设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 966|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 N9 y. b. P2 l: @* _9 O' u; G* t- G. C: T# x, \
    解释的不错
    & _# G0 M" s( e0 o; L) }
    8 W! e# N  y# L# a" J递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' q8 w( V8 J* D
    ; ?! _1 F3 m7 s1 d6 L 关键要素1 T( u+ G, k( R2 }5 G. G
    1. **基线条件(Base Case)**
    1 C1 a4 {) z* }" @% s& B% f   - 递归终止的条件,防止无限循环
    8 I* ~3 H3 Z8 @) R   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 A5 d4 H% L% p3 H, N% s$ u% W+ v
    & H  B7 o5 M6 K+ ~) U2. **递归条件(Recursive Case)**6 E7 Z0 Q  g- c- C: H; r- w$ e
       - 将原问题分解为更小的子问题
    8 A( T) y" V& w; ?* Y& q   - 例如:n! = n × (n-1)!
    7 W" r+ z/ N. d8 S5 U$ G1 k, Z4 P# f
    : W( X* ~9 u9 \% ]- Z 经典示例:计算阶乘
    - g# c8 b6 P* w, i4 O9 tpython
    / T; ^7 l' o7 Y1 Q% Sdef factorial(n):
    ' i' Y6 m( J! V( p    if n == 0:        # 基线条件
    8 x5 {8 [  L$ k. e' |5 H        return 1, @; r6 [% x  g0 @8 T, `
        else:             # 递归条件
      @/ T" j$ p$ d: W- A4 y4 h        return n * factorial(n-1)
    2 \6 W# L6 B! P9 Q: I8 Q1 d执行过程(以计算 3! 为例):
    8 i* b: O$ S4 O  p6 A: Ufactorial(3)
    6 g. R0 R% }3 z3 * factorial(2)
    * F( c# S. f8 y3 * (2 * factorial(1))+ p3 ~8 ~. s; L+ C) |
    3 * (2 * (1 * factorial(0)))& _8 _9 n' b+ W/ }
    3 * (2 * (1 * 1)) = 6' W7 M& m$ Q% E3 {- D+ a

    * o6 J1 X7 D" m0 q 递归思维要点0 c  s& e/ |  ^7 e( p
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑. W! v. [2 O2 y% |
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    6 U+ o5 M+ r! p3. **递推过程**:不断向下分解问题(递)
    ! ?/ r" }+ v  l% P3 e4. **回溯过程**:组合子问题结果返回(归)
    # X# }7 y' v2 Q5 s
    & S) {! c- h! q% q 注意事项; m. V9 J  n6 D9 H6 d
    必须要有终止条件
    + N( K- I; y  g0 B递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 L! [% h: G: I3 N* o$ o
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # ~" ^6 u- P! J: |, j& ^! q尾递归优化可以提升效率(但Python不支持)( C) j1 x! s. D+ ?; ~% g! N
    % E  c5 C. S' ~. {+ C6 Y
    递归 vs 迭代- O6 x7 d% `. ?
    |          | 递归                          | 迭代               |" C3 D6 d/ r* m9 C  K$ C1 V: q0 H. f
    |----------|-----------------------------|------------------|
    5 @. M+ w% H  _" O( _6 m, t2 V| 实现方式    | 函数自调用                        | 循环结构            |7 t6 H, F9 M% F# @
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , p0 ?- |. p" O6 ]" E| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ v8 T- K5 i: B: V+ ?* b7 Z( [& \5 p
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    " a* s0 U# H* A: w* ~* A  v
    * e6 O, B; t9 F5 d9 U5 w 经典递归应用场景% _" j$ {2 d/ Z1 `4 Z* m, v0 d% B
    1. 文件系统遍历(目录树结构)
    , E# W5 f2 M5 d. G% N( b2. 快速排序/归并排序算法* H) x# L) K; e# S7 `
    3. 汉诺塔问题. {. ~- y/ t5 L2 h; e( w  ~
    4. 二叉树遍历(前序/中序/后序), x8 a$ w5 i/ h% ~
    5. 生成所有可能的组合(回溯算法)
    ; c9 \" p3 R+ z- I# \
    - n( h' @' l6 O! a1 e6 N试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:08
  • 签到天数: 3045 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    " [( V% O0 z1 s+ ?5 W我推理机的核心算法应该是二叉树遍历的变种。1 m* y- m4 ^) H2 y/ b( U
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; }) B$ q- j. d( A4 G, e! lKey Idea of Recursion! i' |/ V3 F7 R
      \; O, k# z* e
    A recursive function solves a problem by:- Z3 f! P% ^6 ?4 k* u  u

    5 c- D, |9 ]* r" U    Breaking the problem into smaller instances of the same problem.
    ; J) X$ P5 B7 I7 ?
    : n* k- A& C3 l6 U. f( `% H    Solving the smallest instance directly (base case).
    ! w/ x4 n$ q! ?0 L' q. i8 x8 H5 `3 I( [- ^9 C! ^5 T1 v
        Combining the results of smaller instances to solve the larger problem.
    & Z6 L6 z- f- h1 z' k5 A+ t1 i3 \$ h4 N% e0 n: ^2 g
    Components of a Recursive Function
    0 ~- q1 O6 L# F1 F( Y" R
    " K7 N2 L2 |% E; g1 B5 I    Base Case:
    ( Q# I! e; b3 \6 C& P% [" F, N/ E7 r( p, p
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ p" d9 e7 K2 m; ~
    ; Z4 p2 s* @; u& B1 \+ b; p) m
            It acts as the stopping condition to prevent infinite recursion.- M& b# h& J& U+ S

    . c" `/ Z4 W6 G9 k% ?        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  o9 O, P9 x: |  T0 |: b/ w

    ) W" ~1 ^" K$ ^, O' T9 K    Recursive Case:" g3 _+ o7 D* [

    # C2 \  Q- g, o        This is where the function calls itself with a smaller or simpler version of the problem.
    7 f: @. Z' P, Y0 L( H- z9 @! c  [# K1 U& @
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 `1 U  i3 Y8 C; f8 V8 u" h
    " s1 w, h! n$ }% |, X: s
    Example: Factorial Calculation
    ) ^! p7 j$ v- W) |$ ~' K5 b/ Y& s4 Z5 L! A, [
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 N3 v7 [% A4 I1 q
      P* {% u0 u" l9 w/ D, r
        Base case: 0! = 1/ n, C8 W1 H: \1 g. `. q  T  i: S9 @
    ! {* L: [: q" x: L* B8 \+ m
        Recursive case: n! = n * (n-1)!
    5 v5 K  m8 n3 \
    ' C8 e  i1 v! A9 r# QHere’s how it looks in code (Python):
    ( m: C6 a9 ?) ?$ r3 v: q1 x+ a1 Vpython7 ?# x* h! n6 W% j6 Q/ {
    4 V9 i% M2 C  g$ u
    8 n: z4 x) m8 R& T2 }
    def factorial(n):
    0 G4 Z' J& v: ~) N6 ~; T3 Q    # Base case
    - v7 U0 V7 \# A" W9 z; Y! ^# O    if n == 0:1 ]8 o" k! G' r# o% m9 U
            return 1. ~' V; Y% u, M5 s. Z, R
        # Recursive case2 B- p& s, M. C! N, y5 P- N* S
        else:: ~7 g6 C& R4 J6 y) v
            return n * factorial(n - 1)( a1 y4 z6 i: N) M% w# Y) x
    " w+ Y2 T. j) b
    # Example usage$ W. q0 y/ e4 o
    print(factorial(5))  # Output: 120
    % p$ K; s" W: M. ^6 P
    $ V# @+ V; i% f% S* vHow Recursion Works9 B4 ~* ]2 ^! a  k* h1 Y% y

    / g5 i! @- K% |    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 }. I5 \2 O8 a  E
    , x7 u5 n2 u. s; {% ]    Once the base case is reached, the function starts returning values back up the call stack.# m9 Y" u, c: d7 Q7 F! l
    - }+ _9 ~. u/ y- q  e* v) D, f: `
        These returned values are combined to produce the final result.
    9 A' @$ g9 v; R6 Q5 J6 R
    & l: J. S8 Z& C/ @: NFor factorial(5):( ~+ S9 V1 [; O) l6 }

    1 E! a5 f( }- l
    % ?+ V9 V2 t6 g8 l' Q+ Wfactorial(5) = 5 * factorial(4)1 O0 u, s% |5 M3 J+ O# I' D* M  d
    factorial(4) = 4 * factorial(3). H- I6 o' X& ?8 |: y
    factorial(3) = 3 * factorial(2)! H  s, y$ |- c3 ^/ j/ {1 y) J  D
    factorial(2) = 2 * factorial(1)( ]- Z3 t6 k" L9 ?* |
    factorial(1) = 1 * factorial(0)
    & Q, O! V1 Y5 ~' dfactorial(0) = 1  # Base case
    # h) K& U5 ^. [
      S) {, s8 [" j. WThen, the results are combined:* S4 I7 |; x- I$ ]/ M- b- I
    # K% O& M8 b3 K
    * D9 W! p. `2 v/ c( p  S9 k
    factorial(1) = 1 * 1 = 11 a- @( O6 h; V
    factorial(2) = 2 * 1 = 2
    6 r  G7 B. ~1 L  N7 Y8 hfactorial(3) = 3 * 2 = 6
    # ~7 d3 A- `1 ^/ l$ m3 `9 [factorial(4) = 4 * 6 = 24- r; J6 Y: s5 S/ r4 c/ a+ `2 z' G
    factorial(5) = 5 * 24 = 120
    ) E9 V% k# r. B- U* `' C: Z, F( p' \6 n
    Advantages of Recursion$ L4 M, b! x4 {( g9 z

    6 [2 W3 t8 h! H" i: A7 f. A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 v) V; P7 i% Q! V
    # R, u0 R3 e. q5 n7 [- e' k2 A* ]6 v
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    5 v( Q3 ~. S$ j1 b
    % ]2 m- e: k5 i& g! X. g4 `% m! KDisadvantages of Recursion
    $ F, Y' P# R# D% ~& k: P: h" r; J/ K& I! o! }
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * b, f2 ?7 P! p% L5 G; ^  f  ?8 m3 J5 o2 y) O# i" A! C' |
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 k; _4 W7 |- ?. X

    + A( e4 P6 g3 b9 sWhen to Use Recursion5 M% X+ }3 f; R3 K, k8 |! t  b

    * z* J# ^# @  K! }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 y# |2 I$ }8 y% h3 U% E
    / U4 m7 G3 d. l4 z    Problems with a clear base case and recursive case.: k+ n7 y2 ]8 K  X3 ?
    5 |4 }) |+ l- N( z$ B
    Example: Fibonacci Sequence
    4 Q6 ?7 L, M/ e: Z2 Y, r8 a' o; ~0 I. x1 o5 ~0 v) J/ T
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    1 |( z7 b, [, B6 \* A1 W5 W& }
    & D: R$ b8 j8 X7 Y% {3 U    Base case: fib(0) = 0, fib(1) = 14 a! O9 ^1 [2 m& [, j- F

      ]9 X3 X6 D  f    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * y" d* Z9 |! J1 D: `6 X1 p9 b+ T3 ~2 W' ~* {  J
    python
    , i5 p8 M' `$ j/ r. ^/ [9 J/ J: b8 n6 ]5 c* T

    : N% C7 S, u; @2 H# |5 _, Odef fibonacci(n):; f& ]/ T7 h, B& w, d
        # Base cases
    ! o8 B  Q3 s3 \) s    if n == 0:
    8 E) H- f$ G! ?( x" Y* j6 h5 h        return 05 q" p) C7 H) _" N5 t" [5 Z; K
        elif n == 1:
    6 ^/ N( O: @8 G! g$ @% E1 ?        return 15 a0 G6 ~& S5 P/ y9 h  t1 T
        # Recursive case
    ; }! j$ s. H. I% |    else:. Z# g- E" N) B5 I0 k: Z
            return fibonacci(n - 1) + fibonacci(n - 2)$ w9 T% y6 D( a- F; t

    0 z9 Z' M% W8 @. N1 K( u# Example usage
    0 ]4 T7 d# ^, j8 M/ yprint(fibonacci(6))  # Output: 8# Y) }3 |+ [" \2 m+ b

    3 _0 H4 j* O2 l  h- K- ^Tail Recursion
      F8 e; V( R; v5 W/ R& |
    - [* z' e1 E$ ?3 H3 fTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., A" |. _0 _0 l# i, N; c7 W
    ) n9 o; p3 _! d7 g/ u) }3 J+ j9 ^9 ]
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-20 00:55 , Processed in 0.038713 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表