设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1994|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 O. y* f) w2 D- `+ G  e" N. h+ V5 @; f
    解释的不错
    + a1 ]! r. n; n2 s5 ]3 y5 J/ Y4 |: v: r
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    5 [; Y2 B1 F0 ]: n7 H
    1 M- Y4 o% x+ Y) O& L 关键要素
    7 H$ F6 v; A* P/ d5 ?1. **基线条件(Base Case)**
      M! d* h/ ]2 ^+ U# O   - 递归终止的条件,防止无限循环' |  Z% {9 ]) n4 V9 n" u6 t9 }' }
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 12 O9 Z- a- c  S; z2 `

    " L4 T" m0 c5 A( g2. **递归条件(Recursive Case)**
    ) {- ~0 \* |/ H+ K   - 将原问题分解为更小的子问题
    . q* E1 W; G6 ^   - 例如:n! = n × (n-1)!" w3 C: w! o3 W
    7 Z) K9 h$ K: u  P2 {) e; d
    经典示例:计算阶乘
    9 {: ]2 O) q* b6 ?python
    " C$ \1 x2 B/ C7 X0 ?0 w, ~. Z7 }2 v. zdef factorial(n):
    * N# A" N( w  j% f6 J    if n == 0:        # 基线条件/ {# ]/ A1 a9 U2 c
            return 1% m. v1 l" D1 i, R& _" s; k: P- V( G# r
        else:             # 递归条件
    - Q0 e5 m  {0 Y- r9 C        return n * factorial(n-1)1 s! @" ~% |) u" N0 S3 x
    执行过程(以计算 3! 为例):- j* _6 e. ^/ o8 w
    factorial(3)
    3 z, S4 n3 t# P1 m. d3 * factorial(2)
    4 X: f9 r, l6 k4 ?3 * (2 * factorial(1))
    2 [& T! s# U* f8 v6 t$ P3 * (2 * (1 * factorial(0)))
    + E' I  q" ]9 `6 T  @- E/ z6 _! V3 * (2 * (1 * 1)) = 6
    8 T; f3 v" D" C" a& h8 [* C
    ' J' B5 P/ L" |9 x% e 递归思维要点
    : [/ s( _6 G+ K9 N$ i1. **信任递归**:假设子问题已经解决,专注当前层逻辑& s* r9 n; y4 ]( [% m5 q7 f
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . M) r8 H4 t; F3 W$ G9 {" V5 n* x3. **递推过程**:不断向下分解问题(递)
    1 b: X" x; s8 z, N' G% j/ I( R4. **回溯过程**:组合子问题结果返回(归)
    8 ]2 N' E1 R0 e! P; ?" `: E: n( w
    6 Y8 ]9 v' u" A0 L 注意事项9 ^9 c: n5 r4 f) q
    必须要有终止条件% K! P2 @$ `+ Y" i8 F; _
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * H, D3 W* E: P4 m7 {: T某些问题用递归更直观(如树遍历),但效率可能不如迭代
    % ?4 z2 G, [/ c' ^  ~3 M尾递归优化可以提升效率(但Python不支持)+ i- _2 X/ y7 M2 [& O
    - `8 J" Y1 g1 J, q5 K
    递归 vs 迭代# Y% E* e/ H/ M* u1 N3 c/ U
    |          | 递归                          | 迭代               |8 m: K0 K+ G% K" X3 X3 S+ s
    |----------|-----------------------------|------------------|
    : b6 s/ @7 ^1 L1 z| 实现方式    | 函数自调用                        | 循环结构            |
    " G* Z. l( d( H| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# y) K. R) q8 x
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * x2 {3 U8 z% Y4 B5 k! T) w| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |# q5 ?! V+ ^/ g5 h0 e9 [% g
    : H/ R6 @5 j& D; a6 y' `
    经典递归应用场景) R, W" ^( T3 u4 H; s5 J: d
    1. 文件系统遍历(目录树结构)
      u2 g! T3 r9 i" Q( S. k" N% f2. 快速排序/归并排序算法: E, [; ^" F1 d
    3. 汉诺塔问题0 ]7 d; B9 k2 k2 N( O% Y9 [" M
    4. 二叉树遍历(前序/中序/后序)
    $ ]& v3 B% s+ a5. 生成所有可能的组合(回溯算法)
    - ^; i) R2 u, Z7 f4 D
    . X; y& H  r1 O' {$ [9 Z0 |试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 08:23
  • 签到天数: 3160 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) P+ Z# C9 S4 Y7 I
    我推理机的核心算法应该是二叉树遍历的变种。
    ; l1 i! d9 z( N4 G' `另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ Z5 P6 r7 e; D- UKey Idea of Recursion' Y) P+ ?, q6 P* i/ m8 N" d. K

    $ e' ^  z  M( ^- r9 l4 C# DA recursive function solves a problem by:
    % r( S& D5 X1 K' q8 S0 t  [$ i" \( h( g2 \" ]" g% \
        Breaking the problem into smaller instances of the same problem.
    1 `" L1 V! B! s& F* W: [) e# n" N* I* t8 ]
        Solving the smallest instance directly (base case).$ u/ [# O& r3 I, h0 F
    9 W+ E8 R& P9 A
        Combining the results of smaller instances to solve the larger problem.
    2 T, f$ @2 b1 R( A0 {. G; ^+ |, B3 q( Y3 n7 H
    Components of a Recursive Function! u. l+ o/ P/ z, W/ l6 S4 B
    & _' a6 j7 x: M" p! ]9 _
        Base Case:8 ~, S& ?3 |5 `! c

    ! X) M& `+ ~/ k        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    4 A! x: X' u0 i1 F" m5 v* ?: ^0 @
    , R* w& U% k# @- c9 J        It acts as the stopping condition to prevent infinite recursion.
    0 X, ?5 V- s; z: o! F; Z
    - J2 Z+ Y8 C: ]! H& v8 d        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 i: r5 G0 p& _8 J/ x  _0 A, V, Z( h
        Recursive Case:. r2 J* S& [+ b" n: y
    - L9 X, J, b, C- y1 H: t) ]
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ D# ^# W" U1 z8 {: \5 Z+ d1 v1 g- c1 O  M# n& c+ A
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( @; {. B+ y$ L% g( T$ W+ ^" p+ G
    . X' t6 M2 p) ^5 [# \8 p
    Example: Factorial Calculation9 q/ Z4 }- f6 h( K

      Z$ z) U2 X# W/ T) c5 h0 W( MThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ V/ c0 u+ s" V3 b
    " `, G" g. k  {* l
        Base case: 0! = 1
    & O% x$ {" F2 f8 S9 z1 a* b" [3 A0 x( O$ K8 g8 b; `& h' j% r$ [
        Recursive case: n! = n * (n-1)!) j) C: B4 O( q

    ! D2 i$ X# r& |! F+ u) yHere’s how it looks in code (Python):
    ! q! X3 ?  W  e7 y( \. g- `python
    ( t. r6 K, W) N4 r" O& s# ?" X/ J
    % a, ~+ M" I! k3 v1 k0 Z
    ' _9 f, U  J' G- G8 }- fdef factorial(n):
    ) y4 p% c3 x" }- n; h5 J    # Base case
    $ `; k4 d. X, n    if n == 0:
    9 _$ G( B3 x) v$ M        return 1
    7 f: l$ P# c! i  Y7 Y. a! S    # Recursive case
    2 |( k3 V" T/ |! g2 [) q/ o$ |1 i5 ?    else:+ s& f$ ?# \/ F6 l7 z7 W
            return n * factorial(n - 1)9 \5 Y( C4 i) e5 x6 e& M  a
    ; p1 m% k" s2 |) O
    # Example usage
    * ?6 `- R" C4 v8 d0 tprint(factorial(5))  # Output: 120: t7 M7 B5 P! q1 i" ]

    - B$ p9 y, I3 J) \; Z, \9 p1 xHow Recursion Works
    : L4 B5 N6 y8 Q* W  Q" `
    & k. e3 R" e% J* r: l9 {. E    The function keeps calling itself with smaller inputs until it reaches the base case.' y( g3 }2 ?4 p0 l: [! y: C9 A
    $ x( Z5 i* S- y; H! E
        Once the base case is reached, the function starts returning values back up the call stack.
    % u  z/ Y& S5 R4 e. K8 l
    5 U  r( Q+ i+ N: i2 i1 ]# }9 R+ Q    These returned values are combined to produce the final result.
    . v* l- U/ s; W- y' w1 Y: i. c; l0 P6 m) l
    For factorial(5):, `$ s& Y  c$ e1 H: r# _; ^
    " X  T) y8 j7 I
    4 \( h5 s/ h& K# r
    factorial(5) = 5 * factorial(4)
    5 z+ [* y" m, w& Mfactorial(4) = 4 * factorial(3)% t% Y  N  ]0 k  e# y
    factorial(3) = 3 * factorial(2)
    0 c4 H6 J: W1 P- Q$ Q' _1 cfactorial(2) = 2 * factorial(1)
    9 [. c0 u) a3 k# ofactorial(1) = 1 * factorial(0)+ P1 _# A/ f6 A$ X$ O3 ]  D
    factorial(0) = 1  # Base case
    ' J( l8 T  ]( ]# l# ?! E+ f0 A8 U: i8 R0 I- O- @
    Then, the results are combined:& D" y" P8 w( g! t" T7 x
    % j  y! c' |, T4 I

    $ S3 n: C) Z) K1 ^8 }* efactorial(1) = 1 * 1 = 1
    9 `! I7 ~& H+ Gfactorial(2) = 2 * 1 = 2
    ) T1 S  {: N+ k1 a( \( Gfactorial(3) = 3 * 2 = 6: h6 [* e) H# i$ U/ \' `( E
    factorial(4) = 4 * 6 = 24" S( J* \3 O4 K  \1 I" ]
    factorial(5) = 5 * 24 = 120
    ; _+ p9 |) Z! C4 T+ G0 }; _% |& y* x' c1 J8 {
    Advantages of Recursion4 N( ]: M3 D3 z# l3 h

    9 c' b2 l/ Y" k; D    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).  ^" C; p% w+ n9 p9 `
    ( i; R( E, B" O  O
        Readability: Recursive code can be more readable and concise compared to iterative solutions." ^, O; B+ f6 C/ Q
    $ ^: l7 s. h3 N7 m3 g
    Disadvantages of Recursion# T! `; l6 z/ ?6 r- l  T" ~$ P: X! C  y
    ( G& o% g# Q- U1 t
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    % V8 ]9 P' D" ~
    4 p8 j3 b5 G2 z# u; s& T, u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- G% X5 m, m" `8 P- W; z- z

    ) D, `6 Z( [% x1 a0 ZWhen to Use Recursion1 @$ |- O, e7 V5 }

    0 U( p; B( v9 z! K9 r" |$ m! y    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 o: g0 s* h  G/ g

    & z6 n9 W# z9 Q, I9 y' o    Problems with a clear base case and recursive case.
    ( ?- H) B: A5 m% G6 K9 `8 T1 F, Y
    & T5 E5 E% T8 m& v% ^Example: Fibonacci Sequence2 n5 k) G8 p7 _; {! o5 N

    + a( u4 z! Z1 I/ Y0 }( t0 \The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    - ?5 G" R1 [  x( ~3 A( I3 e, L/ Z9 u4 l' T* J9 e
        Base case: fib(0) = 0, fib(1) = 1; D. s* R- f/ f$ k( g" d5 i

    , \. F  A' u9 g' L8 D0 i    Recursive case: fib(n) = fib(n-1) + fib(n-2)% {, J9 l/ c1 k; ^" U
    3 u+ E3 b% ^( o+ t! I. ~. d1 z, U3 T
    python
    3 Y4 s2 i4 _) ^7 I8 K
    3 s9 T0 |+ s8 k' s( z/ f) m2 [* w$ E8 H
    def fibonacci(n):
    ) o. j0 N" u7 s# I- N2 C+ e0 Q    # Base cases
    % }  L  X6 R) Z/ b    if n == 0:( z  ^+ b% U) t7 c! ^6 \. x! I
            return 09 J' i; w. Z6 J  u5 g+ z' E4 Z) b$ N
        elif n == 1:1 m+ i/ o, M- C- \) K
            return 1
    & X- o  F' Q2 B' H    # Recursive case
    / I- c8 r8 N& m. Z8 }    else:% `: `" T7 s/ ]6 P
            return fibonacci(n - 1) + fibonacci(n - 2)
    1 p: o- F3 [4 A# b  Z2 Y' w+ z
    - [: c& I/ y. B1 f6 j) ]# Example usage4 p% S' g( p; [& h4 k9 f4 O
    print(fibonacci(6))  # Output: 85 z, ~& g( q# p/ q5 S3 n
    9 r$ l% l  w! |( ~& g: W
    Tail Recursion, ~- k1 K* O) L! w. k; n

    8 h! V$ N& E% Z# M* ~8 z* rTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 U8 m' c. y& }
    / q) b  X4 g% b- R1 B) A
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-2 02:45 , Processed in 0.063626 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表