设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1044|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ) B/ p; ~' e: i2 V" ^

    * w) K5 [. c% G" J解释的不错
    ; U' L% m7 l* ]! M1 m+ W) X+ T  e* Q. o3 o, G( f
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。( f! I# ^- y$ S; }2 t3 M1 G: D

    , H! l& S7 T  A 关键要素
    ) }  n2 ?; E0 n1. **基线条件(Base Case)**5 ~  V' H. q% s* v: F% n
       - 递归终止的条件,防止无限循环
    & O8 m; t7 ?& }  }: w   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    1 I4 D( y, J" B$ A! I5 a2 M. Y+ U% }2 |
    2. **递归条件(Recursive Case)**
    6 {6 A& ?! z6 C* Q3 P  [8 @+ C4 l$ E   - 将原问题分解为更小的子问题
    ; M1 S) F9 Y9 T! H3 _4 V   - 例如:n! = n × (n-1)!
    ( ]6 z! f" B# Z0 j+ f; N, U
    7 b2 E8 n; w  [2 J; Z2 \9 x 经典示例:计算阶乘# H( y% x; k2 Y9 o3 A* x4 t7 W
    python
    : `6 U  D( c9 a, R1 k7 u5 gdef factorial(n):' f  R" b$ \* g
        if n == 0:        # 基线条件# {9 Y1 T. S( G* u1 \" R
            return 1# G9 C* q; [9 P$ X* m7 X
        else:             # 递归条件8 Q; x$ K( Z+ }; E/ m% n) a
            return n * factorial(n-1)7 }/ ]3 F. a3 o' a
    执行过程(以计算 3! 为例):' ~5 l2 N8 H( [) V, q
    factorial(3)
    3 S, y, f, D. S, A+ k  i" F+ J3 * factorial(2)
    6 L0 T( t, J0 M9 `0 z3 * (2 * factorial(1))
    2 w  y( l8 f; R3 * (2 * (1 * factorial(0)))
    / B: T9 J- J& P- ~3 * (2 * (1 * 1)) = 6
    2 `4 b7 S0 h8 G+ @8 l' L  O9 g3 s/ J: Q* J2 e: ~
    递归思维要点
    # d4 K3 C, C& @7 y4 \- F1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 T9 ^* W/ L2 `# I# F5 Q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    / ~0 a9 j! t! `- I: Z& ]9 E3. **递推过程**:不断向下分解问题(递)
    . x. [' r9 E* z9 I4. **回溯过程**:组合子问题结果返回(归)
    " u, e, D, L( J& p( A% y
    * ?/ e5 ^# S; G 注意事项( `; X1 n: C: Z+ N: ^* m/ Q0 v% d* E
    必须要有终止条件
    : \3 p, N2 n, K7 O- t. A6 V7 L' B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    6 s+ O. d0 M7 d某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; b  e0 r6 E" l. `+ n- `3 H, T# d尾递归优化可以提升效率(但Python不支持)
    9 W8 U; g6 U  ~- j9 w4 y; d7 ]' T
    1 N. f6 Q0 W% e, t% @  d6 A2 } 递归 vs 迭代
    8 C' V% @& d8 B# y|          | 递归                          | 迭代               |
    8 @- @3 g* S4 D|----------|-----------------------------|------------------|
    & ?% N5 I7 d0 I: Y9 C) H| 实现方式    | 函数自调用                        | 循环结构            |7 Y) U) {3 o9 @( A! K
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* w2 J- c0 z0 A* W; Q/ K( L
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* Q' J& R2 p! b9 ]) b4 g. g
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 K1 P& c& A& J, m2 _
    4 ^, @# P4 j4 y0 m* a- V9 V 经典递归应用场景
    # O7 ^6 J3 D, Q1. 文件系统遍历(目录树结构)
    + C6 B  Y; g2 Q( j2 C" ^2 y! q2. 快速排序/归并排序算法$ A4 s- i- X4 Z
    3. 汉诺塔问题( Y: _4 B/ J% H
    4. 二叉树遍历(前序/中序/后序)
    % n8 g: N; e6 w6 f2 f# a/ w5. 生成所有可能的组合(回溯算法)" p! p: [1 v6 g& D4 i1 y
    " [! D  W$ d2 a8 ~6 T/ W
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    3 小时前
  • 签到天数: 3085 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,9 {: V4 V# N1 m6 P6 q
    我推理机的核心算法应该是二叉树遍历的变种。5 t# b# Q$ z/ r. Z+ B$ \
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" N. X7 Q  S1 J0 e6 ]( D
    Key Idea of Recursion
    6 ~' z$ X2 b$ g# Y& |
    . l5 k- d: N% a) A! F+ iA recursive function solves a problem by:
    2 M, n" ~% p) i4 K/ w" _5 G3 K  k& \/ i" ], T! ]
        Breaking the problem into smaller instances of the same problem.
    , u0 n/ i3 ~/ d6 L0 R* h7 {, T, N) M( V1 L6 Z3 Z
        Solving the smallest instance directly (base case).
    0 y" X9 ^0 _! R0 u: I7 I- \( Z* K$ _5 O" G( t0 x6 J1 o+ t; H  G
        Combining the results of smaller instances to solve the larger problem./ T% X( X. x! q4 Z$ G2 Y3 z) G( _
    3 a, G1 L2 F& j2 T" z
    Components of a Recursive Function1 r, ^, D4 R# B1 e. m* ?
    # h2 u) @: y9 e
        Base Case:
      N# o& v& f6 }+ ?
    ! m" f! L; e8 u, B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # L' f0 o  K) O( T6 [
    , r7 Y. ?& w3 ?2 t: W+ z        It acts as the stopping condition to prevent infinite recursion.  r+ L4 f5 M9 i' d5 C# h/ M

    - N/ [! P$ ~% v" N        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * H$ R2 o" x4 o4 |+ `) t8 W, F  p5 S! m
    - J9 Q8 b' f0 }2 ]. x    Recursive Case:
    6 d# q5 Z2 T8 ?, a# I& b8 m5 l  w8 P% f' N% C
            This is where the function calls itself with a smaller or simpler version of the problem.
    ' d8 Z# Z1 S+ a2 B6 F* \/ y8 ]7 n: V: l( y) F. Z0 U% o
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      J. Y! {  D- [4 t/ W9 t" K% P5 T% F! A# K& W) i
    Example: Factorial Calculation# Z- S& g, |2 X7 t" M; w/ J9 n

    7 H; n8 U- o; ?8 m, p( _# KThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % h; Q) g/ d! C0 h
    ) N% @5 f$ ]# ~2 v2 G    Base case: 0! = 1
    , o, d; {( O3 \0 d4 W* o; k; @, e% k3 W) i
        Recursive case: n! = n * (n-1)!
    6 m4 ^5 x" J# w; p2 j% Y: q' \9 U1 D
    / y7 m  G1 A6 g. Z' o# ]  AHere’s how it looks in code (Python):% h2 p0 I6 n, H( N! D: A# ~
    python6 _  r8 t- h: y( U& g

    * _8 x; ], o+ \' u4 F" \6 l9 Z! t' A- M, [7 P; k5 y
    def factorial(n):
    1 P( P+ j: ^! P9 q* q2 F6 X! o# K    # Base case
    # V& u' C' f/ B0 B    if n == 0:
    7 ?7 F& C: I7 W  W1 F8 Z        return 1
    : }4 c; z. o9 @    # Recursive case
    ! w4 c+ I! q6 H( q/ T    else:3 q( y: h3 H: B6 C
            return n * factorial(n - 1)" n* j" \$ u) }5 c5 V, f# Q: J- D

    6 ^  M! D5 T2 L/ G4 Q# N& f# Example usage
    ' I0 w8 |/ i: P# [print(factorial(5))  # Output: 120
    5 P7 L1 q( @  `( W
    ! E% [1 n1 ]* K4 J0 wHow Recursion Works3 r. v5 j7 G( R+ K; A+ Q) p
    8 o' \2 H5 F3 ~
        The function keeps calling itself with smaller inputs until it reaches the base case., ?1 ?8 s  e. g, c) n+ l6 ~
    ; N/ ?- `+ s% B3 y$ j* N5 r% Q: [& I
        Once the base case is reached, the function starts returning values back up the call stack.0 r' k8 x; a, U0 j
    / l. a) k- {: U8 U; ~/ q3 _
        These returned values are combined to produce the final result.
    6 j( s# d% Z; J7 X/ R1 E& Q3 ?5 @5 L$ F% g* q  |# B; ^. w% F) z
    For factorial(5):
    ! b5 u, I6 H# R* J1 o+ F% v% q; r4 L
    2 G/ w2 N3 @1 Y1 e/ e' k+ X6 _: ^0 p, N
    factorial(5) = 5 * factorial(4)
    2 D* J# \' ]* ffactorial(4) = 4 * factorial(3)
    9 ^$ ^/ J: w/ x- W8 b( T$ Afactorial(3) = 3 * factorial(2)
    ! G5 Q; L0 l8 O$ o# Afactorial(2) = 2 * factorial(1)
    ! b4 F3 ^5 q; a/ M. T  V& Efactorial(1) = 1 * factorial(0)- n0 a; f( B8 A: i
    factorial(0) = 1  # Base case
    ! L' m$ X' j8 Y! |2 J: I, H& y
    ( h+ D& z( @  N5 PThen, the results are combined:- E0 ~. l$ R; {. g
    2 Z2 M9 W3 L3 T- o0 @; [
    & f9 {1 Q( ]9 {' d1 A4 d
    factorial(1) = 1 * 1 = 1- v6 q6 t+ c7 C: P& W# N1 [
    factorial(2) = 2 * 1 = 2
    " q: }3 z& s; w7 w  M2 w# _8 x9 xfactorial(3) = 3 * 2 = 6
    $ {7 M6 h7 H3 H/ o' ufactorial(4) = 4 * 6 = 24
    6 S4 h  w' q& V* ^) ]* {  }factorial(5) = 5 * 24 = 120" J3 {& j6 x! R. I4 i
    % B6 A1 j# \+ C+ J
    Advantages of Recursion
    + D. Y' }" H$ B9 f" i6 k% H: c- p
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 p/ Z0 y" c( z$ M! ?# X
    3 a( A$ U, I" a/ ^    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    3 o/ o6 X2 D, d+ ~
    7 A' ^+ P2 G8 Q# y: yDisadvantages of Recursion. P0 X8 H0 E. L8 z9 {: l6 R5 h& s

    % Q2 v4 Z1 |- K+ v$ u1 n0 v/ |! [    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  |5 d- `" z9 k$ Q$ _) N
    8 O8 q# {, ~2 Q4 G2 ^% C3 Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    % n3 @! ~0 E' }5 N) G, E- ^3 y
    ) J. m) N: b# `( r4 |When to Use Recursion
    . R8 |4 I6 f5 P0 S7 L& n4 ?5 m& p' a. T7 x8 i+ E8 }( D
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ O( A9 o% o/ A3 l

    $ O2 r! i$ `" o$ X+ r; o9 B    Problems with a clear base case and recursive case.
    . x: ?* h, G, y5 T  x' L: H( E
    % l/ X, h% V% q2 W: i8 f  IExample: Fibonacci Sequence" n, \) \5 X! \: h: q/ N2 W
    3 n+ V  r+ Y# K: a
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # h6 T- X4 Y6 t
    0 C0 w  k4 w6 w/ z- s    Base case: fib(0) = 0, fib(1) = 1& F/ `$ V: d8 }' `4 N2 ~8 P- ?
    " y; ~9 J9 V* {6 o! w
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    1 L$ }  P+ x5 D8 Y
    % B* C, t4 h  w% Y3 zpython9 G$ L/ v# x1 y$ U7 s6 `

    & i0 o$ ?' K8 H; E3 V
    % L$ V4 C8 m5 D# W$ |) m) mdef fibonacci(n):2 ~- N; N  \3 d/ E6 S1 D1 Z
        # Base cases* @" S7 S0 x1 \+ n5 H. f
        if n == 0:
    & U- u: u9 X1 k) c& m& N& y& R        return 0
    ; b7 e2 K/ {* O9 p3 t    elif n == 1:2 V& M/ t- {6 m: z
            return 1
    4 M' z1 e  N+ A/ u7 y4 G( T5 ^    # Recursive case
      I. p" D3 x1 A    else:9 z% V4 F5 D% s; k( s. {0 ]; M
            return fibonacci(n - 1) + fibonacci(n - 2)2 e3 b# Q. [! W
    , u' [. w- D0 Z
    # Example usage
    7 e9 c$ K- M0 A3 A5 ]print(fibonacci(6))  # Output: 8
    ( y3 K& Y* ?/ @0 B
    2 @7 w+ L, o9 R+ RTail Recursion/ t' g1 ]0 p1 I

    % E' j/ ~2 D& ?Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 T1 M9 i: B% h3 q+ [

    ( U( L2 o. A$ X+ u: xIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-5 11:14 , Processed in 0.031845 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表