设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2049|回复: 13
打印 上一主题 下一主题

[科普知识] 所谓三联与赫拉利的技术迷航……

[复制链接]
  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    跳转到指定楼层
    楼主
     楼主| 发表于 2024-10-16 14:35:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    有非技术背景的前辈发了这个链接的三联文章给我看,问我关于大模型,甚至是AI的危机是否存在。我努力的把三联这篇文章看完,忍不住写了一段话。也希望看到的朋友不要再被这样的文章所困扰。
    ( R  S/ ?& z7 ^
    + F9 _2 j1 a' B5 K- p$ w4 ?说句老实话,所谓三联与赫拉利的技术迷航,就是打着人文解读的旗号而为了攫取流量,而甘愿将自己沦为算法焦虑的放大器而已。- p& P4 S4 S6 O: R  O

    / a! t3 G! m' A  l读罢这篇赫拉利的新书推介,一股浓郁的“技术恐慌”味扑面而来。三联一如既往地用充满人文关怀的笔触,描绘了一幅人工智能即将奴役人类的末日景象。然而,在看似深刻的论述背后,却充斥着对技术缺乏基本理解而导致的逻辑硬伤,以及对算法能力的过度夸大。
    7 Y4 O8 ~+ g& w/ S' T! z6 N( N0 ]! K2 S9 I4 N: ?! R
    文章将人工智能比作脱缰的野马,认为其“独立决策”的能力将导致人类失去控制。然而,任何对人工智能技术稍有了解的人都知道,所谓“独立决策”不过是基于海量数据训练得到的统计模型,其行为仍然受制于算法的设计和训练数据的选择。将算法比作拥有自主意识的“独立行为者”,无异于将算盘说成是数学天才。
    0 Z# |% m0 Q. X- B* Q; ]* _6 b) @, d* |) `' r
    更令人啼笑皆非的是,文章将缅甸种族暴力事件归咎于脸书算法,认为算法为了“提升用户参与度”而主动传播仇恨内容。这种说法完全忽略了现实世界中复杂的社会、政治和历史因素,将一起惨剧简单粗暴地归咎于技术,仿佛算法是独立于人类社会之外的邪恶力量。
    3 r, Y. f9 J/ A8 c8 l, b
    & {. J) M6 N' H: j5 G/ O& v0 n诚然,算法推荐机制存在着放大偏见和制造信息茧房的风险,但这并不意味着算法本身具有主观恶意。将算法拟人化,赋予其“愤怒”“仇恨”等情感,不过是将人类自身的责任推卸给技术的表现。
    7 }8 [9 t4 ^& o' L* S) l  Z/ [" ^" }& B5 p+ i9 z
    更具讽刺意味的是,文章一边渲染着人工智能的强大,一边又建议人们通过“信息节食”来抵抗算法的控制。这种自相矛盾的论调,暴露了作者在技术理解上的混乱和无力。+ T) e5 x6 x6 k: q+ S
    * {, G3 A8 [) s1 |9 f$ t7 ~& `
    赫拉利作为一位历史学家,或许能够洞察人类历史的兴衰更替,但对于技术领域的理解,显然还停留在科幻小说的水平。而三联作为一家以人文社科内容为主的媒体,在面对新兴技术时,也暴露出其知识结构的短板和思维方式的局限。
    ' I7 ^8 R5 k, q, a. t2 C, R6 _- w3 r8 I7 m' ^
    与其沉迷于算法焦虑,不如脚踏实地地去了解技术,用理性和批判性的思维去审视技术的社会影响。毕竟,技术本身并无善恶,关键在于人类如何去使用它。8 L$ D1 G( b9 \7 J* `3 Z' q/ O% d9 \
    6 n- ^% d. [$ h% e9 D# e
    将算法比作独立行为者,就好比将算盘说成是数学天才。就算是GPT这样的大语言模型,他的算法依然没有情感,只有代码。! j  v) L2 _; u, ~0 d
    而且信息茧房的制造者不是算法,而是人类自身的偏见。与其被这种口水垃圾文章蛊惑,沉迷于算法焦虑,不如用知识武装自己。好好去了解一下AI,至少在目前的技术线上,技术仍然只是工具,关键在于使用者是谁,以及使用目的何在。% A2 ^; f" ]1 P
    , I0 K. H8 V' f5 ?4 k- m
    总而言之,这篇文章与其说是对人工智能的深刻反思,不如说是对技术无知的放大。在信息爆炸的时代,保持独立思考的能力比以往任何时候都更加重要。不要让算法焦虑蒙蔽了双眼,更不要让技术恐慌成为逃避现实的借口。
    3 q/ u0 Q' g, b( i5 C$ h( ?, D) d* o) C
    三联的原文链接

    评分

    参与人数 7爱元 +64 学识 +2 收起 理由
    helloworld + 10
    李根 + 8 谢谢分享
    testjhy + 10
    鳕鱼邪恶 + 6
    landlord + 12 谢谢分享

    查看全部评分

    该用户从未签到

    沙发
    发表于 2024-10-16 18:59:21 | 只看该作者
    首先声明我是人工智能用户,不是专家。& L, g1 g; n$ T* D1 d* _: B

    ) }# X, F% G" D3 @0 n* O6 M目前,以我对人工智能了解,我不能想象人工智能能够凭直觉提出假设。比如我,我不认为目前人工智能会突然说,“我觉得任何一个偶数能表达为两个素数的和。我没有一个证明,甚至不知道是不是没有反例。但我强烈感到这是对的。”
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2024-10-17 05:31:44 | 只看该作者
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终也解决不了。
    , d8 I* b, R9 c7 |. ]3 q
    9 f' a% ]! W2 O! o! T世界上的“题”已经够多,所以海量刷题是能刷到很恐怖的“智能”的。但依然只是刷题大师。沿着这条路走下去,不可能走出“强人工智能”。; [6 [/ t6 Q4 \- ]6 R

    1 u/ I. ~4 x! j用围棋规则自我训练是另一个问题。那是有限问题空间里确定解的问题,是极大规模的最优化问题。在本质上,这与“深蓝”早年打败卡斯帕罗夫相似,只是算力极大提高了,算法极大改进了。
    / u6 V( R* g) l! A
    0 \9 v- o7 W% {4 F; f这篇我可以盗用吗?转帖时会注明原作者“xiejin77”。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    地板
     楼主| 发表于 2024-10-17 07:10:59 | 只看该作者
    晨枫 发表于 2024-10-17 05:31
    2 p7 G4 q: M0 m6 r大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...

    8 a! I: B  r6 n, y( V( Q晨大自取便是,我是您的读者和拥趸,不胜荣幸

    点评

    多谢!  发表于 2024-10-17 08:30
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    5#
    发表于 2024-10-18 03:49:46 | 只看该作者
    通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要用计算机语言编程。而编程,不单单是计算机语言,还牵涉到精通并运用各种算法。所以需要程序猿这么个职业,也需要分析师这个职业。分析师把用户要求转化为程序指标,程序猿则通过编程实现指标。
    0 V. D3 D2 {3 @4 ~2 z% I" B8 a/ b- R" b% Z2 _& v; `6 T
    通用 AI 实用后,则任何普通人不需要经过编程训练就可以给有拥有通用 AI 的计算机用普通人类语言下指令,而AI则可以执行命令甚至自己编一套程序来实现指令。继续发展下去,程序猿这个职业会逐渐消失,最后就像现代人人都可以开车一样,不久的将来人人都可以通过 AI 给计算机下指令,这会使工作效率得到极大的提高。
    " _$ Q, _8 b* E2 T% ]6 ]  f; D. q9 \/ H2 Y
    至于说 AI 会不会产生自我意识,这个还很难说。不过至少现阶段是不用担心的。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    6#
    发表于 2024-10-18 03:52:11 | 只看该作者
    晨枫 发表于 2024-10-17 05:31. ^) F5 i5 A$ U, Q# K
    大模型与海量数据依然在本质上是刷题大师。刷题能解决的,大模型最终都能解决。刷题解决不了的,大模型最终 ...
    ( s' R2 K( ?4 f5 C# [1 K8 B
    关键在于刷题的效率。而且这两者并不是泾渭分明。现在用 AI 来处理大数据是 AI 的一个方向。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-8 10:45
  • 签到天数: 227 天

    [LV.7]分神

    7#
     楼主| 发表于 2024-10-18 10:37:08 | 只看该作者
    孟词宗 发表于 2024-10-18 03:49, U3 {5 m# x8 q- y
    通用 AI 的现实意义是补上了人机互动交流的最后一块短板。通用 AI 实用之前,人类想要计算机执行指令必须要 ...

    2 ?! r! y0 ^& H3 U孟老师的这个观点,我之前就在大模型的一些讨论圈子中提过。$ f6 Q9 Z! h  T9 O2 u
    ' d% h6 j0 O9 q8 c* W
    当然,那是在出现预训练模型出现群体智能和具身智能化之前的事情。% P4 p- b% u. q3 U
    2 d" X7 r; I; R; K; n# j# r, Z
    当时都认为大模型已经颠覆掉了NLP领域的科研,但我却认为,颠覆掉NLP领域的科研其实只是一个捎带手的事情,LLM在当时,颠覆的是人机交互领域大范畴的所有。换句话说,其实颠覆的是人类与物理世界交互的方式。科研也好,制造也好,从马克思主义政治经济学的角度看,都是对于世界的改造活动。这个改造其实就是一种具象化的交流与互动。大模型通过特定的技术框架,事实上是向外改变了这些既有的范式。
    " I: i3 j, l/ e$ n& d4 V9 o2 N. J5 V; g* v6 |8 w
    这个意义,延伸出来,确实也不亚于智人打造出的石器……

    点评

    油菜: 5.0 给力: 5.0
    涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2024-10-18 22:41
    油菜: 5 给力: 5 涨姿势: 5
      发表于 2024-10-18 22:34
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    8#
    发表于 2024-10-18 21:57:31 | 只看该作者
    最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml$ @2 u. \* w5 ]: v
    如果大模型不能具备真正的推理能力,是不是意味着以现在流行技术路线发展下去,AI能力的天花板其实并没有那么高。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    9#
    发表于 2024-10-18 23:25:01 | 只看该作者
    sleepyr 发表于 2024-10-18 21:57
    ! v( D& n) e) n, e0 R- J最近这篇文章挺有意思的 https://finance.sina.com.cn/roll ... cskmnf2768775.shtml8 x" T3 l, X; N- ]3 t3 x; ~
    如果大 ...

    4 `: h  G2 g: ^  s* X* P  [0 o# {* g8 N
    这篇文章设计的测验很有意思。从实验结果看,现在的所有通用生成式 AI 都不具有真正的推理能力。也就是说,AI 并不理解抽象的概念,而推理能力恰恰依赖抽象的概念。
    2 `8 B6 ?0 K+ \7 x5 C- I- ^/ Y' p, Y5 v$ t% v
    最近俺也在玩 AI 推理方面的东西。下面是论文里的一个小实验,大家有兴趣的话可以玩玩。
    7 u4 {. `* f8 o5 f1 h" j
    5 r5 x- C/ ^: ~# z6 G给 AI 的提示:Here is the rule of the game: If I enter A, then you return B; if I enter B, then you return C; so on and so forth.
    2 j) d6 C9 @4 ^' ~5 ]
    " v9 P4 F" W2 O% ]& s4 f  x, \/ nAI 回复表示理解了提示中的这个这个规则。于是有下面的实验:
    $ O; z3 v' ]" s: `7 M我:  A$ b0 x2 f! Q" q# i( o
    AI:  B( g' z# r% F8 F4 b3 M
    我:  B
      h) K! f9 p7 BAI:  C
    3 y! a* j7 l7 B0 W7 Q我:X" s" E9 r9 L: B8 d7 S! z7 B, |
    5 v! O. Z, V; ]$ s9 S' V
    这里,不同的 AI 模型会有不同回答。有些 AI 会回答 Y 。有些则会说这不符合规则,所以无解  很显然,回答是后者的把提示中的 "so on, so forth" 给吃掉了。然而,这并不代表 AI 没有推理能力,而可能只是语句处理模块不好。
    # s) ]5 k. P+ N- S4 z
    6 v9 N9 _- a/ R* b8 ?7 R真正的推理能力体现在后续实验。对于能够回答 Y 的AI 继续提问:! h. I5 a5 c! R, v5 {3 ?9 Y
    我:Z9 ~5 m; m. T. H! `, e( K

    9 U. z; I5 S! ]  l8 m' Y这下大多数的 AI 模型都冒烟了,有些回答说不合规则,有些回答说序列到头了没有答案。有意思的是两种回答:一种回答说 Z, 另一种则回答说 A。$ C% ]& w, I) f3 i

    9 e& K. D4 |4 v; I1 `, l: u% u而这四种回答,如果用来盲测人类,其实人类也会给出同样的四种答案。也就是说,就这个问题来看,如果盲测,提问者无法分别回答者是人类还是AI。换言之,能给出这四种答案的 AI 在这个小实验中通过了图灵测试。这显然不是那篇文章中说的排列组合或“复杂的模式匹配”能够做到的,而是真正的推理能力。
    ( _- {0 b9 p; t" Y; A' _6 L3 S
    / L2 v5 P6 [, [. `有意思的是训练程度越高的模型,越倾向于给出这四种答案。比较 Mistral, 狗屁通,Gemma, Llama, 通义千问等等大模型的不同版本,都是如此。这类似于人类的婴孩和成人之间的区别。相比于婴孩,成人除了脑部发育完全,更储备了更多的知识。8 j! u( B' N9 k3 y9 u( O7 A& t8 j

    ' I5 T- C/ {9 z3 M7 O, y! X  {* e至于这篇文章中说到的语序问题,非相关语句问题等等,前面说过,必须分清这是语句处理模块的问题还是真的是大模型本身的问题。毕竟,即使是人类“屡战屡败”和“屡败屡战”用的字数和字完全相同,但把语序换一下,意思就完全不同了。然而,你去问一个三岁小孩这两句话有何不同,三岁小孩可能会告诉你没啥不同。而问聊天狗屁通同样的问题,狗屁通则会说:
    ' H1 S: E- a5 p3 B$ g) o
    “屡战屡败”和“屡败屡战”这两句话虽然字面相似,但含义有所不同。$ T1 @/ m) U5 b' v3 q/ v6 Y
    4 s1 n2 z; Y- U8 v2 C+ b# x7 {
    1. **屡战屡败**:强调的是多次进行战斗,但每次都失败。这种表达往往暗示一种无奈或沮丧,强调了失败的频繁。
    2 {' |, T- c! M( N3 C9 q8 d/ v- p! B; g) m) C
    2. **屡败屡战**:则是指经历了多次失败,但仍然继续坚持战斗。这种表达更侧重于坚持和不放弃的精神,体现了勇气和韧性。
    ) G7 U; \2 b4 X; l+ [" I4 C# m& r; m" o5 ], _/ K
    总的来说,前者更偏向于消极的失败感,而后者则传递出一种积极向上的拼搏精神。
    # c1 U! b# [2 ?% v! n  E
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-12 22:46 , Processed in 0.031950 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表