设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1252|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ; h3 R' A0 d- Z7 K# H: d8 r3 {1 r  c
    3 P$ o6 r, d+ r- A
    解释的不错
    6 L" g' p  _3 k: ^/ t3 x" i' G2 o" N# ]  G3 d  T! W
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    1 F6 R7 G# E2 }/ ~2 ~: t2 N. }; |: ^( N6 E+ C
    关键要素! Q. n' W+ l: |! v* e
    1. **基线条件(Base Case)**
      N/ F  G& y& b! X5 S0 c   - 递归终止的条件,防止无限循环; c1 q$ d9 R# {2 ^9 O
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, ?! w2 F# a  B+ d

    1 M( v% A- `# {* C2 I2. **递归条件(Recursive Case)**
    * e& v# |$ p. ]1 f5 C: o   - 将原问题分解为更小的子问题
    , Q; ?3 S+ N4 }0 l1 }   - 例如:n! = n × (n-1)!( {4 v9 m# R2 s2 k
    & R, [" \) C; Q7 e/ _8 I$ x$ O
    经典示例:计算阶乘
    2 e! i4 h0 r( c5 Ppython
    % y) B2 h5 Y( B4 Tdef factorial(n):1 |) Y6 i* p  g$ _% h5 w0 I" Q
        if n == 0:        # 基线条件
    $ ?* g$ |  g4 o        return 1
    ' R' t( W& a# m/ |' z4 ]$ u    else:             # 递归条件5 B, v, h' c- T1 u
            return n * factorial(n-1)9 H# p; r4 l4 W! v* j
    执行过程(以计算 3! 为例):
    ; i, I* p: U) hfactorial(3)! ^8 }# F1 G" m" `* ]$ ~
    3 * factorial(2)4 [, v7 R$ l" E" o  s
    3 * (2 * factorial(1))4 x  e- h" d( [, c
    3 * (2 * (1 * factorial(0)))$ t& T$ s- y# s! e
    3 * (2 * (1 * 1)) = 6
    $ l; [8 E- c8 w, ?7 k) {* b$ W9 V) U6 f
    递归思维要点: K) I9 q* j' x' f6 Y2 Y
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 U& w; |, e, L: V1 Z2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 ]7 x* [- b# B6 W9 D: H6 O$ \; \
    3. **递推过程**:不断向下分解问题(递)/ ?1 a: c, ~% |* L  l
    4. **回溯过程**:组合子问题结果返回(归)- g, n3 J1 N* K- B# \
    2 x* o1 r2 C/ \
    注意事项
    6 V/ m6 N( _* P1 ~/ m9 n) @必须要有终止条件8 c7 G9 N, t- Q" N1 d
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    % [4 t( t$ s. n; F3 a4 C某些问题用递归更直观(如树遍历),但效率可能不如迭代3 U1 z2 m9 y2 k7 l/ I
    尾递归优化可以提升效率(但Python不支持)
      Y* @" k, O" G0 B, E: T
    $ }' k+ w' P2 X7 P0 _% ^' P6 e 递归 vs 迭代' r. u+ c* {7 U: c0 a. M% q
    |          | 递归                          | 迭代               |9 p8 w. g. V1 a1 b$ @9 h. I/ f
    |----------|-----------------------------|------------------|, Q- y. |' Q) z9 Q! S
    | 实现方式    | 函数自调用                        | 循环结构            |# v* P9 f; m5 T6 U( p0 y5 J& e
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: `; Y; p# F4 T1 p* b, K
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . n( S* K: z5 Z# ~+ L! W8 N| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( }& A7 j3 k- {6 W4 I0 ^4 O
    7 m% P8 O2 [( d3 W6 m" L; H$ ^5 ?& ?
    经典递归应用场景
    - j6 @. l3 g0 k3 N" |3 R1. 文件系统遍历(目录树结构)7 u' \4 V4 e9 P  S$ V
    2. 快速排序/归并排序算法. f" G% a' x7 T% Y( I
    3. 汉诺塔问题2 |/ O4 x4 w* h4 s
    4. 二叉树遍历(前序/中序/后序)
    . I2 i4 J$ d) d2 R9 Y2 R5. 生成所有可能的组合(回溯算法)
    6 v8 v( z  F' e) |
    . R: A9 ]& S" R5 X5 o. G) I试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    10 小时前
  • 签到天数: 3105 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: `/ ]4 n% z1 y: P' Y& v7 {. \; v9 p
    我推理机的核心算法应该是二叉树遍历的变种。/ G. y: m. {( p
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) e9 C" r8 q& z, N6 c
    Key Idea of Recursion
    # n" d- ?) F( p9 \8 s! q2 X
    1 j6 C; A# J& v: r; M( dA recursive function solves a problem by:
    ! T& p8 ^, U) ^1 r: P, {# ^* y8 f
      u! B- _& k& M0 B, |    Breaking the problem into smaller instances of the same problem.
    8 }' n. H8 ?) q! Y) Z. J' f5 A! x! W8 n4 |& |3 u7 \
        Solving the smallest instance directly (base case).
    $ Y7 ]5 N  E/ F  k  _
    - k4 |$ z8 k2 P    Combining the results of smaller instances to solve the larger problem.
    $ Q  @) n( x! S6 ?1 D% y8 |% l7 h2 R7 I) E* X& X
    Components of a Recursive Function
    3 \- C0 y( `  G$ v) h" h5 ^
    ! ^7 s( {& t$ y    Base Case:; y9 Z5 X. D( Y' Q" O  Z

    # x4 Z& z# H' q/ F3 z( R6 z) O. l# O; c6 w        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    / h' A. H, a$ c* I1 R
    + F0 ]2 s4 c( O5 K( V& U" c0 p        It acts as the stopping condition to prevent infinite recursion.
    % a% A0 v! O4 K' ?. y+ g4 v
    $ ~0 ?. B0 b/ U: Y* {3 x$ l+ ?1 k        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( _3 Q, n( n7 C0 _9 L- o
    : f* }+ y5 F" _- Z
        Recursive Case:/ o) Z# y- n4 f& i9 q. \
    / o' x7 n$ R/ K  J; ]# e
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) a9 X) T: [, T. ~8 V
    + \1 X1 c/ l0 D/ A( e5 f# F        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      `' N9 O( _4 J& ~- ?# `4 s9 E9 }; @! m8 h3 p) x  r
    Example: Factorial Calculation8 [1 {: \+ N+ q, P$ d3 m- r$ G# N

    4 N0 h( X6 |3 j4 u& ^The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( m: I. @; \2 l4 M3 A: r6 v  y
    - \0 e9 L: D' I- N    Base case: 0! = 1+ z+ v/ k7 w* y+ E- U6 A
    " \0 k' p" W) G4 p1 C
        Recursive case: n! = n * (n-1)!
    5 F, O( K% ]9 Q: ?0 W
    6 \% N! n7 [- Q! v) b1 iHere’s how it looks in code (Python):
      X* R9 ^9 Q: r  Wpython) k% w+ ?/ k4 y) ]. N

    # p9 B( v) Z% C" b& F
      N+ R( C4 H1 E& \( \+ m1 C3 Ldef factorial(n):
    8 S5 [0 K$ s0 D$ H; a8 n    # Base case
    . I# p, @' c9 s7 X9 u- j* q  S    if n == 0:. C# n1 g. {9 K1 U$ T
            return 1
    $ d- j" ~( l6 E  P9 l/ F! J3 [    # Recursive case
    ! L' H, r1 }: z* ^    else:6 J/ e2 L$ I3 B) W
            return n * factorial(n - 1)% F: i. e8 g% T6 S

    $ ?9 `( B% C# G  E# Example usage
    ' ]( c( @& G2 yprint(factorial(5))  # Output: 120
    ! W8 i& [% r1 D, w3 C
    - A% K2 x9 \) V9 ?+ KHow Recursion Works
    / J. V# b/ x# |
    ( u& s* n9 O, J9 i4 ]3 J  V4 |    The function keeps calling itself with smaller inputs until it reaches the base case.
    9 B- _" n( p( g
      y0 J; c$ X2 ?( ?3 @    Once the base case is reached, the function starts returning values back up the call stack.
    ( Q& |9 F* B3 `9 {. s3 e( V0 q: C7 O  F) H
        These returned values are combined to produce the final result." _# `$ ]& s  K( B5 \% v
    ( X: J3 S1 S5 P# D' }
    For factorial(5):# y" ]" ~. c( B1 k* |9 _& p
    ) _2 U  o5 N2 E* f( m) y! P8 P

    # W( ?# ?# h$ r1 c( U' i( ufactorial(5) = 5 * factorial(4)+ T+ e  j4 F6 Y
    factorial(4) = 4 * factorial(3)
    - B) \( T% j. V- K2 }factorial(3) = 3 * factorial(2)
    ! S+ S- Y3 M0 n  t7 B- tfactorial(2) = 2 * factorial(1)1 B7 ~8 X2 J7 R# p
    factorial(1) = 1 * factorial(0)" N; U- c( t" v. }: \& U
    factorial(0) = 1  # Base case
    % M( c2 _, u* V- C/ f9 k) w" B+ O3 \( M' O6 S
    Then, the results are combined:
    ! _8 L3 [0 p3 Y+ m
    5 n% j4 F+ o; l8 Y% _7 ^' v' b2 F3 U5 {' u+ B
    factorial(1) = 1 * 1 = 1) U% M5 T- c5 F0 X8 _0 F
    factorial(2) = 2 * 1 = 2# z) C' e2 e! R* H: l
    factorial(3) = 3 * 2 = 62 {1 x2 W2 W+ c# D
    factorial(4) = 4 * 6 = 24
    : W$ @; L7 l+ m8 ^4 r2 C' mfactorial(5) = 5 * 24 = 120! G0 p- B$ A3 r0 a! m

    $ v) Q6 G- ~- _' X* KAdvantages of Recursion
    : g% [, J4 ^# L$ L$ G0 x! S4 i$ o. f0 W
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    8 T! E7 e- ^7 K0 o; q
    ' r) u4 l% n6 K  S! e* u4 ]+ m    Readability: Recursive code can be more readable and concise compared to iterative solutions.% b3 A2 o  m* ~) o

    1 b8 m, e8 b1 y/ H/ QDisadvantages of Recursion: w! ^6 H' C1 y

    * k" F, B8 V1 ^    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 f, B0 G. w, d, ~
    / @' n3 X5 w- u3 Y1 K    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * z+ T+ K( p% G7 _7 p2 i% R; Y1 \3 L. ]4 n1 f- l
    When to Use Recursion! D: J3 X+ H/ f  ?& }& m

    ( r2 w8 j' F/ @6 R1 }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    - u$ t) ]" h$ s( t! \) }
    1 C3 [% @' Z5 ^) f$ s    Problems with a clear base case and recursive case.
    / h- S) ?( @7 n& v: o1 _
    * R( J5 Z% H2 Z9 ?3 U- qExample: Fibonacci Sequence
    3 |( t8 O, j  U% a: @4 ]; }4 S4 O- c3 o8 K4 F
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 w) v1 i+ p' E1 o. C4 M  |* |! Q

    4 `9 x# u, @& g) ?' }* p/ }" P    Base case: fib(0) = 0, fib(1) = 1
    4 p( B6 ]8 L1 G. c
    3 m: |8 s/ N% f: l7 w    Recursive case: fib(n) = fib(n-1) + fib(n-2)9 [8 G& d  `8 Z0 ]* b* K6 a
    , l  W* g5 j* E, V& ?# e
    python
    . ]' O0 F6 r: h9 r& o9 d
    2 T9 {3 Q& N. s+ `" p- i) ~+ a: [6 g# P; f$ W
    def fibonacci(n):" d" ~2 y1 R3 t0 q' _0 m
        # Base cases
      i& P5 Z/ M( I: I, U  p    if n == 0:
    6 \- z# Q! o) O1 h( R        return 0
    ( v  @1 ?0 U0 {0 F    elif n == 1:
    . D+ n5 X7 W! }1 U$ f8 S1 F        return 19 ~( y- s1 c7 @; g: l
        # Recursive case
    $ }" g; W6 I0 u! C* ?$ d    else:
    % P7 z- @! D" S; y6 D; A% [& ^        return fibonacci(n - 1) + fibonacci(n - 2)
    # a% g* }/ X: h  G. H2 E$ y/ t
    . e' {% K$ C0 w2 e, r% v1 w' q9 Y# Example usage
    + T1 o7 ]' x$ C3 [: ?6 aprint(fibonacci(6))  # Output: 83 K; @& l2 ?3 n( u) s
    3 ?. N9 q# N* s1 E/ J4 ]" l
    Tail Recursion
    * g. Q1 M2 N# S- x
    : Q$ h  H6 }# [8 {# V2 WTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    * b) {  x6 @7 ?5 E( e0 {% N3 t. {
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-30 17:21 , Processed in 0.032102 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表