设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1500|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    + q( X: u0 X& y- ~/ ^5 X3 K6 N; y+ S* S
    解释的不错( O; M% ^9 B) r
    ! v  \3 s1 w  J. s3 m+ H: O
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ M4 e! \! o8 S1 a8 ~, `
    5 b; q, i4 F: ^  |  v
    关键要素
    - f, N/ M9 L& J# K* s1. **基线条件(Base Case)**3 ?, L3 H; j% z  J
       - 递归终止的条件,防止无限循环! a: X+ m; [* o" [, ?$ N8 u
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 \: h2 z0 p5 K9 }; b5 m

    . ]7 U1 U# C3 o0 S4 I2. **递归条件(Recursive Case)**1 f6 R% Q, E% M" {
       - 将原问题分解为更小的子问题; _$ t5 u$ o9 ^# S9 M, p
       - 例如:n! = n × (n-1)!% \: h  A( l+ T$ E2 O
    ' z3 z" y* |! w" [* _
    经典示例:计算阶乘% e  Z: U$ L7 N8 W
    python, q- p2 w* X9 i- W6 s1 f
    def factorial(n):
    - G& |% [$ ?- O( {* K& A* i    if n == 0:        # 基线条件  _1 h2 J2 h" @$ F# F& P5 l
            return 1
    ) K5 p" A% I0 W% }& {" k9 h    else:             # 递归条件) Y/ h8 Q; c9 L5 @; r9 c' k
            return n * factorial(n-1)
    ) Z: b+ Q4 Y6 f7 S执行过程(以计算 3! 为例):9 Y1 M+ p) O& J, q' y
    factorial(3)
    3 J  p& h1 ?2 V  x% F3 * factorial(2)! u, M; b* c; W, t: A1 D( L
    3 * (2 * factorial(1))
    ) n  B( Z) t& M" n5 t1 Z9 H$ H3 * (2 * (1 * factorial(0)))
      q6 `7 |/ b* D  p9 v3 * (2 * (1 * 1)) = 6
    - P7 X" k% [# w8 U3 u' e* k& G* I/ ^
    9 b* S- U) Z+ w  O 递归思维要点- `6 _: ]0 c1 ^' n: k4 _
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    # x2 x+ C) k6 t2 O2. **栈结构**:每次调用都会创建新的栈帧(内存空间); @! F" S) [% R' y1 q- L. D
    3. **递推过程**:不断向下分解问题(递)3 w, ]$ K3 M7 l, k& Q# H1 W
    4. **回溯过程**:组合子问题结果返回(归)' M) C0 Y# M+ q3 X7 _

    ! X5 c. f9 W% Q1 V+ p% M 注意事项
    , |  Y7 v& k, a必须要有终止条件
    5 K  n- M) u$ U, Q" R. u递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) W! C5 Y( g  E- @, `. I
    某些问题用递归更直观(如树遍历),但效率可能不如迭代; g) r) D  h  V% x/ E7 L$ H8 \5 D
    尾递归优化可以提升效率(但Python不支持)
    4 R/ Q* j, H/ C
    8 V4 t$ K$ S$ f8 }3 Y* _* V 递归 vs 迭代! i/ e" ~  Y# X" r
    |          | 递归                          | 迭代               |
    " F9 q8 ?' ^. {6 O7 W+ m8 l- V6 S/ f|----------|-----------------------------|------------------|
    8 \$ X# i" X5 L% u" n$ k. j| 实现方式    | 函数自调用                        | 循环结构            |
    ; x/ \( e: z/ g0 C) t7 l| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    4 f! J, r3 N$ f4 Q$ ]$ l% H| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- |! P5 H5 g7 x8 X
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 a/ T+ x" x: H' H$ V
    ; U6 u% E8 L& J% d# A 经典递归应用场景0 B  `  c  W) ]$ l# f
    1. 文件系统遍历(目录树结构)3 x1 |8 a5 S: v# R/ y  x; O+ D
    2. 快速排序/归并排序算法
    % D6 [& x8 L9 j4 c! g6 G3. 汉诺塔问题
    9 y. m+ ^0 w1 {; K4 p8 j4. 二叉树遍历(前序/中序/后序)
    2 Y3 H* ?+ v4 i5. 生成所有可能的组合(回溯算法)
    # Q6 I: ~) X. g5 [
    , v, |) }  w. \4 n试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    8 小时前
  • 签到天数: 3116 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) E. B) G  m& X
    我推理机的核心算法应该是二叉树遍历的变种。
    : q* p% E" I: Y& h. ]6 i) c5 m另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ p3 F2 E5 |. Z1 X" ^: j9 L; Z0 t# m( IKey Idea of Recursion
    9 y, B4 G' D. _( r( Y8 q1 l0 j) L* k2 H% u
    A recursive function solves a problem by:) {9 p1 n1 @, \1 B& d% M7 [: g
    , [: ]# `! I# t  x! v
        Breaking the problem into smaller instances of the same problem./ u% [+ n7 q/ h& t; S

    " {9 ?! _2 C, `6 ~- g3 Z) \% ^1 A    Solving the smallest instance directly (base case).
    . M) A% x/ ?- s" o3 C+ H% f! s5 g6 R5 ^, O9 L" D+ D1 c5 w4 N
        Combining the results of smaller instances to solve the larger problem.
    7 I; _. s, ^! d. ^0 [! d$ z0 j
    Components of a Recursive Function* Y8 }1 z8 ^+ q; `  I: [  V- T
    0 M8 \) {. ^* a$ E
        Base Case:' _' h2 d; Z: A( k  D8 C
    8 C9 n  j$ p: w& n& W1 }
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( a$ l4 d) f* y) P3 o& f) r$ E

      a* ^; m" x6 p% T        It acts as the stopping condition to prevent infinite recursion.
    ; x' y7 K0 W7 E$ g' ~6 I. A% m7 N: \: m4 g! b
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    # w, D$ a3 W! F$ s
    / g4 q4 q5 H2 k: m: d0 s    Recursive Case:2 l% h+ P" ^! ]! C; u4 E  q* Y

    , K2 v, t9 U6 j( ]# A        This is where the function calls itself with a smaller or simpler version of the problem.
    ) Z& u; `$ z) R; w1 |- v
    0 S0 e7 R. b) W  p' B4 F) L1 m        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).8 t8 E. A6 y7 G7 h) b# r, @2 j

    6 Y6 F1 ~7 o" ]) [Example: Factorial Calculation5 M  ?* |4 X9 m% W6 P8 S+ U
    / j* _; w) z4 Y' H3 V
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    8 |4 j3 w& \5 `# @6 z
    " z5 v1 p) e5 [- {    Base case: 0! = 1( r% g4 e8 ~8 q2 q# C  a
    5 r8 @3 D. r9 S) a6 ]; R& ^2 K
        Recursive case: n! = n * (n-1)!0 S: [% w. z1 B& s* G! M% c
    ( C5 B% `: u, k
    Here’s how it looks in code (Python):  x0 r& D0 f4 H6 v6 o" E
    python' V3 S8 S% B; W8 a- X$ q; N, ]+ e

    & C5 c) h( X9 T3 L) n' E: U3 P5 E6 x" `! X+ u, ^* f' i
    def factorial(n):5 e/ U# \+ E+ `3 o$ E" m: D8 P% e
        # Base case
    . {0 n+ `2 r. X. r/ w. h    if n == 0:
    * f: F% i8 F( P- A% G  |/ Z        return 1/ J+ l1 f& w. Y- ~  {+ v4 Z
        # Recursive case5 {2 P# m" |4 |$ u) f
        else:* I9 @0 m; r0 D& |
            return n * factorial(n - 1)
    & a1 X2 O0 O  R: R" B; @* W1 e" B) g4 t+ ]
    # Example usage" q! H& i* ]1 {. f$ w4 V
    print(factorial(5))  # Output: 120" Y0 [$ t* }1 ~$ g

    5 T2 t. @* k5 `. {- T: ?How Recursion Works( O0 e& ]' m7 H* Z, D% ^4 `
    1 p7 A+ `7 r, \, U# j: r
        The function keeps calling itself with smaller inputs until it reaches the base case.
      u: L* u" H9 x, `+ m# `8 w1 |2 t/ P
    8 C8 U4 E* n3 w5 C- g    Once the base case is reached, the function starts returning values back up the call stack.
    ( A' J' G2 X# e( D, T% @5 n
    0 @& W3 e+ w6 r% m: F    These returned values are combined to produce the final result.) P. e/ l+ q9 \+ M1 y
    # k5 W  v: Y* \, ]  I7 P' a
    For factorial(5):
    5 W' W8 R7 b. w- ^" C: h8 n& W% _: p  v! ^2 [8 z7 _! _( a
    / y% I% S: F+ B; f1 z) a+ ^
    factorial(5) = 5 * factorial(4)
    * d4 w0 x% R4 y4 r  I* ~% Xfactorial(4) = 4 * factorial(3); ]5 `6 X4 ~$ K7 g8 g* E9 R7 r
    factorial(3) = 3 * factorial(2)
    % K$ b# h7 b0 a. x, ?$ f5 C( Rfactorial(2) = 2 * factorial(1)
    . e" @* T( _* {factorial(1) = 1 * factorial(0)
    ; G, F: m0 Q; C: xfactorial(0) = 1  # Base case' y- L! o- }2 g! _0 z$ E) y( P
    2 _6 [) S: l- Q! q
    Then, the results are combined:
    $ D5 e6 j; r, v' U) y4 A* X/ F7 Z# p/ W" L

    3 w. \( w8 r$ [& ]. ]factorial(1) = 1 * 1 = 1
    3 I& @# D1 U% Z: sfactorial(2) = 2 * 1 = 2* l  b9 {2 L' N* V6 B+ O% M# h$ n
    factorial(3) = 3 * 2 = 6% I0 [; q; ^4 G
    factorial(4) = 4 * 6 = 24
    5 \( T8 g/ @- a) u$ _6 {) {" Jfactorial(5) = 5 * 24 = 120; }% w) |5 ?" [. P8 j1 e; a" v

    8 `& L; p- D9 L) x/ cAdvantages of Recursion
    ( y; ~, h! J* [4 P  ~+ w' j0 f
    1 j7 ?/ s1 e1 i- k! T$ \' F5 s7 y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! ?8 H( z" S! a* k# ~9 ?

    3 e$ w* M! c% y: O* a6 K- p    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 R+ z$ }7 A2 f- d/ a3 f6 c% g' o& j; T5 Q
    Disadvantages of Recursion
      w, z: y8 ?2 ^9 z7 E$ ]8 W9 D, y
    - j) w3 t: J1 s$ S  H2 U    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      Y: v8 \! h- D: H
    $ z% M  m9 M5 v# c  Z3 k    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ Z( |; m% A, z" ?# J+ ]/ G

    # `" U; Y1 [: G. y% L. k. d4 T' bWhen to Use Recursion
    ( K; m* j5 @" q  ~6 |, v" n
    3 N3 ^7 E' F" p% Z& g" p    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! R# m* k5 ~0 k# C- |2 o# l7 K6 a2 f% j+ i& ~3 y5 N8 ~
        Problems with a clear base case and recursive case.  c4 z- V0 `/ u/ J  J

    : j! z+ ?* `/ OExample: Fibonacci Sequence, y# w5 H# ]/ I3 M0 M/ Z

    ' Z, i- C& t3 U6 n7 K: u( WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% N5 `) c9 @3 f% l1 z4 p

    $ t, ?; T1 @) U* D7 F0 l5 w- A    Base case: fib(0) = 0, fib(1) = 1
    4 ^& e8 d4 N+ i8 e* h* l: s$ L* D6 Z3 {: ^% l8 q8 N
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    9 B0 D, \# j) d9 S8 ]- k1 ~9 R2 Q; M$ P( X; c: |, o
    python" i! w8 C  F- h9 @5 ~: t

    - P/ z, ?& `+ g1 P& R
    / v9 O( B- ]) idef fibonacci(n):
    " n: n! n0 w9 i    # Base cases0 U1 X! K; l% `9 ]/ _: A. c! K
        if n == 0:& G, |4 @. P0 l" i6 u
            return 0
    - O, V. Q1 v$ ~" F    elif n == 1:4 X1 t! r- a) x$ J4 L! z& ~
            return 1
    9 u$ a$ ^9 c7 q+ r# A# b    # Recursive case& K4 I' Z* J1 ~$ t% Z9 Y0 ^
        else:
      n5 ]- h5 {6 S. Z; m, p        return fibonacci(n - 1) + fibonacci(n - 2)
    8 S1 `/ t6 U" c4 S( R$ \* H) z! l+ ~* |0 {2 U
    # Example usage
    3 d6 D/ ]! e$ `: Yprint(fibonacci(6))  # Output: 8
    3 W  b: @: ]5 G  {% R: l+ M( Q/ V% ~
    Tail Recursion
    7 m4 Y; ~  E+ T% [$ `/ R  J. O
    + u2 S# v9 Y( k% ^2 r% R; z  o8 vTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / C7 w' e' O; S! G7 u+ T) E$ h8 |& ~" g4 f4 h+ n
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 22:06 , Processed in 0.033737 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表