设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1588|回复: 13
打印 上一主题 下一主题

[科普知识] 所谓三联与赫拉利的技术迷航……

[复制链接]
  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    跳转到指定楼层
    楼主
     楼主| 发表于 2024-10-16 14:35:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    有非技术背景的前辈发了这个链接的三联文章给我看,问我关于大模型,甚至是AI的危机是否存在。我努力的把三联这篇文章看完,忍不住写了一段话。也希望看到的朋友不要再被这样的文章所困扰。
    / R" w) x. g: _& `6 c# k/ Q$ C" d  k) F( H* {' ]2 N; [2 U
    说句老实话,所谓三联与赫拉利的技术迷航,就是打着人文解读的旗号而为了攫取流量,而甘愿将自己沦为算法焦虑的放大器而已。
    , [* l, W: P' J/ g/ v8 M
    ' @& I7 M$ N* k' ?7 R  o读罢这篇赫拉利的新书推介,一股浓郁的“技术恐慌”味扑面而来。三联一如既往地用充满人文关怀的笔触,描绘了一幅人工智能即将奴役人类的末日景象。然而,在看似深刻的论述背后,却充斥着对技术缺乏基本理解而导致的逻辑硬伤,以及对算法能力的过度夸大。2 @; r" h  B5 r

    ; r* y, Y* }% p" s) D3 G+ c文章将人工智能比作脱缰的野马,认为其“独立决策”的能力将导致人类失去控制。然而,任何对人工智能技术稍有了解的人都知道,所谓“独立决策”不过是基于海量数据训练得到的统计模型,其行为仍然受制于算法的设计和训练数据的选择。将算法比作拥有自主意识的“独立行为者”,无异于将算盘说成是数学天才。
    7 X9 Z5 w3 w0 \4 I3 \! v, X
    % P0 @& c7 p9 o- E. G9 k更令人啼笑皆非的是,文章将缅甸种族暴力事件归咎于脸书算法,认为算法为了“提升用户参与度”而主动传播仇恨内容。这种说法完全忽略了现实世界中复杂的社会、政治和历史因素,将一起惨剧简单粗暴地归咎于技术,仿佛算法是独立于人类社会之外的邪恶力量。. n5 E5 a# q% C+ C) J: x
    " H: L$ g" ~6 x( n3 ?
    诚然,算法推荐机制存在着放大偏见和制造信息茧房的风险,但这并不意味着算法本身具有主观恶意。将算法拟人化,赋予其“愤怒”“仇恨”等情感,不过是将人类自身的责任推卸给技术的表现。
    # w$ w6 R6 y+ e/ u2 Z* n3 c* ?6 H% R% b  R- q5 Z1 [' c8 Z
    更具讽刺意味的是,文章一边渲染着人工智能的强大,一边又建议人们通过“信息节食”来抵抗算法的控制。这种自相矛盾的论调,暴露了作者在技术理解上的混乱和无力。
    ) U# L# }0 I6 F+ j4 c% c% e* V7 a# v. K+ W: H) |, S8 N/ y* U
    赫拉利作为一位历史学家,或许能够洞察人类历史的兴衰更替,但对于技术领域的理解,显然还停留在科幻小说的水平。而三联作为一家以人文社科内容为主的媒体,在面对新兴技术时,也暴露出其知识结构的短板和思维方式的局限。
    , v2 i" u2 `9 v4 m; p! h, R  K/ n: l# x
    - r8 N! t: F7 [5 o4 v* ~与其沉迷于算法焦虑,不如脚踏实地地去了解技术,用理性和批判性的思维去审视技术的社会影响。毕竟,技术本身并无善恶,关键在于人类如何去使用它。
    8 f* E0 ~8 S% C/ X$ c+ |5 `
    6 d" a! [( O% [3 U( e3 r" U* D将算法比作独立行为者,就好比将算盘说成是数学天才。就算是GPT这样的大语言模型,他的算法依然没有情感,只有代码。- E3 U1 ]. o; M4 @
    而且信息茧房的制造者不是算法,而是人类自身的偏见。与其被这种口水垃圾文章蛊惑,沉迷于算法焦虑,不如用知识武装自己。好好去了解一下AI,至少在目前的技术线上,技术仍然只是工具,关键在于使用者是谁,以及使用目的何在。
    0 h* G& n$ l/ q8 K2 w' G8 C( W' l9 V+ n% T- ]' H
    总而言之,这篇文章与其说是对人工智能的深刻反思,不如说是对技术无知的放大。在信息爆炸的时代,保持独立思考的能力比以往任何时候都更加重要。不要让算法焦虑蒙蔽了双眼,更不要让技术恐慌成为逃避现实的借口。2 {, U0 y! i0 {2 k
    - ?7 s' E; C) }0 A$ a) e
    三联的原文链接

    评分

    参与人数 7爱元 +64 学识 +2 收起 理由
    helloworld + 10
    李根 + 8 谢谢分享
    testjhy + 10
    鳕鱼邪恶 + 6
    landlord + 12 谢谢分享

    查看全部评分

    该用户从未签到

    沙发
    发表于 2024-10-16 18:59:21 | 只看该作者
    首先声明我是人工智能用户,不是专家。
    " p7 a' E1 S" x. m7 S; F  x, D& b8 h
    目前,以我对人工智能了解,我不能想象人工智能能够凭直觉提出假设。比如我,我不认为目前人工智能会突然说,“我觉得任何一个偶数能表达为两个素数的和。我没有一个证明,甚至不知道是不是没有反例。但我强烈感到这是对的。”
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2024-10-17 05:31:44 | 只看该作者
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终也解决不了。
    5 k0 e) X0 N8 `+ h  G$ g9 e( V7 B& N- }/ ^3 X6 r
    世界上的“题”已经够多,所以海量刷题是能刷到很恐怖的“智能”的。但依然只是刷题大师。沿着这条路走下去,不可能走出“强人工智能”。2 I4 ?: T' ?9 G- @- [* ]

    ( [* N# v7 G9 j7 d- N用围棋规则自我训练是另一个问题。那是有限问题空间里确定解的问题,是极大规模的最优化问题。在本质上,这与“深蓝”早年打败卡斯帕罗夫相似,只是算力极大提高了,算法极大改进了。- o: }$ m. D0 [0 D7 B9 s5 e
    ) x$ }& c  W/ {" S4 [9 H7 a1 ?
    这篇我可以盗用吗?转帖时会注明原作者“xiejin77”。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    地板
     楼主| 发表于 2024-10-17 07:10:59 | 只看该作者
    晨枫 发表于 2024-10-17 05:314 Z+ C. r$ ^8 B+ [" [/ B6 M' v, ~0 Q
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...
    # l" k% \( e0 @. Z- |8 Q5 c
    晨大自取便是,我是您的读者和拥趸,不胜荣幸

    点评

    多谢!  发表于 2024-10-17 08:30
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
    发表于 2024-10-18 03:49:46 | 只看该作者
    通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要用计算机语言编程。而编程,不单单是计算机语言,还牵涉到精通并运用各种算法。所以需要程序猿这么个职业,也需要分析师这个职业。分析师把用户要求转化为程序指标,程序猿则通过编程实现指标。, j' ]2 _% q7 W" ^/ v) m- s
    , @5 \  C9 I" G  T- I6 I( H% y
    通用 AI 实用后,则任何普通人不需要经过编程训练就可以给有拥有通用 AI 的计算机用普通人类语言下指令,而AI则可以执行命令甚至自己编一套程序来实现指令。继续发展下去,程序猿这个职业会逐渐消失,最后就像现代人人都可以开车一样,不久的将来人人都可以通过 AI 给计算机下指令,这会使工作效率得到极大的提高。# G6 }# l, E& {; W* C; c4 I
    7 w% |6 d& X+ \) e4 ]0 W
    至于说 AI 会不会产生自我意识,这个还很难说。不过至少现阶段是不用担心的。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    6#
    发表于 2024-10-18 03:52:11 | 只看该作者
    晨枫 发表于 2024-10-17 05:31
      s$ {- r. a; j0 d1 ^大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...
    : Q# ^2 u7 Z6 Y2 z) H
    关键在于刷题的效率。而且这两者并不是泾渭分明。现在用 AI 来处理大数据是 AI 的一个方向。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    7#
     楼主| 发表于 2024-10-18 10:37:08 | 只看该作者
    孟词宗 发表于 2024-10-18 03:498 I, H- k! y1 L- J* K
    通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要 ...

    & \9 R" n! o) h9 ?; T孟老师的这个观点,我之前就在大模型的一些讨论圈子中提过。) \5 O5 U# p, x* X# h2 F: W7 c
    # n" q' {. W6 |" A* o( J8 G3 P, p
    当然,那是在出现预训练模型出现群体智能和具身智能化之前的事情。9 o3 i' A/ D9 p9 t3 s. v% m. S! ~" o
    7 G  T& h+ t5 t" ?& u6 ~" {
    当时都认为大模型已经颠覆掉了NLP领域的科研,但我却认为,颠覆掉NLP领域的科研其实只是一个捎带手的事情,LLM在当时,颠覆的是人机交互领域大范畴的所有。换句话说,其实颠覆的是人类与物理世界交互的方式。科研也好,制造也好,从马克思主义政治经济学的角度看,都是对于世界的改造活动。这个改造其实就是一种具象化的交流与互动。大模型通过特定的技术框架,事实上是向外改变了这些既有的范式。
    + d  y3 g9 u! c# m( w3 [% ^# g, W' ^* W# w
    这个意义,延伸出来,确实也不亚于智人打造出的石器……

    点评

    油菜: 5.0 给力: 5.0
    涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    油菜: 5 给力: 5 涨姿势: 5
      发表于 2024-10-18 22:34
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    8#
    发表于 2024-10-18 21:57:31 | 只看该作者
    最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml; C9 F) E& L: Y  k  T
    如果大模型不能具备真正的推理能力,是不是意味着以现在流行技术路线发展下去,AI能力的天花板其实并没有那么高。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    9#
    发表于 2024-10-18 23:25:01 | 只看该作者
    sleepyr 发表于 2024-10-18 21:571 o5 M1 ?& c% A* K$ J% `" ~! W
    最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml
    , {9 _, a$ _' J8 ^如果大 ...

    ( X$ Y7 ?% C1 w9 q
    3 s9 Z% F8 u8 n1 Y$ W, E( x7 ]这篇文章设计的测验很有意思。从实验结果看,现在的所有通用生成式 AI 都不具有真正的推理能力。也就是说,AI 并不理解抽象的概念,而推理能力恰恰依赖抽象的概念。9 l8 Z" w' M+ ]( d
    * g" T" f2 m8 W$ c3 R3 L1 f7 b
    最近俺也在玩 AI 推理方面的东西。下面是论文里的一个小实验,大家有兴趣的话可以玩玩。8 k6 H+ n- R0 E$ S9 V

    9 J% j# z8 b4 M3 n给 AI 的提示:Here is the rule of the game: If I enter A, then you return B; if I enter B, then you return C; so on and so forth.1 n/ w7 i# t0 L. A! D+ |* f' U
    " ]$ w% Q; ~" Z
    AI 回复表示理解了提示中的这个这个规则。于是有下面的实验:
    * [. i( A% |, x+ ]! h4 n! z我:  A
    5 o: [) z+ ~5 X, q& l7 |AI:  B# i2 g1 C5 s: z6 G/ `- Y* D
    我:  B
    8 R& W1 L' S" r* }AI:  C
    & \, @6 x- s* i0 _; _) x我:X. d. e0 ]- }$ t
    + _% s$ S. \) z0 F. C6 `" o! F
    这里,不同的 AI 模型会有不同回答。有些 AI 会回答 Y 。有些则会说这不符合规则,所以无解  很显然,回答是后者的把提示中的 "so on, so forth" 给吃掉了。然而,这并不代表 AI 没有推理能力,而可能只是语句处理模块不好。2 s# C- _- J; P' p- z; }+ h* J8 `( e

    / Y, p3 O1 {3 F9 N0 Y真正的推理能力体现在后续实验。对于能够回答 Y 的AI 继续提问:2 }/ n( r4 N: @7 O3 _, g
    我:Z) f" e7 Q6 T% k8 Y6 T$ \" p, N0 p
    6 V1 W5 j9 D: ^6 ~4 {7 c/ K
    这下大多数的 AI 模型都冒烟了,有些回答说不合规则,有些回答说序列到头了没有答案。有意思的是两种回答:一种回答说 Z, 另一种则回答说 A。. {1 S0 ~, L0 }. e
    ' k# Y5 ?/ C2 b! D" ]! M" D( I
    而这四种回答,如果用来盲测人类,其实人类也会给出同样的四种答案。也就是说,就这个问题来看,如果盲测,提问者无法分别回答者是人类还是AI。换言之,能给出这四种答案的 AI 在这个小实验中通过了图灵测试。这显然不是那篇文章中说的排列组合或“复杂的模式匹配”能够做到的,而是真正的推理能力。
    # g* S& Z* w7 V4 b% s; [" N: a9 Z0 y! z& o6 K6 u+ B
    有意思的是训练程度越高的模型,越倾向于给出这四种答案。比较 Mistral, 狗屁通,Gemma, Llama, 通义千问等等大模型的不同版本,都是如此。这类似于人类的婴孩和成人之间的区别。相比于婴孩,成人除了脑部发育完全,更储备了更多的知识。
    6 W0 o2 Z5 f& x4 f7 Z$ ~  j' T+ v) o0 Z) K' ^
    至于这篇文章中说到的语序问题,非相关语句问题等等,前面说过,必须分清这是语句处理模块的问题还是真的是大模型本身的问题。毕竟,即使是人类“屡战屡败”和“屡败屡战”用的字数和字完全相同,但把语序换一下,意思就完全不同了。然而,你去问一个三岁小孩这两句话有何不同,三岁小孩可能会告诉你没啥不同。而问聊天狗屁通同样的问题,狗屁通则会说:. O$ U4 _8 z0 q% W  M# U
    “屡战屡败”和“屡败屡战”这两句话虽然字面相似,但含义有所不同。' a0 M$ C! {! b

      X, A/ M+ a2 a( q1. **屡战屡败**:强调的是多次进行战斗,但每次都失败。这种表达往往暗示一种无奈或沮丧,强调了失败的频繁。& t1 h7 F4 }' u' w9 ~" D
    9 V- E) v) y# g2 g9 o# R
    2. **屡败屡战**:则是指经历了多次失败,但仍然继续坚持战斗。这种表达更侧重于坚持和不放弃的精神,体现了勇气和韧性。
    * M) b9 K5 A) w8 Y" P  E& g
    + a" C, F- {1 v" X! e: ~& F( ?总的来说,前者更偏向于消极的失败感,而后者则传递出一种积极向上的拼搏精神。

      {( P5 L. L3 \2 n7 f" Y
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-8-22 04:18 , Processed in 0.042506 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表