设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 2040|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' {/ o3 Z! A2 y3 I, o* J& k* V- A9 @( b6 H9 h/ M
    解释的不错; D' W8 T  k2 f% X7 u! V* n" c: b

    8 k$ B+ O" e. U+ D4 o/ D7 a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# W5 |" ]2 W9 ~2 J# [9 C

    5 e. @' J8 V6 C. r 关键要素
    # E0 o( H: W0 F$ C+ z! `1. **基线条件(Base Case)**7 X; y0 ]! _: s0 I
       - 递归终止的条件,防止无限循环8 S( L' Z& q/ |) Q' ^
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 r) J8 K8 H, n' v6 d

    + Z) b  h3 A$ m2 S3 x1 o2. **递归条件(Recursive Case)**7 E. l$ `( `- |5 [$ e
       - 将原问题分解为更小的子问题
    7 D! T6 C7 ~  y% V  X   - 例如:n! = n × (n-1)!  M. C; M/ f  M! E* M2 D

    2 a; K0 o% z. F 经典示例:计算阶乘
    6 I* D6 H# G: F. c5 ]+ qpython* {6 ^% {- A; F
    def factorial(n):$ t- r5 U2 K; K
        if n == 0:        # 基线条件
    0 t5 E" p: n1 [        return 1
    3 F! i& j( y+ P, \    else:             # 递归条件
    / V( ?* L' t$ J  c3 o: |        return n * factorial(n-1)
    8 \8 o$ w6 T; i执行过程(以计算 3! 为例):
    / n9 h% M) ]" G; Yfactorial(3)
    6 w* Z* h5 h& r7 e2 a3 * factorial(2)' i. G4 k/ E& T
    3 * (2 * factorial(1))
    & @3 F/ B0 u8 [. V: `3 * (2 * (1 * factorial(0)))6 v0 H6 m$ ^" M4 ~) J
    3 * (2 * (1 * 1)) = 69 W, L( c$ m3 s% J/ Y# w. g
    : F+ h! ?- G  o3 f6 n& Q* k
    递归思维要点
    " P2 G2 d! _( y) v3 o. s1. **信任递归**:假设子问题已经解决,专注当前层逻辑9 u. S, a; r2 X8 l! L: Z
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - _) R. [$ Q$ F3. **递推过程**:不断向下分解问题(递)" [% ^7 o! }' M9 l
    4. **回溯过程**:组合子问题结果返回(归)0 j& X( m8 j( j: l" F
    $ r: G: F, }4 g4 F8 k
    注意事项$ O3 w2 j6 G' k7 H; Q
    必须要有终止条件' G5 ~5 |, W" ~1 O0 _
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 J( w: d5 q* k/ y/ l
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) y: S& s0 o# @- J, P. E# \. W( ~2 W* j尾递归优化可以提升效率(但Python不支持)4 c. G: O( [% d( t2 P+ J8 }
    $ j: L3 ^. l' M4 \+ U
    递归 vs 迭代
    7 U/ s2 W3 j- J1 E|          | 递归                          | 迭代               |7 C4 N0 H0 n9 Q8 Z% \
    |----------|-----------------------------|------------------|
    2 Z" l2 u. t, I+ x) g! a* J| 实现方式    | 函数自调用                        | 循环结构            |
    , \, _, A9 R) @$ h$ D( Z. o# {0 e2 z) d| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    6 K+ B8 N+ P9 _7 }6 \4 x| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: C& w" Z/ w& g0 O# J+ W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # e4 n3 S$ z+ j, |. S5 Y
    . D' G7 `9 N. R- x5 L9 w! U7 J 经典递归应用场景
    / P& z2 p  `4 b# O1. 文件系统遍历(目录树结构)
    6 j! `: a% o0 k* X  s9 F! k2. 快速排序/归并排序算法
    6 D" f/ K- h' U% I! z* p3. 汉诺塔问题" W- d; B6 j) t) R' D
    4. 二叉树遍历(前序/中序/后序)
    5 X! ?$ Z& l7 r) N" p5. 生成所有可能的组合(回溯算法)
    8 O5 M: @9 F- T$ W' O- j
    6 t. T1 P" r# E, B3 u试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    2 小时前
  • 签到天数: 3167 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) M6 F3 |3 t8 i* n$ E) x4 R
    我推理机的核心算法应该是二叉树遍历的变种。. }! U+ `. P- E" _
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' ~0 g9 d0 Q$ ]8 j  ^$ d6 F
    Key Idea of Recursion
    ' R7 ?6 }7 k+ O
    0 c4 T  G8 V, W: J/ d+ c7 l8 PA recursive function solves a problem by:* ~3 @8 r* O" ?! I

    : \/ \, g1 p' F: u$ H5 J+ Z    Breaking the problem into smaller instances of the same problem.
    + M1 @1 Z/ F, d) B2 P/ U9 q3 E- i  m: H1 ?1 H
        Solving the smallest instance directly (base case).
    - B, Y! g4 h) ~6 ]$ J6 O4 i% K% u0 V$ k5 W0 z3 j- Q" P2 d
        Combining the results of smaller instances to solve the larger problem.3 z0 ~* f% x! y& S; O  V
    5 t7 C" N# F) a3 ^2 P7 J' C* K% D2 `
    Components of a Recursive Function2 e3 a+ D  ^7 ~! I$ [

    ( T2 o9 c4 n6 ~# [0 V/ v* |* }; j    Base Case:* ?- ~( G% d- u6 T9 Q. o
    ) t; R9 P8 X; u7 K
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    - k; n7 W1 m3 K% {( z+ j
    ) Z% J( \9 \4 n4 o. s( k        It acts as the stopping condition to prevent infinite recursion., Q! {- ?  `; J4 J3 C- v7 C; J3 A

      d) y' b, x2 ~* ^* K: K        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % a- ^$ @# ~+ v+ W5 c$ r2 y1 a6 v& ]4 J* K" o, {
        Recursive Case:
    7 l- J& g, `5 p  }' z+ f0 k0 }
    , i# C+ g* H7 I( s' U$ U& n. E0 z1 W$ |        This is where the function calls itself with a smaller or simpler version of the problem.3 I/ L4 t6 r* d  g: t( A; }% ^

    6 U6 s3 V+ F# H2 E        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! X" I- f  S, ?! w% ~/ u6 c/ x& g, K2 v! u0 p+ T" W
    Example: Factorial Calculation
    0 S+ @  X( C+ g5 E: c, n, |7 M: l+ S2 T: s! G3 Y0 d, T3 S$ U
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . B( ~) d- R( W0 P+ S9 H5 A0 V7 ~2 O, i! }% y1 a
        Base case: 0! = 1
    . `: K; f/ j5 M/ _; M& {
    # \5 n& p' q6 M: B4 X; Z! a, D3 q    Recursive case: n! = n * (n-1)!8 v# }0 J/ e- o- J2 M7 u

    + E( g/ D/ Q- P6 u2 K3 g1 u. K0 MHere’s how it looks in code (Python):
    . n% C& b% \( Q0 u0 Mpython
    7 m4 v8 o6 B' t; _) L6 F: U# i; z6 D, q( K. g1 T
    - Y( Y7 t+ x8 T7 E6 `! ~
    def factorial(n):
    % \( k6 K# m7 e* u) p2 o    # Base case- }5 e* q) T4 ?4 X( Y1 B
        if n == 0:
    ' i% j9 S( {' N        return 11 v: i4 p. w6 J, E5 r  X
        # Recursive case% G9 }3 F2 |7 a% F
        else:
    # S$ x3 ?1 H; u! ^1 A% ]        return n * factorial(n - 1)
    ; d- W% L0 S, {& K" ]* u5 F4 j" e1 e# L+ o& X& _2 K3 y
    # Example usage0 Y) p( b5 y. a+ }$ g
    print(factorial(5))  # Output: 1206 z2 {* u0 s4 s/ V! x# ?9 B5 r

    9 I& X! Y: b% W7 x' X1 RHow Recursion Works7 g! x$ E( y0 {; a$ `

    / H4 s6 b" n" L# @3 \. }    The function keeps calling itself with smaller inputs until it reaches the base case.
    ! ~2 v! Q! @3 W  C7 B* Q
    * W' R* F$ F2 I4 J/ ?+ M. O    Once the base case is reached, the function starts returning values back up the call stack.. W* p# a4 b& t  k6 t
    $ |& c- E; W7 S) @$ T0 Z: k! v
        These returned values are combined to produce the final result.6 k6 M2 n# u. g4 z
    , E' V/ V2 \* h0 ~( v& ^
    For factorial(5):$ Z) s9 i, e2 n

    : {. ]2 C2 b/ V9 G& r2 x, j0 l
    1 z( i5 c/ H, y4 b) O; `factorial(5) = 5 * factorial(4)
    2 ^0 @1 {( `9 Qfactorial(4) = 4 * factorial(3)
    $ J8 B# p. L/ bfactorial(3) = 3 * factorial(2)
    5 h$ ]# G+ q* k) Dfactorial(2) = 2 * factorial(1)- q& Z) m5 f! W+ @
    factorial(1) = 1 * factorial(0)
    # y- f1 X" ^5 w6 |factorial(0) = 1  # Base case) j' h' t2 ]- V% d# ?3 d

    # Y8 W4 ~( |; Y7 `% wThen, the results are combined:
    " C- s% b, w% h7 c( g( {
    8 f* u" W& d# N% U; B2 x0 e" S/ s  d; F7 `2 {* O& K
    factorial(1) = 1 * 1 = 1  A' f7 i" a% R  P
    factorial(2) = 2 * 1 = 2
    ( F7 F6 j2 A, e8 ^* ifactorial(3) = 3 * 2 = 6
    4 d  Y+ g/ [2 ^2 Q" |- Y5 bfactorial(4) = 4 * 6 = 248 W/ A: M* x! ?) M. u  e
    factorial(5) = 5 * 24 = 120
      }! `! l& v( I2 }2 F7 F, L  E, U0 H" ?
    Advantages of Recursion& e$ S2 b3 v/ P& ^( |" A
    ' l3 D  W, E6 D
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).% h! u  v: r3 E

    . R, j' I; `# E    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 @; j. X+ |7 L$ Z9 `1 B2 Q: v4 ]9 |+ P
    Disadvantages of Recursion
    . F9 p( O" X; d1 i% Z7 q& m. U4 \+ u% \- s* ?
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 k8 _$ z7 H5 g+ G

    8 d, e4 g. n4 ~2 W* Q& o    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# w9 c4 k  Y% o0 T9 {

    4 Q# O$ `% f) S; DWhen to Use Recursion
    ! S1 l/ V# w' K. I, q8 d4 P+ n; Y7 s# }' H$ F
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." [9 L& g7 U- w# U0 Z6 q

      D2 H4 H5 W$ @1 R4 M& R    Problems with a clear base case and recursive case.
    ) Y% o9 Z/ A" f7 f3 C% P3 d( t, X. ?, C. y
    Example: Fibonacci Sequence  o. ]1 M+ {9 F5 s* A4 i
    5 W$ x3 o6 P! U; T
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # T: s6 Z1 u0 H) {7 H( D% }$ N8 J2 @) Q* O0 I
        Base case: fib(0) = 0, fib(1) = 1- ^8 ~. r- }' C: K& \

    . D1 F1 |* B, ?    Recursive case: fib(n) = fib(n-1) + fib(n-2)) ?) V; l; @. A; B& V0 D

    2 r' V- |, B3 h+ opython7 l4 n4 @( C. o+ L; Q

    " z( V8 A& U, K7 V- X
    3 ^) p: F( l; I- B0 f9 Z+ M' ?8 p2 jdef fibonacci(n):# }- r3 b0 V0 w( O& g
        # Base cases
    0 C& k" Q* j6 }  G8 W    if n == 0:  R% Y7 L3 m) [$ f) F& J$ n  K
            return 0
    6 m( V# D, K6 k& {    elif n == 1:  v; r0 `9 F. ]
            return 1
      j* z( r6 h2 \: ?    # Recursive case
    9 K$ J& e! z. H, ~9 j- p7 M. E0 T    else:+ p7 G- H6 I& F" b, g* h
            return fibonacci(n - 1) + fibonacci(n - 2)  c( Y2 d) p( N+ Z6 t) l1 ]# g

    & d4 e% B. R4 m8 i# Example usage) o- {+ t0 J  u! K& s' j7 H
    print(fibonacci(6))  # Output: 80 G; _( P4 C0 ^2 I! I

    # D  G9 R0 `2 H, t7 }- t3 F+ ?Tail Recursion% J" c' x& l% w. {/ O. l

    2 Y4 S' R; C; E( s- X' g/ ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , {9 g: B* Q8 S3 R1 x
    + p( s, q: Y4 z9 o) [- p6 P/ i  T5 UIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-8 12:37 , Processed in 0.058184 second(s), 18 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表