设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1650|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    6 k6 u1 d5 o# L- V! _/ d2 n8 }, T' C2 o( z# b) t0 O3 I, U+ U" r3 S
    解释的不错& ~- n/ Q& w7 ~* ~2 b

    ) {+ `: R$ I; y% }4 c递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 ~- `) M5 o* J& \+ L

    - \/ a7 K6 t7 ~; z) T/ w 关键要素
    $ w8 Q  y& R% {% k+ O& G1. **基线条件(Base Case)**
    , t/ E* v" E: a/ }7 M+ Q   - 递归终止的条件,防止无限循环6 }) o. t+ k" f# J; [
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    6 k! n) D3 j$ N4 r: }' n
    6 s9 n. L$ F( N2. **递归条件(Recursive Case)**1 J% [% T: l7 b  N2 P/ ^; O; X
       - 将原问题分解为更小的子问题% q8 E1 t: q& c
       - 例如:n! = n × (n-1)!! ]" v5 F* X4 t! X  k5 d6 }
    5 U& h  b! s% F9 }( V
    经典示例:计算阶乘' @  y, I; H* e
    python
    ; u6 f% n- t4 ddef factorial(n):
    ( z0 i) G* }1 q. u# v    if n == 0:        # 基线条件
    3 Z% ?- Q9 Z2 A, I        return 1' M+ i# i. c7 G6 @$ \/ {# r
        else:             # 递归条件0 a+ W% D9 B, P; e
            return n * factorial(n-1)
    5 A& I3 u: U  Q) X$ [9 h8 L执行过程(以计算 3! 为例):
    ' i! B- w3 Z* N2 s& Q0 R8 e6 N2 nfactorial(3)* M8 Z0 w. t6 m, W$ Z8 V
    3 * factorial(2). R9 m3 A8 d6 J9 Z2 q6 |5 ^6 _
    3 * (2 * factorial(1))
    . h. M% y7 N; b3 z$ Z7 z; [0 {3 * (2 * (1 * factorial(0)))! Y6 N$ ^1 }+ F7 w% \( l
    3 * (2 * (1 * 1)) = 6
    $ D$ p( D+ b4 P  s" ]+ Z. Q# s" o( T; b4 ?+ b  Q
    递归思维要点5 O' y3 {" G. k6 ^3 w: N( N* d* T
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    4 o9 E" K5 f9 G) s2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 O6 j6 L: z- p3. **递推过程**:不断向下分解问题(递)- Z% V; w% o3 X5 A( N% i
    4. **回溯过程**:组合子问题结果返回(归)6 x) h" y- W, C! _
    - b1 r1 m3 B: q
    注意事项
    6 J5 \, {1 O5 K1 R: P. i' U" g必须要有终止条件
    ' [1 e5 R7 j' X$ p递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( T% I  Y, F4 k, v' R: {4 J
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    . |7 Z: I8 L2 H- ~$ I) I0 j尾递归优化可以提升效率(但Python不支持)8 L, C1 P7 e. Z

    7 v! O! D6 B4 f 递归 vs 迭代
    3 C6 U. d) ]5 U* ?|          | 递归                          | 迭代               |6 k/ v: p% x0 ~* M* b! a) b
    |----------|-----------------------------|------------------|
    , a' L, ?! P) l4 S. `4 D| 实现方式    | 函数自调用                        | 循环结构            |8 ~; Z' d0 t* I5 f* }$ C3 I
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" V, L* x& x3 |$ j" |6 ^
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |3 e; }$ s0 Q7 X6 {$ C- n
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( X! O/ K1 d+ l) {

    : ]# ~3 \' ]' r  q1 s. d 经典递归应用场景
    " j; L% _0 {7 ~# S: D1. 文件系统遍历(目录树结构)
      Z9 G, M8 _  g, P1 U2. 快速排序/归并排序算法
    3 [6 G/ K& K: g& \: V4 j3. 汉诺塔问题
      V2 K2 C7 A' B1 I4 a/ n$ o! X3 w# T4. 二叉树遍历(前序/中序/后序)/ M6 g5 ?! `8 [9 e- u* U2 q! X0 @
    5. 生成所有可能的组合(回溯算法)3 p) ]8 Z9 G8 E% c' D
    " q' g  q! p6 I% g
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    11 小时前
  • 签到天数: 3128 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; g, p& J/ R5 Z我推理机的核心算法应该是二叉树遍历的变种。/ R4 g1 O6 J& S9 B
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* [9 h6 Z3 K; W7 y, }
    Key Idea of Recursion
    9 g: r9 l% E7 Q2 J# k+ ^- ]
    ) ?. b, `/ [' S4 z! c: |A recursive function solves a problem by:& Y+ S4 B. K5 N5 [$ J0 ^  u" J
    ! S" P) C+ ^: T4 W) t& h+ W
        Breaking the problem into smaller instances of the same problem.
    + s6 @. F) t6 R: T" |9 O" i  D  N) \- J
        Solving the smallest instance directly (base case).
    8 _+ s3 j  N3 I+ o6 J5 _  g, _
    $ r2 X6 w: f4 F" ?+ |3 J& L6 r: k    Combining the results of smaller instances to solve the larger problem.
    / R2 {) C- J4 r; w6 }6 K" V" y2 d5 ^0 F4 @/ K1 Q
    Components of a Recursive Function
    3 N7 W- S+ Z' }/ s% s. M
    % w" c4 _5 E5 j: b8 e, K    Base Case:9 ~; q- e! G1 \) q

    ! Y- d6 b& J1 e        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    3 `- L0 X. k  W7 _
    % G- L8 J6 ]: ?) K        It acts as the stopping condition to prevent infinite recursion.1 t" ?5 {5 w" |0 |! N

    5 |/ h! ]6 c1 D        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    " ~# J: H  S( h7 Y0 ~8 q, ?4 G5 ]0 m. N" I- B" E' X; b
        Recursive Case:9 R) a% G6 L( N& o* Y4 j* r  B
    & g1 ?; W- B, @
            This is where the function calls itself with a smaller or simpler version of the problem.
    ( w0 F0 c8 w9 C2 g3 M/ D2 N' _* u! `) X* j+ L
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).4 N% x% i, V! p/ w1 Z
    , r6 o5 m% a. W8 q, R
    Example: Factorial Calculation
    5 u) n$ M. p* n' n) G5 ^: P2 y$ E; [) |) a. B
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) b6 ~% p6 ~9 p6 h2 C) ], R8 f
    7 Y  N6 A( {2 U; n9 O" V6 x: W1 p    Base case: 0! = 16 e9 S+ N) [+ D, B/ a4 _$ h8 \1 l; I

    6 Q/ N5 T  T/ Y# s- ?. l    Recursive case: n! = n * (n-1)!
    - `! l' E4 _, K7 d/ V5 B' c
    , Z- n% X$ h, C9 pHere’s how it looks in code (Python):
    2 D+ @7 M2 N7 [6 T+ y0 \python
    - K. K' |! K7 K. {# y7 w: l2 A
    * M' T* e: \4 g2 s( k/ v& \+ e* c
    9 o6 l0 X" F7 zdef factorial(n):. ?7 U; `' }/ d/ n( X, m
        # Base case" F' {% b1 w3 ~4 {: i/ A
        if n == 0:' l& p  E4 {( [; ?
            return 1  k# y4 ^  P3 R/ c: C
        # Recursive case* [! \' d+ g; K+ ^) y; P' Y
        else:
    ) w0 H' h6 p% y5 V( N' N" g        return n * factorial(n - 1), e1 e* n) \9 B

    ; ?8 b8 X8 E. v8 ^6 b+ v- W% n1 j# Example usage
    ) p; l2 q$ F+ j/ Z3 w$ Oprint(factorial(5))  # Output: 120
    7 g1 O! }. F' A8 `/ X6 g2 t8 D0 H* U+ `$ |
    How Recursion Works: z. Z8 f& q, b
    1 O% u$ e' n% u  B/ E  l4 q
        The function keeps calling itself with smaller inputs until it reaches the base case.6 ]5 [: J( t6 x, b1 W
    ( @7 _% J2 h( V* }1 j) k2 y; y, N
        Once the base case is reached, the function starts returning values back up the call stack.) X* {+ Z% z5 a) E+ d
    & d, X# E. L- P. [8 Z; K
        These returned values are combined to produce the final result.
    ) T0 u1 Y) d" V& Y) {! t
    . ^& _8 O0 U% h5 V) h* cFor factorial(5):
    3 a" v& n3 Q5 l3 W& ]! j. l- q' p' z
    # i2 d+ e% o2 T! h. L2 a; Y, s
    factorial(5) = 5 * factorial(4)
    , F6 g' r! M" d1 o. o) F' Hfactorial(4) = 4 * factorial(3)
    - m1 D: F# Z" Ifactorial(3) = 3 * factorial(2). F3 x) L4 ?+ @1 ?( t# q
    factorial(2) = 2 * factorial(1)
    8 U# R; I0 B' D0 _  C. t' L# ofactorial(1) = 1 * factorial(0)2 j5 g& M2 t( S+ _
    factorial(0) = 1  # Base case  c9 c' |$ L; [* v& Z0 s

    2 U% d. i. y/ Z, Y2 \( w& HThen, the results are combined:; y5 y2 L3 Y" i: ^. l/ z, F
    , y! }- _0 Y0 w: w. O  b
    ) C* z* g3 ?' ]! e; s6 Q8 Z/ H
    factorial(1) = 1 * 1 = 1
    : Z: P2 A" F! N0 Ifactorial(2) = 2 * 1 = 2
    ) f% v& w. u2 Q$ ?5 U, @factorial(3) = 3 * 2 = 6! R' K! {* x' c# g6 ?* n9 m  a
    factorial(4) = 4 * 6 = 24' U; u: U& L' r; J: @% M) Q! n
    factorial(5) = 5 * 24 = 120
    7 r6 v- ]7 u9 k. Y% [& [* Y7 F  H# C; V7 I
    Advantages of Recursion, o( }& O1 n6 P
    6 ]9 }: r# a6 y. c# p- N' \) n3 C1 ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    - \; R) B9 g5 F; X! U
    ' _& t! K1 t, @3 e    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 m& ]3 P+ D# j! W6 \7 T$ k, t. `

    $ P' a8 B: B+ B- [( o, `! jDisadvantages of Recursion
    8 s  G- a0 S- M! F. z; S4 {# V
    9 b0 v* Q) y9 Y" K' |% x: W    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# r: G: b  O5 ]

    3 I1 \* s5 B7 r( Y( k* {    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 e* H: r2 ]9 U
    & a' G; M7 }/ E% y
    When to Use Recursion6 ^7 s, w3 S' v1 b( f

    ) d7 L9 Z) R! ]1 J  H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    / H& v# {0 w  e5 b8 d3 }' N/ T) G/ f6 a/ O
        Problems with a clear base case and recursive case.
    9 Z7 q0 w6 i9 E; J
    6 W2 K5 Z1 F1 w* V0 ZExample: Fibonacci Sequence8 H) w9 T" A6 O- G* _
    * ^) N: q1 T* U: m0 S
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . [4 s0 Y8 y! P# f  B( ^! |" g& T8 g/ |# l* p
        Base case: fib(0) = 0, fib(1) = 1
    / @+ b( ~# r0 t2 I0 [% ?! f: z6 v, y: H* S( ?8 p
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 A4 j+ u0 p2 q# X- t' n6 C. B9 d# J! y+ e- c* `- Y- v& F1 D/ F
    python
    & C# @7 a) O- ^. g+ p9 d) G" C# a' R/ S; K

    1 L" W/ Y$ y# [' Y, tdef fibonacci(n):; R" q- v; a4 F1 ^" X0 f
        # Base cases+ S4 r- X1 C- n! W0 j' A
        if n == 0:! {# Z4 f6 l. x4 Z1 l5 B( k& ~
            return 09 z+ \% j8 S+ c7 B
        elif n == 1:7 l6 u7 I: V8 P& e; h" {
            return 1( s) q0 k- k8 ]6 r) |  N0 X
        # Recursive case
    : ]9 V! @. Q" n+ L0 B; i. a    else:% _9 k4 O' A3 G1 O* e
            return fibonacci(n - 1) + fibonacci(n - 2)
    ! ]  \+ W; q2 b- Q
    . L9 m& B) A' i- y9 i2 s! N* G0 J# Example usage6 k+ A: x5 ~) a
    print(fibonacci(6))  # Output: 8
    ( @, N( n. o- v* g! g$ d
    + v) z4 V  a: E/ r  E) gTail Recursion
    5 L- _7 o! s0 b8 ?
    ( P& V6 u' `; ^Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).! D$ n' P6 R+ \6 f2 S

    ; p8 p& y( a! r1 X0 V$ C7 ^2 }In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-26 18:51 , Processed in 0.031254 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表