设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1751|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    7 \* Z9 e* [3 l9 ^1 m$ O( r/ i
    解释的不错9 N2 m* F- F3 P7 A: N) N# Q

    ; w! m; _6 S2 g" N递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    1 r$ |1 D4 u8 S2 Z% a# D- ?$ O$ W4 e  e5 d. \1 \( y# Z0 u
    关键要素% q/ |' y, h2 E% X# K
    1. **基线条件(Base Case)**2 c+ b+ h; a: l7 _- ^$ i
       - 递归终止的条件,防止无限循环
    - F- n! u8 I7 I9 b) p  s, O* n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. P2 v: C( K" F

    # r" P- ]; y* K2 n4 _! N2. **递归条件(Recursive Case)**) V! _' a" S: S3 D5 Z' C+ E: z& Z
       - 将原问题分解为更小的子问题
    8 {7 Z- m1 q! a9 ?3 W9 w) A) _! I; c   - 例如:n! = n × (n-1)!
    0 ^2 g0 y0 P5 S$ b9 n  C+ l; J! @8 t: G/ [# V+ W  _0 ^& A: p
    经典示例:计算阶乘6 p+ k2 Z1 `8 w, R1 O
    python
    $ u+ t% k$ C" i4 m0 K) rdef factorial(n):
    1 c5 n& @3 d; X% {3 k' }    if n == 0:        # 基线条件9 U' u; `8 s7 ?* X8 R
            return 1
    % x3 k$ P$ {* W& F    else:             # 递归条件
    1 ^4 P6 e& s1 y: A& y        return n * factorial(n-1)
    ; [0 E& C$ q4 n# [执行过程(以计算 3! 为例):
    & Y8 k* B3 y, i: C, c: j: X9 Ofactorial(3)& |6 L) {) G/ M/ d" ?9 k( M
    3 * factorial(2)
    ! S, `& V+ v- W1 W' F* t& W& m3 * (2 * factorial(1))4 f3 F+ u; B& G; e9 a" w7 I1 q
    3 * (2 * (1 * factorial(0)))( k# V1 b0 o  j
    3 * (2 * (1 * 1)) = 6
    3 w8 g6 u4 W1 f. L. @" H
    0 C; Y& \% |3 Y! K 递归思维要点
    2 z! A9 ]4 |/ i7 e; q( Q1 r. N1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    * V2 [1 j! v. `7 s2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* T8 o% `! R. P4 Z2 s0 P% V
    3. **递推过程**:不断向下分解问题(递)9 l% K0 N+ ~* N6 T' l% r
    4. **回溯过程**:组合子问题结果返回(归)' G* w3 S1 m: o6 s4 |( j# D; o
    0 r3 B' d; A7 w
    注意事项
    ) A& O& I- \( t2 y& _% q6 {必须要有终止条件
    $ v+ O3 @( Q' r# K4 \7 t  t4 J  |2 l5 T递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 s% u* j0 e0 p' k- n1 r4 |
    某些问题用递归更直观(如树遍历),但效率可能不如迭代6 e1 {: D- @! ]9 u  p
    尾递归优化可以提升效率(但Python不支持)1 _3 f3 S  Q' M) q$ _+ b

    # U: c. ~; k, U4 D1 z+ g 递归 vs 迭代1 U* m% Y8 w" k& ?0 {
    |          | 递归                          | 迭代               |
    7 N1 ?6 q1 n9 m1 v$ }3 P|----------|-----------------------------|------------------|8 d5 G9 L' L+ J3 `, @& {
    | 实现方式    | 函数自调用                        | 循环结构            |1 \% U0 Y& ^# ?
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      V1 {: ]4 B' _% M- |% D' H& D; J| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# d, `9 f' V/ q+ G$ ?1 Q( ]
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |* Z0 y/ J/ ^) D) e+ n( T

    ( R% C% z6 z1 F' Y" V, s 经典递归应用场景
    , S# V% Y* z' u/ H3 S' |) l1. 文件系统遍历(目录树结构)( K) |$ t  t9 m( i& e( M
    2. 快速排序/归并排序算法
    $ o4 U! ~8 A9 k8 K: ]! M3. 汉诺塔问题% `  T  Y6 D, S  d- M$ X6 P
    4. 二叉树遍历(前序/中序/后序)
    5 ~8 M' R# r' J! G8 H; x5. 生成所有可能的组合(回溯算法)5 {# L) K2 u, m5 l& v

    8 m3 m9 H  L5 p试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    3 小时前
  • 签到天数: 3139 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    2 F9 Z5 Y* B" H* l6 }/ Z3 L我推理机的核心算法应该是二叉树遍历的变种。) S* R. H8 E% U5 C+ n
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 f( M- l! x8 X# x+ U; _, }. n2 ZKey Idea of Recursion
    . ~2 E8 H. q8 o3 W" e* s( D) G' l- }+ k9 D+ A
    A recursive function solves a problem by:
    - Z, V) U! {7 q) p4 F0 w; U( R/ E* F* f* u
        Breaking the problem into smaller instances of the same problem.( C7 p9 o" S9 X4 G6 C6 s2 y

    5 {4 y6 i7 I* j: S    Solving the smallest instance directly (base case).+ q4 g! K6 k& ]- \
    & Z0 C* ^2 E* o* G( z
        Combining the results of smaller instances to solve the larger problem.7 X+ |2 I( K6 g: ^

    * N& ^! e" m8 H+ `) j! iComponents of a Recursive Function! ^8 ]; u) H) i  }* Y7 }  N
    3 Q) _5 S& C& i- `. I) E
        Base Case:
      Q: M; T! H2 e
    ( r' U) k& b$ g        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ x9 Z( ^* L* d- j9 U  d7 c

    4 V( g& t2 o9 J* x* C        It acts as the stopping condition to prevent infinite recursion., M# K1 y$ v6 C/ ?* @7 X0 O0 y
    / k7 f. S7 ]' I( _
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    2 Q. n6 P' `0 @9 o, m1 `$ o# W- H; z
        Recursive Case:
    . A  ]  V& j7 _' m4 _3 P. ]
    0 s; W5 c, B( G# d        This is where the function calls itself with a smaller or simpler version of the problem.
    , `2 i. C$ e- }1 q0 V$ W. L) n* G" r1 U
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).8 F' }* i% ~  ?
    - _/ n% L5 w/ }% Q' c5 n
    Example: Factorial Calculation
    ! P3 r+ i# _8 x% @/ H9 h0 z$ `9 }, Q: b5 T, Z9 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 B0 X+ v1 a0 P2 G5 W8 U
    - @6 ]/ U: A) h: A( Z! Z0 V7 m7 ~1 W
        Base case: 0! = 1$ Q* ?' O( L: }

    2 A/ L$ ~. j  C0 g" a, h    Recursive case: n! = n * (n-1)!9 q  g! g2 x* y$ n

    " V2 {0 P, ~7 j* T. d# AHere’s how it looks in code (Python):
    1 c. j% E6 u( w3 L+ E: o0 Npython/ F) ]( M6 B# e" N( a

    8 G1 X+ }2 G+ c' ^' n
    8 T3 c2 J) [! F9 r  Tdef factorial(n):
    0 n5 {- P1 w" }. O8 H& C    # Base case
    . {! N+ E0 [2 i9 b( n' [. I    if n == 0:
    . s& D/ j1 E+ a- W: I6 f0 e        return 1
    3 k2 v2 W: D0 T$ F3 }: C    # Recursive case
    0 }! e, F& A3 m8 L1 s% m9 M. c4 g5 X    else:
    0 T6 E( K( s# c  a( M        return n * factorial(n - 1)) F( X: |9 h: v5 U5 B  A! s& f8 u
      j) B; k" w9 P1 h* f1 Z/ C* I- K
    # Example usage
    7 k2 U2 M1 Y* v' N/ x6 T% X4 sprint(factorial(5))  # Output: 120, j& s) |# w7 p9 A8 t
    . I/ {' q& U4 v7 U1 ^, Z# A
    How Recursion Works
    - K1 {: L' ~$ Z0 X" G! V7 `* @% u- h# ^! k( U" |# y4 y% H5 }* o
        The function keeps calling itself with smaller inputs until it reaches the base case.( m8 ~- X7 B0 M9 E8 R! w8 U5 P( F3 u
    8 }# i6 f; l4 V' J. H# i: L
        Once the base case is reached, the function starts returning values back up the call stack.
    ) M) M* G" |- E$ D6 Z
    1 v7 b: Y. Z- W6 m    These returned values are combined to produce the final result.  ]0 h. s# B: X2 A! m/ V6 s2 s6 p

    & w+ }: T1 J2 Z$ |' t% T# NFor factorial(5):
    " K$ N0 b/ P* z& M
    4 i, n9 `  t5 R" R, r$ N3 T9 X8 |5 K" G% _
    factorial(5) = 5 * factorial(4)7 G# O# _& _* V8 G3 j7 d/ G. R
    factorial(4) = 4 * factorial(3)8 w/ k! I! A% X! s& p/ v
    factorial(3) = 3 * factorial(2)
    - N7 t" v* a4 @factorial(2) = 2 * factorial(1)/ y  ]9 G: @% \3 }1 ?# [
    factorial(1) = 1 * factorial(0)
    8 g2 G  ?  m' _: p& j# gfactorial(0) = 1  # Base case8 X( y9 j' r% l7 j+ c

    5 e7 ~% L& ~4 uThen, the results are combined:
    6 C1 N1 s6 I( t  h; O# b. V- R0 R0 X) R" B  A$ K  I

    " m# k$ h+ X% D) P& G* \) }factorial(1) = 1 * 1 = 1
    / B. l: A, [- w: t0 }* L1 }, b8 yfactorial(2) = 2 * 1 = 27 U. g* U  q4 c! j  s' _
    factorial(3) = 3 * 2 = 6( |8 {$ x3 W" ?" D4 e1 |7 v
    factorial(4) = 4 * 6 = 24
    1 ]. D4 r( ~4 ~' A) sfactorial(5) = 5 * 24 = 120
    9 W, _, x" V3 P
    % K/ X. a! k% wAdvantages of Recursion3 t0 y- Y/ P9 g5 @- a, T, V- i) Z
    " H8 D4 g; p. i
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! U9 L! G. n% N! ^, H
      x0 p- t. n8 w, N
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    4 b4 i7 F3 i0 L* \: [% I! k" a- ?. c7 I0 ~/ l, b
    Disadvantages of Recursion, I0 t8 o' a8 h$ I6 q  c
    # h0 B) b# ?$ v- y2 h7 v- p9 _
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; G2 z% s$ ^$ g- }
    4 [/ U; G2 M  `6 ^3 f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 g4 u& S! \4 x

    5 R& v* V: M8 YWhen to Use Recursion
    , ]+ v% E5 n% J
    4 Q0 F4 B5 B8 ~2 u* A    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    " S: g. @/ ]# _/ _, D% z$ b8 b8 m6 _2 k' M9 W
        Problems with a clear base case and recursive case." u% d3 K& z" z4 _2 J8 Y$ y/ e
    - l0 i) w% R1 J7 {
    Example: Fibonacci Sequence+ ]0 U9 T! h( Q$ `% h6 ^) j
    5 a- A& O7 r; L0 s( q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 ?* m! k* L: I) [1 v; H
    % }$ E: k4 l7 h! ?! M. G4 L    Base case: fib(0) = 0, fib(1) = 1+ n4 }2 R& V! t, v
    & I6 G$ `' t4 K1 n0 G. A
        Recursive case: fib(n) = fib(n-1) + fib(n-2)5 d# {% R7 y6 u8 f1 q, ?- \

    , N" L2 ?, S. J/ |4 Kpython4 \; C* p4 e! {& ]2 k& R

    ; Z, k* K+ Y5 {0 q& w( P$ V2 O8 b/ [- \& L5 P- J# E7 n. Q4 t
    def fibonacci(n):
      Q2 V0 {' O2 B! f    # Base cases
    * ?# b7 v7 `* G3 t0 |    if n == 0:
    1 L7 L; h3 Q7 O( e; }4 B        return 0
    : h8 C0 S' W2 a% [7 H9 O: s& l    elif n == 1:
    0 e$ V7 Q; B( c. `: ^; J        return 1
    ( v+ B, ]1 @& ]' V4 l3 ]    # Recursive case+ t% ]+ _/ I5 M- J: {' w+ G7 n0 f
        else:; b' Y. [8 l. h, ]. a" p; ~- f
            return fibonacci(n - 1) + fibonacci(n - 2)) s# Z& @( H% ]2 U9 R; h, V

    ; ^$ D. k, w- e& \" ~, o# Example usage
    % U7 o, x) Q* r0 ^( C) P1 g5 pprint(fibonacci(6))  # Output: 8
    4 u: h6 x& ?( i' _5 X0 y9 M7 o6 R! j% m) \' a0 K
    Tail Recursion  B( `( A* }5 ^. O% i8 K, y3 A
    / `9 a$ \- _  [# }2 I. z6 K
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 T' B$ D3 z; \- l% Z* w7 R. A9 X" t3 _1 s! o' q) m
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-7 10:13 , Processed in 0.031159 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表