设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 724|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . o. N9 T2 s$ z3 u  @4 G2 h) T) P; D/ S! G* Q
    解释的不错
    ) ?, ^5 z, n9 J* w; d$ d# \! [: |0 n* K+ u
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 X' g0 z  a+ |) ?0 F& p7 ?
    ! `4 j" O1 W- n& p; O
    关键要素/ u8 i' j- a  m$ @  W9 M
    1. **基线条件(Base Case)**
    0 z$ \( Y2 I: d1 J   - 递归终止的条件,防止无限循环% _. F; `+ o6 F. }; |% y' m! r3 @3 Z
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1* {' L' G6 F! _& e
    ! m3 H+ e/ `- ~' p' x
    2. **递归条件(Recursive Case)**
    # o: l6 j6 s' O. R   - 将原问题分解为更小的子问题
    ' r/ S, D3 o  ^- c5 I: N% Z6 J   - 例如:n! = n × (n-1)!
    / c( q( {. c" [. g# K. p, ^2 x$ F' h
    ( [; m7 _3 l1 d, F" h, { 经典示例:计算阶乘6 p( _8 G) P$ W. z8 M
    python
    8 y9 M% N3 s1 m3 |; c& pdef factorial(n):7 Z) g& \' F% b, e0 O
        if n == 0:        # 基线条件2 D+ m; F( Y, s6 ^7 y
            return 1
    , q6 P9 I2 s* P8 e$ _, E' M  G    else:             # 递归条件
    ( ~( `$ @( J: a2 X        return n * factorial(n-1)
    5 s' K# T0 j* `' t7 |. p7 M2 O执行过程(以计算 3! 为例):
    , e% c0 C/ ^0 j" n5 n) Kfactorial(3)
    . h: P, z9 y& k0 X$ u3 * factorial(2)7 S0 x4 M% t, j$ @  h
    3 * (2 * factorial(1))
    , p6 @6 ]3 q# h4 K% V7 I3 * (2 * (1 * factorial(0)))
    2 z+ J  R% `" M( ]3 * (2 * (1 * 1)) = 6+ x( ]; I* k! R& Q3 g0 E0 O1 l) ^: }; p

    * k1 i/ F6 l1 Q; C 递归思维要点
    6 ~7 {; j* P/ r( S1. **信任递归**:假设子问题已经解决,专注当前层逻辑' F2 Y5 _: B: S/ @1 J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    5 k, t- K# F9 K9 C. |, m- g/ I3. **递推过程**:不断向下分解问题(递)
    3 @, @2 \) a% d  \4. **回溯过程**:组合子问题结果返回(归)
    7 N. q# u+ k) |' c
    1 @4 z8 L. {" K$ n' ` 注意事项% Q5 P0 f5 K) P+ }; T+ c8 t( q
    必须要有终止条件
    : d4 T, e: b, W5 r) K* L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 a1 @2 p& B4 X% }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . J. L* C% u, ~尾递归优化可以提升效率(但Python不支持)
    2 Z- A# p$ s- e$ L$ E) i
    . N/ P3 U+ X. V( x 递归 vs 迭代
    2 I0 m" k9 [- W- {/ _# p|          | 递归                          | 迭代               |
    * B% k. H* Y. ?+ [( M|----------|-----------------------------|------------------|; h! _2 v8 u3 ?& r( _
    | 实现方式    | 函数自调用                        | 循环结构            |' c8 W+ V' |& z( ~$ G
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    . e9 t# G3 Q4 s' Q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ R1 f/ X( w0 q) u2 s' H/ ^
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 F7 z' R) r! A# h6 d
    6 z$ J. ?; Z/ {/ W0 g/ F& @ 经典递归应用场景0 r' @& ?6 ^$ Z
    1. 文件系统遍历(目录树结构)
    ( B8 o! i- V* ?1 {7 P5 o2. 快速排序/归并排序算法+ l/ d7 V/ y! s8 m: t
    3. 汉诺塔问题3 T* ?1 y% c7 i% ?. R3 b
    4. 二叉树遍历(前序/中序/后序)3 g6 w& [" ^$ ^, ^5 [# f0 G
    5. 生成所有可能的组合(回溯算法)
    # j) Y0 A6 `/ C1 a7 A1 R7 |% Y2 Z
    $ {4 Y6 p2 I8 m1 T, x  J! d5 q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    21 小时前
  • 签到天数: 2962 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 M: o; U- m5 W, Y8 x# t我推理机的核心算法应该是二叉树遍历的变种。
      T, Y4 ?9 I* H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    , s& g6 Q  j. LKey Idea of Recursion9 q; E& ]7 S+ |

    9 i" }/ W% K- Y. i; s; m5 K% YA recursive function solves a problem by:; Y+ S( v: n' ]4 N$ r3 q

    ) H( o; b! f0 y5 I0 N# |    Breaking the problem into smaller instances of the same problem.
    ; P; i% z6 A+ X* W- \- V, U
    7 d8 [& a) Y6 k; T8 @* D* j) y% O    Solving the smallest instance directly (base case).
    / ?1 N  ^% q, J+ J! L: [
    , B6 n, ~/ a( P# b  }/ O+ D" q; q% q    Combining the results of smaller instances to solve the larger problem.
    " _/ A& G! m2 M
    # _& \- N  j! HComponents of a Recursive Function
    / K5 h8 h9 o  a8 P4 S0 C+ @/ ]% l0 `2 c( ]7 q5 ]% A* a. \
        Base Case:  K) c" m# b" @. b! K
    ! W/ K& V/ l) o+ q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    : T- C; `7 Q; ~% J: E2 _2 `) x  {. B" t
            It acts as the stopping condition to prevent infinite recursion.
    3 L0 J9 U- j1 |4 n8 R
    3 N9 B+ ]  e! L) u+ T        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    " F  H' G% ^+ K0 F* y  c6 k) V7 P2 ]8 f# c9 w2 g+ t6 R) ]
        Recursive Case:
    5 p  Y% L% @7 [0 ?6 l& N6 }+ |7 m! e. D9 G% ^
            This is where the function calls itself with a smaller or simpler version of the problem.. E: R- M: l8 S' P, i8 q! U- g0 Q2 e

    ) `6 u' C# t4 K6 m' C        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ K5 u' k5 k4 S  Y( q7 Q' ]

    ; C0 A9 n* M  r# L% AExample: Factorial Calculation
    : k  T  d) z* Q6 o9 r3 V# c$ u0 S- Y/ k% D
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( l! m( X  @# y0 @' e, _0 @5 r! ?* K# N5 M
        Base case: 0! = 1
    0 q2 Z( [# e8 e. d2 }
    $ J- Y' ^( g/ ?9 C    Recursive case: n! = n * (n-1)!
    7 V) j1 H. v7 K( ^; i( A1 D+ M& q5 [7 c7 @
    Here’s how it looks in code (Python):
    # a) t* Y! u9 ]python# T( i; J6 q/ J( s
    5 |7 b7 E4 H8 ~, y
    8 W7 z" y0 k- S1 r
    def factorial(n):
    7 {6 ]" T) V: x8 v; e! U5 J    # Base case9 A( K/ ~6 w' Z6 r. Y5 k
        if n == 0:  B# _6 F* ~/ j  U$ [4 i
            return 14 d9 c% f+ I/ ]& I! D- x* u4 J
        # Recursive case
    1 }8 I- i$ v/ p6 y7 D    else:. C% X6 ~8 `# i0 ~# o9 S) z  [
            return n * factorial(n - 1)
    5 C: O. R' |" J# }, g* |$ B, N  K
    # Example usage
    % d  L/ S6 H0 g+ o% |. Rprint(factorial(5))  # Output: 120  R4 n$ S1 j' I% A

    1 Q  J8 r% \  h0 O: \, F9 JHow Recursion Works5 M' L! V$ k3 Z- J6 C5 r, G3 ]+ \

    6 B, a- F8 C% L- _3 p, o% @5 R3 A4 l3 U    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 _' q3 F* r& w' g. @
    6 r* t; Q/ z+ R0 w: \    Once the base case is reached, the function starts returning values back up the call stack.! {  Y, }* R$ y1 u- o  t

    " u' @. Q, q/ e  Y) Y  i' e" w    These returned values are combined to produce the final result.' P/ d7 t: Z" O4 L3 [% d* t
    7 W  r* U3 |1 B5 a$ X: V' r5 B
    For factorial(5):
    8 N; _/ R8 _4 @2 A1 r$ g4 w. @3 V  O$ p

    * D7 U, h7 _; f+ e$ I* T8 h# M% Zfactorial(5) = 5 * factorial(4)3 X1 I. ~+ \( D6 v6 I" e
    factorial(4) = 4 * factorial(3)8 z1 f, [2 z% {3 w* d0 c
    factorial(3) = 3 * factorial(2)
    / _' U% N: {1 N) Q* \% T* Gfactorial(2) = 2 * factorial(1)" Q- m  |1 h% ^# ~. s% A5 h6 n9 X4 J
    factorial(1) = 1 * factorial(0)
    ! j8 X* w9 d% j$ ffactorial(0) = 1  # Base case
    $ N6 U8 m% }: a* k8 G! B# P- n- P& t( S4 t( G
    Then, the results are combined:
    ( I$ Z1 k1 \, ?+ [1 }
    & j* l! P: l% l# S
    6 `0 Q, k$ [7 d, k7 ]" w! ]factorial(1) = 1 * 1 = 16 n9 n7 T- j2 K0 X) w& Y9 M! D% ~
    factorial(2) = 2 * 1 = 2! l' E  ^3 G" @- i, y, p
    factorial(3) = 3 * 2 = 66 z8 E0 R0 v8 v5 F; i" a
    factorial(4) = 4 * 6 = 24- j! m& E6 R0 V% Q8 A, O  w8 S3 z. z
    factorial(5) = 5 * 24 = 120
    0 g" D' ], m  s: M2 ^+ i6 N9 {- N) G. N) g0 o6 z
    Advantages of Recursion
    ( @2 w6 F+ K- H  l" x% L7 _6 y: p+ a+ r" y
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! p) l$ n1 d3 L& k
    ; D& U0 Q5 m& b* A0 T    Readability: Recursive code can be more readable and concise compared to iterative solutions.7 r3 h( w4 V# v% b

    & F: {& i- K6 ?/ U' T% b  dDisadvantages of Recursion& H: P  k2 I- p2 y9 p
    5 {7 |1 x. `2 b
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., `+ v) d; g2 T2 d
    2 I6 h& J& b0 Q) Q" D! t" }
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ E( u  x5 U/ }

    ! y- `5 I: l3 U4 I4 h! [% mWhen to Use Recursion
    % E; x5 z- J3 Y  S. h  R
    ' q6 T5 B, s* j& O7 x    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 F7 v9 S# ~. S  [. d
    ( ~' L3 D- O& {) U0 i' {    Problems with a clear base case and recursive case.+ w# {" E/ a9 E

    , C8 L* p# _$ @1 d3 ?Example: Fibonacci Sequence' z; V' b: a6 X* L) T8 A: V
    3 v+ S6 I! \- S, m, }
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:8 v" |: \% g  J; _4 I( Y6 o
    " k* }7 ?- K4 Q( n
        Base case: fib(0) = 0, fib(1) = 15 K7 o+ z' c. H, h
    # u6 c  Z6 p/ H* S" _/ H; a4 ]
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; {  b. s$ p+ v6 h% Q
    - }7 r; B# v' D  F. lpython0 L  P/ @& s: l6 m6 `; f1 c
    , Q% [! v2 m9 D( w/ B
    ) Q. j1 x/ ~! `% J  H
    def fibonacci(n):3 q; p6 z3 I, H8 B
        # Base cases& p& b; }/ O1 `6 x
        if n == 0:
    0 ^* W3 V4 t  @+ t        return 0) b0 E! N5 e/ `5 O9 d) O+ R
        elif n == 1:
    ' Z0 h  D  i' q# ^* T" p        return 1& Y- ^( E+ y( C. Y9 V
        # Recursive case
    % _6 s( m& g  v* `5 b3 h    else:
    1 ^/ ]$ w0 [; `2 @/ O& W5 `: {! h        return fibonacci(n - 1) + fibonacci(n - 2)
    + C/ w2 X! `/ z3 t3 s6 y
    " ^0 h5 ^6 }' z% c# Example usage4 X+ G0 ?# O/ b) q/ P* Y
    print(fibonacci(6))  # Output: 8
    , o+ c2 i6 \* Y2 w+ O- {$ p% N7 R) S; T1 x3 `5 {) S* l
    Tail Recursion( n8 W8 c. }/ N

    ) R) y* \' ~+ H8 }  |Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; g0 I4 o/ ?% z, [) ^# c4 z

    6 a" h7 B3 ]! ]6 Y& s3 v) |In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-6-26 21:56 , Processed in 0.037947 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表