设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1535|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # @6 W. u' J# q) T& z0 C5 |& E8 G- O" c' |% x* |
    解释的不错- E% X$ P" ^  O

    7 g3 E* Z' u0 t- ~1 X7 Y* x5 ?递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 F3 z' u  Z6 f6 K5 a6 ^$ O
      O# ?0 g+ n4 N6 ^. D/ K# w 关键要素* H7 h0 H/ W" r8 U- V3 s8 v
    1. **基线条件(Base Case)**& D) h. ]) B, m9 k) G9 |
       - 递归终止的条件,防止无限循环" F& |; W! i: q6 ?% D/ o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ' a7 u9 x! O  r
    0 i3 z8 B+ i8 q! ]5 D+ {2. **递归条件(Recursive Case)**
    4 g+ i4 H6 N/ V; S   - 将原问题分解为更小的子问题. v2 r5 n8 m: w; Y
       - 例如:n! = n × (n-1)!' C0 K% {9 s7 l5 ^* i6 D7 i

    ) X2 T) N! N% Y$ V0 W; J 经典示例:计算阶乘1 H  F" h5 P. ]  {' o4 Q$ u7 c+ ?% S
    python
    1 Q% |) h9 o5 kdef factorial(n):; B  k$ z, }8 y; T+ k
        if n == 0:        # 基线条件7 r1 y! B4 r0 P8 c- L/ I8 Z. {
            return 1
    5 \. C- F+ i0 E# {    else:             # 递归条件
    % N: }! o: T" l7 |        return n * factorial(n-1)5 r* y. z" M, K" r0 ]
    执行过程(以计算 3! 为例):
    4 ~$ u( l; G, K+ |' U& o7 N; L1 T5 Ufactorial(3)
    8 @2 g6 ]. Y0 g' c3 * factorial(2)  I# A: ^. o  u) R: T
    3 * (2 * factorial(1))$ k1 j* f; a: n% o3 O5 t- G) U7 p
    3 * (2 * (1 * factorial(0)))# m$ T; {4 d5 `2 F  T6 X8 ^
    3 * (2 * (1 * 1)) = 6# X6 F* B4 R1 _, b  l% H: O
    ) M# ^+ z4 z7 Z/ \4 ~
    递归思维要点
    6 l8 V# l7 U' C: P1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 }! V, c4 ~: _3 ?1 \- j
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 X4 w; V. N3 E, N% R
    3. **递推过程**:不断向下分解问题(递)
    4 W0 o4 C7 s  ]( Y! N8 X$ F/ C4. **回溯过程**:组合子问题结果返回(归)* V+ w: I* K! r7 x
    6 j7 b, y& l- [; H3 `; u
    注意事项
    4 g6 w9 c) k  H! V' B) K; _必须要有终止条件( E% e1 `* d6 Q
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! U5 w6 K9 Z+ Y4 ^
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    # f7 ?# ]3 J% k' P# e" m尾递归优化可以提升效率(但Python不支持)
    # P" e6 e2 j# i" g0 G! P6 a
    * d) `- e, [% Q, \, Z! B9 R$ e% { 递归 vs 迭代" h7 Z" ?; ~9 C
    |          | 递归                          | 迭代               |1 H( z: o7 m7 o+ h7 X5 f$ w% |0 ]
    |----------|-----------------------------|------------------|5 t6 p$ s1 P. t9 y5 n
    | 实现方式    | 函数自调用                        | 循环结构            |
    ' f6 L2 h: n9 n: W| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |' T# `+ _$ u; V7 {4 n( o+ ^5 H
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    & |' v4 }' @! M5 N/ b: ^| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |* |  V2 `0 Y; L; g
    ( ^& p& R4 e$ C9 M, f- e
    经典递归应用场景
    $ ^1 U$ @/ J1 q% T: m# p+ p1. 文件系统遍历(目录树结构)
    ' P5 ^' s5 ^3 R+ A/ _% j  W2. 快速排序/归并排序算法
    : j% ?; B3 r( M) j7 W5 V$ C5 {+ p3. 汉诺塔问题3 D2 z6 |7 U1 U
    4. 二叉树遍历(前序/中序/后序)% D& N9 R; }$ b- V7 E: F- u9 |
    5. 生成所有可能的组合(回溯算法), G" n1 e* ^" W$ `5 z  V, g

      {8 B% h( a' B4 V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    15 小时前
  • 签到天数: 3119 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; U* E" \3 N- G2 |1 x
    我推理机的核心算法应该是二叉树遍历的变种。& \& y: i; ]* _5 |8 G9 f
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- G. Z1 l" o! S8 G" R
    Key Idea of Recursion' R' o& M" o; ?. G4 `7 t# {
    8 @% q5 h0 {$ ?9 C+ q" J
    A recursive function solves a problem by:
    " G! C( W* c& u1 ?' c. u& l
    9 }4 q4 K8 n) r; l2 }    Breaking the problem into smaller instances of the same problem.. t; @& b! Z8 ~* P% m# T+ W
    1 D1 e0 [. B- |2 _2 S; a5 @
        Solving the smallest instance directly (base case).
    9 B# O: ?: L( t3 x: D( ^6 R9 p+ ]! Y2 P( z8 [
        Combining the results of smaller instances to solve the larger problem.* {) L  E( x5 l: X. z/ e

    0 j/ v& Q! q- T6 g4 k8 J7 aComponents of a Recursive Function8 `0 D/ V7 b7 k& ]2 D

    % i0 O5 S9 K, S( \9 [1 B' I3 E    Base Case:
    $ R* w7 ~& {  |- C8 D* v6 I) Q2 S
    * n5 ^) n! Y! k5 w5 I        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 e$ X- n! C, K/ I0 x$ E7 v0 q
    2 `4 U2 G0 b" P) [- I& N8 h
            It acts as the stopping condition to prevent infinite recursion.7 Q9 J8 I3 h4 q# y

    8 ]$ W4 m% C( d2 l        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ' h; y. `, l2 e7 I  b/ |
    % n) U9 U+ q. X    Recursive Case:5 D# x" T8 |" S6 Q
    ' q& ?1 G# q/ R" p% m1 T
            This is where the function calls itself with a smaller or simpler version of the problem.
    0 ?. r# A4 C4 S+ J! u( u, O8 [
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : d! U6 `5 g5 C0 i
    ( A- U! v5 [/ K) F$ S2 dExample: Factorial Calculation: B2 K4 I2 R* s  H
    # @( i' ]1 B. t. }  I7 S* X
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . ?6 R0 p) m& w& S1 g. c  P0 C* M
    + ~8 E0 B& w6 c6 j. l    Base case: 0! = 1
    ! ?; Y( g; s' q+ [, e- @
    1 e" A; Y7 [- r    Recursive case: n! = n * (n-1)!
    1 u6 X& r3 Z0 Q# \3 V
    % q7 |; {/ f  J, o( a: UHere’s how it looks in code (Python):
    + _0 t+ d5 g$ T2 i2 \. W8 V, g- }python3 I! N0 E/ d- ^, i

    " K( v! `2 c6 \% t4 J
    8 g  g/ D4 i2 l, s7 cdef factorial(n):
    $ a- V4 G# D. C& _0 _  q    # Base case1 [) |% n* v3 [% V* ~# ?
        if n == 0:
    ! E3 w3 E' w2 H" L( k        return 1
    9 z1 k& d8 _% _3 R/ y/ X+ c3 |7 i    # Recursive case
    - o* V8 r! h! Y+ G$ n    else:& I# ^! X' \$ |8 D5 h% n; Q
            return n * factorial(n - 1)
    8 o. ]% K3 w/ `' f
    9 \  ~1 ~' ]0 u! j& \1 S6 ]# Example usage/ v4 }4 r0 c5 Y- i, Y# |
    print(factorial(5))  # Output: 120# J' q0 b, @# T/ o  F9 h* e
    5 L; d1 f# O8 _' ?2 p, Y
    How Recursion Works
    4 q- n2 b/ g# o( s- B4 V5 N4 ]; v& D, }( j
        The function keeps calling itself with smaller inputs until it reaches the base case.
    3 v$ t* }5 f! n- v' I" L
    & W2 e+ {6 c7 C' G3 V, c* y    Once the base case is reached, the function starts returning values back up the call stack.6 H+ u8 ]/ \" }' B

    . c6 V& _4 K7 e    These returned values are combined to produce the final result.+ ]5 D) Q1 W# [4 m- H

    ( Q1 v& D$ T# D) k7 pFor factorial(5):! T1 _- d9 ?9 C$ O) d! O. r

    / N8 @- q8 |/ A; l2 m; t
    . g  m) G4 X) x- }9 L- f8 j- tfactorial(5) = 5 * factorial(4)9 K1 m* U  J1 j  N
    factorial(4) = 4 * factorial(3)" `! n1 A8 o. M& ]/ h
    factorial(3) = 3 * factorial(2)
    , T9 \# @$ h: u; R6 P' ^) jfactorial(2) = 2 * factorial(1)
    ( U( }! e2 D2 w; U% @% ^' E5 cfactorial(1) = 1 * factorial(0)
      R5 o; \; u8 Z0 y. m7 a) pfactorial(0) = 1  # Base case
    - Z! ]; w6 X2 u2 d* f% M
    + V2 G2 n% T" ?/ g4 z0 l0 VThen, the results are combined:
    4 u9 ~# m: h* h6 O
    6 T2 d3 d" @  L# z9 W" I6 ~# R6 S- p# K0 c+ }
    factorial(1) = 1 * 1 = 1' F. E6 t  a. l- o
    factorial(2) = 2 * 1 = 2
    & Z2 P& D0 W* ]" \% Vfactorial(3) = 3 * 2 = 6
    0 p7 S- F- a" ^! e5 xfactorial(4) = 4 * 6 = 249 }9 [1 S1 p- v! t. H
    factorial(5) = 5 * 24 = 120  _0 D. ~9 q: W; u4 `

    6 L. Y% Q9 K4 U5 g$ Q- C. OAdvantages of Recursion
    1 ?* q8 s% F! o  A3 ]# L  [7 F# H
    # z" A2 @" p/ D0 }% P1 h    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).& z$ x( C9 Z- ]: H

    # S' S# V8 a8 g6 R    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    / N' v/ s) I/ E& P- Z+ q/ `8 p" p+ G5 L5 `8 U
    Disadvantages of Recursion
    ; z4 A3 E' K$ {/ k; V# \) j. F  L+ g7 O% m  Y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      H7 e1 [7 u, y# y8 `& u, O! r9 z2 M( Y& q; {
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& y* g6 Q8 ?8 Y) n: i" Q; i! X

    7 o% P- h) H: i6 A# J' KWhen to Use Recursion
    0 @4 o7 y8 F& J+ W# e2 \7 U! k$ k$ p# L' E
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    & [( b; D3 |5 G4 j& F- d3 K, K$ Y" ?7 r) D+ Z( y8 \/ o
        Problems with a clear base case and recursive case.; y8 z- [7 Z( A; Z: S
    1 Y1 U7 A  m! k0 _6 Y0 V
    Example: Fibonacci Sequence+ [  W: f# S* V# w8 M& y

    2 U! D3 k4 Z) l4 r& k# |The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" t7 T" x9 s& P

    / ?1 k3 n0 l% _; P. S    Base case: fib(0) = 0, fib(1) = 1
    ( K$ ~2 t/ q1 i/ |2 B, N8 y& [$ P1 w
    ( ~* X2 V! |  b) k3 ]    Recursive case: fib(n) = fib(n-1) + fib(n-2)7 T' J0 ?& w) V; B6 J
    ; M5 t2 r3 b1 [0 G% {& e
    python6 T: J8 N8 X7 Q9 O4 B8 `- |9 s
    2 Q$ ]( p, V( h; R# G4 ]  \

    : G5 M: d/ k. c$ |def fibonacci(n):
      u1 X/ o5 p# A, J( h, X/ E    # Base cases
    ! R* x( V1 W$ I    if n == 0:5 i/ E+ ~: @* r9 C: j
            return 0
    , {" [7 B" [1 L) o7 |8 `  m, k    elif n == 1:
    . ]  b- _" O$ ^6 w# G- {$ h- I        return 1
    1 b3 Z& F* _, P) h! |, V    # Recursive case
    ( T6 {  w, H, n# t    else:
    8 o* _3 U0 k- K+ q        return fibonacci(n - 1) + fibonacci(n - 2)5 ]) R9 a" Z( x: Y

    4 `+ V+ F' b4 O% Y0 p4 q# Example usage! S. n4 U+ m6 J& J% D6 |
    print(fibonacci(6))  # Output: 8( o6 c% T7 h" V
    % h/ \1 ]2 l% W) ^& F( a
    Tail Recursion3 V" }4 m, C) {8 M9 j
    % ?$ d" P0 T7 q3 z3 [
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ( h7 @2 Q3 \! E- t# ?8 @" {; c
    / I: @' e- _( `" D% G/ CIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-16 23:21 , Processed in 0.030519 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表