设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 272|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 4 天前 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 Y9 o$ \7 c# W. q1 d" c) Q/ Z, }( j# H7 E: W7 O
    解释的不错. ^/ S5 T) R8 S0 a

    , u) S, u& g0 Q% W6 ^- @# m递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 E" k7 O8 T2 }. w# O

    : q% r2 j/ l7 x, t6 ^ 关键要素  d2 x" O, E# }# o9 R0 i; z
    1. **基线条件(Base Case)**
    3 |+ a! f% G9 z9 K: S   - 递归终止的条件,防止无限循环
    6 r. N+ o; P3 M2 t( W4 s" k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 ~* U; b( |4 s0 @
    * H2 Z& c/ C' u+ C9 e4 }2. **递归条件(Recursive Case)**
    2 _! y: C/ f3 [   - 将原问题分解为更小的子问题
    / z# y' c% |, W   - 例如:n! = n × (n-1)!
    . H* L  x; g/ s# T$ m
    , w0 U( G/ r, s3 H; E* i 经典示例:计算阶乘
    % G3 U4 \. g% c. V0 S& \python
    % l3 R; E3 p! `' |def factorial(n):
    ; \& Z. ?. j& c    if n == 0:        # 基线条件5 W  }9 |8 C4 G9 y) \
            return 15 |% ?3 M, Q9 R7 x2 J" \$ ]
        else:             # 递归条件8 Y: D' a# x( r/ ]4 N/ [; e5 A
            return n * factorial(n-1)1 }2 `8 o: Z1 X. V1 R
    执行过程(以计算 3! 为例):
      [7 n1 ]6 O# D! _factorial(3)
    ; v2 q1 p; q0 S) `5 w$ b3 * factorial(2)
      H: s: D, Z1 C+ R; S+ G3 * (2 * factorial(1))
    6 @  r7 P- C" U3 * (2 * (1 * factorial(0))); U, W) K' T4 y/ e# k8 X! c
    3 * (2 * (1 * 1)) = 6. I: V. |1 e8 j) _. O1 f

    . }9 I3 j9 R) a4 G- D 递归思维要点! b* \: B% x0 I$ `! V/ x" P
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑6 j; \' P- C; |: T9 [7 {
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 u& e5 O2 Q6 o3. **递推过程**:不断向下分解问题(递)2 Y, G$ t5 I  s( k4 L
    4. **回溯过程**:组合子问题结果返回(归)0 I1 j8 ^/ h. g; X

    % d, M6 W$ A3 y" M 注意事项
    9 _0 S# D! Z$ k% l, ^; i必须要有终止条件0 J, N) U* x1 x! S/ B5 F
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* |9 L9 L0 N/ {( h" B
    某些问题用递归更直观(如树遍历),但效率可能不如迭代7 S) P, O  b4 k9 u2 J0 |/ \
    尾递归优化可以提升效率(但Python不支持)
    ' {4 z1 N& n& l' P1 `- Z6 i8 E( o$ k. q+ t+ e
    递归 vs 迭代
      f9 v. O3 c( J7 T: M/ s; Y|          | 递归                          | 迭代               |
      N9 V! v2 e0 ~  u9 ||----------|-----------------------------|------------------|
    3 @& M% I6 k, u' \2 ~' T+ F& \$ f| 实现方式    | 函数自调用                        | 循环结构            |
    - f, w; U8 |6 V9 D! K1 v| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 `$ N7 B7 m* B
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ! w& B. K7 J8 i5 }# f| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    6 ?% _  M. E' b8 S) c' g; k0 ^# u' }" u
    经典递归应用场景' ]" \" e) I- U% p3 a/ F/ Y8 M
    1. 文件系统遍历(目录树结构); k$ o+ X  o" ]" x
    2. 快速排序/归并排序算法
    , T  P, j/ `6 E0 M/ c$ T1 P, w3. 汉诺塔问题+ P4 C0 A% U. q9 d
    4. 二叉树遍历(前序/中序/后序)
    4 U2 N) i, }! x- o  K5. 生成所有可能的组合(回溯算法)
    4 ]: D$ s! @8 \1 g7 f) g9 M- n- w% h6 h) u1 e
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    17 小时前
  • 签到天数: 2820 天

    [LV.Master]无

    沙发
    发表于 3 天前 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 k, [6 q/ W$ C3 F; z2 H我推理机的核心算法应该是二叉树遍历的变种。; p. V& q6 F* N! b5 g7 `
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 22 小时前 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 j9 u( i9 s8 W( dKey Idea of Recursion, i! M6 u6 V2 S1 \% D( e

    ' ]+ T0 r8 ~# E# K3 e- M  I" b' }A recursive function solves a problem by:
    $ N7 H2 Y; l+ b/ t2 W- q
    ! j7 s% [3 w8 E1 O& y4 [( y    Breaking the problem into smaller instances of the same problem.
    2 _/ \4 n, w! u! I1 [1 ^7 }5 \- {! H6 V9 {6 j5 {( `& z' j3 y" |
        Solving the smallest instance directly (base case).
    $ V# c1 Q/ N& E* f# d4 Y' u
    9 _+ z' I2 @) l! p$ V, |3 H( O  i# x    Combining the results of smaller instances to solve the larger problem.9 y  Z) d. K4 o* N* J8 c
    : L% x: {2 y8 |% F
    Components of a Recursive Function  B3 `# D/ E( ?! [7 C1 m
    ! K& ?1 t/ ^1 \" T
        Base Case:8 @" A$ l" N3 U. U: y
    # a) ^, q  V# t' V
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    2 @% r. l0 A! G' M% t/ n8 M0 m4 B* i$ O; b$ y, x
            It acts as the stopping condition to prevent infinite recursion.
    8 ~: C/ I& Z4 ?3 D# R; h$ y2 _
    6 w- F$ a4 e9 l5 _1 d% }4 f2 W        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.5 V" U: G3 P2 G1 g* a0 c

    - }: R2 N! e  A, w  U& M8 G* A    Recursive Case:
    " U7 _" f! d; F: O& p! O5 q3 c  O3 B8 P" o
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) b/ s/ J! T( ~, x' A4 a
    / _" W- a, r9 b/ U+ c; f        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    , V$ \* s6 n4 `- g7 _. d$ ]
    ) S6 D1 ^1 Q4 I8 X( K! GExample: Factorial Calculation+ M2 t3 z" G" ~, f% P6 s1 P% P7 p8 A

      Y, i) Z$ R. C2 J# C1 W6 W* QThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
      H- A  W, D7 y3 E/ X6 s, [' [& D. n. a
        Base case: 0! = 1
    7 O: M1 _$ \6 H- k
    # ^: X) S7 c$ v+ s8 N( U' X4 w    Recursive case: n! = n * (n-1)!9 u( K) G: b8 o. K
    . w* I8 l. r/ X* H
    Here’s how it looks in code (Python):: K9 A) K* D# {- r" y; `4 m
    python
    9 X3 A. [  F# ^; A' [9 e
    5 V4 b, n) f) k% H, P
      L0 ?: k. e3 }5 }, odef factorial(n):. s' U( p) r" u* t4 |! M6 v
        # Base case
    & Q: ]4 E# F! O: u* F+ D    if n == 0:+ t* D3 h4 g) r0 S; X" x# S
            return 1+ [# M' J+ O3 k, |
        # Recursive case
    0 ~) s* A) F' j+ L  ^- |    else:
    3 @: K4 ^$ Z8 g; b3 p/ P        return n * factorial(n - 1)
    0 K$ B* e2 L6 }% g. N) ]( I' C
    9 J3 H+ r- \$ T" W# Example usage
    7 B# y# p5 W. ?. _* v# q7 x0 uprint(factorial(5))  # Output: 120$ W6 B* t& o( O1 w8 _* _
    ! _  G% ?1 N7 E4 \
    How Recursion Works! n' K9 C* N3 Z: H

    5 h+ b) O+ V" X7 u$ G; V    The function keeps calling itself with smaller inputs until it reaches the base case.. E; u# h$ G/ n$ P$ Z  E+ R  G/ M

    ( ?1 W2 R' A  z- r; Z    Once the base case is reached, the function starts returning values back up the call stack.8 Z$ Z+ ]5 \/ B$ x( E
    : p! W! l( F7 b: w% W
        These returned values are combined to produce the final result.
    # W3 `5 A' v3 q! u4 r$ N: ]1 a. m% f2 d/ ?  s2 O/ Z
    For factorial(5):
      {- P8 \/ X8 _$ A' @0 f4 e  ^0 ~  l
    9 D; |) C0 O" d/ ?" z; H0 k. d
    factorial(5) = 5 * factorial(4)
    " [* z" o$ t- E/ i. z# Zfactorial(4) = 4 * factorial(3)- I2 k. k4 C3 ~2 v2 ]+ p0 Y& y) O' p
    factorial(3) = 3 * factorial(2)
    4 x) ?  h0 J) u9 w4 y0 ^. U) mfactorial(2) = 2 * factorial(1)
    7 \5 ~2 W/ t. O: u% Ifactorial(1) = 1 * factorial(0)
    " W) P5 I  e/ _% p3 L7 Ffactorial(0) = 1  # Base case
    % W# w9 I3 q1 n% m$ }) B
    4 F2 P" ?; C5 d6 xThen, the results are combined:
    7 N$ S: ]" X$ V+ n
    ; ?0 `$ M! t! I# f' s$ j: i( h+ G5 y
    factorial(1) = 1 * 1 = 1- x! w4 [6 _- P) G
    factorial(2) = 2 * 1 = 2
    $ V4 H! D/ ?) h. I3 m! w9 b) ~$ bfactorial(3) = 3 * 2 = 61 W, Z6 Q, ]7 Q  u4 d
    factorial(4) = 4 * 6 = 24
    / n! d: |* D/ W% h% ]factorial(5) = 5 * 24 = 120
    . c' i1 {2 G$ q- b/ n: I8 \) }* c
    Advantages of Recursion
    : b) h" S, f! i+ p4 a" f
    3 I# q: B2 O/ D5 z- R! o. A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)., [  `7 e  v% r- A, ?
    / q5 W/ B9 X& H! x! R
        Readability: Recursive code can be more readable and concise compared to iterative solutions.6 `# J. r% ?3 s' a$ I7 ?/ T
    3 e* r& I& x+ J$ `
    Disadvantages of Recursion& E6 H1 T/ T/ g3 E
    1 V6 m- l8 C3 A* F7 Q2 N" n) Z
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.& u) K7 a- f6 {* K2 i3 T
    6 {% E& [" P& r
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 [' U) V2 N$ h( p4 m
    ; z, k2 n8 ?$ k6 P0 l* e
    When to Use Recursion# H5 U1 w+ E& L" I" g
      s1 p! x( x+ y7 N
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 S3 V, |8 g- t2 S
    ; u1 \% E  W1 E% @9 o+ w) Z    Problems with a clear base case and recursive case.' i  ?6 Z1 B. [9 B- g3 I0 M! y

    1 i: u: ?6 J9 F/ h$ XExample: Fibonacci Sequence# U) d% W& s# q: y
    , @- |( ^. q: t# K2 w: @
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) B/ ~0 ?  R( u0 f, t% t- P# T2 `1 W7 D* q7 X. ~( R
        Base case: fib(0) = 0, fib(1) = 1
    5 @4 k  t1 P9 }. G9 D3 v9 z* |% ]) U0 A) w+ u1 p0 J
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ S0 o% b2 Q  v! J* i( b9 X1 y7 g7 g6 e$ l
    python
    ; T& a8 ]3 d( \  s# \: o1 y( f# Q
    + f6 O3 n% e5 X2 C0 C6 N( a% B. _" h6 N9 S6 M
    def fibonacci(n):
    2 i) l' M" h( H1 H- L    # Base cases# Q: H+ {- K' ?
        if n == 0:( z  v( e5 ^7 R8 O* o0 E
            return 0
      i% y7 Q! M. y    elif n == 1:3 W' }$ h* p3 ^* l3 G& B, U
            return 1
    5 l! x+ |( R: g    # Recursive case
    5 z0 z$ \! ]$ ?. ?$ d, F  L    else:
    5 H3 a* _- x" i7 V        return fibonacci(n - 1) + fibonacci(n - 2)
    , R& b* x! w* I, G
    ! c# j' t2 f' \# Example usage4 l+ {! C% ]3 x3 Y2 Y7 q
    print(fibonacci(6))  # Output: 8
    + u$ V# I, k/ e( d$ J; ^( t5 I
    / v, [' y( y1 W& tTail Recursion7 W# f  }5 O3 o" V5 p2 h% Z3 X

    ' o+ N+ E" \& t  Y3 {Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    1 ~- m+ S- u! P3 M! f# M& U3 P
    8 L) y& D0 H1 _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 22 小时前 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-2-2 22:53 , Processed in 0.033460 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表