设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1048|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 J& d7 o7 \8 Y7 D' {
    ( G& Y# h  `4 G$ v- ~( d3 x* O
    解释的不错
    - j& I0 P* T' g  R. d8 @1 |( ~& D/ p5 {. ~4 K/ Y1 e" N/ ~" i
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 i5 f# D$ z2 s# p; m7 \

    3 l! ?% {+ A0 ^4 Z& }$ g 关键要素7 [) Y9 ~2 g# [- i& G
    1. **基线条件(Base Case)**# r! T* N& @0 z3 b; g% |: D
       - 递归终止的条件,防止无限循环4 ]9 l: Y8 Y) |" O. o1 l; y
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ Q3 p2 o5 z0 q
    & x8 c! |/ l; n+ s5 |( x2. **递归条件(Recursive Case)**6 F. M! f  r4 G; m% k! f7 n
       - 将原问题分解为更小的子问题$ E0 {& G6 D# L! z7 \. B
       - 例如:n! = n × (n-1)!; _, v6 _7 q/ o: I8 X! n. f

    : n0 B- p& ~; m( ]4 {( i 经典示例:计算阶乘
    - K: l) ^6 |4 @7 N! T( opython
    # d  D* r2 Q% \8 Y3 V1 r' F1 Ddef factorial(n):
    0 p. a! s7 h. g# W) o; s    if n == 0:        # 基线条件+ c2 c  u4 N; P: r- w
            return 1
    4 p7 T! W$ O8 H+ Z) V$ c    else:             # 递归条件
    4 c" [9 l/ ~7 W# H. Y        return n * factorial(n-1)1 R' s" M7 a  a" x3 L
    执行过程(以计算 3! 为例):
    0 V, B3 d! D, V3 ?' lfactorial(3)2 ]# h; e5 j, q' c+ C# E
    3 * factorial(2)
    2 N, o, `! A2 u2 T: b9 y3 * (2 * factorial(1))
    ' b1 E+ _" u9 r3 * (2 * (1 * factorial(0)))
    % m8 M3 `1 p: o1 g! O3 * (2 * (1 * 1)) = 66 M& n5 v$ h$ o% L8 K- Z  P

    , C: P2 R3 N; _* T- C# a 递归思维要点5 {/ k4 V$ _# s) `5 W. ~! T+ z! l
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 s: ~& R' ?% K( `* b; S2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 w7 A0 ~, ?2 n$ k+ W; f3. **递推过程**:不断向下分解问题(递)
    / K8 ]/ x+ H% A7 O4 s& T! ~* k  o4. **回溯过程**:组合子问题结果返回(归)
    , w. t$ m' O6 v, Y& v4 S7 r, c: ~* j% U8 D
    注意事项
    ( D( P$ K2 c7 @( [" _1 d必须要有终止条件
    - n# p  Z) j  m7 i  b递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 q% [: v, Z' {
    某些问题用递归更直观(如树遍历),但效率可能不如迭代, L* m  h! R4 k6 j7 v# V: f6 }
    尾递归优化可以提升效率(但Python不支持)
    / L: Y% o# h' }5 t/ d$ X. w$ P1 s: p6 H6 D; l
    递归 vs 迭代
      j5 D9 \* M: c|          | 递归                          | 迭代               |7 `9 q3 a- k7 l. k  F
    |----------|-----------------------------|------------------|0 H- s7 ?, f. P4 h9 K
    | 实现方式    | 函数自调用                        | 循环结构            |
    ! k7 J) L! t9 j' ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    4 C/ I" \/ s7 r9 b6 f' ~| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 M# H1 m% B1 {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( |  k: D, R- O9 r# K3 J
    1 U$ N& @+ i% ~- i8 j 经典递归应用场景  o1 Q( y- w8 u7 r' [
    1. 文件系统遍历(目录树结构)9 v' h& ]. {% n4 U1 V
    2. 快速排序/归并排序算法3 X) `) z7 A( D
    3. 汉诺塔问题5 c" |# Z* u* R1 Y9 j6 s5 H$ V
    4. 二叉树遍历(前序/中序/后序)8 R2 j9 U. H4 k( }
    5. 生成所有可能的组合(回溯算法)) C* I* \9 x* [

    9 T+ E9 K( T  I% y: f+ T试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:37
  • 签到天数: 3085 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,  x* H3 Q- O: u* G% u7 a
    我推理机的核心算法应该是二叉树遍历的变种。
    / U8 C* M: }0 n% b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* w. V! |9 H, q- c- {1 j* x/ Q4 `
    Key Idea of Recursion5 T& t# L) O  y- q, C

    4 h2 i) O, {+ M9 q$ {A recursive function solves a problem by:& ?+ b  Z6 a, I# w' D  L
    3 R" {1 c: d* W3 E! f; K! O
        Breaking the problem into smaller instances of the same problem.
    - \; J" P' C& C; `+ G. d& o( J7 K0 w+ t% Q
        Solving the smallest instance directly (base case).9 f) G: J9 g' x# t

    9 t  g% \! U3 X2 Y2 v/ C: P4 l    Combining the results of smaller instances to solve the larger problem.
    : c# B' z2 t% O# r4 I
    8 V& m6 j& r+ g0 ZComponents of a Recursive Function4 t. `$ v0 v* O: [1 t# D

    0 Q0 A5 D! |- t: `    Base Case:1 [  D& }3 y9 Q4 Y9 A. d

    4 {' t# X, D9 \) C4 q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & s, I) f% v1 Y5 B- O  q5 o6 e, [! h3 M6 {  f  P  n8 h2 D9 q$ |
            It acts as the stopping condition to prevent infinite recursion./ K* A# d! ?% N- g9 V

    ) |7 O5 B% o, j+ p. Y        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ T( s5 Y- O0 m" @0 k3 J7 `
    ! k9 d8 u9 l. Z( x" f" \    Recursive Case:
    2 v0 o) C3 j. n) C, R0 |
    9 y7 ?9 h' s" B7 N. T5 F        This is where the function calls itself with a smaller or simpler version of the problem.1 M1 b! f0 D0 j. S
    " Y, u2 G2 V& A$ T, B
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; i" `+ q$ }- @' a# ~& l. l" c; S) E: y( B
    Example: Factorial Calculation+ w8 x, M9 s) E  g' O6 c  N1 s

    4 J8 c$ T# [( J( MThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) n3 y! y, e0 m2 X& h
    & S/ b) R, F$ @    Base case: 0! = 1
    $ R# F- L& y3 R: s, M! B1 V
    3 |/ p7 B/ r2 s8 N    Recursive case: n! = n * (n-1)!
    1 O( }* \$ n  f% u# U$ V+ Q# \5 ~2 E! m+ C$ b
    Here’s how it looks in code (Python):6 h. u4 ]+ B% I; o, L
    python% {6 m2 X1 K6 S* k7 s- p6 t% t$ Z

    3 M* s8 w  H4 a* h! y' c. ?$ K7 A8 o. b) ]3 n
    def factorial(n):; X  L/ ~' `+ F- x  M
        # Base case
    + a  b* d8 E1 [' C9 A8 V    if n == 0:: _2 F9 g% a9 g9 Q- ~$ L
            return 1* q/ m. i  c7 M; u# S) \2 j8 C
        # Recursive case6 p% Y( Q9 A: X
        else:" h4 f# d, w* A9 `
            return n * factorial(n - 1)( a7 J( J; i; N& `7 l, \7 v/ Q, y
    ( s2 I; f7 X8 v- \$ p
    # Example usage
    ' R9 g3 @) x' C. E6 j; qprint(factorial(5))  # Output: 120! G. |5 b  Z* v7 ^  U

    ; ]5 M$ l2 c+ s# l$ uHow Recursion Works
    + E+ K& c# c2 d- H" q0 `6 t8 q, ?: Z  P
        The function keeps calling itself with smaller inputs until it reaches the base case.2 k% w8 R2 o# D( `, @
    / E3 k6 f4 \0 q, h& \; G* _
        Once the base case is reached, the function starts returning values back up the call stack.
    * E5 E" i6 S. W( X1 \6 E$ l: W) V3 s* o0 m7 K
        These returned values are combined to produce the final result.- z" E- [% M: ]. g+ F; u

    - Z+ X/ s# S$ C8 g: _, C2 j6 k; bFor factorial(5):# B, V% W* w9 ~' X) u
    - R- k; a& t8 [# b0 w5 ]

    / s" J/ j- k  U3 i0 R4 xfactorial(5) = 5 * factorial(4)- {1 P6 [+ X7 d4 `' y) p
    factorial(4) = 4 * factorial(3), W. A$ x% w. H5 ]
    factorial(3) = 3 * factorial(2)& i- d) g2 Y$ @
    factorial(2) = 2 * factorial(1)
    3 N4 t4 e  ^' S1 d) n/ S( `factorial(1) = 1 * factorial(0)
    2 r7 Z6 `; M2 V5 Zfactorial(0) = 1  # Base case) |2 Z  X7 Z3 n) N5 ?

    - G' e$ Q- M) H& R1 v/ q7 VThen, the results are combined:
    0 w" b2 r6 j8 U; r, ~8 d% P& q* Y: U3 T% P- W6 y' Q5 }
    $ M+ H0 j4 P0 `, Z
    factorial(1) = 1 * 1 = 1
    2 w$ ]: U7 ]* }3 [factorial(2) = 2 * 1 = 2. Z  L- U# ]5 l0 ]3 U" [
    factorial(3) = 3 * 2 = 65 _0 J+ _; M+ I; o. u% a
    factorial(4) = 4 * 6 = 24
    1 r0 n2 K$ r: _3 r$ c* [: Cfactorial(5) = 5 * 24 = 1209 z$ j( {4 n: ^$ H* v! I! E6 Z

    5 c, l* o6 d" F0 c' ?  wAdvantages of Recursion
    9 ], k8 v! D5 {0 ^) E0 a6 P( m5 J7 T4 ]8 f- v1 {# `
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 s% x# Z" e$ T: l( l
    3 Z0 F( }4 V! p2 U: Y) q6 d# d    Readability: Recursive code can be more readable and concise compared to iterative solutions.+ k6 s& \/ b% v- ~" ^4 p& e
    $ _& @+ a6 J% ]7 C- m
    Disadvantages of Recursion
    * t: B4 ^2 P/ U! W) |6 m1 {7 _6 P
    , {. b# A2 Z- Q4 v" d9 h9 x/ b    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    : v) t2 v8 H+ j+ E* V- q7 _0 y, q' U9 v& N# R
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * r% g# z6 [# z' Z8 @4 t& @  b4 I) r1 u
    When to Use Recursion0 x: J: Y2 s- d$ k2 q- A+ {, O4 @, M
    1 A, b$ r; n( b/ t" W; X9 M
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).5 @% {. T, t( y

    " j/ h/ _5 `: u0 Q  Q    Problems with a clear base case and recursive case.
    / l6 k( z( @& l/ Y/ H, T: u: E+ D, h6 S9 V3 K
    Example: Fibonacci Sequence5 G( d" S) a2 O* e6 B

    ! j7 A+ x" K! L. ]The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 o* B; l" I: W# c# k6 A3 N/ I( g; }: {& _! R
        Base case: fib(0) = 0, fib(1) = 1) l& V/ e* \4 @' I" y* v2 c
    5 T* k4 h* G6 `! Q
        Recursive case: fib(n) = fib(n-1) + fib(n-2)4 e9 `  i9 O2 Z5 u
    % v4 b9 ~2 C6 z& Z: X, ?
    python
    / f4 e3 e/ j" u$ R1 t
    ) k9 V3 O7 f9 |( R( c  s
    - q; H! C4 |2 M' R# Ldef fibonacci(n):
    # C, w/ U8 r; ?/ G. f' s3 F0 Q    # Base cases
    0 a6 l$ o8 b* Z( l1 M    if n == 0:
    * r1 k! s+ F' r% l) {" H$ [        return 0
    % e4 J! ~" A+ Q3 A) h9 M& ~& K* ~* l    elif n == 1:% e2 c; f! \2 d. m5 ], r
            return 1
    7 _6 x* E! N3 B' U    # Recursive case
    / i! y$ K6 {& {    else:
    : T4 C3 p$ |$ {1 N$ ?        return fibonacci(n - 1) + fibonacci(n - 2)2 C" `& S! P: c- Z* Q2 N( ^
    & f6 {& _# Q- f# D4 ~+ ^8 V
    # Example usage
    # [; Y" ]5 d* @print(fibonacci(6))  # Output: 8+ J4 _" l2 D- |6 u

    3 j1 h7 b5 x: l+ X- M$ sTail Recursion- }  S1 O7 T% N; _

    2 c8 d# v8 y3 U- t7 |2 mTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).! J4 B8 a3 ~2 Z, ~; F& k) H' Q
    0 a2 b4 ?: j' Q3 ~
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-6 18:01 , Processed in 0.036797 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表