设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 964|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   _4 Q5 z6 h( E# n0 P4 @1 C; C
    9 o1 p* W. |; _/ p1 a
    解释的不错
    # }+ q9 X& y9 K4 r
    7 O& ?+ c; o; d: x6 Z递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ) Y4 o! a& z6 q0 S% L& I, b# E3 N6 O
    关键要素; _7 `4 _. T* r! h% w1 m
    1. **基线条件(Base Case)**
    5 ?7 Q! \; E- H   - 递归终止的条件,防止无限循环
    & p3 x6 W$ Z% d; L, |   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 v2 D3 c5 l# `" }
    " ^7 s3 e% ?- L; z1 m6 g
    2. **递归条件(Recursive Case)**3 G; ~% {+ Z/ I3 n. N
       - 将原问题分解为更小的子问题5 F; R2 z0 P" |! K
       - 例如:n! = n × (n-1)!* g! F( M8 |% G

    $ B; z; N, G+ d( I, @1 E; \ 经典示例:计算阶乘
    ' C9 `6 y1 `0 P& r; Npython+ H& l1 ~$ |9 i& x6 i8 N
    def factorial(n):
    4 B# Q  M' y+ M1 p* x4 u    if n == 0:        # 基线条件
    6 n+ f) A6 a+ }2 _+ H        return 13 Q! I: B1 N1 J' z) d6 |
        else:             # 递归条件
    : t5 b4 i2 I+ M( J6 L3 w+ ~# E        return n * factorial(n-1)
    ' @* @  ?3 I2 M) p* g' ?执行过程(以计算 3! 为例):0 U: o7 f/ O) O) ^% {
    factorial(3)( V5 q5 p. g5 e2 k7 ?, [; t
    3 * factorial(2)) N1 C" V; O" \) I1 A
    3 * (2 * factorial(1))3 v8 g7 u. [3 h$ b  L
    3 * (2 * (1 * factorial(0)))
    + O1 r, h/ L: L4 x& o3 * (2 * (1 * 1)) = 67 V/ S9 I+ |9 |( \% t
    6 C5 [" ]# ^( g
    递归思维要点' Q* J: ^$ C/ G) H- j
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ r) F8 @7 V1 g& d) @( p0 M2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 e" s' S6 x1 W6 y; w, ^& x3. **递推过程**:不断向下分解问题(递)( m  i6 P6 G1 {1 D& m
    4. **回溯过程**:组合子问题结果返回(归)
    * `! [7 r- s: \' B
    $ |2 z* T7 ^! \- E 注意事项* B7 \/ N7 o& a* E) U- w, U
    必须要有终止条件
    ) g/ A4 s) V% u1 J. a% K9 Q9 x8 Y递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! E' L" W9 y! _# [- u7 j! \某些问题用递归更直观(如树遍历),但效率可能不如迭代4 D8 ]3 {7 p/ \, D$ S
    尾递归优化可以提升效率(但Python不支持)
    # F: f5 s2 I6 [/ W* y& F. T6 ]; A; Y* n. d
    递归 vs 迭代1 Y. K- {: ~6 e7 A0 r
    |          | 递归                          | 迭代               |0 E7 w3 ]- z# [( Q" a! P
    |----------|-----------------------------|------------------|" `* x$ F( O+ B4 D  Q
    | 实现方式    | 函数自调用                        | 循环结构            |, P7 w8 G6 ^' K2 Z, D
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ ]0 z' I4 G- {
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * x# k- Z& p# h| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    , p$ k, `  d6 ?9 q9 Q! D+ m( ?! J, ^  o
    经典递归应用场景4 z# f- K3 c* C) u2 M. m2 S8 z' U
    1. 文件系统遍历(目录树结构)
    ; G# U# G! D6 n6 S* H: r* J+ {2. 快速排序/归并排序算法
    & t1 C3 U. _0 u- i/ k; o( z  @% U3. 汉诺塔问题
    9 f9 K& l+ h) Y' f; ?: C5 O4. 二叉树遍历(前序/中序/后序)
    ) D7 h7 X& u5 b/ b3 F- b$ I5. 生成所有可能的组合(回溯算法)5 N7 b3 M& k8 U' n4 G& D; l

    0 Z# m( T+ W6 R9 Z试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    12 小时前
  • 签到天数: 3045 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,6 {+ M8 i* j/ |! [
    我推理机的核心算法应该是二叉树遍历的变种。
    ) m5 P( |5 Q! A- A5 B' w+ b; l. A; [+ Z7 g另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 p& s' z; e# Y0 s% `+ j
    Key Idea of Recursion: P1 Q/ x! I( s; y7 N. q; D

    " y! N2 C$ r( A0 O+ \, dA recursive function solves a problem by:
    6 q# c) V/ c  W: I+ Z9 o2 R6 R' F: G# r9 q( @4 Z- f
        Breaking the problem into smaller instances of the same problem.
    6 ~3 ]" K/ B) _$ }4 G8 r1 ~9 N3 X- X8 c
        Solving the smallest instance directly (base case).) J( Y! @" H. E( ?& I; l, O
    / h" x4 g( `2 T9 D2 j; S8 x
        Combining the results of smaller instances to solve the larger problem.
    ) s/ V- U4 O# r/ F8 I. R4 P+ u- B% `5 Q$ O' @3 }  |
    Components of a Recursive Function+ s0 \; e4 g; E6 k
    4 W2 x4 F7 q2 y" f) ^
        Base Case:
    2 Y' O6 V: s% i0 b- Q* a* B
    ' f# Z+ }6 T$ K. a6 O        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    $ M2 m% Y: J- s6 m
    + q+ p5 H8 Z( ^. d$ s- ~1 @        It acts as the stopping condition to prevent infinite recursion.
    % U6 L& ?$ y# \- {/ u  ?2 s) g! p# f  Z9 i/ i! ~# B# _( {
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.1 E; G6 r. w  ^: r5 I8 c+ K

    1 |0 w" x: ~# W& [/ U    Recursive Case:' X" z; f, ?# ^2 E  O# r
    " c$ P4 S" C; W! h$ n5 V: Q" m9 W6 x% ^
            This is where the function calls itself with a smaller or simpler version of the problem.- d* ?" I, z9 B( Z* I# ]5 P7 a- o
    8 i; M. H; Z' g& ^9 |: t
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).) n' {& K8 t# a* L
    2 e6 \# V6 R8 L0 [- N
    Example: Factorial Calculation! @5 U$ x7 c1 v* V* d1 t$ o

    : c9 Z" f3 [" w6 p" }0 k8 aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) y0 _0 j& _8 ~( s$ I' A. O  S  b- T4 f% U9 V4 V
        Base case: 0! = 1
    & K8 S& J, t/ {1 A$ Z- {
    0 O- ^# |: P* I5 j  F7 E- Z    Recursive case: n! = n * (n-1)!
    , G5 z$ |/ y" w% J! q$ h' ^5 y3 Z. w0 }2 Z# @! y& J, F
    Here’s how it looks in code (Python):' D3 h* }% g% }  R  c2 ^1 V& L
    python; W2 x4 c  a9 Z, P7 x0 m! G
    0 {' Q# t" S& |

    # [6 G2 G! V( ^' A& `5 w# x  }def factorial(n):  [$ v1 U% |9 Z$ _/ n) L3 Q
        # Base case5 N# i3 Y' }2 ^5 n. X
        if n == 0:
    7 F- u5 e, q8 Y' N  N9 q        return 1
    ( I& N- ?4 i# k* p. Y) s0 p/ S( c8 C    # Recursive case
    2 E" q7 @7 T$ ~7 G. M( N: c    else:
    6 y' l' z; j) @4 }% X# j8 O. j        return n * factorial(n - 1)
    6 k( B. e0 ]3 _/ p7 Z0 E, @* @% ~% Y2 @# R: Z
    # Example usage
    " C( B5 K$ C: w% O) kprint(factorial(5))  # Output: 1203 k7 D' s8 }3 D0 k( |
    ( y+ u- T1 m" o' R9 H& H( e, g2 U
    How Recursion Works+ v0 v5 O: W; G7 u5 ]; @* g
    " z  q! w+ ~- s" P
        The function keeps calling itself with smaller inputs until it reaches the base case.
    : H4 B2 m2 I' C# g- b0 H6 E
    ! `* v2 V- v: I+ g    Once the base case is reached, the function starts returning values back up the call stack.+ R# y  r/ c7 V/ s
    9 N) m& @& P' U
        These returned values are combined to produce the final result.' _4 d: M4 }3 X+ |1 D

    3 Z& W& ]+ Z9 q" m8 SFor factorial(5):
    1 {2 x; I7 B2 L/ n  q0 }, `7 ]9 H8 R! l. _; P# W8 p; L. {3 K9 q
    + h+ }9 K4 W. [3 y9 F
    factorial(5) = 5 * factorial(4)
    ' h/ d# F0 R2 }1 _factorial(4) = 4 * factorial(3)
    6 E+ U! `3 T+ Kfactorial(3) = 3 * factorial(2)
    # W# _6 e  ~# a" \/ E+ R* Q- Qfactorial(2) = 2 * factorial(1)- W$ |9 Q7 B# I4 k! `: Z/ i! w3 o
    factorial(1) = 1 * factorial(0)* Q" u2 J* d/ v/ v6 n
    factorial(0) = 1  # Base case
      A  c# h1 `0 I% I2 N( m/ x4 t& x* k% s7 P/ s
    Then, the results are combined:
    ' e1 W+ H- K1 g5 A/ ?9 R! z: P
    ! r8 O% K$ T. ]7 |# L- q5 K  d% d. P- j' F' E7 n; @6 J
    factorial(1) = 1 * 1 = 1  r7 R5 S" o" V4 ~2 z7 S
    factorial(2) = 2 * 1 = 2
    8 U" E6 z; a! ]# N: Afactorial(3) = 3 * 2 = 69 m* w3 H; h& Z/ _. D# D
    factorial(4) = 4 * 6 = 24
    0 s6 p8 w& k( d+ Q: L0 j5 G* Gfactorial(5) = 5 * 24 = 1200 I# v. _; m8 w# H4 ?0 [+ ]1 O# H

    " Z8 b1 c1 N6 r9 L$ ^Advantages of Recursion1 \7 u' o" v7 Y

    % h; b- W  A. z& }8 A/ a    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ C. \3 X+ u" I5 a, k5 H$ Y

    " f4 X6 {7 |7 Y0 T    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 D& ]$ y9 e) Y' \3 O! h4 }: B
    $ E6 ~% v. Y2 S' ~$ k* \+ C" ZDisadvantages of Recursion
    4 l" g+ [7 L- L0 I6 N  K$ j6 @
    ) g. ^8 ?" A" w2 N  P8 f    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.( b# U4 {4 z( F% E/ h( }) S# }6 J% w
    # ]% J' `$ W9 [9 n0 P" f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 Q# I2 S( B# ^, I8 U. w# A+ m% \8 S& Q$ r, s5 |" t3 F
    When to Use Recursion$ s1 ?! ~8 u$ g1 s' h+ [) o

    + M) @- d6 P9 U% X2 X, w    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    . p8 f, @1 F7 [& w& Y
    ) l( f7 U9 k. ?- _+ D2 K. ]1 F- N# V5 K    Problems with a clear base case and recursive case.: X* F% E/ _2 z& Z

    9 v4 e: {( R1 F) ^! f$ ]. [4 g5 @Example: Fibonacci Sequence
    ' P9 }. v7 U9 f+ s* V; R* ~5 ^6 W# T8 r, @" ~5 [
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:! s2 d+ n4 O* @* m9 z: z3 E

    $ V! U; T4 M# T5 h0 e  |+ @    Base case: fib(0) = 0, fib(1) = 18 m$ ?$ e. @% g- e3 [

    ! E( g+ j3 Y1 X    Recursive case: fib(n) = fib(n-1) + fib(n-2)! A+ l! b3 T$ c, s! E7 D2 g

    . ~* T+ b$ v% L7 f- w3 gpython
    & k$ B% G, h) C; ?- \! h) o& z; V; n5 W( Y" f
    + Q) g: t& Q/ {4 Z
    def fibonacci(n):/ H) }5 h# Q, f8 k5 S
        # Base cases0 z+ f" K4 \+ u7 U+ i1 C. C& i
        if n == 0:/ C% }, c; b1 l) I  A% w4 {6 i$ ~( O
            return 0
    - |% r" @* ?0 l! h    elif n == 1:  ^/ _- v: x$ I0 X: R& Q: W7 T
            return 1/ b' P% f" o, x8 @* s
        # Recursive case
    + ~6 Z1 u( B4 P/ j1 D7 {    else:
    9 \+ q1 o. k% T) @  L        return fibonacci(n - 1) + fibonacci(n - 2)
    " W% r1 E' d& X) ^9 `  w3 w- ?6 Z4 H0 m* `7 w2 d) y- B% m
    # Example usage
    ' k9 H" {$ P, p  ^print(fibonacci(6))  # Output: 8
    ; o8 c  J; I- e
    . ~1 E+ c. h% f( x6 M3 o; cTail Recursion6 @1 |7 B4 W$ }2 J

    / M) B$ F- M$ Z( XTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 c9 m) W, h% u% J* C3 D

    6 W2 u5 X6 h+ O8 l4 \, ^In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-19 19:04 , Processed in 0.035981 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表