设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1659|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / B; R, R; s) _( \
    ! [" a2 K8 ?( H; b- C解释的不错
    6 W  d% s- ~- J
    ( r, C8 J6 a" i- E递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + z5 t7 k) b$ R- l
    ' N; S' N* S8 l 关键要素
    0 u( i3 q/ W+ {; l  ^! N8 r* L1. **基线条件(Base Case)**$ ?5 ~0 }6 U, g! t
       - 递归终止的条件,防止无限循环( |6 |, \( z0 J+ }" m' `. k1 w+ Q
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 Z. P7 G1 L$ w6 m0 H

    + n" a. r1 Z  Y# L$ [2. **递归条件(Recursive Case)**3 D9 l- O' Y6 H$ r, l, F
       - 将原问题分解为更小的子问题
    ' J# j7 `! G+ ]* R3 ^9 Z' q   - 例如:n! = n × (n-1)!. a! b& @3 R7 K6 X0 ~! M: a- S
    7 U# n( u7 J1 X9 D: A7 t
    经典示例:计算阶乘
    : V' ]% W% b7 Q+ r3 {7 Jpython
    / n$ n% n$ a7 g7 edef factorial(n):3 @: W+ K' B/ ]( z
        if n == 0:        # 基线条件6 @0 s0 P2 p% j$ M
            return 1$ N- m1 r9 Z* |5 O+ Y% r# M
        else:             # 递归条件
    0 W' \/ Z& _9 l  z        return n * factorial(n-1)
    % N  n2 E9 ^7 U, L执行过程(以计算 3! 为例):
    # ]% E$ F: Z0 w2 u3 e) kfactorial(3)
    : K' N% ?( Z" Q# U5 Q: X3 * factorial(2)
    % X% _, D: A: _$ t' e/ Y3 D3 * (2 * factorial(1))
    , Z3 c( B! N( `; f- _3 * (2 * (1 * factorial(0)))
    4 o8 F! J" K& q/ B* ]" Y3 * (2 * (1 * 1)) = 6- \5 F! R& N! d) \6 s8 p& R$ Z9 m
    1 l: w  y- c5 v/ O  w
    递归思维要点
    % _5 A/ L, C9 L  z) i/ N. m1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    2 L  a7 V  O* {% F. q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( t6 G+ M% I6 Z# k) L3. **递推过程**:不断向下分解问题(递)5 I9 c. |1 x6 p: K( O" l6 [, C
    4. **回溯过程**:组合子问题结果返回(归)9 G' a! t8 y; }6 @
    ! F  j1 S" i, p$ `- z$ S1 [4 T% Z+ F
    注意事项
    0 a8 t; E: z  k6 |# r5 T+ q  f$ C8 [必须要有终止条件7 f3 W3 C# d. C0 g2 l
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    5 F1 v& `' h2 L+ {  q' T8 V某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 v  k: ^# \7 g' q, G尾递归优化可以提升效率(但Python不支持)
    0 K4 n$ a' M* [" l7 b3 @$ j6 k
    0 g( l* Q: A& I4 m9 r 递归 vs 迭代
    ! U4 ?1 Z, E" {4 V  r0 r|          | 递归                          | 迭代               |. i+ T) V$ _; i. x
    |----------|-----------------------------|------------------|7 S& {& G8 \$ t; {) @& I4 B6 O
    | 实现方式    | 函数自调用                        | 循环结构            |
    9 q# s) _" f! U& q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ; Q5 {6 |% @% c7 U( b6 v1 o| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 p8 U; u: Y( c2 s| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 N* @5 P( z* \0 b# m( c2 i( J5 Y' P1 H
    7 V( O# h' X" p, m6 `- ? 经典递归应用场景1 K8 B( G. v) `1 e4 N
    1. 文件系统遍历(目录树结构)
    5 o/ W, O5 E5 M- E% H8 b/ z2. 快速排序/归并排序算法1 m3 ?) m& F$ Z& M6 |
    3. 汉诺塔问题
    - B2 a: U$ a) I% v8 l- Z4. 二叉树遍历(前序/中序/后序)
    + V' u9 ?) V1 X: @5. 生成所有可能的组合(回溯算法)
    2 J7 p: x- n( K3 i' t' G  h
    / s! V* j! s4 _5 W  a试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    11 小时前
  • 签到天数: 3129 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 l! n( Z  S' V7 T3 P# A
    我推理机的核心算法应该是二叉树遍历的变种。
    6 A- a* E/ A% b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ F/ v9 v0 T6 [9 `
    Key Idea of Recursion
    9 }- s( @& D& T: b
    9 T! G, M0 j9 D6 W; oA recursive function solves a problem by:* a1 O- ~" W$ t
    - u" C0 Z2 v+ P" F
        Breaking the problem into smaller instances of the same problem.
    / @; z' v( @' P% O% \
      F, {& g, D6 t6 C    Solving the smallest instance directly (base case).3 O; R* \$ Q6 a& m1 E3 _

    / X$ q1 f% E) ?; Z; M9 l8 P: l) n    Combining the results of smaller instances to solve the larger problem.4 W5 x% F9 ]. R

    5 \4 ?# x( \4 vComponents of a Recursive Function: ^; `5 }7 r' i
    8 @+ T" H$ x# W; l
        Base Case:( K& Y8 t, w9 a' R3 K: ?

    # D* y  F8 W6 `2 k! ?  z        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    8 h) k; ^, F3 \8 S/ O- {6 f' h" P! L; T: d1 |; P1 J( O2 i
            It acts as the stopping condition to prevent infinite recursion.! {# _* L: c! M& o( |

    / y/ L+ t8 ?* Z9 E3 A        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * ~5 r0 t! c# M% }8 J$ S9 V+ e. E; ~1 o( C! `6 o7 `! m  n
        Recursive Case:
    + G1 i! {2 A' r: u4 X  O# o$ O) Q
            This is where the function calls itself with a smaller or simpler version of the problem.; U# v, F  A* ~$ r' X

    3 N3 d+ {4 `3 J" Q6 ?        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 W6 E& b( {5 l) W! L
    " ~2 O% N. J: g7 \Example: Factorial Calculation8 Q8 c6 X' x$ B0 p/ K1 [
    $ D4 U7 V, H3 t
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
      n" p1 p2 r0 H1 t  f2 w- _, F3 C* T1 V% Z
        Base case: 0! = 1
    * W! n; G+ T- e  o. R0 ]( n" k
    $ C3 r9 K8 P  b" F8 i    Recursive case: n! = n * (n-1)!
    " j0 S6 {; a( l  w
    + |- c# P) m9 _1 R" cHere’s how it looks in code (Python):. Y- z+ Q8 {; ]) N4 D2 t+ Y. o
    python8 B* K& p$ [$ w! U1 `2 h" s

    % i1 R/ n# G0 v, O. y0 D$ d3 t4 R8 a8 ~0 N* c% Z
    def factorial(n):
    ! z% C6 b% q. b  a0 _    # Base case
    # g, u8 o/ L7 Z+ a% e; D* |    if n == 0:3 N2 n; T; f; {, v8 X! [3 y
            return 13 o! A9 E% U" E2 L3 b
        # Recursive case6 f3 L; v1 ~1 z8 K9 t
        else:
    : O4 t4 N- C5 N/ E/ ~% S4 x        return n * factorial(n - 1)
    : G, t) i* f: U9 }! v. @2 J7 n( P( L/ x+ n" H' D
    # Example usage
    8 H( s' M& f1 Z$ L1 m0 H" a. cprint(factorial(5))  # Output: 120
    2 a3 Z- O. {' u( k9 t! @$ y2 j5 U8 u
    How Recursion Works
    2 j! [3 k" }: }/ n2 e/ l
    $ h; m2 w; c* U) B    The function keeps calling itself with smaller inputs until it reaches the base case., B; e' t- H6 k( ]$ Z1 k5 t
    * `8 }9 j* b  Y% {. S7 ]' t) M
        Once the base case is reached, the function starts returning values back up the call stack.5 _7 v7 o; V6 ]. Z" S

    0 A4 O- q( x4 N8 J" I7 Q2 h    These returned values are combined to produce the final result.+ \' J; ^  M5 z$ m% r: o

    7 Y9 A9 q; X6 a. SFor factorial(5):
    " i5 F: q6 k  S+ u/ z  L
    # Q5 |* H5 N  S1 V# V, j; |7 n5 |
    1 x4 g) L$ T3 @+ N5 c6 `( {0 lfactorial(5) = 5 * factorial(4)! T* ]; I) D' x" x# {
    factorial(4) = 4 * factorial(3)7 k- o- c6 @) G8 f5 j/ G
    factorial(3) = 3 * factorial(2)4 y+ ?. @' k+ K, j! ^
    factorial(2) = 2 * factorial(1)8 k( S( m, w2 A! ^& n
    factorial(1) = 1 * factorial(0)- m- L+ G2 _% V) n. }, P+ r9 X/ \& a" i
    factorial(0) = 1  # Base case
    . R& x) \" b+ s5 z7 U. ~7 P
    5 E: f8 |3 A8 B& [6 oThen, the results are combined:7 ~4 f. j. S( h

    0 d8 J7 {6 h1 H9 o& c6 b8 o( ~. k5 B0 c) f6 l- P) z: p
    factorial(1) = 1 * 1 = 1
    - b+ [0 o* a; H/ V. }( ffactorial(2) = 2 * 1 = 2
    6 x+ R. l# I* V5 }$ B2 R2 x$ wfactorial(3) = 3 * 2 = 6
    % t" d% ]' A2 _7 M; Ufactorial(4) = 4 * 6 = 24( Y: A& _" [# O( m( H+ v  Q" j
    factorial(5) = 5 * 24 = 120
    % T& J. G3 b  |1 X
    * q: v) D, i* p7 E0 p3 B0 R2 s' jAdvantages of Recursion
    7 r7 c( |3 g  t3 G4 L, o7 ^3 ?' F
      p, j: L, G# p& q7 Z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. k  V/ u# L, S! J/ d3 z

    , m' t) w$ a" X6 V    Readability: Recursive code can be more readable and concise compared to iterative solutions.2 @6 H: V  Q6 i' ^- X7 y( i
    9 O( D8 L0 w4 J# I9 o7 q
    Disadvantages of Recursion
    $ H5 m* U: a, W/ ~9 p
    8 k6 m4 P0 F" {$ L3 Q+ t    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    1 u! f& K8 e# _0 l
    ) c6 b( _6 h  j    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 s9 P" `7 G' U
      g7 v/ P9 a# QWhen to Use Recursion
    , x0 E- l1 s% R! F: r3 y3 v5 c4 [! H$ C. x7 P( Q
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 w7 `( i7 {% Q$ ]) K6 t  J9 b

    ( H' z9 _0 p1 A5 N: {( }    Problems with a clear base case and recursive case.
    - ~( ?8 u: p( v& @' }! Q; L# C6 l) ]9 i+ h& y
    Example: Fibonacci Sequence
    " J% I5 d# F' u/ |9 [$ P7 k
    9 D8 X; e0 o/ C( m' ?1 yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& j$ ?/ T, n' i0 {( n

    % U7 ?) Y/ ]8 L" I$ }+ s1 V; R    Base case: fib(0) = 0, fib(1) = 1
    5 |  Y9 M8 o- P# A& s1 i- m0 W0 ~5 A) r( b
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    " f' a! ]4 X) g9 ~7 g; Z9 n
    * r. }7 L3 J6 Z5 ?% i8 u) qpython, N: ?0 \( K6 w! }+ `  h/ \  ?1 L

    ! ?5 h9 q% d$ ?" Z4 @  o+ {  t: s/ E7 L7 d
    def fibonacci(n):
    0 L0 Y* n) S. o: H$ K) n5 N    # Base cases& w# k& a: Z" `0 ]( b' Y9 i
        if n == 0:
    0 e7 E& P1 G+ {: |; I        return 0; Q6 j% t1 |: K+ I! G: d9 Y
        elif n == 1:
    7 R0 L6 P$ k% \; @: t* y8 m$ T$ }9 o        return 1
    " q1 m5 W( b6 B; U/ N( y6 H    # Recursive case
    8 K: {# Z' L% X3 [    else:% }- \$ M# X0 o: x; {& w2 ~: J* E; j
            return fibonacci(n - 1) + fibonacci(n - 2)
    ! |9 e- N$ I6 z: S0 T+ Q7 y+ A1 C0 j& A/ }- |: w' Q
    # Example usage
    $ N- L0 Q! u: Z- Y: e) x) Tprint(fibonacci(6))  # Output: 8
    6 V) h. o2 j4 N
    . T' N! ]5 {* X- X, k5 ^, G0 HTail Recursion) R4 e- Y. H' p- X
    & v' d" Q2 i( `, `' A
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 R$ T- [- I7 A9 o- O. P2 Y% Y" f' A+ j# }3 H4 H0 e: L6 x) J
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-27 18:41 , Processed in 0.029500 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表