设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1723|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 5 ?6 A$ x2 Y% y; H0 {

    ' \1 q, z& Q: f解释的不错! L% ^  p' O0 a3 n7 x* ^1 o

    " s: B, l) R$ S' a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    * r7 F! x' k  r4 J
    % \5 Z7 h4 I% C 关键要素
      \+ i( d- D3 d5 f% x$ {( N: r1. **基线条件(Base Case)**
    $ A2 [# B! l: Q4 q) H8 M   - 递归终止的条件,防止无限循环5 v( r8 P  f: c; E. Y
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , Q7 t( y, d1 Z2 |
    8 ?% ~3 p, @# u* F4 P; d+ ~2. **递归条件(Recursive Case)**6 w9 c* W: f4 g5 C7 i
       - 将原问题分解为更小的子问题. v8 F6 U; W9 L: X
       - 例如:n! = n × (n-1)!# D, d2 Z: w1 \" |3 C8 D0 N
    . C, x6 V* f; B; X, P5 J4 E2 F
    经典示例:计算阶乘
    5 O1 X* r5 P  c3 Zpython
    ; v8 f' }1 u/ O: E' cdef factorial(n):
    ; C3 k  Q- q( E, d! R3 U    if n == 0:        # 基线条件+ i$ N% r- `2 t. c
            return 1
    6 Z' W# K: O) S    else:             # 递归条件: z" Y( C& ^% f9 x3 L8 h
            return n * factorial(n-1)  ^9 F3 S$ W% {
    执行过程(以计算 3! 为例):
    1 j/ u# ?; V$ mfactorial(3)
    9 Z5 \0 w* `' s; r, @& D! {5 x3 * factorial(2)( _+ |; V! P( h& U# h; o/ b
    3 * (2 * factorial(1))- v$ P2 e) C: ?7 E) |# O' J
    3 * (2 * (1 * factorial(0)))9 d: m  Y& ~0 K! h$ C
    3 * (2 * (1 * 1)) = 6: X6 [6 |* M, R! _" b

    4 V# J  M) X" | 递归思维要点
    3 ?$ J6 f% Z& s; o1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . e2 `  j; ^. \, W3 c2. **栈结构**:每次调用都会创建新的栈帧(内存空间): X/ i; i9 M6 Y, [/ m
    3. **递推过程**:不断向下分解问题(递)
    . r! D/ @) ^- ?9 C9 s/ j4 P4. **回溯过程**:组合子问题结果返回(归)  J  G9 v* m/ r

    . m3 ^3 H$ X9 x: j  [ 注意事项
    8 v* ^1 [3 I  B8 j1 H3 t必须要有终止条件4 b8 n0 c, ~9 o8 [7 `* f- u
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% B1 a) k) A+ J: T2 t6 F7 }
    某些问题用递归更直观(如树遍历),但效率可能不如迭代3 I) `5 _% v' e( w! V+ u3 s, G
    尾递归优化可以提升效率(但Python不支持), B# p7 ^" M: N6 d. T2 G0 J- |2 K

    ( S) t! R1 j. e- M 递归 vs 迭代2 L' l* P2 \% V: K: s: U
    |          | 递归                          | 迭代               |
    - i3 _$ p3 p0 s; e( U) M|----------|-----------------------------|------------------|1 y: m7 N- o+ T3 g4 H0 Z# ]
    | 实现方式    | 函数自调用                        | 循环结构            |
    . W& {% z  r; m| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 {3 y( E8 y& m  B1 l| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ d% v) @4 N/ L# o' P
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # ]* p" ~8 f% k6 b# X7 v
    2 ^0 M6 H+ Q, s! o 经典递归应用场景
    4 d& K( v# v- T( \1. 文件系统遍历(目录树结构)
    . v' X6 h; S* z, N* U2. 快速排序/归并排序算法6 n4 p8 Q8 N. Y3 g& ]
    3. 汉诺塔问题
    6 D5 q* c( V+ A) ~; ~4. 二叉树遍历(前序/中序/后序)
    % V+ Z3 p; b& |" R& \5. 生成所有可能的组合(回溯算法)4 a7 C' E* n% ^) O) K

    " V4 M! ?% O( z' A9 A  @* F4 C试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    5 小时前
  • 签到天数: 3134 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    0 H& X+ g/ K# U我推理机的核心算法应该是二叉树遍历的变种。1 ?3 i* W8 I( a! G
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    : ?( c$ s" K) P  X& m. W: a# i# XKey Idea of Recursion
    / \$ B% W" `2 a+ Z1 W$ p7 C; Q# {! M, \9 A, X: Z4 l
    A recursive function solves a problem by:
    1 j+ X5 C# m4 o0 T* o% }$ H/ F: G1 R3 L% n0 l+ }
        Breaking the problem into smaller instances of the same problem.& g; n" o1 L5 F
    : W, v7 W* P0 h
        Solving the smallest instance directly (base case).
    / `, s, Z1 {  u+ L& |4 D, m' R4 R' M0 C2 Y% M; d4 }
        Combining the results of smaller instances to solve the larger problem.4 J7 E" f+ H# c: g. ~1 D" i& M
    3 ?+ Q- |6 _5 y+ D" \2 `6 T
    Components of a Recursive Function; `8 w9 B* G( b

    & q4 M2 z6 k, ]" s* v: x    Base Case:. P8 c7 a/ Q7 x) @5 z
    $ H. T( |- x/ C! L' n
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% T/ q' e3 o) h$ o
    , E0 R9 W1 v4 M! |! }
            It acts as the stopping condition to prevent infinite recursion.
    * x, v. U4 k7 j+ g1 R& N) J# {8 r8 G  |  `/ r6 ~1 k
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 E9 c0 o4 g& u8 Z) ]' C, a
    + l- B7 x6 E8 r$ z/ x
        Recursive Case:
    * J- j2 W3 ^* M/ S9 m; A. q; j6 e
    ) x; a: s1 ^0 `$ L# J! \4 D        This is where the function calls itself with a smaller or simpler version of the problem.
    3 W! z' O* L/ P7 H* d6 _
    . Q3 l: G3 }; o+ g) [. @        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ ~' w5 v# D$ Y2 A

    ' G( O  R; |; ^# C  r4 S0 U1 AExample: Factorial Calculation* m' V2 T) u6 g1 ?% {8 q
    * @3 P9 m$ `. h$ m" W
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ X0 k, j. B+ I2 S" o: f( k; |" x- }+ E
        Base case: 0! = 1
    1 X8 j  k  y9 h8 t9 ~! _- R% d% J. [! `
        Recursive case: n! = n * (n-1)!
      [9 Y2 p% `" Y# a( R0 H& C
    ) y8 k! j" T0 A5 j. DHere’s how it looks in code (Python):+ h# ^2 Z0 }+ Y1 }
    python6 k! k) W+ E2 c- s  ?8 [

    3 c5 P8 s; J% X# L& P1 j+ q1 ~  a( x/ ~" n- q% _7 ~# m+ W9 O4 r4 k
    def factorial(n):( I, O2 a( x. e  z; d
        # Base case! a4 [  j* p9 f- f
        if n == 0:
    9 H* X% T7 I$ d) Z' e( E8 e4 f% z1 h        return 1
    4 m% x. N' L$ m) Q; S- T    # Recursive case6 X$ d! A4 w7 ?. @+ r7 S! N6 J
        else:
    4 ]( g& }6 b. I4 c8 ^        return n * factorial(n - 1)6 ^% J! h8 `9 Z; G; U

    4 g! F0 `' y/ ], S# S- D% b# Example usage8 H( B: O* ?2 Z4 e6 P5 _. Z" D
    print(factorial(5))  # Output: 120  d% Q( k# X5 k" E" y

    + j1 \) J; k; I! D- oHow Recursion Works
    : B3 C% ]0 W# J7 A; }7 i# y+ E; s  z2 y8 v2 ~7 n$ l* y/ U
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + }; v( N5 }1 x* I* o: a' N7 H8 d+ l  s0 r9 \
        Once the base case is reached, the function starts returning values back up the call stack.+ Q! p$ }0 w# I" C" u! ]5 s, r
    7 U) [: g; i, o* i
        These returned values are combined to produce the final result.
    ' b: j, m0 j$ Q0 {' a
    6 J( @, X! W( [+ u. mFor factorial(5):
    3 x; a, M2 {' s- g/ O/ j. _+ ^) K5 {8 n

      y5 f6 O; |4 I$ ]factorial(5) = 5 * factorial(4)
    4 P, n$ X+ \2 G* ~5 ~factorial(4) = 4 * factorial(3)
    5 m4 x9 `+ ^9 {. Q& lfactorial(3) = 3 * factorial(2)
    + Z+ _/ p6 ?* M& U0 Ifactorial(2) = 2 * factorial(1)8 c1 Z( H3 X& x2 d" B4 J0 @
    factorial(1) = 1 * factorial(0)
    ( Y& ]0 X, N4 U# a4 I2 Ffactorial(0) = 1  # Base case
    # T4 q; K0 G' h9 \: E. U) W! l
    4 o8 V* a$ w- O1 x4 MThen, the results are combined:
    / l2 v$ d9 `& s0 n  r3 h5 N# e7 a4 f
    ! c2 ^: w2 @0 Q# z* v3 W
    factorial(1) = 1 * 1 = 1
    $ U$ s# o! {# G/ a& _( Lfactorial(2) = 2 * 1 = 29 R. o: ]' Q& M1 j( m4 z3 G% |: [
    factorial(3) = 3 * 2 = 6
    ( G! Q2 e& d6 K, ^, s" \/ Xfactorial(4) = 4 * 6 = 246 r4 ?" V6 ]  n
    factorial(5) = 5 * 24 = 120
    . N. ^9 I: }$ K# o1 I; d6 g; I5 N" u8 \; H; e4 P) y/ k4 E
    Advantages of Recursion. g( d" {% v$ @' M! b

    + ]1 l; j( Q5 |) ]    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# h! a6 F# d2 L1 G
      `: a7 p# {: X; {" m- _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 q: M" u+ P4 J: ]% L
    ) X3 ^7 j& Z) Z' LDisadvantages of Recursion& _* [7 L# j: J+ R
    ' l/ g% ^! q) W8 n  K
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) c: W0 q4 I3 Q9 ~
    # t! K5 Y/ d! o8 X
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    % Q( }! b+ N- V0 W1 l4 r! y4 K7 f3 F! E4 X
    When to Use Recursion
    ) b4 j; D7 f$ i" F& }9 w  `
      N4 k' X2 \/ v& f6 z4 q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. v2 w. ~' K7 W3 `7 U+ b

    5 H  r/ M( W, c) @! x( ?# |; x    Problems with a clear base case and recursive case.7 i1 g6 i0 x5 ^; K, A$ U: x! i! I9 j

    8 t7 \0 \, k& L' AExample: Fibonacci Sequence! }# P+ E9 N3 e! O2 c) d4 V# H
    * c( M! I) u4 L  ]
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:  y6 e, ]6 i; i0 W& d+ a
    2 ?( o+ V7 G- _" q
        Base case: fib(0) = 0, fib(1) = 1  o6 m/ b6 Q' d, J0 q
    8 @- X9 d: ?, r7 C( r/ p
        Recursive case: fib(n) = fib(n-1) + fib(n-2). A4 [2 U1 u3 a/ H/ O9 S# i

    2 O/ T" ]+ l. L6 V. N9 ~: t8 @python
    - N- g2 e  v$ N& J* ?' Y. d; l
    " x4 r/ r* o% Z' X7 _
    ' i, O- d$ w! `7 G! Odef fibonacci(n):
    ( r; E2 k& k5 `    # Base cases) M9 m, M. Q' t( p4 S
        if n == 0:
    & _8 K( _$ m3 n4 k& }0 C        return 0
    0 q; u' Q' c( T    elif n == 1:3 o, H$ k* ^7 r+ |. E
            return 1' c( ?7 B* Q. d5 ?# {0 ^
        # Recursive case
    1 c7 [3 c$ ~; z  s# b    else:9 W' ~; n& e4 a: v* {/ N: ]
            return fibonacci(n - 1) + fibonacci(n - 2)' d: \( A1 I4 C& f' z

    1 D7 X4 p8 H- s- f# x1 b# Example usage# O: y8 Z" w" D; a1 m0 n' f. t
    print(fibonacci(6))  # Output: 8
    / b: P( E: n! [1 h3 ]
    , B& I- R1 t- C4 S4 c4 fTail Recursion
    " N% R. C2 L" j) v
    3 @6 c* Y2 X, i) _. pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    8 W: v9 w5 B5 d/ y: [1 y: c4 {
    ' O& A* _$ r6 Q8 w& W; l4 E% }In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-2 20:32 , Processed in 0.028802 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表