设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1599|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 P! _  N  T8 S8 s; M

    1 N  h2 h" n+ p3 I0 |4 T! u( y解释的不错( E: x  y2 N8 d; g, \

    * t7 n# A, C/ H! H6 ~递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 a& w, n% u% b5 b( ~5 M$ z
    # N6 M' H* L' h0 D& k
    关键要素
    0 K+ i9 D1 g" R5 L1. **基线条件(Base Case)**
    7 c+ V7 E1 S2 P   - 递归终止的条件,防止无限循环
    ( |4 O1 L. |7 A+ Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, A7 q5 y) x6 z4 [+ J/ K& E" F
    / D# A9 E7 Y4 S4 O: g0 l5 W( c
    2. **递归条件(Recursive Case)**
    * L0 h5 J( b' C* d3 J, O& i   - 将原问题分解为更小的子问题
    4 C: d3 H6 S% ^9 Y" }! Q; \   - 例如:n! = n × (n-1)!& E8 T4 w0 g/ G& x8 x

    2 q$ {" A# b: I5 F, m 经典示例:计算阶乘) n- r& }4 C4 ^/ R
    python# U4 @) p# H, @0 x* M8 ~' V- ^
    def factorial(n):0 O1 U, O6 O6 L0 h4 r9 p9 T  M( ~
        if n == 0:        # 基线条件5 g$ Z" s* ?% Q3 A2 f: z
            return 14 J2 V% B  y& l8 H
        else:             # 递归条件
    # C3 c$ k* |' |5 K: i% N0 U) M        return n * factorial(n-1)
    % {& s# J3 r. Q6 A* C9 q3 [执行过程(以计算 3! 为例):
    6 A7 Z1 f% ^* z9 _factorial(3)  o2 F; o7 g  J5 M! J& l% Z9 s, i
    3 * factorial(2)$ M- H8 F" F1 _9 z. y( g: `0 X
    3 * (2 * factorial(1))7 L. l/ ~5 C% e$ K# b' r
    3 * (2 * (1 * factorial(0)))% X- P* c4 \# q0 E5 m9 L
    3 * (2 * (1 * 1)) = 6
    1 r+ r- x. }! {$ }: s$ a' F  k' m* }" G- B
    递归思维要点' g9 T, w* ^. D; ~$ h* D
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑7 O2 z+ I- E% e8 \0 _% E1 c
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 d# v  g/ X6 d; P( Y7 A( E
    3. **递推过程**:不断向下分解问题(递)
      R( @* ?3 i& h7 \4. **回溯过程**:组合子问题结果返回(归)
    " Z4 u) Q: A0 p. k. {$ i, z9 ^* A
    注意事项
    - T% U9 \  l) D& d4 V必须要有终止条件$ N$ Y+ y* p" g, t, x4 \. Z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* G3 M& U9 C+ o" ~. I: x) I  m; z$ H
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . T: d! D8 P5 }0 a. {尾递归优化可以提升效率(但Python不支持)2 Y& b% ?$ \1 u1 ~
    ! _! R! @0 a5 L% q2 n: U; E
    递归 vs 迭代8 N0 o6 d* n. g
    |          | 递归                          | 迭代               |/ f3 \# L# B1 m. n+ j& y1 q
    |----------|-----------------------------|------------------|
    + w: Q, o: k- q) H" O; Z" H$ U| 实现方式    | 函数自调用                        | 循环结构            |
    / W: \! o1 q. G; L+ z+ n| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# L) l$ O8 x- F( g" @4 x- p, o
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 l# M4 R! K( T1 E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : z4 _# f' s+ E4 x* t9 ?# \: F8 l! Y; X3 ~  I
    经典递归应用场景
    ! G5 N' {3 `! x* T1. 文件系统遍历(目录树结构)
    % \/ E  k) l, j6 ?2. 快速排序/归并排序算法9 \! D: G' p9 M6 o: T" n& K9 W
    3. 汉诺塔问题
    % d. P1 B' y* R3 I4. 二叉树遍历(前序/中序/后序)  S3 @9 R* K3 ]7 [5 Y0 n+ X
    5. 生成所有可能的组合(回溯算法)
    ' R( X& a& V* _* E6 U' X
    6 x5 _. j* c; F* P! ~试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    6 小时前
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    9 h1 r, Z; ^) ^$ G/ D/ p0 @我推理机的核心算法应该是二叉树遍历的变种。9 h# |( O, U6 [: h
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 x! G+ U) P: W0 [  t- Y: ^
    Key Idea of Recursion
    ! x' v0 e) c2 w, c
    9 S% l! q# A" @5 {A recursive function solves a problem by:
    : z" Q% C0 ?& [1 n8 l, `% _* ]7 P% i1 C
        Breaking the problem into smaller instances of the same problem.
    ; z7 [* R$ k: g' F/ H! @7 U2 K" w0 I. M" Z0 r) W+ e  @. _% _" l
        Solving the smallest instance directly (base case).
    + M$ f. \) V' I
    ' u% y' I% b; k8 v    Combining the results of smaller instances to solve the larger problem.2 j1 {, b; k" n! S* r" Y
    1 d% L5 s) m( R3 t' |' B& Q) E
    Components of a Recursive Function
    + [" q% [. {' t" P2 g( T! v9 z
    3 v+ V' L2 H% K8 v0 U. }    Base Case:
    9 W" h& P( h6 g+ l' M2 q# t% ?  o
    " x" K7 y$ g% ~- v& z+ T# l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 |/ ?# Q4 T0 n" Q6 w2 r8 y$ v* o" `9 Q$ e% W' t# m: j6 |
            It acts as the stopping condition to prevent infinite recursion.# ^4 |% k4 `- Q
    0 l$ g( N" R- r- `, R0 m8 L
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 S' n- {  w! ^$ @2 e/ T% z7 o, J
    - N/ J6 e' b5 ?    Recursive Case:
    & w' m9 Y: o; o- f, c( W6 h
    5 W& _9 N9 e, f1 N        This is where the function calls itself with a smaller or simpler version of the problem.1 Z7 ?; V* O) q

    + Q" z' ]8 i! L1 O$ D. g        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 S* Y( C; i# |8 }6 N: S
    7 E3 K1 `$ n7 V2 P
    Example: Factorial Calculation; f6 n1 {( E5 _4 S; \. B
    : {5 E6 D( _- w: h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) j6 @* p( L" ]* h$ a, c1 A
    0 E4 C2 [" d4 P! a& g# q1 i  w    Base case: 0! = 12 V2 r2 D( Y6 M7 |1 ?+ f8 `

    + `$ r$ V" j$ U    Recursive case: n! = n * (n-1)!
    2 G% B+ b8 j0 Y5 Q3 p
    % a9 d% ?0 a- n* f, T% u1 h* iHere’s how it looks in code (Python):. ]3 ~+ \" H8 E, Y) ~
    python7 A# S2 U8 d; r4 Q2 o

    % J; o! b, u/ A
    " p, T- B) S3 O+ `, O5 xdef factorial(n):* f: k$ d1 H5 z  C6 B$ V
        # Base case+ m  H8 c2 `: [( |
        if n == 0:4 f8 A: w4 A  {% E( t
            return 1$ @' m8 o. F. p
        # Recursive case# R$ d* A& X6 o/ }  U+ s
        else:+ x# V9 m8 W& v$ h( O
            return n * factorial(n - 1)4 P( U2 X9 }( c- a  _4 q
    . {5 ^3 b0 x0 N1 ?4 R
    # Example usage
    0 d* P  z) ~2 u8 R4 Y- Vprint(factorial(5))  # Output: 120# h& C! d2 [4 o5 X, T7 q# f" l" \8 m- }
    ' w4 S8 {2 Y& r/ j: }8 n! m9 {
    How Recursion Works  J, _! f+ P+ B' A) D4 V: u
    4 V0 r0 i- l5 c0 D
        The function keeps calling itself with smaller inputs until it reaches the base case.
      G) y! |- q6 \
    4 d' i( O- j, Q/ Q  c    Once the base case is reached, the function starts returning values back up the call stack.' H9 G0 q# w! h( s4 l
    ) r3 w/ p$ h6 x5 t: W) W* o
        These returned values are combined to produce the final result.) x& u6 W0 h5 |  p

    * I( n' Q( U. O, ZFor factorial(5):( z( w  f: ]6 f, h9 M# ^1 I
    5 {" H' y' Z- {% j& G% q$ ]; R. d6 v

    $ {( M% L5 R. T+ Q/ g# C6 s+ Sfactorial(5) = 5 * factorial(4)8 @, C0 p* |0 ?$ n7 |7 ]
    factorial(4) = 4 * factorial(3)
    6 O# l% Q1 ^% x$ H4 ?factorial(3) = 3 * factorial(2)
    / ~/ I1 s4 D! g' y! t  Pfactorial(2) = 2 * factorial(1)
    6 K4 Q/ V6 b% V9 U1 _factorial(1) = 1 * factorial(0)
    . l# i& f7 X0 p! R4 j. F' yfactorial(0) = 1  # Base case4 l6 e$ p3 w' y1 I& c

    ) A6 z; R+ b# t5 [6 n$ oThen, the results are combined:# w1 r( s2 y' u1 ]
    " L( I0 g% Q* P" c
    ' p4 W: {* k" T0 t
    factorial(1) = 1 * 1 = 1( U2 [( D6 t/ I1 u1 f8 E$ H
    factorial(2) = 2 * 1 = 2
    * z% }2 d2 t9 ?6 ~! R3 lfactorial(3) = 3 * 2 = 6
    8 X) n: ]2 `  U3 {# tfactorial(4) = 4 * 6 = 24! q0 c/ }* w% z# H; l) Z5 r( m$ }
    factorial(5) = 5 * 24 = 1205 d0 l5 o) S; [( C- m7 K! J

    1 q( Q8 L3 ^( x5 F( e  n# g6 E8 N* ZAdvantages of Recursion
    ! D6 N8 h% w+ ?4 M! ~# D, n, X% ]& X3 D+ a! b; ~
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 [+ |, w( {/ c/ t9 r7 s: a  F1 i
    * n: k+ \+ ^( P) z& I# J    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    $ A+ e" R3 S( z# B& \! h+ G6 r( j
    3 z! Z  ^8 }2 z; L6 \; mDisadvantages of Recursion" U) C& L* W. l* w) p" m' \+ N# g
    $ E7 C5 \* I0 l) d) K$ q9 p* D
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 }3 F+ v% r7 t; h1 z4 Y; |
    & _! m: Z0 R$ w9 L( r    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# z2 n7 G9 `  d1 p/ e

    & b7 C" \( ~9 V' DWhen to Use Recursion' p6 y' _' _. }! J  a
    " e: ]3 H9 u  O" G7 }& C
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    : Y5 z& G, u3 T8 I$ H2 M, n% G. R7 ]& e+ E# }% B
        Problems with a clear base case and recursive case." b/ r, o; S/ o3 r& ]0 O; a
    7 Y( @7 V4 ]2 Y+ O/ g9 w# ?
    Example: Fibonacci Sequence1 |, j! ?& ~. c4 L7 M( y7 S
    0 L+ ?1 U8 N: @
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ C$ E3 S/ S& M4 ?4 Z" I
    . g/ Y) [, u5 i5 g9 v
        Base case: fib(0) = 0, fib(1) = 18 f. x1 X; Z% @' m

    4 ~2 l; {+ \  Z- }5 t2 [8 t3 O- W1 D    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . d* `" a2 z! ?3 R5 ^" u- b2 K2 ]6 }& j$ r( H8 q
    python4 Y! M3 [8 [+ ~8 P, |& X3 i
    $ a1 d. S& N: C* D! D6 n

    8 \; p& ^' }$ b- edef fibonacci(n):' D! v, ]6 w6 c5 P0 q1 J) L0 t  M3 B
        # Base cases
    " V) U) `0 X' j9 y    if n == 0:
    ! o+ Q& R6 `5 I" ^1 g: m        return 0/ V; e/ R( N9 Q7 r9 s  P
        elif n == 1:' l/ W' `" m% H, G
            return 11 V' P+ ]( Q( \+ f* l
        # Recursive case
    9 Q" M6 T) i) K+ u( @: k2 |; s    else:6 R( U0 P" R3 m' z- v
            return fibonacci(n - 1) + fibonacci(n - 2)
    - n( M4 A+ O: Y. I$ a+ Q5 Z* H. G+ D: P5 K4 ~
    # Example usage
    . K  ]  W+ q' ?print(fibonacci(6))  # Output: 87 E2 T# r3 F% S8 @: d* ]9 G

    " c# m- N: U1 v4 p! B8 x8 uTail Recursion9 Q2 R0 K) ~( b/ z$ Q2 ]1 o0 B8 k
      O7 j3 z. R  j, r. C; p3 b1 I: o
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    . X" ^) a) r2 }& {0 {" O' r, v$ _4 Y' U
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-22 15:42 , Processed in 0.034056 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表