设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1343|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - w) h7 n! \4 x1 q5 z

    9 O9 R8 u9 ]' o$ u解释的不错
    ' T) D7 V' c# y; T
    - f/ V' i/ [$ _: {2 W; _6 f2 z1 J递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。/ Q: M  L7 l" G6 \9 i* h
    " m, A$ a3 X, e5 }! s% a, \! w. t: g
    关键要素
    $ m1 ?, U! z1 d6 r1. **基线条件(Base Case)**
    2 f8 ?  x; Q! g( K   - 递归终止的条件,防止无限循环
    ! a. E! M4 {! y) G$ [   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % D8 q8 G4 V# y! t8 P& J# k
    2 p* [, z8 y8 W' k2. **递归条件(Recursive Case)**
      o" q- h; \$ M; n; w- p   - 将原问题分解为更小的子问题! |9 B8 b/ V8 c* `/ k6 x2 Q
       - 例如:n! = n × (n-1)!
    8 c! b9 J+ U! u: b! O0 e" W2 E8 _5 E; l8 ?- Z
    经典示例:计算阶乘
    ) q, p! N, g- dpython! M  k, V/ M# W6 B& Z3 F
    def factorial(n):( {! H/ s" X5 t) p* {3 Z2 c6 L: Y
        if n == 0:        # 基线条件
    , H8 W6 R, G( N2 ]1 j        return 1
    / @2 Q$ {1 o, S( u+ z    else:             # 递归条件6 n* k  q" O2 f( Y7 z
            return n * factorial(n-1)
    0 Z9 p$ n% T% t" G$ \执行过程(以计算 3! 为例):# C% @* T7 f' p. `/ B
    factorial(3)& e3 A* i+ ]3 b+ @7 j: j- r! E; H
    3 * factorial(2)# |! H8 c  ?% M# o$ M" _& e
    3 * (2 * factorial(1))
    0 H4 A) }4 _$ O) G' F3 * (2 * (1 * factorial(0)))
    # G9 {) y; H+ w9 z0 m3 * (2 * (1 * 1)) = 6
    & ^7 ]' j' e, a3 E
    2 P0 i: X( w9 d3 T" r( {: E8 l) j5 p 递归思维要点
    $ Y- _7 Y& P5 G1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 G& Q5 a8 [! O
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 X0 M% t9 H! m# Z
    3. **递推过程**:不断向下分解问题(递)+ @. X1 E: e' m7 _4 j! a
    4. **回溯过程**:组合子问题结果返回(归)) G% A. a+ g' H3 Q. ?  e

    ! g; R1 F# s9 B/ d9 X, U 注意事项0 c& Z! a" v4 W- ^* v' M% q: v
    必须要有终止条件
    ; m' m9 n: J3 n3 _; ?$ E& l2 |递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ) S8 L* t% P" y: x' P1 ]某些问题用递归更直观(如树遍历),但效率可能不如迭代3 ~  C. R* ^: g( F% N1 |
    尾递归优化可以提升效率(但Python不支持)
    $ c: U# E4 @& L4 c8 C5 R5 p: Y6 ~  n9 K/ O1 z
    递归 vs 迭代; T8 G4 d8 @; }  ]
    |          | 递归                          | 迭代               |
    7 m6 l, S& z3 @|----------|-----------------------------|------------------|
      G& u' X: M, B| 实现方式    | 函数自调用                        | 循环结构            |
    # h) \. T0 F! k* K# \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + n6 a/ W' Z% Q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 }" U- N8 C- B+ x' E| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) G% [) x! }  l/ e$ w! y/ y( `# r# Z( U+ Q0 I. n1 `
    经典递归应用场景/ f5 }# `- K, v5 g
    1. 文件系统遍历(目录树结构)6 k" V- C5 T8 y5 C/ r
    2. 快速排序/归并排序算法6 ?/ x$ }( x4 i2 D6 D/ b- w) n
    3. 汉诺塔问题
    , n( h* a/ q$ F+ k, s; K4. 二叉树遍历(前序/中序/后序)
    ) E/ _- I! r  W0 b+ t5 u5. 生成所有可能的组合(回溯算法)
    * @; w1 a- r+ c( U. n! W6 V% G. I' i0 r3 K, E4 I9 c
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 11:23
  • 签到天数: 3108 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! {9 b9 A& S5 @3 ?, m( e/ m! X
    我推理机的核心算法应该是二叉树遍历的变种。
    ; ~. V9 D, q2 u; }# }2 N8 d另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 e: e- r: ~; r/ W4 u% M$ [
    Key Idea of Recursion
    ; S  M* Q" U2 c8 M/ R- ]
    7 `4 L1 R! \/ n4 q( }A recursive function solves a problem by:( J* t  k/ s! a( X

    6 S9 H8 o2 `5 ?7 _    Breaking the problem into smaller instances of the same problem.0 l7 @# Q0 Y& u4 ]
    : N2 v; U+ r$ ?8 @$ i
        Solving the smallest instance directly (base case).
    * q; X. G- R- V9 {* Z2 M% _. G+ y: d! [: Y& q" [+ d8 J9 {
        Combining the results of smaller instances to solve the larger problem.7 k" T  O: G) [6 s

    ( v, y+ }0 a0 E: Y1 p/ M/ LComponents of a Recursive Function4 }+ a$ y; M( c% `7 l$ g, s
    2 R8 [+ ?2 P* K4 @4 e9 Y  C% a, ~
        Base Case:
    2 E4 x5 o. h, l" c8 m2 ^- }
    + v/ q, o9 ?. q. R! y2 i        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    / V+ W& f; _6 h+ A* S
    8 w1 U  y# D$ `* e        It acts as the stopping condition to prevent infinite recursion., v9 U( v- [+ n
    . ]! C  R6 x2 U) _" w
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' e  x7 \$ F9 o+ x! Q0 Y" U7 @' ]8 q! _
        Recursive Case:# n7 W! a8 l+ R. _# Q& Q$ Z

    . W  L& r, j6 C, T! D/ W        This is where the function calls itself with a smaller or simpler version of the problem.
    / ?5 J2 A5 x- b# z" v' b  j( [6 p) A1 o  n7 d- v8 h# `
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).9 N9 d; Y- |3 s% n$ ]& ^( G

    - `  U3 n3 j7 L& G  kExample: Factorial Calculation& E. @& @2 i% j) H
    8 Q* J1 s' B1 u$ p5 O- v
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 C* S0 B; G; B( r$ y" i: j: d2 M+ B) Z6 [
        Base case: 0! = 1
    ' b) }: [3 F' E; I! L6 Q5 T, e2 Y( j; U/ a8 ]# Y4 ]
        Recursive case: n! = n * (n-1)!! C% i; \9 I0 N, I$ b+ ^; s5 w

    9 a2 H1 M0 l* i# n( N/ IHere’s how it looks in code (Python):* F# ^2 G/ J/ \- T" @' e  b
    python
    & B! \5 o6 q9 O' H; v5 R' u/ Y* u+ [, d3 f. x! G, n, c% y

    - t0 b) _. x  X, }def factorial(n):  @9 M, R  h, R, \3 C
        # Base case
    $ [/ c# z. r7 r( b  t9 {: M( E" v    if n == 0:* _. F: M% U5 l* c1 P, ]
            return 1
    " m$ _8 C+ ~; J5 N& a0 ]4 p. A2 `    # Recursive case& k, o- L8 a* l& x) @9 Y
        else:
    * k* W! L* |1 L- U+ a7 X        return n * factorial(n - 1)
    8 y6 t0 r6 ]: q4 {
    6 x7 _2 Y' _6 ]# Example usage
    1 p( o/ \+ L4 |" x- {print(factorial(5))  # Output: 120
    6 Y5 p- c7 j& h0 a8 Z+ t
    ! t. ^5 s$ z+ v2 bHow Recursion Works
    ; ~( M/ k" W) Q3 t8 H. ?0 x8 L1 U: X3 a$ H6 C( a6 @3 G
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + R3 \/ ~/ X. I. U: I0 l* a9 C
    2 u+ O5 d% t# Y    Once the base case is reached, the function starts returning values back up the call stack.0 U# k: O# t5 m* N& z
    3 i6 R8 u) K* ^) `4 A
        These returned values are combined to produce the final result.
    % I" E! [$ G. O( g; h
    & a9 p/ S+ s! j$ LFor factorial(5):9 b* r  U' M2 d! ?  T7 ^

    3 z& N- ?) a6 R; a; Q5 [0 H) E& `* m! u" y
    factorial(5) = 5 * factorial(4)4 R, u1 e( U/ g) h; A. G$ t- `% J
    factorial(4) = 4 * factorial(3)9 |. @8 {3 w7 d7 [  |+ P
    factorial(3) = 3 * factorial(2)
    % \( d& c  u! S8 h9 k5 s: efactorial(2) = 2 * factorial(1)
    9 U. a4 ~" _7 S4 v: Cfactorial(1) = 1 * factorial(0)* U2 J5 n% x6 U$ ]0 @2 N+ J
    factorial(0) = 1  # Base case. w. a- g* s0 s

    * ^4 ^7 B5 _6 ?/ w( x4 i( u+ IThen, the results are combined:
    / x0 F( K! n4 _( W3 L; U2 h* {  B6 R1 ]8 r: f7 Q
    2 ?, q9 K3 r) Z6 c/ o
    factorial(1) = 1 * 1 = 1
    ) X) o) s' b- X) I- y8 H) c7 wfactorial(2) = 2 * 1 = 2
    " w4 P! f' j9 L& Gfactorial(3) = 3 * 2 = 6: k3 f  D$ g5 U+ O
    factorial(4) = 4 * 6 = 24
    ( W/ F  P0 Y- D" Ifactorial(5) = 5 * 24 = 120, u& ~( d  b, V; b1 F5 I* `
    & w0 `# A  |+ U: K9 ^$ \3 y+ \
    Advantages of Recursion
    5 j% V- E% C5 K. b; e5 u5 \
    * @! @7 D& T+ T    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 w9 j! T: X+ b. v: H/ _/ a
    4 {/ @) }1 U8 [+ M
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    " Q: r3 L7 r. i  y$ T/ O2 H8 m; K4 J7 {' t
    Disadvantages of Recursion3 W5 m! W; r  o" A- H

      |) V- Q3 |1 x/ w9 \2 ?! Z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 @" H. r( `4 t+ N( T+ p; w4 E* T& s3 N9 W) h. B  Y# k/ Q
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    & |7 m4 u. t+ Y4 l* |
    . u7 ~" {+ R! i- x5 eWhen to Use Recursion
    7 d5 ~) _1 C" _8 _0 }' j
    # f( r& n, b+ F8 {7 A  x7 H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 O$ a  C, h% @; x

    : H$ q$ B! T) ^/ R6 |" ~  w    Problems with a clear base case and recursive case.- |) ~7 E1 _# \7 T4 t$ g
    : K9 z. `; |" s( @. e% q; v& D
    Example: Fibonacci Sequence$ _: T4 k3 A8 m. }. {& c
    8 Y1 _8 w) ]( t+ a* A
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:6 s' P! ~' E' E0 S  b. }# N' N  P

    5 ~1 _0 U& W- K" @( Q9 O1 K5 @    Base case: fib(0) = 0, fib(1) = 1# h/ W+ \3 c; p8 x; V! [1 A
    ) ^- |$ {7 `' V6 k  P' [
        Recursive case: fib(n) = fib(n-1) + fib(n-2): ~# f7 T% k3 S

    9 O/ t% p+ T* C; A( ?python
    + F! l6 I. l. f, x' W& G
    * O- n, g2 Z2 o: W, c1 L1 X* R' V" \; ~# u, D% s& x
    def fibonacci(n):
    4 a% w9 J/ i& u1 r: b) M    # Base cases
    7 R+ y9 y2 [" M. [8 c9 a/ I    if n == 0:
    : C1 ?3 `: z( f: c, T/ r% M9 B0 T        return 04 c9 s0 U* W6 T3 l
        elif n == 1:
    " b% X* ~$ |# I9 u3 m7 Z; |        return 1* d6 Z; J: _8 S
        # Recursive case
    8 K$ I- [. X/ }    else:
    ! }, W, p) D) X. n" p2 c        return fibonacci(n - 1) + fibonacci(n - 2)
    ( X' V/ X  c, m
    ( A2 {7 ?# F( v  F& j# Example usage$ C& e* y6 ^& _! |6 N
    print(fibonacci(6))  # Output: 8
    5 N% K0 q9 P9 Y" G* O; J& M8 K5 {
    Tail Recursion
    ' d: r, K& K" G/ A& V# {
    ( c6 h  @! U: Y/ Y9 g2 @6 z+ |Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 h8 y9 N$ j: p% D/ T  A

    3 Z+ I- F' N: t+ ?# x7 @) eIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 08:41 , Processed in 0.033204 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表