设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1375|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . @7 T8 J0 n, K+ Z( W% E, c. S- x5 r3 K- b" X7 M0 w* h8 l
    解释的不错4 C& Z) K0 j% l% g) _( w

    / D  L4 O; ~. R递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 E  S5 A2 e$ e# U
    - X6 x* |0 G6 y: w
    关键要素: I( `+ t7 G0 _
    1. **基线条件(Base Case)**
    4 f/ B# o5 o: t7 }! y* _1 f8 b   - 递归终止的条件,防止无限循环+ D& A3 y$ s& c9 ]; J
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + K& P: U# r+ \
    # y/ C+ T9 z- s7 L2. **递归条件(Recursive Case)**% ~7 w. g6 u: [6 k8 \
       - 将原问题分解为更小的子问题
    7 g7 h: t+ C+ R; N2 P! X4 ~   - 例如:n! = n × (n-1)!
    ! y3 V# o/ U$ l5 R4 n& o, D$ Y1 z" c
    经典示例:计算阶乘- v1 S' T6 j) d) c& x; E( |
    python, r/ S$ M% f; d; t( F2 y
    def factorial(n):: \% |# ^: ]1 i$ r
        if n == 0:        # 基线条件
    $ d- ~. s" V/ R8 a9 n* X9 [" L% R        return 1$ G7 E5 \$ x, b
        else:             # 递归条件( i4 }7 E; i. X! x8 T
            return n * factorial(n-1)
    # P/ ~' D1 ~8 l2 B* l执行过程(以计算 3! 为例):8 ~2 ~4 r  O4 m
    factorial(3)/ }( G4 B/ Q+ N2 q5 `
    3 * factorial(2)) ^! E$ Q3 }& V! G( z1 K( _/ w
    3 * (2 * factorial(1))6 N1 x/ N  P/ v; e% p! u* X5 U
    3 * (2 * (1 * factorial(0)))
    6 p3 g$ o* e5 H8 D3 g5 x6 B3 * (2 * (1 * 1)) = 6
    . s  s3 c( C" v- v* Z9 [$ i5 m
    3 i! N7 P$ ~$ p" u9 j( C$ `' E' y9 N& | 递归思维要点) S2 n& D8 `2 f0 w3 e
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + G' Y2 d/ l& F! u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)# u4 I5 C- u7 P/ A
    3. **递推过程**:不断向下分解问题(递)7 |% P( [/ k# l! ]6 T( W: C3 o8 p
    4. **回溯过程**:组合子问题结果返回(归)
    & ?7 F5 y: l. ?$ e
    4 Y6 y5 ~9 R: Y; q2 m 注意事项5 o) c$ d2 s& U& m" a9 E2 W
    必须要有终止条件
    $ \7 X7 Q4 o( I' O- D# [  b递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ ?  I( l3 F* \* J% _+ P4 f
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * Q$ L- l6 q8 u0 i. Q" k: C尾递归优化可以提升效率(但Python不支持), y* |2 x% t7 d% A7 C
    4 a1 n- [" J- E" x9 D! E
    递归 vs 迭代2 |* }/ Q* W0 Z
    |          | 递归                          | 迭代               |
    ) _$ z  `9 v. i1 l9 V|----------|-----------------------------|------------------|5 H6 h* N% W: i' H3 e
    | 实现方式    | 函数自调用                        | 循环结构            |
    / m1 q( c  ^4 s+ T) u( \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ' U' j( n) T1 A| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  c4 \: |" Q, Q) z  d
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ' ]! q0 G: Q3 M* b  U0 U
    & F! L* n) b8 M, W 经典递归应用场景
    6 X% I9 i1 d0 b' a- t1 N1 d2 A1. 文件系统遍历(目录树结构)+ x4 ^- }8 N' V3 V8 {
    2. 快速排序/归并排序算法
    & e0 L0 J% m7 A9 U$ k3. 汉诺塔问题
    , Y6 i5 e- w8 K9 G5 d2 j4. 二叉树遍历(前序/中序/后序)
    * N7 t$ T# j# U5. 生成所有可能的组合(回溯算法)
    7 ?5 E4 R" W& @
    9 X7 W8 l, _: a/ p. V( Q- g" T  E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:11
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," e5 U6 X0 q; i( a; d  J7 m
    我推理机的核心算法应该是二叉树遍历的变种。
    5 M% v+ n2 A+ E0 I" s另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    & Z$ |  x6 i- ?Key Idea of Recursion- W8 Q; V, W4 V, L

    $ u5 R6 ]* M" Q4 CA recursive function solves a problem by:
    % i) `- e1 }! n9 `: f4 Q
    4 g& E5 M& y2 M" P% @    Breaking the problem into smaller instances of the same problem.1 X9 F$ x2 Z% u3 p& S) H

    2 v6 @# \& H$ @' I2 s    Solving the smallest instance directly (base case).5 H+ K) v1 D/ R6 N2 O
    0 G  \% N9 z" A8 O$ k3 k( Z6 a5 c
        Combining the results of smaller instances to solve the larger problem.; [3 j6 s' ?# v* O3 h0 Z! P7 z
    ; Q- T0 z# F1 G( @4 ^' s" F, R
    Components of a Recursive Function
      P9 P3 x) Y" s% u. ?- j# w
    4 k7 Q$ B3 i" g    Base Case:  u/ R0 F+ f4 t) P/ y$ F* d

    " H8 [3 p% ]7 n0 q. j, I* W0 ~( M        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    0 e  L( G' K$ J9 x0 B5 W$ G
    : L; e: V# x2 N9 Y6 D        It acts as the stopping condition to prevent infinite recursion.
    7 Y2 N+ B6 z" \6 X) d3 x$ {" [! |9 l: T$ y, @
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( J4 _4 b; ^, Q9 K" T% o( @
    - e+ M$ G8 H$ o; L
        Recursive Case:
    8 i# l. C% }8 }* ^9 q( m1 F3 A) P% @
            This is where the function calls itself with a smaller or simpler version of the problem./ @/ C6 R5 {" n; O9 O/ Y2 s
    5 S1 f: e+ C  E3 O' o, K' L: D
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / Q' r) p  _* B( y0 |% Z
    , n6 N- g# z) {+ \, f% A+ N3 x# ZExample: Factorial Calculation, x4 y1 f# F; K: R2 N

    : X! L' k& r/ o8 f9 d- w" \3 K9 vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 a/ [: @- T/ b8 s* W3 Z

    7 F& `8 V" }% Y7 j( q    Base case: 0! = 1
    ) V+ e/ o  T/ G* g% ], ~
    5 F5 U7 E( t# W    Recursive case: n! = n * (n-1)!
    2 o* u9 i; F" R, }( _" O/ [
    ( r; r. w5 f4 q8 S5 W7 zHere’s how it looks in code (Python):
    ) a- V1 h7 b+ _1 v9 C7 ^' b' |python
    5 k) A# I" k/ S! M/ Y: j& e& W$ R/ C4 o/ u: ?

    0 k. `. e( {3 w: u! ndef factorial(n):! Y! w& \( x) g+ A
        # Base case5 X+ U* r8 k* ^2 Q5 p
        if n == 0:/ \" c3 \5 `# A) O; n1 o( ?
            return 1
    ) \3 a8 o1 C, n+ h; |7 Y2 B    # Recursive case
    # k1 ^. {# v( w7 D9 ^* m    else:3 R! G  x9 H9 x0 q7 H
            return n * factorial(n - 1)
    * p( `# u- J# ^& f1 X+ s
    3 r; n2 s& B& J* @% R# Example usage, \# W+ W/ @5 F
    print(factorial(5))  # Output: 120
    ! }' n0 ^& z1 a( e
    + D8 T& q2 r% }How Recursion Works! F% N. [% L6 U7 i6 g4 A
    / {' Q4 z6 a2 h
        The function keeps calling itself with smaller inputs until it reaches the base case.) I6 |  V$ |$ y' [7 n8 t
    . T8 G1 k* O, p8 b# J+ e
        Once the base case is reached, the function starts returning values back up the call stack.
    ( Y5 j4 ]5 E; G5 r1 X9 a; }4 n  ]* `5 w; \* P8 y
        These returned values are combined to produce the final result.4 @- C2 A3 [& g  g- f, W. n
    3 `! C7 ^1 |: n5 J2 x, \5 Q# V0 T! n0 n
    For factorial(5):
    * ]3 Y6 n) t! A9 Y. p: h
    ) O. s& f. Y- u. r& _' ^' A& \5 c  p; @- r  ?: |  B2 o& |+ |
    factorial(5) = 5 * factorial(4)
    ( b& ^+ f0 K5 C) J4 N1 u* O; ?' ifactorial(4) = 4 * factorial(3)' _) ^5 c  e+ x% N# A1 X- v& e
    factorial(3) = 3 * factorial(2)
    * c" b& n/ r) G) Z1 \; Afactorial(2) = 2 * factorial(1)' g9 S' u6 M% V* R+ k2 c
    factorial(1) = 1 * factorial(0)4 B9 Q. H+ d( h% M4 s
    factorial(0) = 1  # Base case1 v2 h+ [; L7 X

    0 h% J6 [- C, N2 O6 rThen, the results are combined:
    9 q1 P. f: ?3 k: U; C$ K( L; N& Q1 X; ]# G

    : G/ Q) q: @/ ^9 M' Ffactorial(1) = 1 * 1 = 1* `; c2 `/ p, }& p
    factorial(2) = 2 * 1 = 2
    0 l8 C' y/ g" q  I' n) D: s3 Zfactorial(3) = 3 * 2 = 67 n# f6 }, U( M) m
    factorial(4) = 4 * 6 = 24% `+ E/ ]. ?! E$ [9 |- S( j
    factorial(5) = 5 * 24 = 1207 o. E+ G; [: D5 I! \

    " T9 a- @$ e+ h5 FAdvantages of Recursion+ j6 O$ e; y9 i5 |6 F3 r8 t" O

    + a" Q! a( x% j. U5 a  h    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    & s% ?' j, Z2 z9 u
    % a$ j* L$ a" l    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * g, e2 q3 A0 h
    8 D& q9 k" z0 o8 f3 k* TDisadvantages of Recursion
    $ N( }0 y1 c8 b6 @! ]% b/ i3 r8 L: ^2 v5 w  n+ j. Y$ P
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  H* X* x! s) U5 C0 d' p. C
    2 Z) r+ ~, {/ b
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    2 Y/ S& G2 m  h$ t) J. R7 M) _
    ' h* ~5 F4 ?: _- gWhen to Use Recursion
    , d$ t2 J5 ]1 w& M9 a2 `; i3 W" @8 H4 Q. A( h# I+ c6 o, W
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
      E5 k; T1 N$ \7 j9 A( |
    : x" ~" o; i( r) O( _    Problems with a clear base case and recursive case.# G- ~- Y5 p& N( x  w

    4 @/ E; u# l5 C. w7 |Example: Fibonacci Sequence8 _2 d% c, z* U/ i' b" S9 f
    % V- K$ E+ ]  Q# [: V
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 F) b$ q/ D2 O
    ; j6 W1 p+ B. C8 J: z. P, E; A2 a- [
        Base case: fib(0) = 0, fib(1) = 1: G+ B+ D0 f3 `* f9 x4 ]' A  S

    3 r+ A+ r& b' X5 I/ G( U    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ! B9 e% ]0 E& @( y+ _
    3 V/ j, h. j: m# ppython
    7 V( y" P. k0 C: U, S
    , F) j% s; j/ w8 @; @' E2 q! \: t& l# Y4 M* j- A* K
    def fibonacci(n):
    * {! r5 c: _* V; R9 C) J$ C- F    # Base cases
    ; L; M' b. a& Y' r  S/ y5 K    if n == 0:
    ! k# V, _; e+ l& t0 o* H  T, A9 \        return 0) V7 Y% N4 a1 q
        elif n == 1:
    2 N9 N4 r: z4 ?- W; h        return 1% ?; B: m1 V0 A
        # Recursive case6 `2 _+ `) Z8 O! p3 J, [
        else:
    8 W/ _( ~- S" Z5 H9 _& a0 p        return fibonacci(n - 1) + fibonacci(n - 2)+ R4 Y* L. z) w+ I8 {/ w

    % h0 j9 A% T2 \6 W# Example usage
    - j+ _8 _! G0 Y1 S, [- _print(fibonacci(6))  # Output: 8
    4 N' Y. D+ F2 {. i- c/ Y0 @
    4 c& J% c4 V9 d8 CTail Recursion
    ' @, T4 @. v5 t  Y* v2 H4 a0 B, c
    2 S9 k6 a3 K3 K9 w" STail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % W  A2 A" m2 r4 Q  P  t& A9 w8 `
    % n' J1 m* p6 L5 ^In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-7 03:17 , Processed in 0.030547 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表