设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1436|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 0 ?/ k8 }! _0 e$ r

    7 n( Y) H6 q4 k, p解释的不错
    & K/ W- A  t7 o8 W: ^. j
    $ `/ j% `6 [) p7 }8 q递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。6 g/ U: [( s  \! P9 B; ~+ E% p

    0 C2 J2 {! y# F) h1 _& Y8 T4 U 关键要素
    * U+ y7 B1 [& q, C3 A1. **基线条件(Base Case)**6 o! q: Z: |2 r/ q  n
       - 递归终止的条件,防止无限循环% z6 @. X3 D6 o# v
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 13 y- d5 e% i8 S3 y
    . k" \+ ~4 l% Q' d
    2. **递归条件(Recursive Case)**: \+ q' a) |0 ]7 t
       - 将原问题分解为更小的子问题8 w: }/ ]9 T- k5 s, h* Y0 [5 K0 T1 z
       - 例如:n! = n × (n-1)!
    ( J8 H/ J0 e. y7 u* j1 M
    ) r) R5 f- h/ C1 D) _% g# X 经典示例:计算阶乘4 q  t/ u% H+ k
    python
    # v& Z4 p7 E5 x& R6 U, Kdef factorial(n):; \6 L+ @6 D& |0 ~0 `
        if n == 0:        # 基线条件
    9 K6 M9 B3 V' i9 {" `0 C4 X+ m# Z        return 1& x2 E2 k& _5 W' L4 V; P
        else:             # 递归条件
    9 X# C; g% w; }! \$ c        return n * factorial(n-1)
    0 N( v+ L1 N4 z执行过程(以计算 3! 为例):
    * a0 ]/ ?7 x" [! x, y  Vfactorial(3)
    * H# @/ f( s" c; Y3 * factorial(2)
      p/ c0 X& p- U2 G0 b$ V3 * (2 * factorial(1))
    , v, U4 A0 v( q2 I3 * (2 * (1 * factorial(0)))
    % |" L# X5 g, b! D3 * (2 * (1 * 1)) = 65 {+ K8 z% w9 e2 c

    5 c( [( p6 j( u% v7 Z 递归思维要点0 Z, I# ]* J( W/ }- D/ x
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑& j/ \3 G3 x! G( b) x5 D
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 t* h* i9 {' U! U% ?
    3. **递推过程**:不断向下分解问题(递)
    " _2 d9 l  B  x$ i! y4. **回溯过程**:组合子问题结果返回(归)
    ( c' a4 i! @% B4 T7 m: {
    3 @/ \& }  U9 S6 M1 I0 Z" q 注意事项
    3 H# n" h- X" W$ i9 [6 D2 M7 ~必须要有终止条件
    # P) Y1 _. U/ F. A3 @' S' s递归深度过大可能导致栈溢出(Python默认递归深度约1000层), E9 Q  f5 v: W! n0 s
    某些问题用递归更直观(如树遍历),但效率可能不如迭代5 b# _! c7 E6 j8 m, q/ _! o% ]5 X4 _& S
    尾递归优化可以提升效率(但Python不支持)
    ! r6 u" q, K$ _
    8 r8 S2 S7 U' J4 H7 ^( x6 h 递归 vs 迭代
    + J4 H% S0 b9 c|          | 递归                          | 迭代               |
    6 [* R! o9 a; j4 ?3 b, Z|----------|-----------------------------|------------------|
    ! j, Q# v" }. B. d/ _' ]0 s7 x| 实现方式    | 函数自调用                        | 循环结构            |
    + f( f6 t0 _/ t. o$ T) a, z" L| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 @6 b1 a2 m: Z# I5 r- C
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' n# b' Y4 d: [8 B) `. F1 I9 a- I| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! V3 p+ }# f) X& \$ W0 {* R0 y
    7 x- S6 x) m" A8 u% L  @- t+ V- E
    经典递归应用场景
    6 F$ H, |+ O! w+ E8 ^1. 文件系统遍历(目录树结构)3 i. O1 e: b' U% \
    2. 快速排序/归并排序算法- b5 _8 {1 G% D+ R
    3. 汉诺塔问题! ]9 A0 ]" H0 [9 K
    4. 二叉树遍历(前序/中序/后序)
    ) ?3 R( B/ Y  @# f  O5. 生成所有可能的组合(回溯算法)- M1 Z9 A! y% f
    & u0 K$ J' ]) H- Z. x
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:10
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * @9 t& R; y) G我推理机的核心算法应该是二叉树遍历的变种。* i6 N  \1 ]$ K; F4 q" n; J
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 x, A1 f; K9 Y9 y7 F! @/ d# x
    Key Idea of Recursion- b$ e5 d( }- I" C; y1 W

    / U* t3 B$ j' K. {A recursive function solves a problem by:
    1 }9 D; H9 X( B
    $ n0 E1 `( f6 ^7 U    Breaking the problem into smaller instances of the same problem.3 R: v9 }" ]" s$ Q. f' P! {

    ! {. S& b+ J$ l0 q. B0 U    Solving the smallest instance directly (base case).
    7 N- W7 I4 \4 d: Q6 k4 Z; D' V$ D/ w, r; a  M- u
        Combining the results of smaller instances to solve the larger problem.
    1 e6 x* B$ f6 E7 G$ k+ [5 C3 p( b" m0 v" E' P
    Components of a Recursive Function6 z+ t: S# d5 y" c2 }. h" C* z: g
    , F9 g- d9 k0 ~% Q
        Base Case:
    4 U! T. X. O1 a$ W, \8 t& k7 v6 P/ h; ~
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion., j8 C) [( D' D. N2 g: P7 [0 y1 ]: E
    2 h" w' R( V0 y5 l' d( L' y3 C
            It acts as the stopping condition to prevent infinite recursion.1 v6 B) e5 l* {2 z3 X5 r

    1 i( J2 ~+ z* T- B! M        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.5 {* c8 O2 z2 y: W

    + D0 e& d$ t2 s: x    Recursive Case:0 E4 X" Y) L$ ~0 x1 L/ x4 g

    + D/ `: c8 U; H7 y! K        This is where the function calls itself with a smaller or simpler version of the problem.% Z# T8 Y" b5 O# C! T

    , B7 O/ G+ Q; J: b: M$ A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." B: N) B. x6 K; C
    ! {. c& M. ?; u
    Example: Factorial Calculation
    4 p. ]- ~8 K! m# r3 I, Y; Y: ]( ^0 v, p3 O) q4 V
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 S0 U' P7 F% M+ L( D
    7 k  h8 f3 E  b: b( a4 I- U7 T" [
        Base case: 0! = 1
    ( V( I/ ~4 i, l* o5 Z$ b( q
    % G+ f4 i" Y1 W+ I' w* {5 b    Recursive case: n! = n * (n-1)!( I5 s0 D. y2 ?2 I7 q7 t/ A3 e
    7 q% B) ?( w4 d! b' z4 ^8 t
    Here’s how it looks in code (Python):4 k& z9 `) x/ a- e& s
    python2 `# d! H7 |  w  I6 X' n* n* }

    + L# v  H/ d0 _* x/ ~7 N, T. ~- N) k7 p
    def factorial(n):
    ' j/ [9 r) Y7 f9 s7 i5 |    # Base case
    / D  \* W/ C3 r9 H3 c, ~    if n == 0:
    # O. ?. K* [1 Z( t, X        return 1% ?4 e! x. N" }9 _% ~5 \# {
        # Recursive case  B1 l' x4 |$ E# F( Y
        else:
    1 }  [; v% y; L2 e) e0 m( B        return n * factorial(n - 1)
    ) a. e- C) u4 d1 @
    # {0 Y+ D0 b2 u0 O" j4 q# Example usage; i$ p! r( g! j3 h# m9 v
    print(factorial(5))  # Output: 1202 R% T9 h$ J/ c/ q4 U: v2 e
    2 ^1 T) g# j+ |2 q1 p( D1 J. G
    How Recursion Works
    3 P  w2 R0 C4 y  F- @+ B3 _5 L
    : s9 ]8 ~: s& O' V( c. s    The function keeps calling itself with smaller inputs until it reaches the base case.
    ! W2 \: g2 c6 T* \  x+ V: d: L
    9 P, c$ ?- I( z2 D' o% f# @    Once the base case is reached, the function starts returning values back up the call stack.
    6 _9 F6 y2 T$ }0 o$ G/ m, t/ U: r! c
    7 ?' D! K! a& n; q! t% U    These returned values are combined to produce the final result.
    ) Q) E" K2 K4 E6 |& |' A/ Y+ W  X7 I  N, n
    For factorial(5):6 D; I0 S/ }+ ~

    % i6 y, l. Z- a  Q3 E1 C$ E9 H0 ]6 Z) r+ l: f
    factorial(5) = 5 * factorial(4)
    6 h7 n+ H9 T7 ^$ K, R" M6 Lfactorial(4) = 4 * factorial(3)
    7 b# H5 V4 B% n# \, Y- }" V3 r% N7 Bfactorial(3) = 3 * factorial(2)
    # j+ L- Y0 O$ A$ c3 J2 O6 L: Kfactorial(2) = 2 * factorial(1)" k( W( ?7 q0 t7 ^$ }
    factorial(1) = 1 * factorial(0)
    : P) w2 R, [% V8 Qfactorial(0) = 1  # Base case) o- v; s% p# t4 Y5 R4 P0 l

    , U! G- D2 ~; ~* W+ j, G4 x2 Q& CThen, the results are combined:
    $ w- J) H8 d8 J* P8 G+ `; e  F3 s4 f& g" r

    0 c2 Z" w/ R# }factorial(1) = 1 * 1 = 1
    ! y3 Y9 }1 b, J0 _8 Qfactorial(2) = 2 * 1 = 2
    ! `2 Y' W( \: x" kfactorial(3) = 3 * 2 = 6
    ' I3 N% B7 {8 Ofactorial(4) = 4 * 6 = 24; O5 v1 i9 y/ [* {( U
    factorial(5) = 5 * 24 = 120) I& N  }' S  k8 h6 R3 l
    + h, }- D! {/ S7 @& Q8 l- d
    Advantages of Recursion$ U; C  f7 `# W8 u

    * p* P+ _; [+ u# `# v9 w    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 H$ t1 J% N. U9 J, h9 s) ?% F- j
    , d$ V0 O0 y% r1 r  S5 Q: G
        Readability: Recursive code can be more readable and concise compared to iterative solutions.3 w# p! y3 H" R9 m
    3 I; U6 \% ]% I2 g1 n3 t0 Y
    Disadvantages of Recursion! Q: u. H  Z: a1 k& i$ z+ @" ~- m

    3 i" h& U3 E1 ^  ?) l    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." g; [5 I; i! ^  B7 D4 L0 O! I
    4 O: S" h1 u$ P% ~
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 D; {% a4 x! @8 m" `2 R% P5 T
    7 P" G2 f$ d6 B
    When to Use Recursion
    # \2 i$ v6 v& Y, A. z+ |0 `3 w! j# [' G1 y, \' b6 t
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    : U6 a& Z% x0 z+ Y2 n9 ]  O  g* `3 l! ?5 K* q* S5 n" \3 B
        Problems with a clear base case and recursive case.- l' C3 d& X2 }3 R3 k! J$ N

    3 D. Z7 M5 b, w3 J5 ^0 xExample: Fibonacci Sequence) O+ b  N9 P" X' X' J5 H5 c

    6 W( S7 U1 ]: s9 d4 tThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    2 c; b& w. {2 k4 h4 w7 P
    2 ?6 A# n. d' S5 Z3 Q: g    Base case: fib(0) = 0, fib(1) = 1
    0 d* }( q: E- r6 S
    " p. `1 e' _8 C1 W    Recursive case: fib(n) = fib(n-1) + fib(n-2): l& u4 ?: l+ O. j/ Y$ ~
    6 q4 u3 K: n4 h' L! v/ \* J9 D
    python
    ) T* p9 w4 v* ~8 R" T- U+ d
    5 F; @2 G; V7 a: c
    ' T& z# S2 l, pdef fibonacci(n):% n( g  D! q3 n1 m( Q) k9 E
        # Base cases
    - F  ?% i& z$ ~1 w) n    if n == 0:
    ! Z8 R( V& G( l# \        return 0
    # ?' G) W4 c1 @0 L7 ~, o1 X    elif n == 1:
    % \  ]% a, c) V; i/ b9 q. L& c        return 1
      s  A$ _: P- {7 A" J9 \    # Recursive case
    5 I$ _4 L! ^; ^' D* a    else:  S! ]! p! t, K, R+ V" O) R' l# ?
            return fibonacci(n - 1) + fibonacci(n - 2)
    ( [/ t4 `7 J: Q& p! L1 r5 a! R8 P3 t1 C7 A
    # Example usage
    2 Q: H0 e+ x/ ]2 h4 X! s' M7 @: Aprint(fibonacci(6))  # Output: 80 f+ y! J2 T/ }1 _

    ) N% m1 D+ s& l7 c$ B$ y9 \Tail Recursion
    , k+ m1 c- C* p4 Z
    4 X* D$ u4 i6 }$ ?) v' W9 ?9 @" pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( |" c+ B% s) y4 ]& U+ P
    ' X; K  o  v) R' w3 O7 V# @& s/ V( s
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-10 01:20 , Processed in 0.029581 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表