设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1057|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    * R7 f% v, z5 h, ?. H' s: Q  U/ h: ]0 p" o. G# A
    解释的不错
    * x: M1 C1 @/ a0 a  B; B0 A8 h( m( v# s3 h
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ x- Y4 \9 i) S) Y! z

    . L0 ^3 M2 U* I 关键要素
    1 }( q  R% ~7 B) i" I1. **基线条件(Base Case)**: Q' B$ }! u, ~4 B6 _6 i
       - 递归终止的条件,防止无限循环
    ( }" ?7 V0 O1 u# i  K   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ( A4 T, E8 O1 U; q  o. [% ~+ \+ X4 d+ E# s' H! Y" ]4 N  e
    2. **递归条件(Recursive Case)*** \0 m  p3 R, ~
       - 将原问题分解为更小的子问题' U! e* l% H1 v
       - 例如:n! = n × (n-1)!9 M) d# g" [' y4 s
    9 r" ]- {1 e0 j1 p7 S' e& S; Q
    经典示例:计算阶乘+ d5 n( t! k% V  `; h- G
    python7 o) c4 w( |' w2 c$ [) V) c
    def factorial(n):# H( i" K' k. a0 n0 k
        if n == 0:        # 基线条件5 q/ j1 C5 i7 s2 _& z6 U7 R+ b
            return 1
    / v* ?  u# d+ A/ Z: n1 {; t    else:             # 递归条件
    % H7 @+ y; V4 T" {# r% V4 [8 V        return n * factorial(n-1): ~& F9 x0 p3 K( `+ m/ H
    执行过程(以计算 3! 为例):
    " \  d6 `) \: t' c7 t7 p) efactorial(3)
    + `- P: l4 V7 L; ^3 * factorial(2)& m* Z5 t3 ?6 j8 M% k1 N
    3 * (2 * factorial(1))
    ; J( j; Y2 C/ m) B, N3 * (2 * (1 * factorial(0)))7 u/ X* i" _# _: g4 q% {
    3 * (2 * (1 * 1)) = 6& x' x7 ?3 T" p

    % M! \: a* Y1 Z# c% p) w' b& } 递归思维要点' d0 D7 N5 P2 `. j1 Y
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 l) j2 I1 I! t" p2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 s3 }1 j4 G( T! e" {2 o) B
    3. **递推过程**:不断向下分解问题(递)* [" h- G# D3 Y  {$ x" `4 `
    4. **回溯过程**:组合子问题结果返回(归)( _, B% w9 j- K2 V" A8 c3 f

    & B, r# c# R" E7 B 注意事项
    ( _/ K  N! G0 o& y2 ^2 e必须要有终止条件( [6 l3 w: e2 t; Q" c- v6 D6 y" w+ y
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 a# Q; F: _$ l5 n, h2 S5 H
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) z$ D  t/ l, {7 d& X5 W尾递归优化可以提升效率(但Python不支持)+ S9 o6 x( }3 r( W- m0 _7 V
    ' ~" v' b" F2 ?8 G) e! H" x
    递归 vs 迭代" ]( \, [6 k+ W/ o/ u
    |          | 递归                          | 迭代               |
    0 {& |7 E0 t4 N|----------|-----------------------------|------------------|! u% c% H0 p" W) L4 E
    | 实现方式    | 函数自调用                        | 循环结构            |0 L: b3 c+ d1 w( W- Z  r
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ M9 K/ Q8 e" S. y3 h
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    - c: B" X: S" ?7 l/ q- X! ^  Z( w| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 r/ S* U8 L, r! s; Q
    ; c1 f# o3 p! ?$ e5 |8 W 经典递归应用场景  g' y( k% b- W1 T6 h' v+ ^
    1. 文件系统遍历(目录树结构)
    ; c. W3 O/ U! E% L& ]: b2. 快速排序/归并排序算法
    1 R5 Z2 K3 v9 w. J  ^- `3. 汉诺塔问题
    , z- ~( v' s, t5 Z4. 二叉树遍历(前序/中序/后序), e; M* C) T. x! P
    5. 生成所有可能的组合(回溯算法)
    : C% t! [- G1 }  @: A- W! i: \: w2 ~$ {& `0 f2 H2 ?1 H3 Y: S
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    7 小时前
  • 签到天数: 3088 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    3 ?0 _6 U# m9 }6 q  S- S: V我推理机的核心算法应该是二叉树遍历的变种。
    ) C/ j6 p2 ]$ g9 Z, I另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & \4 ^9 ~0 I. h8 U5 o5 x& o$ SKey Idea of Recursion. }3 g/ w$ f. @; l

    $ V" t. F9 c( O) M5 q8 EA recursive function solves a problem by:
    1 A! g; u2 m( i* T* T/ d! ], d5 s  Y9 q5 G# x
        Breaking the problem into smaller instances of the same problem.
    - U  t; a, w7 p% `6 d
    % V" B6 `- z; g" N9 x2 s; q    Solving the smallest instance directly (base case).6 @7 X# A( p! y' o, i* d; l

    1 j5 H/ Y6 m4 p* L% }    Combining the results of smaller instances to solve the larger problem.
    6 ~$ |- f; G# g4 W1 ]1 |
      \2 C6 w& M; _7 ^2 l: c% `Components of a Recursive Function
    3 S/ t  C0 V# T5 c" E- M2 _* I# U# ]/ _! H3 P  A  h4 F) x/ N
        Base Case:' l4 Y% [5 d3 ]6 F5 G  o/ J
    0 U/ P2 ~  ~+ P8 ]. `% b) y9 h- W
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 M% e% {! y; D2 v9 r+ c  a
      v& G9 a7 }1 Z1 F' Z
            It acts as the stopping condition to prevent infinite recursion.2 W, d0 V/ U/ C/ K. e/ L% g8 j

    % H/ G! M; T# D, U        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! H. p. x9 I' L+ _* r
    4 X* X; G0 a/ m# I) B8 t5 `  `    Recursive Case:
    $ l! |: ^$ b1 O1 {
    7 x* C( B2 ~. |8 B        This is where the function calls itself with a smaller or simpler version of the problem.: K# e! ]6 Q' H  V3 F( \# H* \
    . `/ j  @+ L& T0 m: a) ?
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    3 A1 w! X# V+ @5 c9 l/ }: h
    ) |0 S' e" [7 ^1 {2 Q1 o( KExample: Factorial Calculation
    ( V0 c1 t$ f; R& A8 v3 p: f+ I, A
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:/ N, a/ a6 T* Q0 V1 E
    ' b; S( ^# v8 A# X2 ~
        Base case: 0! = 19 H3 O7 H) L- T& s0 F+ R
    ( r3 q* b; u7 ~: N0 f  D
        Recursive case: n! = n * (n-1)!6 z+ o1 Q+ {4 b% ~( m. `" H
    # ~, E: z  i0 g5 m( J
    Here’s how it looks in code (Python):
    4 H0 w, g( j3 A6 a. D* C% n- qpython' z+ P2 y  E" f& K6 |$ e

    . D, u' V1 L  A, O' c4 y! b
    - Y2 h7 |2 H+ e$ O9 Pdef factorial(n):
    % D1 c$ b: w: u7 e# j% t  @; A    # Base case
    2 a1 T: t+ M8 i# _1 q& s    if n == 0:* Y9 G$ K+ ?+ s# c3 j0 |9 v* U  f
            return 1+ F3 i9 M4 b, y6 ^( }! ?
        # Recursive case9 s' B3 d* u( p8 ?
        else:
    9 `2 E' w8 _, i3 H% @6 O* N        return n * factorial(n - 1)
    + Q0 X( D% o: s. D# X( |( d$ F. M/ Z+ g, O7 _. W
    # Example usage  f  q+ M. d4 n. o0 b
    print(factorial(5))  # Output: 120; S: }3 n! X, ?
    ( L* ^2 c! j1 Y# T& Z7 T$ M9 K
    How Recursion Works. C+ @: h' V$ C/ W  \, e
    ! ?; ~9 `' y! Q1 A, P) L
        The function keeps calling itself with smaller inputs until it reaches the base case.
    $ V/ {: S: ~( {$ ]% {0 c. X4 V0 x4 o6 z! p4 b+ ^/ ^! a
        Once the base case is reached, the function starts returning values back up the call stack.& E. Q* [* T" q0 J* Y
    ( Z2 a( r; R# Y7 `5 T
        These returned values are combined to produce the final result." J, P$ Z( i) Q5 q
    ( g* L0 Y* K8 I7 Y; x' x6 k% U
    For factorial(5):
    - R/ c  g4 `6 c  K: Q! @, p7 W$ \

    2 r7 K# f; W9 f2 ]: i4 tfactorial(5) = 5 * factorial(4)8 k3 Q) j" N+ D1 V: ^
    factorial(4) = 4 * factorial(3)
    - L0 e7 S2 }9 J4 u' [3 ?factorial(3) = 3 * factorial(2)4 E8 S' G9 q/ w: Z7 q( t. [  g8 d+ U
    factorial(2) = 2 * factorial(1)+ ]9 D# d# t! y! f7 [4 |' D4 z' a
    factorial(1) = 1 * factorial(0)8 n& W" f# F% n$ ]
    factorial(0) = 1  # Base case
    $ V5 u. Y2 r6 [, x5 }. K2 j1 J, |/ f$ i3 }: q9 Y7 B" q
    Then, the results are combined:- u( U* r# e/ u0 A* Z

    # |$ ?4 }9 s$ I& J- R! F0 O! e2 A1 }) }5 M/ P, o
    factorial(1) = 1 * 1 = 1
    ) m$ N' {+ p9 L9 [( [: q/ yfactorial(2) = 2 * 1 = 2* _7 w2 N, y7 q# R4 {: M
    factorial(3) = 3 * 2 = 6& q9 ~1 U# Y' V: Y
    factorial(4) = 4 * 6 = 24
    ' j& Z& k1 T+ u( Ufactorial(5) = 5 * 24 = 120
    * T; _7 q- d9 {, K7 ?  S
    ( w' H4 T0 x% H" E9 m  P* rAdvantages of Recursion
    2 c2 |- ^  \9 |1 p; |9 N+ k, y, B" I- s
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* E# M7 j% C. y, p
    - @$ u- w5 a2 X2 }
        Readability: Recursive code can be more readable and concise compared to iterative solutions.  C7 e: |/ S" N5 K3 u

    7 y$ w2 g  u! ~3 O5 O4 ADisadvantages of Recursion
    ; k8 r6 i% I: Q0 L7 R. [1 I
    ; x0 m( N* i  ]9 ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    + A% W1 c+ m; d0 x
    * k) ?) u6 i8 c$ s7 {" w    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
      r5 t( s; H5 C, `- I, A& I6 s
    9 X+ g+ @# m: ?, qWhen to Use Recursion
    3 q1 k8 m2 o! y* }7 ]7 Z5 Y: e7 ~7 u2 l
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ i5 d: R4 d, l' B/ K8 y
    ' w0 m2 w6 h" b% Z
        Problems with a clear base case and recursive case.! d* ]  ?. X' C0 D3 V9 K/ o
    . s5 ]; n1 w- I; F+ [- K6 ]
    Example: Fibonacci Sequence' z) T2 B4 f/ b

    : S5 N/ d' o, x: T  b8 u$ f: w; \( HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * v! t+ d' W+ z) u# _7 D! G
    8 d7 D4 u" X/ E+ |2 y+ K0 o    Base case: fib(0) = 0, fib(1) = 1
    , X& R& V" {; L# [
    2 N- d% @' ^6 _4 _3 X6 I    Recursive case: fib(n) = fib(n-1) + fib(n-2)) [+ I# d% Y: n3 i' h

    / Q$ u1 v" J- ^9 cpython2 E8 H# a. W5 N) k" Q" n' e

    ) z: K  b3 u* o0 h" \' d, v, A, ^+ L# x0 @* k) _
    def fibonacci(n):
    , \! T! X! f! C9 r8 w    # Base cases
    ' X* m* ?5 {! }; V    if n == 0:0 J8 b9 K: ?- o+ ?
            return 0, [3 M& I% _4 N! D. K
        elif n == 1:7 Q( a' ~$ \) I' k+ Z
            return 1
    ' h: Q* @& a4 l+ U, X6 x+ K    # Recursive case
    + A4 |/ c$ T: z& `+ t- Q    else:" G7 u; p0 z* D/ X
            return fibonacci(n - 1) + fibonacci(n - 2)
    9 @( Z$ @1 g$ u; c# w# C5 Q- Z( @7 Y+ f+ i5 S  \
    # Example usage
    $ O1 A) F9 J" {0 _# x- z" {3 Pprint(fibonacci(6))  # Output: 8
    & x: ~, b1 K7 m* _) R5 r( r
    7 ~" Z$ [, {! E$ {! M) ATail Recursion
    # M/ \+ F- ]1 h% e, `  c& B
    " ]% c. w# Z% Q6 `- `  V$ f' nTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ E2 [8 Q$ X) Z+ \6 L5 x, w) s
    $ z( m5 `8 g$ q3 i2 @
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-9 13:24 , Processed in 0.031895 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表