibonacci(6))  # Output: 83 ^: O# b* [/ }1 a

    $ {/ q* t  B9 j$ X+ S& C8 XTail Recursion0 \, y7 L1 i; _4 _6 y; m4 ~- I

    . t& f/ N% e+ P, H  }  QTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    " V+ E" o6 D: @
    : }# [( Q, V6 ?) W8 tIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-23 20:39 , Processed in 0.059973 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表