设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1689|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : v# L) x. m$ t; D

    / q% g6 l) ?8 M解释的不错
    7 l8 l& ~4 `4 I7 K+ r& ]; }' G$ M
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, v/ {' Y8 l' ^5 x
    , C  i. T2 X, c; g1 ?; S+ W
    关键要素5 H7 X9 \/ Y$ n4 J
    1. **基线条件(Base Case)**
    # g; R- ~' w7 T& V& W, o   - 递归终止的条件,防止无限循环
    7 U0 ~! _! s3 t! ^% v! @5 P" |0 |7 @   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , |" H9 m) Q$ v# t
    - {# v9 I; G- Y" D( D' t2 s1 Q2. **递归条件(Recursive Case)**
    3 g7 ~6 e5 t. W- ?   - 将原问题分解为更小的子问题
    " Z2 J3 w) k" x+ V7 y, j: U3 A0 I6 P& E   - 例如:n! = n × (n-1)!7 ^* [1 X; A& p

      J' ^% A6 R$ j/ X 经典示例:计算阶乘6 L9 v7 K: M7 R( E
    python+ @$ W6 r$ y) K2 G" g& s# r' r  X' m) _+ ?
    def factorial(n):
    ' B+ N: K% Q& @) r5 b  ~    if n == 0:        # 基线条件
    9 |2 ?$ q% i  M7 `8 v        return 1
    + l* D! L6 [  p2 U2 V: w    else:             # 递归条件
    & _; H; ^  ~- ?4 U, d        return n * factorial(n-1)+ X2 l$ S( c: u8 m! E9 L3 R
    执行过程(以计算 3! 为例):
    ( f% M: i/ I- M6 k# @- o9 ?2 lfactorial(3)( K3 p! d$ w0 l
    3 * factorial(2)
    8 g1 K# c4 H) Q7 k3 * (2 * factorial(1))
    4 M9 d* A* v8 T5 I/ ]7 J+ w3 * (2 * (1 * factorial(0)))
    , H5 Q6 c: c5 r9 v5 B3 * (2 * (1 * 1)) = 6- S& o( A0 q& G( T
    / q+ Y. D. d- m
    递归思维要点
    7 H# O, d0 f- Q0 j. @& ], C1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    / `  c3 o- D& I; e* e: F2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 n0 G8 J  r  Z3. **递推过程**:不断向下分解问题(递)
    , t" @+ K. i3 E) }6 u) T4. **回溯过程**:组合子问题结果返回(归)1 ?' p2 ~0 z6 W4 ]1 h/ P

    0 }; C, S) K1 w. B+ l; m 注意事项- W  r! a7 U2 ], P9 }
    必须要有终止条件
    / s6 v; [/ `  |9 U递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' T0 l3 h  w% _/ f
    某些问题用递归更直观(如树遍历),但效率可能不如迭代/ K/ n" i) B/ ]% J) c$ N- P
    尾递归优化可以提升效率(但Python不支持)
    9 e' \2 K" O$ `: r# p3 p+ x9 h: k0 T
    递归 vs 迭代* b1 }2 _2 ?8 E/ Z# z8 @
    |          | 递归                          | 迭代               |
    1 s3 F( E, _& ?  ]5 U|----------|-----------------------------|------------------|
    . [0 r4 s& `  `2 K2 A4 T| 实现方式    | 函数自调用                        | 循环结构            |
    . t7 U$ j0 O9 R5 s| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! Q) h- D( L  [  l5 q% {' y
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ ~7 G0 L( @% M0 u: q. ?" I3 P1 W# g
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 O  o0 M( g/ `# k$ {3 W5 k; ^2 n

    # |6 ?. _: L# Y4 D+ s9 m! i, c" ~* ]9 a 经典递归应用场景$ @( S% H  Y% u5 L& v! P
    1. 文件系统遍历(目录树结构)# B7 {9 f9 B: T7 }: z+ H% ~4 A
    2. 快速排序/归并排序算法1 s" F; H+ V4 G, a% N. |
    3. 汉诺塔问题, E9 I" |4 S* a! j" O- Y/ ^
    4. 二叉树遍历(前序/中序/后序)0 [" W7 a3 G" ~5 p% @3 T8 l
    5. 生成所有可能的组合(回溯算法)
    7 v) [3 T* @6 r2 \2 E
    ' e3 X8 [! y# }2 D试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 07:42
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ( ?0 l( v3 p' v, w3 s我推理机的核心算法应该是二叉树遍历的变种。
    6 ~0 @; ~. l" c1 Q+ b* l) S另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 j2 v$ z7 B4 B( V: C1 i, W2 N
    Key Idea of Recursion# w# `$ x$ Q8 E# N0 c( A; |7 b
    : {1 H8 ~) P: ^! c
    A recursive function solves a problem by:6 n9 `( S2 F& ]! F5 o
    1 z% ~# V7 @5 f: _; I) Y
        Breaking the problem into smaller instances of the same problem.
    7 Q/ m7 g, _9 a- g' S/ n' u# J$ g; L
        Solving the smallest instance directly (base case).$ e* s5 E5 q( n0 v7 h
    , N% A' m& A( w/ d. J  T
        Combining the results of smaller instances to solve the larger problem.) V5 }/ F; O3 w

    & U( L" G, l) H  NComponents of a Recursive Function
    ( \/ @% U# [" o- f
    6 P2 B2 U2 @( u( @    Base Case:! Y# m) ?$ X" F1 R
    6 ?/ F% G' W7 t+ u- P
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 M. _& J) B' c; I

    ; [# w$ p& C& v: q$ [+ g        It acts as the stopping condition to prevent infinite recursion.
    / G% A. {- N1 k$ a4 T6 I/ s7 l9 F, \+ i* q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  [* C$ @& m4 N/ b* _) b( r

    & O; j, I" Q6 o# ^    Recursive Case:
    ) f4 J* p  `  h+ N
    / n. j. y  D0 e5 ]- t' J        This is where the function calls itself with a smaller or simpler version of the problem.! c. J& `% U) I4 `# w3 ]

    / E" q  Y- f! l  p. j: \+ D& k        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% k9 o) P3 l% l( |3 N
    8 u) V* h7 o" y; ^% G
    Example: Factorial Calculation% X; N/ N" E! c; h0 O6 V5 p% r: _

    9 i- l9 ]5 W5 k5 R7 k0 T1 KThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 L8 T% y. |7 _. y; y8 x2 _4 g; T

    $ x  P( ]* H) [! t    Base case: 0! = 1
    * f! [) p! J5 B2 {6 y, m% V3 j2 j& X
        Recursive case: n! = n * (n-1)!
    + f" r5 s# q$ p1 S( @- R5 x
    # Y* E+ @& C4 n5 B; w' I# lHere’s how it looks in code (Python):
    5 ]' i3 s. S& B1 }' J% ~python6 F& d/ S1 P& w; Y0 u

    , T( c% M/ Z$ e8 ]% G+ ?8 {; S3 U! G; v
    def factorial(n):  p  n- A9 G) k
        # Base case# ^. b) Z5 e' _7 ]7 U
        if n == 0:
    0 H! C. l2 k2 U        return 1
    0 p% q+ w  d. q    # Recursive case
    ! C3 D+ G+ n( a3 t& g  s* T    else:/ k# u! Y! o) Z2 W# K  e1 E; x8 D
            return n * factorial(n - 1)
    ! Z' M) d, x6 z- Y+ Z' M7 o! E9 M! o/ f, X& K
    # Example usage" p4 |; ^* p, s6 X9 g; @" H
    print(factorial(5))  # Output: 120
    2 P: f  C( l; _9 V. U
    6 l% e, k! q. U5 `$ w4 S5 QHow Recursion Works$ L! O" o+ ]  Q% i* |( [

    3 R# f: o0 t4 T; ?/ v7 S, O    The function keeps calling itself with smaller inputs until it reaches the base case.3 p& [& v) q, e* B; @$ \2 h
    0 g# h4 G0 m( l9 [6 W
        Once the base case is reached, the function starts returning values back up the call stack.
    + N3 p  G7 j" G# k' w0 [6 ?% \% @4 |, V9 q, g
        These returned values are combined to produce the final result.+ M/ C& m1 G' s. M; }4 ?

    2 R6 h' X* q! T7 O( |- @For factorial(5):
    " c2 w  O" m( G* I  W! x' L1 m! x1 i
    6 f1 \" Y% t9 t8 g" r" r& P8 C* ^' `# D4 m
    factorial(5) = 5 * factorial(4)9 o, W% z. @0 p" {6 n' M3 Z; o) s
    factorial(4) = 4 * factorial(3)
    8 ~, F6 p* e; ]7 Z* e% J: O9 G3 v* J9 rfactorial(3) = 3 * factorial(2)
    ( m; Z# k4 h' O! n( nfactorial(2) = 2 * factorial(1)
    0 z3 w( j$ o4 Z! M! Y7 |. G& Wfactorial(1) = 1 * factorial(0)5 T" i1 e: |- R2 K
    factorial(0) = 1  # Base case
    6 L; ]# h) b3 V
    7 @+ M# ^2 y  x( K4 u0 oThen, the results are combined:
    $ O- q! B! e  W; s5 m# x+ N# e! [
    : D; p1 q9 i3 A9 b
    , u2 h  [$ d% W9 \0 i! q( X% ?factorial(1) = 1 * 1 = 1
    " e3 x' f% ]5 G9 Ffactorial(2) = 2 * 1 = 2
    6 C1 F. Y) G$ H' }" a$ h* i. vfactorial(3) = 3 * 2 = 6; ?4 d) j% I2 m3 U" y1 ~$ x
    factorial(4) = 4 * 6 = 245 j8 ?0 n, B; e5 P3 K( j4 m
    factorial(5) = 5 * 24 = 120
    2 n% k7 a( q' T8 h! J' y5 K5 _& b, o! ]9 q( o/ P0 `8 G% w
    Advantages of Recursion
    * D' _- c" @) H! N: X7 p2 ]: M# e2 H: J, `/ L- Z4 F; H+ c
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 G& m( S( a1 N7 u4 V6 C
    : H( [/ M  {: I" [    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ; ]7 w2 p+ _5 [) O" Q0 ]4 F6 h
    ' ]" i/ e: L. i' E' m$ h' ~( LDisadvantages of Recursion' G# C1 m, l  R8 a5 K) F. s
    5 W( C3 ~# X5 m8 x1 b
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., w' Y. ?: z! z+ Z% S1 F. i

    ) I& X3 a  A- A% L    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * F0 @' l% O# R; d: p1 t4 {8 C% c- W! M6 w
    When to Use Recursion
    2 j& w5 y1 M0 n* ]. N7 A' h) @. E8 {7 F
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# Z2 T3 @$ Z* L, s9 B

    " }, l; A0 K4 x, C    Problems with a clear base case and recursive case.
    8 ^  \4 i" ]8 f, u, ~, [$ Q& f. M8 e5 q. K0 p
    Example: Fibonacci Sequence; d  W! ?4 m7 g  R+ C$ ]2 |4 Y

    - W' o2 D2 `- r0 s$ hThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" u4 z) ^$ H7 p

    7 {0 u! W8 n0 n    Base case: fib(0) = 0, fib(1) = 1
    6 w/ c1 [# r4 @: S4 c6 L# ^
    # ^( o! K! _) T% a, L    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ; I& ~8 W! V' l6 p5 E( G9 J/ Q! B3 S
    ( J, ]0 A1 m5 s  \2 Lpython  d1 ]  u. p+ O/ N9 ^% F! @, ?

    + }) E/ Q9 s5 N( p( r: N5 ]1 ?, W7 B$ l4 g* z
    def fibonacci(n):
    # E  {- m" F' H  Q9 e0 W& C2 g: Q4 u    # Base cases
    * N+ z/ `- U' v  k. R    if n == 0:
    9 [; f# U6 O" h) M        return 0
    9 G; n* r/ L- H8 _3 _! g+ \  B6 {    elif n == 1:
    7 t4 r3 K/ v* s, Q6 Q4 q        return 1
    ) ?- V6 [) c  r* M! ]" {% j    # Recursive case! U# H$ X$ R6 n
        else:
    , @7 ]. \* |) ^) X! c        return fibonacci(n - 1) + fibonacci(n - 2)
    ' ^' D$ r: ]7 N
    ) j, ^) \* B0 S2 J* G( g* O- u# Example usage! }  O  `& _5 l2 X
    print(fibonacci(6))  # Output: 8
    7 b+ @6 W* f0 ^! R$ p& |# g8 T& u4 L9 M9 q
    Tail Recursion
    8 h$ Z; r7 n8 ~3 {% k) x9 U4 \% [  S3 Y. Z, {0 k4 e
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # N6 n! E% R8 `6 [+ C" t8 R
    % ?4 i" Y' d4 X7 N# pIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-31 07:16 , Processed in 0.029556 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表