设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 965|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 E  Q. t2 k( Z# ]3 F
    + O; p: Y- s% a+ v2 H6 j* o
    解释的不错1 E% C* k0 K  t5 F

    2 P, i1 P* \' \$ ?2 P4 i递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. v0 K) T1 F5 ]
    2 i4 M5 x2 D4 N- \; c
    关键要素
    1 m0 B6 ~( O3 `1 T+ @' x1. **基线条件(Base Case)**) Z5 D& F0 E5 {
       - 递归终止的条件,防止无限循环
    . a: N$ p' Q7 @5 ]0 S   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ |7 ^$ B+ ?6 P: d0 \
    8 R9 `0 F0 O" I1 ?5 M6 d# z
    2. **递归条件(Recursive Case)**
    0 B8 ^* T& t0 u7 G) j( q   - 将原问题分解为更小的子问题4 Q' Z; E4 U* ?$ R4 i( |3 w
       - 例如:n! = n × (n-1)!
    ' ]& Y6 ^7 a/ T9 m- b- L& V: a) D
    7 H2 X3 [2 B8 z# ~/ v) U 经典示例:计算阶乘- R4 C! v4 F: t  S" u. ]1 l
    python
    ( z7 K* F% N* Z) ^0 ^def factorial(n):3 i. v9 I4 R0 o+ C& v
        if n == 0:        # 基线条件7 o8 h8 @4 O7 K9 ^- m0 d  O
            return 1
      \' K* {, M( J    else:             # 递归条件
    8 |: U' z3 {0 p! C0 ?  H- A0 m% t        return n * factorial(n-1)
    ; ^" G: g1 h. P7 y% G+ J执行过程(以计算 3! 为例):
    0 a7 x( e: K( Z: I  t8 Pfactorial(3)
    # W) A5 A* d' X* s" r3 * factorial(2)
    ! |5 I8 h( R) G& }3 * (2 * factorial(1))
    ; |! g/ O  n8 ?  v3 z) W1 r8 w$ J3 * (2 * (1 * factorial(0)))
    . [" H; K) f  x/ B; y; s1 l/ p3 * (2 * (1 * 1)) = 6! a# {. c1 K1 y- n

    ( a* q( o4 E0 V 递归思维要点
    ) r) f4 x! d! _1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + P# l; u5 c: j# G1 c2. **栈结构**:每次调用都会创建新的栈帧(内存空间)& ^5 R* ?3 _' x% f: I6 X5 U. g
    3. **递推过程**:不断向下分解问题(递)3 }, a/ K" \6 |. l
    4. **回溯过程**:组合子问题结果返回(归)
    ( ^2 q: U4 o) ]3 ?  C" m
    ; j0 J2 _, U' `! Q6 G2 _ 注意事项  c5 T7 h, \! R5 y8 q8 `5 X
    必须要有终止条件
    0 @6 P* z$ C$ ~3 P递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& y3 ?! W- B% t: Y/ H9 l
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * e3 O9 r' x: j1 n! N, [9 }尾递归优化可以提升效率(但Python不支持)
    9 C7 O6 {. r: c3 Q: ~. z6 L7 @. b5 O2 i4 t. |5 x" C; Y
    递归 vs 迭代* F) d& Z5 ^$ L/ H8 Y4 P
    |          | 递归                          | 迭代               |
    6 s* |% H0 y! w4 ~% o. b- |  L4 W+ L|----------|-----------------------------|------------------|
    ( g8 [3 {! E1 `# A% @/ A% w| 实现方式    | 函数自调用                        | 循环结构            |2 ]4 h8 h! g' d& S/ {. |5 F
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |) G! \; N" E* b9 @8 G- Z, i0 _
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( {6 {: l5 R$ ?, O. Y$ h! a| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 h! o8 y8 q1 {* v: F, I) ~

    ! ^; e# `3 V! x, ?. H  h 经典递归应用场景
    / `/ r$ b, b- h$ Y6 f1. 文件系统遍历(目录树结构)2 R9 p( v+ Q6 b0 u/ a3 y6 `0 w) r! u
    2. 快速排序/归并排序算法
    $ N, v3 X+ W5 Z3. 汉诺塔问题
    ' I  E0 f3 N9 b, ]$ B( S4. 二叉树遍历(前序/中序/后序)8 o# v, `) [8 G' H
    5. 生成所有可能的组合(回溯算法)
    ( d  b8 S+ d9 e) A
    " p6 y2 u, f5 G* E+ C6 ^试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    14 小时前
  • 签到天数: 3045 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    " e3 K: z& q/ A: u; C5 H, D5 t我推理机的核心算法应该是二叉树遍历的变种。# I8 o2 f' k" G: ~# A$ U6 v
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. H2 O& x' Q% i" G2 J: d( ]
    Key Idea of Recursion1 C6 M: C+ d; B" [/ s7 `: f# a( f

      _% c# F+ ~  @+ g  ^, EA recursive function solves a problem by:
    $ s* f8 V# G. o; {1 f( p) @4 j9 B3 o( B' z
        Breaking the problem into smaller instances of the same problem.% w6 k4 a( y8 l" G; {* L! u( }

    + ?3 F9 P' {5 I1 P; i9 t$ u    Solving the smallest instance directly (base case).6 [& f4 d# `4 ]; U0 f$ s, `) U
    2 b7 B0 d  T5 d. [1 h7 Q+ C
        Combining the results of smaller instances to solve the larger problem.
    & [9 s+ b; F  |+ n6 ]& Z, A+ e6 u# j6 R# Y% i8 c
    Components of a Recursive Function4 H4 @/ I8 q) u9 D$ B" W% D7 ]
    % _8 f4 D" F% p) R
        Base Case:( z" d& e9 ^4 I2 s  F$ H9 l
    # r1 H7 J1 P5 @5 e
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion., h6 q/ ]. c8 D  Y; y

    ; w2 p7 i2 H# L5 p! r        It acts as the stopping condition to prevent infinite recursion., d. k- Y/ ~9 u  u2 k9 b
    5 `/ j/ V. P* W' ]7 P% `3 b5 `5 M6 e0 l
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) U- v5 E4 ~2 Y$ |7 I

    / l- {4 }/ w/ m; Z- q    Recursive Case:( O, k2 J( O8 S2 Y" i- A5 w

    + h: R- i' C3 A, Y- w' p- \        This is where the function calls itself with a smaller or simpler version of the problem.+ C: J5 v: F6 C4 ]8 I8 T8 u6 Q4 S
    - j6 F" F7 T- F8 Z3 ^4 S
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # p1 ]6 E+ A% v* h, a1 K( y) j, {$ {! g- x3 C" h$ N
    Example: Factorial Calculation3 E2 f# [+ E6 j7 e/ c7 y
    9 o3 K- H* C+ t/ t+ z- ]9 G" N$ Q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:; S9 t% u6 D$ z+ c3 ]0 l' a

    2 ]5 Q' d* t2 u: J) ~; H- C    Base case: 0! = 1( b8 Y. l( r+ X6 w: u! {' k

    0 [! i: p$ U& j, n    Recursive case: n! = n * (n-1)!( F1 M5 t4 b4 D- a3 |

    : ]1 e7 h% H% K5 x( |* D: Y% ]Here’s how it looks in code (Python):
    5 }# a; J2 @) n9 T" k9 vpython
    1 ^' y, w0 b- o1 x6 z! d9 z1 v& n9 [6 {$ V

    ) t* _+ I$ z0 D+ x( ]5 [def factorial(n):0 e( t( B; _, W' J. b
        # Base case1 Y5 j. s* h8 |$ L" G
        if n == 0:; p. I' D# q4 M
            return 19 V' w; m+ k( _8 [/ G
        # Recursive case1 o; z" J, d6 H- O4 C) b) j9 c
        else:* k5 x- Q7 ^* F5 m
            return n * factorial(n - 1)6 d$ ]0 N" U" u% ?. k, Y

    7 s2 P/ v! m) R) G. S# _! A# Example usage) y3 _7 S7 U. |* @
    print(factorial(5))  # Output: 120
    . g# o0 g! z- v4 B% H* B0 c8 ~9 M9 t
    % _0 N7 z: Z$ w9 q( fHow Recursion Works- C! [1 p( X& x
    2 V! E* g7 M) c! `" d
        The function keeps calling itself with smaller inputs until it reaches the base case./ m' j8 c2 }0 |1 s/ z
    7 G) d0 o) F3 b& }9 q
        Once the base case is reached, the function starts returning values back up the call stack.
    . o) ]7 S2 Q9 G$ c6 |$ Q/ e; Z
    - D9 C$ c& N0 X9 k& V; N5 t# R    These returned values are combined to produce the final result.( _7 l1 e  z6 Y% Y6 J0 j

    # q# ]0 w" r* O8 X# K- ~0 `For factorial(5):$ O( W. L% x6 _( ^, V& K4 T9 {  @4 h
    5 n7 t) c6 d5 g( b. Y) {8 D- I0 G

    * C) v  e2 Y2 i( z7 k4 vfactorial(5) = 5 * factorial(4)
    , S4 Q. O: @5 C+ _3 M. L% efactorial(4) = 4 * factorial(3)
    0 k8 \  o3 Q: [, f% D. I5 zfactorial(3) = 3 * factorial(2)! r) L$ R/ K- r! H
    factorial(2) = 2 * factorial(1)% B! }2 \. O+ f
    factorial(1) = 1 * factorial(0); V. J5 |+ d5 V) k+ W
    factorial(0) = 1  # Base case* `! l5 Y( x1 G, Z' _- _% A9 k
    % n  i* L/ f( O2 [5 R7 o
    Then, the results are combined:( y5 O6 d$ _7 c" Q
    & K3 X7 o# ?9 p

    ( C) x6 T+ _# U, `- v0 Bfactorial(1) = 1 * 1 = 1
    5 Y* s# \2 k, m! @- L* B1 V+ bfactorial(2) = 2 * 1 = 2
    ; X' V+ o* d1 T* ~) Y5 [factorial(3) = 3 * 2 = 6% W8 f! b. o2 A5 s
    factorial(4) = 4 * 6 = 24# {; r, v  h/ V, c( C; e
    factorial(5) = 5 * 24 = 120- o* |) f! V) h$ c) t
    ) Z9 J3 r+ x& N* u0 E" Z( E( W
    Advantages of Recursion4 y. s9 L- b4 E; {- g  l

      y& @! w' P( T/ D& E* `' o& s4 a    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 X/ e1 W9 h! X2 A1 q+ i4 g! L% J" E+ F
        Readability: Recursive code can be more readable and concise compared to iterative solutions.* ?! w0 j: j7 y. b2 @% d. u( u
    " g- h0 N/ p" F& D6 k
    Disadvantages of Recursion3 `& o% O  T+ K" c  C& j# s  x- W

    " I, L% S" i* k% g  p! U    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 }% U3 m! i7 D: Z
    - i3 O* T  k2 p$ p4 P, v
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! U+ }7 c7 E1 e# y" P# |* z, p0 b1 {' y
    When to Use Recursion
    " C) F% ~* f$ z$ g8 @% r' r
    / |$ ^+ J; ^( j8 F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    + D+ a/ F- H! e4 @& i/ i
    % n' ?( W# f$ _$ ]2 [    Problems with a clear base case and recursive case.9 k5 i/ a& y; Y: K" I
    , o9 T* q& l- I7 I0 T& d
    Example: Fibonacci Sequence8 I% O8 I' A7 i" O
    2 d6 V! x9 J" P0 V2 {' x' p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- z, x% n$ f( c0 q

    - I" s( ]0 ?# E" r3 ]9 Z6 R. `    Base case: fib(0) = 0, fib(1) = 1
      p* g0 p5 ?; J9 {: G8 L  T0 q2 U, F7 ]: z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)" c2 W" F. u- Y8 f* M( g

    ! I$ s; |( i! j; R' M( }python3 D/ T- x# i, S  J+ I

    0 V! }3 v- O$ X6 X  |; u" q4 `1 p$ P! G# _
    def fibonacci(n):4 y; F; Y. @# |7 ]( w+ ~" T
        # Base cases
    - _9 F, `. p0 {+ M8 G+ R) J, v    if n == 0:' o  N+ [; s4 {! {7 v
            return 0
    7 g. n) L' ]  z    elif n == 1:
    $ v$ l6 g. o/ H1 k        return 1
    , w2 g* x# ?- t; t( Z' `" {    # Recursive case
    ) O, S; {& B- H$ j" k8 [  X    else:
    4 }1 ~+ j! K/ `/ S        return fibonacci(n - 1) + fibonacci(n - 2)) N. l) e6 i. ?

    " ]4 B" J# n; v- o+ l# Example usage
    9 d& u0 f+ Q, S6 Y9 N7 Eprint(fibonacci(6))  # Output: 8( G# g2 X  L$ P/ @& L5 i$ M0 I
    & O/ c* F2 b, n1 X$ t+ H  x/ G" m! O
    Tail Recursion
    / s" z% ]' ?) Q; J2 {1 e: {  s+ ~4 x, A9 k* \7 P$ M/ ]
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 h# I1 K( I8 u6 q3 [
    : d) _  ^" V5 C  O* I, z+ l0 I
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-19 20:13 , Processed in 0.034065 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表