设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1565|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 # `# A+ d# ?  D* d5 s. n& k
    ; h) v$ n3 T4 K( N. Z4 R5 @- F
    解释的不错
    5 t" v# T( ~8 W& h: l" [/ n; {0 r7 D) g- T& p+ X/ I' `
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) W. o- f' J4 p

    " R; S$ ^/ i. \( G 关键要素/ B1 N) X6 I$ P6 z# ^
    1. **基线条件(Base Case)**1 w7 o- @: l/ S4 w
       - 递归终止的条件,防止无限循环& r: y; T, W; N
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 g8 l' V$ q" P; _. ?' @0 b
    ' j; u: h$ D9 j2. **递归条件(Recursive Case)**7 \9 e8 ~' i; y( m! x% r& O
       - 将原问题分解为更小的子问题3 P; _5 P& Y; Q. }2 ?3 R
       - 例如:n! = n × (n-1)!9 J9 d) g! ~. n6 F; A
    $ l$ e+ y3 s) p) j
    经典示例:计算阶乘# m5 U. R" d7 L& [2 x( @, J
    python
    1 Y( T" m; V% d6 i% Kdef factorial(n):' ~2 u' `  X+ t5 w) _! }
        if n == 0:        # 基线条件
    * p  U# {- D/ R/ x        return 1+ H1 h4 l+ A! [9 N4 v9 V) N6 f
        else:             # 递归条件
    . [3 L2 t8 y" ]6 p9 o7 S. J$ N: d        return n * factorial(n-1)# w* |! O. V& b  R
    执行过程(以计算 3! 为例):, Y/ v+ W# N) e9 e2 y) r9 v5 b8 q
    factorial(3)
    1 E, [, D" v& l8 `) j! ?! c3 * factorial(2)' a0 {' g! d, v+ L0 N2 x1 `  f$ Y
    3 * (2 * factorial(1))8 S4 L+ r6 R* @$ V1 F' S
    3 * (2 * (1 * factorial(0))). ]- W- K5 w' X) _$ C0 V, s
    3 * (2 * (1 * 1)) = 6
    ( C7 h" i, q; q* l( d0 c, x: `+ z8 S) W- m/ B2 K4 }9 a
    递归思维要点
    0 X! D" I. S4 g$ S3 o1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 S. c) D) L- k6 T
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    1 B( `/ ?. K, ?4 [2 R) M3. **递推过程**:不断向下分解问题(递)
    - X3 n. T9 H0 o, f4. **回溯过程**:组合子问题结果返回(归)
    1 i4 V& D  Z8 H  N7 ^. j" ~6 F9 _" t' `! X
    注意事项
    4 j2 a4 H9 F2 y+ g% S" e! K必须要有终止条件
    - ]$ u1 Q! P( u( U( Q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * X! ~: e4 `) v8 J某些问题用递归更直观(如树遍历),但效率可能不如迭代! V: W1 J% p8 R1 C
    尾递归优化可以提升效率(但Python不支持)- q" B6 }) z9 M8 s$ H  `  U

    1 @) X/ I4 [$ ? 递归 vs 迭代# l3 c! Y) \  s- U: Y  R( }& I
    |          | 递归                          | 迭代               |4 _# w! ?, m, h
    |----------|-----------------------------|------------------|
    0 v9 f/ @3 f' J* r( b| 实现方式    | 函数自调用                        | 循环结构            |. G8 G5 }3 V7 }' ~! B
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    2 C2 S/ r, I$ {) V; O! i7 z7 f+ h| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 Q. I' j- q3 H$ l, [" U1 K; A| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    - c4 r, d( g- {; S: C5 E- w3 R5 J6 S7 q% T
    经典递归应用场景, O( e3 t* g/ q) D, L" H' u6 l/ M
    1. 文件系统遍历(目录树结构)
    " M, P: x; Q( q: E8 g9 j4 V! v( a4 C' k2. 快速排序/归并排序算法( ~+ k' s5 [: M& o
    3. 汉诺塔问题
    / u  u; C" X) D! B: {4 ^4. 二叉树遍历(前序/中序/后序)% d2 i6 C3 u0 ]3 r, ?* n( s# m
    5. 生成所有可能的组合(回溯算法)
    & M4 D- f& M' P( _9 F0 Z- N
    - w6 J( ^' k9 V, L. _" i试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 09:21
  • 签到天数: 3121 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ V$ p8 E% N, B8 b# s( o
    我推理机的核心算法应该是二叉树遍历的变种。6 s6 r; i' n7 S" O: U1 i
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& {5 L8 u$ K: ]8 N% T
    Key Idea of Recursion" y% \7 }3 d9 z; A% R, P$ @

    8 _) m) y2 T/ o1 E: M4 jA recursive function solves a problem by:
    + I: K3 S3 @6 ~3 S& ~* a) c0 l, ^! _0 m7 s; h% P& W& E- R
        Breaking the problem into smaller instances of the same problem.
    ! g! y9 {, n$ I% B- c- f/ z, v- R& I' ?7 O/ M% c4 D& s
        Solving the smallest instance directly (base case).
    * X0 G8 e+ e% d2 h3 N$ `# K3 P5 A- C% I0 N1 O( `
        Combining the results of smaller instances to solve the larger problem.4 M+ g( `( J0 A* g

    & k& W6 t5 g- C; G# s, \Components of a Recursive Function% n1 e" N% z6 X. A7 P* ~" }
    0 n' B3 S& G7 V
        Base Case:- g+ R4 u) a8 X% n

    9 ~: V! x1 ~2 ^4 Y- [* U- B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) a9 y1 w/ l" |- @
    2 N; I0 C6 k9 x4 @/ u0 _% z        It acts as the stopping condition to prevent infinite recursion.
    ; R7 g3 W# [( s0 n& v2 K6 P" b3 Z8 x. E* Q, A- i; v, D7 P
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 c. R7 `* a4 M7 T. O; X
    6 M: x9 I( e; D4 [  Z' o' O
        Recursive Case:
    , L1 W9 ?1 [$ b$ ^& _$ r+ A* T0 ]2 \1 N' w/ h
            This is where the function calls itself with a smaller or simpler version of the problem.7 O3 S3 ^. H1 c8 L; S2 [3 L: W- ~

    , J- _2 \- ]4 |( x        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)./ Y# b( N# A$ E
    9 r2 M+ Q- I5 F  j, I" n2 \
    Example: Factorial Calculation
    # J# o3 k" y2 n  ]- B- j
    ' y5 R5 [# f+ M- MThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! I& m8 \' H8 c9 c+ k

    & [$ l* g# D, u8 ?    Base case: 0! = 1: n0 A  a" ?+ a9 `7 X
    3 X& K& z0 J( ^
        Recursive case: n! = n * (n-1)!
    0 F0 ?# V" c0 S* C, u% O4 @
    ) g! R) w( l% I6 L, }- C9 W- THere’s how it looks in code (Python):
    . g4 T# k9 C( R) I0 K/ Upython7 D+ @2 b8 P# l1 L4 F
    ; ]' g5 w0 O8 [

    0 z+ Q% p0 q6 tdef factorial(n):
    ' o+ @/ v0 q7 Y7 v2 p: d    # Base case
    * Y. w8 _/ ?5 h$ Y    if n == 0:9 N8 R- I  M2 L# B. b( p3 u
            return 1
    : D. B$ I& t: Y3 u    # Recursive case; m5 p3 M4 _0 q+ h# q# |
        else:; ^( p' n. q1 A% {, B( W
            return n * factorial(n - 1)" H7 j% O$ E# O" d7 @& j" j: k; d
    ) |( Q# P( T* v, U0 `! ?2 m
    # Example usage
    3 v9 W2 f. Q% C( X" g& Bprint(factorial(5))  # Output: 120& [" P- C* _% l+ A, U

    5 M2 }7 \' V# Z+ M9 t: aHow Recursion Works) j2 Y3 C5 ?# P, g

    - E$ n9 ]9 W" k+ [    The function keeps calling itself with smaller inputs until it reaches the base case.3 i/ l, r* T1 F- x' k
    5 M9 _8 f: f( _$ T
        Once the base case is reached, the function starts returning values back up the call stack.
    5 H# p& ^" J7 a  L+ T
    , Z: R! v% Y: ?. k. j& {    These returned values are combined to produce the final result.) k4 U- n8 S& n$ d
    ! ?4 T8 g# {, X+ ~2 x4 y% d0 V
    For factorial(5):
    ) `0 ?& Y7 @4 [+ i1 }& |' B$ a
    & V0 i6 X% Y9 P% f% C0 U. |8 l, `
    factorial(5) = 5 * factorial(4)
    # F+ h: I; J* {  tfactorial(4) = 4 * factorial(3)3 H2 ^  I. w; C# b# s
    factorial(3) = 3 * factorial(2)# F8 ^6 Q! s- a" s1 A2 B7 }
    factorial(2) = 2 * factorial(1)/ C$ [: q! X) k1 Z" s' k
    factorial(1) = 1 * factorial(0)# Q: N8 q( o" z1 X6 t: Y3 O
    factorial(0) = 1  # Base case/ |" n3 S! r$ N

      e( j- Y7 h% H$ f7 I( e# jThen, the results are combined:
    % h; c7 I9 o+ e* e  @. D$ `+ v5 Q4 g
    / A) h/ P9 X9 O- S: n/ J1 W
    factorial(1) = 1 * 1 = 11 W& E4 n3 n. \' M% R
    factorial(2) = 2 * 1 = 2' Z9 Z  P; N; `7 Y9 e
    factorial(3) = 3 * 2 = 6& N$ p7 R/ ~8 U& @
    factorial(4) = 4 * 6 = 24  I  l$ a% W  P0 I& x
    factorial(5) = 5 * 24 = 120
    3 W3 c# h( M+ f
    3 @" c+ d5 p1 _  |3 T' _Advantages of Recursion
      x7 ?" N- r5 D6 t6 U2 m- h. \* @( h
    5 G0 l! U) K0 d    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& h/ N! {/ D& h: q1 x
    4 e( |( e9 k+ V$ O) G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    : J% l. T  p! f: D$ B' M+ S- p' q+ [$ |0 t
    Disadvantages of Recursion" c* n9 h. Y$ [2 t; K4 c
      ?( e6 l8 ]  d# x) V' r7 ~
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 h4 v6 ~0 l. H) ]! X3 L
    & \# ], l. Q0 q- T1 Z
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 ^3 u6 k# G* X3 M: {! I; W

    - M5 z8 T3 ]% M( I7 A  E( H1 E; vWhen to Use Recursion* n5 r5 u) n; `
    , h4 G( R$ ~& x6 O& P$ d
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: D9 g5 e7 ~5 R1 V/ d. \

    : }5 y2 i' b+ L) z* ~4 p( [$ u- R    Problems with a clear base case and recursive case.- V; }2 T" k" z8 S3 ?
    / p! M. d4 \4 ?; `3 P3 K- T
    Example: Fibonacci Sequence
    ' M+ b& b, a- I& ^2 \( o4 f2 S
    - ~  S( e6 z4 }. `7 ~/ C) D* jThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& X( N, I/ f; [, X/ s, F
    1 ^/ Q6 N, J0 P! o7 r4 D2 q
        Base case: fib(0) = 0, fib(1) = 1
    8 {; e2 h( e# l
    ' F) D% F+ D9 W4 g& o  \. _+ E    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    " ~7 U7 @. B+ L4 u) V/ k; v% f& w" c3 `. T6 S) @( W; ], W( n
    python/ c' t4 `5 ~5 E/ `2 U/ ], D

    5 {: h* t  @" ~  r' z. H
    3 B( ?/ j, n9 ]! p2 y2 Odef fibonacci(n):
    ' n2 Z% X1 ^, T. J    # Base cases1 \5 o9 q" T. E* A& u6 J8 z+ V
        if n == 0:" M' B! u9 f5 P3 c. i" T& i
            return 0
    0 ^/ L' y% Y& W7 A. U    elif n == 1:
    # }8 t. M* g/ x1 w' N+ r        return 1# ?; g5 ~; Z+ c2 Z, ~1 n* ], R
        # Recursive case- H' O1 N6 i: `0 h4 s7 d
        else:
    ! ^; K5 ]) M' T$ f) P* P' t        return fibonacci(n - 1) + fibonacci(n - 2)
    6 E% V! @( B* M' r8 |' k- x, {" l6 F# [* N" ^
    # Example usage2 o- q- [5 k7 z+ h6 B! i6 A$ f
    print(fibonacci(6))  # Output: 8
    $ X3 ]! c% c* ^) R: R; A- `- }& W- J. ~2 S
    Tail Recursion
    * o  A9 m5 r$ S: G; _$ x
    ' {/ c" T+ Q) d8 [) Q) HTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 C% P& u/ O6 O/ p) I! p

    5 R1 ~3 ?) a5 p% W+ ]In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-19 09:55 , Processed in 0.031532 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表