设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1217|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 `, o- ^+ x! ^
    2 }! [4 r* X. q8 u* U/ T1 i8 H解释的不错, [! t/ |& M9 ?' D" b* v8 h

    6 N- }, e2 j- B' ]6 S3 @递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. k, t! c- p% K

    ' A7 B" l- Z" ?! p+ ?. s 关键要素
    3 ?) v1 L5 B% h5 O* O1. **基线条件(Base Case)**7 i' F7 ~$ \5 c$ j( y1 ~
       - 递归终止的条件,防止无限循环
    ; b$ R0 r7 w' K: m+ i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% p+ `2 z5 V# U

    % u' p2 ~) s4 @9 x, H1 M! u) [2. **递归条件(Recursive Case)**1 Y! P9 J- I, m/ k
       - 将原问题分解为更小的子问题
    8 F4 r  D5 b; C3 t   - 例如:n! = n × (n-1)!! r9 y" ~8 D5 E. e2 K2 ]) [

    8 R: C7 d+ m. I3 T" j 经典示例:计算阶乘
    , s- s) T; K( l* D! ^python
    0 \# @, o& X/ Z; {+ j  m' idef factorial(n):3 K5 s  f+ g) N0 A
        if n == 0:        # 基线条件
    : a. H2 I9 I9 `- W" O* P: `        return 17 h/ f8 Q( q! l: o* X3 T* {( I
        else:             # 递归条件5 u0 J6 l. I4 ~5 k+ @/ Y
            return n * factorial(n-1)0 i! K6 ^% X) [# ]6 ?
    执行过程(以计算 3! 为例):! n* p7 H+ p4 {  N
    factorial(3)
    8 K! C- V: u: P1 K; @5 r1 W, X2 v( I3 * factorial(2)
    ( O2 t: t( K. _  t8 g3 * (2 * factorial(1))9 |7 Q2 F# ?- N9 F
    3 * (2 * (1 * factorial(0)))/ c5 ]+ q$ X, P
    3 * (2 * (1 * 1)) = 6# z8 Q% r3 z' o: x. D9 \, ]

    8 ^% }! [3 P, M( r 递归思维要点! q$ B( }. L7 {+ [8 e8 b8 E: Q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 S  L/ {/ \* `2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % k( f. _1 ^" X* `" h- W3. **递推过程**:不断向下分解问题(递)
    - ^+ f4 j7 \: z' N$ u( o; Q4. **回溯过程**:组合子问题结果返回(归)
    6 L, a4 V0 g# }
    2 Y1 D: J% [: F% c2 F+ O9 H 注意事项5 r7 a* r4 C$ _0 S$ K( h) P
    必须要有终止条件
    $ _$ d! n, i* u7 @递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 x( _' j0 a" M/ Y& K  G某些问题用递归更直观(如树遍历),但效率可能不如迭代6 W; D0 a5 _0 R
    尾递归优化可以提升效率(但Python不支持)0 q4 Z- C# a$ q/ U/ A' Y0 [$ |  ?% ~

    - P- {, M4 Z% V$ }2 v4 [ 递归 vs 迭代/ g- F* v( J" c: p6 b9 k& v' t) Q, c
    |          | 递归                          | 迭代               |
    ( M% _2 [5 F6 {|----------|-----------------------------|------------------|
    . M! ?5 r6 L! G| 实现方式    | 函数自调用                        | 循环结构            |, X6 m2 V! Q- G7 n1 g
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( l- n- {) `' d
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: Z( V  g; {+ X1 u! Q+ [- `
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: C# M" F1 d; a; h5 y! L' a3 s

    ; c, H% a* D4 Y$ i- r0 z 经典递归应用场景( M! J8 Z1 z+ I7 T$ K- N( s5 |
    1. 文件系统遍历(目录树结构)/ z. O! U+ R( ~' W) c4 F! w5 M2 L% f
    2. 快速排序/归并排序算法3 _5 ?  w$ u, G$ O
    3. 汉诺塔问题& l- A% a9 s$ M
    4. 二叉树遍历(前序/中序/后序). n  w  u% \$ _0 \
    5. 生成所有可能的组合(回溯算法)
    6 P# p( H, g$ M5 P$ }# M
    + E( t; ?  U1 q, G* S试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    11 小时前
  • 签到天数: 3103 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    7 y% o2 Y7 ~1 @$ A8 ]& s我推理机的核心算法应该是二叉树遍历的变种。
    3 I7 g, s! ~& f另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ v- U$ l8 m: @) w/ K2 _; WKey Idea of Recursion! w7 |& u- h+ Z' Y" d$ V

    0 M. T% l# h  O0 |1 i5 ^4 V  QA recursive function solves a problem by:
    - u2 ~& N& U8 h$ ?. {' }
    $ v& c# Q7 t4 H3 k! `    Breaking the problem into smaller instances of the same problem." }. n0 W( m5 ?

    $ z6 Y3 {) _( j+ [3 U/ B" D    Solving the smallest instance directly (base case).3 G! ~/ {8 g' A  i
    * W, \6 a, Z5 s
        Combining the results of smaller instances to solve the larger problem.- r* ^) U7 C- A: I

    . o& a) O& S$ j. TComponents of a Recursive Function; y( h2 `) W9 n" H7 b
    ! x! |7 i  f) v9 [/ n3 o
        Base Case:; t. N3 G( q7 B, d

    " t5 n: C0 H0 Q* c        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.0 K' [& z6 w( ^3 r  r3 n

    * C! G; c0 A: h* l        It acts as the stopping condition to prevent infinite recursion.  t, y3 h# p6 i: g5 V7 Z: [3 v

    " X# W8 M* o9 I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.7 c( E6 w8 w2 s. N" Y8 S6 \
    2 U* x1 e0 w# F8 @
        Recursive Case:
    7 C" G, x% M! Q/ ^+ R
    & x3 ^( L- N2 |- v# W# y6 o        This is where the function calls itself with a smaller or simpler version of the problem.( `3 S2 Q3 m+ }' O/ N! M" H% d- W
    4 ]3 b0 `3 \9 W% p- t
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).& a3 F4 I$ v+ ]4 m0 @. a! \

    $ j) r. G4 L( {- h7 {+ A9 J# T: V* {" LExample: Factorial Calculation
    ; ?$ h3 @- d0 E5 H% _) H
    + H+ b- u1 R  U/ {7 E% M3 @The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    # w. I1 p( I) {5 C/ m2 q% ?" [" O! H, b* S& P5 N; V% ?. l/ `* \; Z# {
        Base case: 0! = 1
    2 x+ A/ m' \$ O6 l/ h+ D# k9 @& `9 W/ B$ D+ R/ O' D$ Q) v1 P
        Recursive case: n! = n * (n-1)!
    / b3 {- k5 D; X( Q3 N
    7 h  e! \% u5 D. r/ M% H- b$ R, d: [Here’s how it looks in code (Python):0 H# e/ g+ h, T; m& z
    python
      c! b2 i7 x: N( m1 ?8 B- _; E! i( \% a

    " h" D* T7 R1 W+ y7 J9 ?& idef factorial(n):
    & @# n) D) U6 V- l. E    # Base case1 a% L% S& E. x( B1 j& B; _2 f
        if n == 0:
    4 |" t; ?/ t6 u' O        return 1
    ) b- U# }9 S& _0 x    # Recursive case" p) Q8 m! [# p
        else:% f; h/ M$ }; l# T7 f  @' G" {  i8 C# K' Q
            return n * factorial(n - 1)
    & q- E4 J! e  p- X6 Z9 k1 o1 `8 r& L( B% s& `, e& L
    # Example usage
    , M( N% |$ d/ zprint(factorial(5))  # Output: 120. z3 M' x/ C2 Q
    / c$ ?5 Y" m: }2 S. C0 d
    How Recursion Works
    ; f  L# m# \% M' c# C8 Q( i$ ~, w
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + Y7 }! v, T! d0 P) h
    : l3 @1 G1 ~& M, b' I8 [* g    Once the base case is reached, the function starts returning values back up the call stack.) F3 V9 d' a( p% e& i$ e
    % u. |4 O9 r  B; j9 N- r" i! K6 o
        These returned values are combined to produce the final result.
    ' Q: s7 ]+ @* R; ], q- j6 C+ n1 ]6 `5 R' R; U* Z
    For factorial(5):
      ]% {& _; N9 B, K- b8 [1 ?5 {* l2 I
    " F& J6 m# n0 x/ [! a4 a# N) y" a2 h) f" {3 t# f! Z2 f
    factorial(5) = 5 * factorial(4)6 ~2 m# I& H7 m& q  r2 N
    factorial(4) = 4 * factorial(3)6 ?9 W+ Z- w5 F
    factorial(3) = 3 * factorial(2). j0 f' h3 |  _! j; m
    factorial(2) = 2 * factorial(1). \" b4 [2 s( Q  Z" ~  g% g
    factorial(1) = 1 * factorial(0)" P! Y: o" a* _8 H! |
    factorial(0) = 1  # Base case! W8 p0 ~3 ~2 ^+ G' d- N! j

    9 ?, P! U. b& ~' ^8 cThen, the results are combined:2 k  K! ?9 g) v% d
    / W$ J: y' j3 c( a

    8 G9 A6 ~5 L7 w; z. x) vfactorial(1) = 1 * 1 = 10 i9 J7 ^" u+ c0 y* r1 Q- v0 B
    factorial(2) = 2 * 1 = 2$ C3 G& T! y9 t7 n9 h
    factorial(3) = 3 * 2 = 6  R* P' c# Q! i+ `  K: k/ q
    factorial(4) = 4 * 6 = 24/ [: E( |1 T% k0 B5 r' Q* g, u
    factorial(5) = 5 * 24 = 120  r$ M- I5 Y0 ~- z4 o/ V" B

    2 E- ?7 s1 Z7 Q: [* z1 RAdvantages of Recursion
    ) M1 Y) ^: T/ T( f1 j2 B/ h/ U- t' b8 Q5 j' n8 s, I; L) E; \
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    % G5 I0 N3 \" k: Q, _0 ^' \4 H' p' o# s3 ^8 ~5 N6 u' \! o
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 K! a- n% s3 a3 Q, S5 j1 C5 L0 d! W) E1 G) t
    Disadvantages of Recursion
    ' S" w2 d+ Z  N" E0 w6 D) b; u
    1 \3 |# h% i6 l7 Z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ( k+ i  e% b% F" g7 r  N8 K; l! `" S
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* B! a) u3 M; g. Y" z) d: F5 d
    ) {, M& E: b. A# c1 a
    When to Use Recursion
    : e/ x9 D4 d6 v% W& P0 U+ L) o& [2 g6 G' a* h' H/ z$ [4 n
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 r7 H4 b" |! F6 [+ e4 c
    : x. F' D! g- E
        Problems with a clear base case and recursive case.- G. {% `& T) o1 `
    3 j7 ^+ }8 g4 v- X! h" v* I
    Example: Fibonacci Sequence
    % @+ v) E& S/ Q! j& J! E0 n6 K
    0 J! Z' U  C) E  eThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . B/ _8 T9 x8 T" e
    ( w* D  l9 Z. _( M# v: b. v    Base case: fib(0) = 0, fib(1) = 1. N( ~* S% B- H) r
    : B" H. t! G: y
        Recursive case: fib(n) = fib(n-1) + fib(n-2): n$ q: J2 }# [* @* K0 Q1 F5 E

    . G0 ^, g& F( T) C' ^2 ]python. `) N1 A. \0 O8 w- S% R

    ) a7 v- v: c6 V( A: {. @1 j, V
    ) ~6 Q7 h* k- r* Edef fibonacci(n):
    % m/ _! V# D6 j! j1 L, _    # Base cases
    4 M& |+ [" y$ f  Q    if n == 0:0 C+ n+ N9 E0 ?8 T7 z5 k
            return 0
    & p' [; O# m. r. N* r    elif n == 1:
      W. g8 R: {9 _  c- `9 V1 e        return 1
    ; {4 i( @5 ]  Q    # Recursive case
    4 d7 M' P" A; D" Z, I# j7 I    else:
    9 G1 c9 [7 x2 @- ~2 a, ^0 h        return fibonacci(n - 1) + fibonacci(n - 2)
    " e( M+ h0 V  Y" Q* }3 ?$ j. K$ k% F
    # Example usage
    $ y3 n$ [2 Q. V8 D2 o# dprint(fibonacci(6))  # Output: 8
    - H1 a# t# h0 {4 X; d0 y9 a
    / `8 V: r; _+ C; `; `! {Tail Recursion  [4 `+ [, ^" [7 F8 l% u' I0 }/ q# m. X
    ) ?" g$ C  c" q: D0 m" Z
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 O; r5 T$ k' I' `  E# z! n2 A" u  v, l) Q
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-28 18:53 , Processed in 0.039517 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表