设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1132|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    3 e8 r( _0 `0 v$ `" G; H' ?% a7 ?- Z* K9 l7 ]
    解释的不错
    9 j1 y! R8 T& \
    ) o% p0 u- l& q/ f递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' h. b8 w- Y" P8 z6 G: M5 y2 b; u/ c. x" P
    关键要素
    * o( z8 e% S6 p& N6 O3 T1. **基线条件(Base Case)**& P! i- H! o6 l; \
       - 递归终止的条件,防止无限循环
    % C) t! _& P  |1 u  s( v   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " Q$ T  _4 |$ t' W5 f; J5 ]* a8 F4 @# _  j/ z+ K
    2. **递归条件(Recursive Case)**
    7 A# w' K# D6 @2 [: Q% L* r   - 将原问题分解为更小的子问题
    6 t; G8 b0 o, C7 _   - 例如:n! = n × (n-1)!1 [$ ~7 U/ C4 r2 A

    4 _2 e) u# _, N3 Y8 U% L+ @* b2 f 经典示例:计算阶乘
    ' ?& B  c& A- C9 j- d2 d+ xpython
    ( u# }( d) I$ L6 w5 \4 rdef factorial(n):) b5 K- Q8 _) d; x
        if n == 0:        # 基线条件
    ) M: ^' x7 v9 t: D- y        return 18 Q" R- G) j2 c. A# i; D
        else:             # 递归条件
    . T1 N6 a$ k1 |# I; l3 p6 r9 `5 [        return n * factorial(n-1)
    1 T* X3 m7 @/ v" c- o执行过程(以计算 3! 为例):
    ! P' r7 ~7 O; H& c1 ]factorial(3)) n$ o  m4 q0 V6 E6 `
    3 * factorial(2)$ D: M. E% {$ r
    3 * (2 * factorial(1))
    2 I4 C. I$ Q9 `& g3 * (2 * (1 * factorial(0)))
    " [4 A/ b3 k* E* s$ k3 * (2 * (1 * 1)) = 6
    $ B7 D1 ]4 }" b* Q3 r+ k' f' B% I+ r* P( h4 `1 k, u9 e
    递归思维要点
    : ?+ R) R/ i# l: q# T% m8 l7 f1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " Z: U' V5 `% z; V: q. b# H, I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)8 O" c' R6 z( J# Y( a
    3. **递推过程**:不断向下分解问题(递)' t) f( v/ L- x3 E5 i
    4. **回溯过程**:组合子问题结果返回(归)
    + c( g. U- l+ e3 D: }" P( u% r1 B: n5 u
    注意事项
    / @" h9 A9 @. r' _7 n必须要有终止条件) s; p. R( u5 y  Q1 o! ?
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( [( N# k0 E% s5 U; B( W某些问题用递归更直观(如树遍历),但效率可能不如迭代& R6 w  M1 A$ t1 _; B! S: M
    尾递归优化可以提升效率(但Python不支持)
    & |9 ^: N( v* c7 j  i. x$ A& E& E8 y3 o5 _* [( Y, i5 G
    递归 vs 迭代
    " a! r3 |* b/ H6 ^0 R+ O|          | 递归                          | 迭代               |) z( p3 _$ e# S1 I5 K
    |----------|-----------------------------|------------------|% r7 Q, P! I9 K. ^8 r- n
    | 实现方式    | 函数自调用                        | 循环结构            |2 v% @6 f) \9 w5 s' |
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ a( L$ q+ K2 f7 M( k2 e3 d4 O4 Z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 W! R/ Y- u2 ^4 y( G) G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + a6 y0 P  }9 E* K! `- S! x0 S3 B" ^
    经典递归应用场景8 C) Y" L1 S  k0 f
    1. 文件系统遍历(目录树结构)
    6 s2 |- y% e: A: W6 _2. 快速排序/归并排序算法- T; X: v- \; {5 j6 l
    3. 汉诺塔问题
    0 D  u& Q: M1 I! ]4. 二叉树遍历(前序/中序/后序)" V+ s% F! k9 J; V5 l
    5. 生成所有可能的组合(回溯算法)
    " E, q4 M2 L. L, m, p" n2 B5 _  x! Q5 O1 y/ u! O  D3 U% K- }# S8 p
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    14 小时前
  • 签到天数: 3100 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; Q  `7 q' O# M: j* p3 d2 m
    我推理机的核心算法应该是二叉树遍历的变种。
    - o% A# R+ V; e; t0 X) s另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- S( W# _8 U6 {% j
    Key Idea of Recursion" A& X/ _/ ]9 m( G. T1 C6 A: R% W1 M

    6 s! Y) u' i+ [9 f/ NA recursive function solves a problem by:8 X6 U  `4 ?2 m: a- I
    - M+ U6 O1 J4 N' q, }( j
        Breaking the problem into smaller instances of the same problem.
      z; ]. ^( X+ L$ i% V; i$ M: Y+ {! [  h, D
        Solving the smallest instance directly (base case).
    , }( N+ h% z7 E" j' }( S+ U0 l* M# n+ o; O8 D
        Combining the results of smaller instances to solve the larger problem.) e6 [" t/ s" v  c
    & L: l8 N, ]1 f' X5 \
    Components of a Recursive Function
    ) j4 j$ H9 T3 L4 }9 T' ]8 `$ k4 B6 J4 U/ r  Y
        Base Case:9 O" u1 U6 t! Q/ r) S- X
    4 m. e' [2 Q8 B3 U! }0 ]* ]: Q, \
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ) g. Y! }3 \6 W
    , d6 ~: N! I7 n4 s2 e        It acts as the stopping condition to prevent infinite recursion.9 J: y, ~" b( K

    . G% s. A5 N1 n        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    & u& v5 g9 s3 J( h# ]
    7 q) W' X0 x8 r8 c    Recursive Case:
    1 O( a8 s" K/ a
    . x: s( N: k4 e0 s# r: C        This is where the function calls itself with a smaller or simpler version of the problem.
    3 ^+ G( H( [( J, a4 _5 N/ e( n( n8 p* v  V0 c& k
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ) y- j% j; a6 F' R; _1 h% b1 B) ~3 N7 ?8 a4 @: h% y9 S
    Example: Factorial Calculation3 }  c9 e7 D+ ?$ \# S" ]

    3 j- F5 {2 ~4 {1 xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / P( r' {0 R! K/ w: E, q  ~! O) u1 z' u' L1 ]
        Base case: 0! = 1
    ' l# w0 p8 ?) G3 X0 w! Z* c# U; _+ p* `) |. h
        Recursive case: n! = n * (n-1)!5 g: `& o6 l3 D4 {1 }1 c% O

    9 `3 t* c/ V5 L% QHere’s how it looks in code (Python):. g3 m( ^& v0 v4 a2 I
    python- H- m5 @: u& i9 k7 K

    ; Q4 T5 Y! ~4 A% a  _3 ~8 F  u0 O) u, O: L% B4 u0 ~% M
    def factorial(n):
    7 C. J. H1 m7 y8 |* s% Z    # Base case
    % e/ d7 r! K+ ^    if n == 0:) P: o* P; x- i# [9 A$ j" [
            return 13 F7 l% _6 ]; O( }
        # Recursive case: q- b; J" E$ h' j" d  {% g
        else:
    3 }0 A* I  J% `5 M7 B' E* F0 O        return n * factorial(n - 1)
    ' j" r, ]; ]' m, {: b- K; A6 [$ Z4 `
    ( f; g7 I4 ^/ P4 v6 f# Example usage& x% l) f3 u4 c( i
    print(factorial(5))  # Output: 120
    . k3 z& ~9 D/ V( y. {  b# q5 G# l$ @
    How Recursion Works
      E% O- z9 a1 o9 _
    0 g1 c$ x( {3 \# I$ h2 U    The function keeps calling itself with smaller inputs until it reaches the base case.
    ; ?* d/ \0 `, R/ H7 A" i1 D! X8 h' ]/ U. w& J
        Once the base case is reached, the function starts returning values back up the call stack.
    4 Z1 ?: B2 o0 Q) }( |4 g
    + [& R* n- q' v" D/ U! T+ J& K    These returned values are combined to produce the final result.. ]# k9 O* a: G$ P) f
    / o* E7 A0 C. R) E0 }7 d; d9 S. [
    For factorial(5):% x0 d! k% Z8 l. n2 p

    ! l, X% c0 o8 Z9 F/ U+ U& J1 \1 H  x6 ~) ?. m0 c+ d
    factorial(5) = 5 * factorial(4)
    2 w0 R& {6 [, l. pfactorial(4) = 4 * factorial(3): V6 ~8 b' _4 X" s& F! T  o
    factorial(3) = 3 * factorial(2)
    : d. x! z* I/ H# X4 u' T" jfactorial(2) = 2 * factorial(1)
    / C" ~# G& N( ~4 _factorial(1) = 1 * factorial(0): G$ U+ W6 m0 ?$ V8 B% w  s7 G" S, {3 B
    factorial(0) = 1  # Base case
    # g7 O* o, q4 v( f# E8 K$ K
    , j6 j* T2 u! KThen, the results are combined:
    8 c" @! @& i4 t. b+ W% ^* q3 [+ m* G
    * K7 O& U1 s+ V) R( ~
    factorial(1) = 1 * 1 = 16 k& k! W% I( Z6 I& [& d
    factorial(2) = 2 * 1 = 2
    0 e8 P0 K4 X+ m5 {! c# f$ Sfactorial(3) = 3 * 2 = 6
    0 D+ [% N9 H' ^/ z2 Efactorial(4) = 4 * 6 = 24
    . @6 D2 l7 B4 I- O, c2 Dfactorial(5) = 5 * 24 = 120
    8 m. ~  J) ]: E- G0 N+ ]
    . v0 o4 E& c1 ~0 Z; J3 }Advantages of Recursion
    / g. y) l+ R, j' B( T9 x9 h; }8 }
    8 D# d9 g% y! }    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." C0 l2 E9 P& e7 K: w9 k

    1 D( o3 u' l( U: L    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 l( t: h- u( T; `7 Z$ t0 m0 G4 [7 ~8 ~5 B+ K& W
    Disadvantages of Recursion
    + C; Q: ?$ q  P# P9 w' g, M, N/ k. o$ R& ?
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    8 O- C5 H- y2 I, g% j
    / h  b; b$ f, n6 j5 U8 @2 t    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# |+ ]7 p- h' e$ n; J4 f# O
    1 U& s' ?7 \6 L/ w! l* ~0 J; r% q
    When to Use Recursion! h- a0 I8 ~  r+ ?" p

    % Z- H( j3 z; j& e    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    5 W( Y7 s3 Y0 s* t2 M! G) y* F- y' D  v8 |4 M9 V! n( `
        Problems with a clear base case and recursive case.* _/ E/ J  I6 F5 c  p
    7 o: s  O' _3 m0 b5 h
    Example: Fibonacci Sequence) A" q6 Q0 {* Z) Q

    & f5 p  E" i: D0 f9 BThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    5 h- k6 r, ^& B3 C  m: ?' L; Z# p) N/ t% E# N
        Base case: fib(0) = 0, fib(1) = 1! g3 I7 }+ _3 n, e

    ( k: s1 S7 ^' ?    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! D/ j8 @9 I" m; r% m7 J7 s
    * Z* p9 N7 k: J) U% }: I, L; a# \python
    ' C& r* }' x6 o2 ~' ~/ L
    + c: \, \/ W6 O) Q& y! O6 N5 Q; h
    ( d0 P( c) ?# i; tdef fibonacci(n):* d# R0 M, S  X+ _6 [" ~
        # Base cases
    3 ?! M0 W, v" C. c% Z    if n == 0:
    4 v! i: x! M$ k4 w) b        return 00 ~: I: H* W8 z" h
        elif n == 1:
    ! [' t. Q1 Q! Y+ P& @7 F        return 1: U1 d; I7 [$ F; Q* l5 C& ^# A5 ^8 l
        # Recursive case8 F0 s% @  S) I8 k( l8 c  w* ]
        else:
      _. V& h0 t' H* ~' r& b9 r+ @& |        return fibonacci(n - 1) + fibonacci(n - 2)6 c& g0 |; l9 p. L5 M( r
    0 _' K3 P9 Q2 \& z7 t1 J8 I; w& [7 c
    # Example usage) [. u: ^, Z. V; ^0 g
    print(fibonacci(6))  # Output: 8+ [. P, p& `* b8 L
    ' E% z6 K  h* P2 f! R, m% ~2 W" m" H
    Tail Recursion
    : g9 N: _( J6 ]
    ' y# h- S, i6 J3 o' q9 e2 P+ aTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 H9 W' }/ U6 }# C. Q* B( Y

    + X  J- U" j1 ]% l7 ?7 H/ m3 {' QIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-23 14:54 , Processed in 0.035539 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表