设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1801|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 2 X/ a/ v6 S2 y8 ]( k

    4 `8 o- N2 x5 v( h3 V5 |6 _1 R解释的不错! D3 L$ x! m8 i2 ?0 ^! X
    % z% h, x( }# U! k8 e, S2 _
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + o0 g; }+ n! U: b7 M0 G6 N1 k
    关键要素
    ! v8 I- ^, y# T$ }- E% ~, i, @1. **基线条件(Base Case)**# E6 T  W! d& ~6 P8 K/ q
       - 递归终止的条件,防止无限循环
    $ W( K5 i1 \! I& Q2 K( c3 l! E   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% {; |% I. Y0 `+ `5 j
    7 z; j, U2 Y7 g% f) C. q4 W& o
    2. **递归条件(Recursive Case)**" D# A( j$ a* l" y& j
       - 将原问题分解为更小的子问题
    ) m0 P$ G$ I4 I; ^2 b3 k* J  c2 ~- H   - 例如:n! = n × (n-1)!: Z% `, D: X4 j/ I: C$ n

    " A6 [. u) B9 y: J: J/ m$ ` 经典示例:计算阶乘$ [% g# S  Q- f
    python6 v8 {9 h- B( G# X9 B* H/ Y) {
    def factorial(n):5 i6 O6 N6 X% u! c3 C
        if n == 0:        # 基线条件
    & I4 S8 a1 H1 r( Z  U        return 1: m% [9 D; F) M; |: [* p
        else:             # 递归条件
      y2 r6 E4 N6 M, J        return n * factorial(n-1)2 `1 B0 g9 S% w+ U
    执行过程(以计算 3! 为例):
    . _; v* ~; j  k7 ifactorial(3)& C" k& J$ h; c2 y; P# w% o& m% {% \
    3 * factorial(2)3 i! j. M: M2 c
    3 * (2 * factorial(1))1 C( @- t" @$ ~9 e+ Y+ r* ?
    3 * (2 * (1 * factorial(0)))
    ' u/ W% i7 K+ M* D2 y. {( v2 \3 * (2 * (1 * 1)) = 63 q- Y8 U! Q9 r) U, E

    . y8 ^/ C; C; k* b 递归思维要点
    # h$ V* R4 X: {( U: J1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ) i8 i& o1 V4 @+ N2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% y! y# E7 w4 f. \
    3. **递推过程**:不断向下分解问题(递)
    " r& s$ X% c6 M4 {4. **回溯过程**:组合子问题结果返回(归)* a" b! X3 m# V" {

    7 r# D2 H4 Z* a+ h9 a4 U 注意事项
    7 S" H1 x1 B( I. ^$ F必须要有终止条件
    0 p% _$ }& Q* F6 c# V; ]: T4 o) q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& ]( ~, D; Z) B6 T9 ?% a/ d
    某些问题用递归更直观(如树遍历),但效率可能不如迭代+ K# e/ G8 N  x9 d( x( M/ u5 R* w
    尾递归优化可以提升效率(但Python不支持)
    9 c' i8 Q9 C7 _. ~( V: `
    % A- T# n+ U! U& A 递归 vs 迭代" X, ^/ h3 L! w0 O
    |          | 递归                          | 迭代               |
    2 e7 t( B$ Q7 b8 a; {|----------|-----------------------------|------------------|
      w2 n- q' h0 [/ f| 实现方式    | 函数自调用                        | 循环结构            |
    7 p/ k6 ?2 U# c' N& k. |% j| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! [' v7 h3 L2 r* Q5 L6 e/ r| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ R% m, q+ O& u7 @
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( q; K* |( @0 ~, v' G, R2 v- D
      m' F! P7 L3 S" C1 r0 ] 经典递归应用场景
    " C& ?0 W$ z. o& l% r- _8 [$ h$ x1. 文件系统遍历(目录树结构)
    : n" @+ r9 y0 y/ r9 t1 u2. 快速排序/归并排序算法7 M. I7 `3 f7 |8 R
    3. 汉诺塔问题
    . [, i' N1 j4 V- ^  h4. 二叉树遍历(前序/中序/后序)
    ( V$ o1 f  S  C# n* \" l  G5. 生成所有可能的组合(回溯算法); b! ^( L* y& H! E3 |8 {% a

    # P( ~- _/ l: s; \. w8 Y; T试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    14 小时前
  • 签到天数: 3144 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    . @+ ^- K* r% s! I$ X我推理机的核心算法应该是二叉树遍历的变种。
    7 h: p! U6 k5 r# _另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& B* F% F( f# P# R
    Key Idea of Recursion; o3 G0 v5 Z# `, u
    3 ?  a. Y% F/ I+ A! O9 p. k
    A recursive function solves a problem by:
    % b7 ~  b9 F/ L. Z: ~! K9 x4 Q( b" q4 z7 J
        Breaking the problem into smaller instances of the same problem.1 P8 ]6 `% a; I; c2 \6 u
    , G) r# m+ p+ ?  u$ l$ b
        Solving the smallest instance directly (base case).
    ! f5 o6 t+ d0 O) J5 [8 k" q; E! z
    9 X, r# |$ V; {8 }0 M* I3 j3 a( M    Combining the results of smaller instances to solve the larger problem.6 g8 K# W8 G3 E' D
    ( X$ m) x' A" b  k1 H2 u& w
    Components of a Recursive Function
    3 \: Y2 |2 u. E! C1 b9 Z0 e3 Z  N! j" O$ B7 r- X! q
        Base Case:" l) E1 l3 s+ \" i& n2 q4 T

    3 B+ a2 \  c: z        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ m/ V  c) R, q

    + T" F0 F* U& z  o9 L2 Z        It acts as the stopping condition to prevent infinite recursion.
    5 T; X, ^& ?- \. V! A
    % k) ~' k5 u- V9 b        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    - C: ?5 `9 A. r! }# U8 h* k1 ~" C) d' d6 z) }* i; f  z: S. `
        Recursive Case:% R1 t; Y* [8 i/ a0 a' Z3 H

    & s' j* ]4 W" H2 E        This is where the function calls itself with a smaller or simpler version of the problem.
    , ]/ m  l8 C: |6 p8 c- K6 t) p" ]; X& i9 `' J7 `% |  o. V
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / t3 J1 Z: ^5 Y* ]  P1 w
      s; s) H% U9 gExample: Factorial Calculation
    # ^8 t5 Y5 g$ l+ t
    * o) @1 n7 G' j3 xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% K% k, o! p3 l" p# B

    3 T* I' v- r# m, L3 o4 F4 I. ?    Base case: 0! = 15 I# y! K: N: C
    # V3 S1 u0 L2 K! N- C- e( c
        Recursive case: n! = n * (n-1)!
    5 ^6 g( ~/ z' `" I% p% E0 X3 W! E5 V. b  i# }6 b
    Here’s how it looks in code (Python):; e; S6 D& i. \: k" |$ D
    python) j- R' h% A$ m

    % U5 T3 q) p+ s& Q! Q5 j
    6 L9 I& S) U" Z9 Kdef factorial(n):( P  P1 g" K: f' x. P
        # Base case
    - H- T- z9 \# u, W! u    if n == 0:9 }7 O# e3 N& q1 K& A  U' {1 L. X
            return 1
    $ u  |+ c* J8 K6 R& v    # Recursive case
    ) f' {9 `% C0 q0 I* [& g    else:
    . B% @% w1 z, q: h2 U        return n * factorial(n - 1)) s$ H' U* i. V% Z! R& _9 x
    # H) Y. p9 i  y4 y3 D! k( ~
    # Example usage
    5 v8 Q3 d* e$ t' ~7 b7 k# Q! k4 {print(factorial(5))  # Output: 120& c: V# V2 f4 k( o* v4 l; V* N

    : Q- k/ e. x( n0 N2 |How Recursion Works
    3 m% D& a- \8 I- i4 \; i
    # x8 w  I0 Z1 |/ [5 o    The function keeps calling itself with smaller inputs until it reaches the base case.
    ) g& P; `; ~0 I' E
    + Q. k- W2 ~, S; P9 P! K! p    Once the base case is reached, the function starts returning values back up the call stack.
      X: K8 j+ c6 u6 k- ?/ u% a) P- |- c' Y
        These returned values are combined to produce the final result.
    ; l" s$ b/ O: b: s( V, [( u
    . ^# h( b4 b% yFor factorial(5):
    % W5 \# T) n, X" ^6 Y2 ~0 _' `4 D7 A5 h8 O
    1 |; c7 y& \( i" W% x
    factorial(5) = 5 * factorial(4)8 U) U8 A9 M* w  x
    factorial(4) = 4 * factorial(3)
    7 s& S- F( S- q4 B1 a6 rfactorial(3) = 3 * factorial(2)" B; R$ P4 M* ?1 o2 |0 h( q+ A
    factorial(2) = 2 * factorial(1)' `% B8 j3 \% }
    factorial(1) = 1 * factorial(0)
    5 L& ~2 G3 C+ ]2 [6 e3 O; \factorial(0) = 1  # Base case" ?; \8 |6 {8 s. n) ^- P
    9 l9 n1 D1 ^# e! ?# p
    Then, the results are combined:
    $ X" v9 I. F; E1 c, u
      ]/ a' Z6 h) {* A5 Q5 m! |& @, \1 J. {1 x
    factorial(1) = 1 * 1 = 15 M8 [4 G2 N/ R# y7 a0 f) s
    factorial(2) = 2 * 1 = 2
    . m6 V2 n* i. U6 Wfactorial(3) = 3 * 2 = 6' k5 m, ?& i6 w1 L- w: |
    factorial(4) = 4 * 6 = 24
    . Z+ _+ Z8 p+ x" X  N" Sfactorial(5) = 5 * 24 = 120) [6 g3 @1 S8 B6 q) f

    * b* |% W# x% V' `& q. XAdvantages of Recursion
    1 g! c2 b3 t9 j) ]. E
    % {2 N2 |9 v3 u    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ e# a6 _2 }6 `6 H: f

    & N" h: O+ ^- G" m, S/ O    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    " l" |) |; B. ~
    % c5 [/ [1 H7 q) W( c8 F: ZDisadvantages of Recursion
    / Y7 U" V/ }3 ?" x4 y, p6 b7 _. Q; v7 ~6 C. e* F0 ~
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.0 q5 H; q6 p, t* f/ Z) Q
    8 ?, {& {$ H3 O8 H% a, R& P$ u
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / U- O: I2 O3 d( h- ?3 _8 l/ t' D8 w1 j' |4 ~
    When to Use Recursion
    # f" a& a" r, \1 z5 e" a% i7 O$ d5 l% L' t- @, S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ; [' h4 a* ^+ r9 G4 _
    6 [, R6 f) D) e' k$ u8 M' m( }* a& C    Problems with a clear base case and recursive case.$ o7 B, A4 J( g  R3 K8 P* v
    $ \; I1 v6 w# U+ h) v
    Example: Fibonacci Sequence+ W7 V3 C! H+ [( {: H

    # w; w. X" m6 N. b& \/ ZThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 W! t6 T+ Z7 {. a
    ( E6 z# O# y9 s0 e- p% c
        Base case: fib(0) = 0, fib(1) = 1
    9 N( l  a) Z4 d# d, k- W) e# ^: d4 o$ a) O1 N  B
        Recursive case: fib(n) = fib(n-1) + fib(n-2)1 f" D) p" O- c' o2 @- O8 |7 l
    3 o8 k  q' B: \: f. K# H6 ?5 \
    python# A; B8 S+ L. X2 T% V* @

      t) q: {6 R2 U* n& \- X3 D1 M/ E$ G* Z# Y+ ~
    def fibonacci(n):
    # A5 W1 S7 c9 q. D  J  }5 o4 K    # Base cases
    " |% }9 p6 ]$ L1 C    if n == 0:
    + M' Y8 i# Q. p, q2 U* |% B0 K        return 0
    2 y. |9 D- o( z' \4 a1 W$ a    elif n == 1:% k# q: A: T% r! y: p
            return 1
    5 |$ K8 N" n8 f, b( q    # Recursive case) |- G- Y8 }" y& N. ?9 \# Z" @  o) p
        else:- o/ |8 N  L+ G" X
            return fibonacci(n - 1) + fibonacci(n - 2)
    4 K  m) Z1 D& n1 `
    9 [! ]9 p! T2 r7 x# Example usage7 |) |: }& s; Q$ h; p3 b. G( C0 {1 V" o
    print(fibonacci(6))  # Output: 8
    , _$ h( T, b, \) V* i* m6 r  ?8 y  f
    Tail Recursion1 v& y& u6 Z( S1 ]: u
    $ i* G' P6 S1 ~) w/ \
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ) {- s1 f8 u- e8 I8 V6 q. @3 c# h) P* W1 I# H0 ?
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-12 21:36 , Processed in 0.036425 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表