设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1740|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ' q5 X* @+ h. l# C) d: K+ t( J) f# B: x' B4 o, a. F
    解释的不错0 s# K/ m/ @. N* ^% L9 H- {4 W$ z
    ' T. F6 B4 F2 S9 s
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。2 @9 g6 Y( }  V$ f, j% v; @% ?
    ! w* A  v& O, M0 n& {( d4 S
    关键要素
    , l! ^; Q" l1 I+ N! |, \# B1. **基线条件(Base Case)**
    ( ?1 X) R5 V  f$ L' W   - 递归终止的条件,防止无限循环
    8 i1 F) L5 H! V/ [0 e$ [/ x   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % [  k; b. F4 U* |4 O' o. m+ Y4 `# o7 H
    2. **递归条件(Recursive Case)**
    8 z0 i6 R6 ^6 j7 M$ `, i/ q( {" `! J- o4 Q   - 将原问题分解为更小的子问题. O% f/ \+ k- B( r# |3 @
       - 例如:n! = n × (n-1)!
    6 ^) A4 [5 g+ T! n0 m+ c
    2 a1 N# F0 g8 N) J5 k+ _ 经典示例:计算阶乘/ W1 `% S( q6 m% Y
    python( k- K& y. _! A3 a" k# w. e
    def factorial(n):
    5 C% M3 b$ r, _2 w- S    if n == 0:        # 基线条件
    ! s* c# W. a! @4 s) M6 w$ L& X        return 1* e2 [0 m- y- l9 F
        else:             # 递归条件- O' N. n3 O1 j: \1 [' I
            return n * factorial(n-1)1 B# ?* q6 B% j
    执行过程(以计算 3! 为例):
      ^% A& W( w8 V! j6 e4 O; Y: K. pfactorial(3)7 w9 ]( f" g1 t6 z8 c
    3 * factorial(2)' e8 I0 ?, _% }
    3 * (2 * factorial(1))
    ! c3 C3 {4 g& A# }9 s3 * (2 * (1 * factorial(0)))
    0 x& c: ^- E- i) F" J3 * (2 * (1 * 1)) = 6
    5 E7 h: I3 {3 Y0 A4 @+ b* o3 y5 y! q2 q: k; @! m5 o( V
    递归思维要点3 ]- g2 m  E' c
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    1 B1 P& J% K2 B2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- P! K6 G  L$ T, N
    3. **递推过程**:不断向下分解问题(递)
    8 C+ V& ~& e* h. I# ~! O; w4. **回溯过程**:组合子问题结果返回(归)
    " Q$ m# I0 I  O" n. l2 t8 M
    + t, J  G" y; N" B2 B' }2 T 注意事项
    % i8 C! s( F- J* |- k必须要有终止条件
    : O% k1 u- Y( S7 `递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # c2 k4 [6 `7 v5 h* ~6 P某些问题用递归更直观(如树遍历),但效率可能不如迭代( w& V  u* v/ T6 V' s3 F
    尾递归优化可以提升效率(但Python不支持)3 M7 C; g( ]1 h% n/ d4 i+ j

    , k7 i, z+ n3 q8 T 递归 vs 迭代. B& w" f  j+ M/ p
    |          | 递归                          | 迭代               |# Y  D5 a6 _, y: s4 _+ x
    |----------|-----------------------------|------------------|
    1 ~8 i; Q- u; c7 G! _3 ~% q| 实现方式    | 函数自调用                        | 循环结构            |
    , w+ m/ P/ j8 M8 g3 r4 ?4 R| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    2 }) @4 ~; y+ g' ]7 w2 w8 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # l4 _- a0 P. R9 ~| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |* q# N1 s) A+ P; ^

    # o: P) m3 g. W7 I, c: r1 p. M: V 经典递归应用场景
    . y  f- t9 _4 M. q) z. u1. 文件系统遍历(目录树结构)2 [. _+ N  S3 X: V
    2. 快速排序/归并排序算法0 Y. e* K; P( N* U# Y# t# `
    3. 汉诺塔问题5 P/ }3 d( w$ ?3 H9 i- g
    4. 二叉树遍历(前序/中序/后序)' }& p# P8 U2 o/ Q/ \- h  e
    5. 生成所有可能的组合(回溯算法)2 G' l3 ]+ e8 _9 J) g: k( [

    5 L( L6 u* Q- O, g# h& r6 F0 r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:39
  • 签到天数: 3137 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ) y% h5 p8 c. a' M: Y$ f我推理机的核心算法应该是二叉树遍历的变种。
    + K7 L, m7 K$ |% B% I+ L5 {$ W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    9 c  G  X" V0 _, q( IKey Idea of Recursion
    ) r7 h, A( b3 k' \% n+ x+ R
    + u; u( r- L: d1 xA recursive function solves a problem by:
    4 ^3 i- X7 b6 x1 z2 ]# ?$ s5 S& T& B- P) B& i
        Breaking the problem into smaller instances of the same problem.2 v6 g0 H! w" f

    : _8 n: H! Q. k- t8 N    Solving the smallest instance directly (base case).$ s! d; r9 A; k( @
    , v( g2 _0 g$ ^0 @
        Combining the results of smaller instances to solve the larger problem.
    7 Q. j; P5 g1 ^8 X1 ]/ O3 W9 k* o( y$ ^
    Components of a Recursive Function- C/ Q: [2 a- K$ t4 G& T
    # W; z  i2 Y% j1 r3 Q
        Base Case:
    8 |, V- c) m! h& `3 I5 ]
    : g% h/ i/ U5 H. e& L! Y        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    3 ^, `5 \' S; a" q
      {7 b! W3 N: C0 D7 B5 ~        It acts as the stopping condition to prevent infinite recursion.& Y1 x6 }, X0 [& A8 L5 H

    ' T: b1 t" x. {. D2 H: b        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ A- w+ _: o# t' H+ j( f
    " U8 Z6 F) [% |$ L    Recursive Case:
    $ {* m. C8 ~3 Q8 u* p2 f% t
    4 E( m% N) @4 R, S7 T5 i2 O        This is where the function calls itself with a smaller or simpler version of the problem.
    ; J  q" y7 x8 M' s- A5 H) o: m) h, T% r# z, S$ w/ ~4 i& [$ W% m  X3 B
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# i# B. [, S; J- L5 \

    3 x: M6 K3 M4 N/ GExample: Factorial Calculation
    * `$ r, |9 u" ~* B# X1 q) r& n5 D9 h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 D; ^5 _' s0 g7 {& V1 A
    " F& j! {5 B: l+ }4 m5 W! T
        Base case: 0! = 1
    9 P& Z% x+ t: A" o7 A* j4 [& X
    : P8 r6 m! s; \3 M$ |' w5 K. c    Recursive case: n! = n * (n-1)!; }! b$ r/ l, c5 R2 U3 e
    . q1 Q( b6 _; Y& P4 T5 P
    Here’s how it looks in code (Python):- h3 U7 W) l0 o8 E% X$ u2 L
    python) z: f1 I* U8 U6 ]: a- B4 R1 ~

    ! B1 E2 r! X9 F7 E- G4 Q8 f. u1 f
    def factorial(n):( y1 L- h# s8 k# }
        # Base case" I& R) E" X7 n/ L
        if n == 0:
    ( ^* A# t6 X3 [+ d" A4 |$ N        return 1
    + v8 j  f3 z2 Q* z    # Recursive case
    * d4 n. V0 m; m1 R) I5 w  @    else:
    * f1 x2 u+ e) u- ?* O# M: n2 }$ D        return n * factorial(n - 1)
    ( f  @2 D- {) l$ J# M6 M( Y: E( R; b& P- c) [  ~# U2 D
    # Example usage: @1 E4 _8 ]. L' \2 C9 M
    print(factorial(5))  # Output: 1209 E; ^7 G+ l  N9 x2 z# D. `

    0 p5 m0 V  `2 ]! Z* T  _How Recursion Works
    , r, ?" z/ c/ w6 E/ S
    # @4 W! ^8 E8 D5 ~: C1 y/ g0 t5 T+ R    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 u! e$ I/ e6 W( C- o2 y4 u+ t# S7 K0 g$ d% M+ I  \& s( O
        Once the base case is reached, the function starts returning values back up the call stack.
    * b. @) @8 Z/ l! k2 R) j
    3 ~" x0 W$ Y9 h) Z    These returned values are combined to produce the final result.
    + |/ F; S% S8 K/ }/ l, s! {' A6 H( a' m
    For factorial(5):$ j1 x, s8 d3 |7 ?# Z  }+ h1 c

    ( q. _3 O$ I! h. @0 q& m' M! k1 d0 }
    factorial(5) = 5 * factorial(4)6 T- v) g+ X# T
    factorial(4) = 4 * factorial(3)9 z* R! g# W* K+ s0 |
    factorial(3) = 3 * factorial(2): d- j# J3 `5 P2 G4 U4 X# |9 r9 W
    factorial(2) = 2 * factorial(1)
    4 X0 C0 ]2 c  |2 Yfactorial(1) = 1 * factorial(0)
    3 e( y4 h, s- h$ L$ F# p; Rfactorial(0) = 1  # Base case
    5 \0 A& E3 N# \+ B4 E) n" D7 f& W2 K3 w2 o& M- T0 V! A
    Then, the results are combined:; I) f! s8 Q+ s# u' i7 p
    " h9 R7 F% g- ^/ {
    . m; o; R* k' o' t& _3 l* C: |
    factorial(1) = 1 * 1 = 1
    - J1 y+ |& ^4 ?9 Z* N0 V" Cfactorial(2) = 2 * 1 = 2
    ( a, G8 n8 M( ~( G9 j5 f$ efactorial(3) = 3 * 2 = 6+ @, c  T6 z6 _# V
    factorial(4) = 4 * 6 = 243 n6 ~% i3 K$ C3 G
    factorial(5) = 5 * 24 = 120
    # D1 f& N+ f' e' m3 w( u9 z" f0 x
    ( v- u8 {1 a$ |) i2 G0 j0 ?Advantages of Recursion0 H/ z8 d3 j. Q# U6 C

    : ~* L3 V' N/ Q% Q" A5 R$ H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ! J# H- \+ H6 u. M7 m! h  Q9 A6 T  p. V% |0 w7 m- v* ?  \% Z8 m5 b
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 F; i: f: B# t
    * W; [- I* e# z" k& wDisadvantages of Recursion: O# K& W2 x9 V4 z  a
    ! d3 c/ f5 g- G; U
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* J" k  y& b3 j2 O' |
    / d5 s" v4 C3 W9 V1 D; n+ k; n
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)., y5 O% E: u9 Y4 G
    9 l1 f% j$ @, L  J0 T
    When to Use Recursion
    ) X- x/ d; [6 @! R
    ! Y* m3 w- z8 [    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 ]/ N7 K  F3 s8 X/ Q+ O# @5 `! t. h) g  V9 k
        Problems with a clear base case and recursive case.
    3 n# M# G* \. i" P' s* u4 ~  `& m+ S% j2 ?  n. c, d
    Example: Fibonacci Sequence
    9 j$ O0 z8 K: L4 H8 o6 e2 {. y3 t3 L) o
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:8 g% n; P/ K2 q! D& w9 [- Y

    . N$ Z" u: S4 O0 N    Base case: fib(0) = 0, fib(1) = 1, `6 L, I2 s( L
    0 l' h; j6 `" N
        Recursive case: fib(n) = fib(n-1) + fib(n-2)/ m# K" r7 h4 I
    & a+ g2 p! l2 `! J, i# o" y/ [
    python
    ! Z# P- S4 A: \% t* ^5 B& l$ m5 E

    $ D  U& q  @2 N8 f  o( ~def fibonacci(n):4 x* N6 M+ u" U5 f6 T* ]
        # Base cases) E$ M7 H' k  R! l$ ]) Q4 Y
        if n == 0:! F, S9 g/ f) k* l8 R: a
            return 0
    : x/ H% i, q3 J8 n    elif n == 1:
    ! |  w# t) O# q6 E+ \- J$ f& B. y        return 1* o$ E' a/ @1 @4 [' @
        # Recursive case
    8 [) c4 k! l2 f+ D  w    else:
    0 O/ r& P# ?" T        return fibonacci(n - 1) + fibonacci(n - 2)
    3 I) g3 n8 c: j
    2 f3 k; `: ^6 ]# Example usage
    8 q2 E: |4 |% g- o9 V  oprint(fibonacci(6))  # Output: 8$ f, A7 r( S3 A0 X* f, x& q7 _

    + ~5 e( }, M+ \& U2 iTail Recursion" b1 k( c# P  @; F/ @- M: H& I

    2 U  e3 }3 B# H# G& tTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 P3 o- y6 W  L" b5 y, @- X; q7 T4 B) B% t$ ^5 d
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-6 03:06 , Processed in 0.032436 second(s), 24 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表