设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1552|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    2 U0 C* M4 h* g8 b7 C1 o' V8 T2 e4 m
    - z# r! |+ m. \% g' Z+ S解释的不错+ ~% U' @( n! L9 {2 o; Q- o
    5 f; @, S$ {7 y% K7 I
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% a& E& V" I+ ]5 n1 w
    7 u% t* {- j; M- y# p
    关键要素" k* P  ]& K+ ^7 O& Y7 o6 K$ @
    1. **基线条件(Base Case)**
    5 T6 D" t' ?! w3 u/ f0 P5 b   - 递归终止的条件,防止无限循环
    + q) b; a& n: `3 z7 n& V/ `- O   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1; s0 D4 X  t* _, e; m

    0 b- ^* ?! H% a' J3 }2. **递归条件(Recursive Case)**6 a1 ~+ K' |; n/ X7 u+ O
       - 将原问题分解为更小的子问题
      ~% I6 K4 h( J7 p4 N' t8 j   - 例如:n! = n × (n-1)!
    , k) H* f0 O$ E) v  J1 a9 U
    2 a5 G( L# h# e: j  l. } 经典示例:计算阶乘% Z$ R2 Z# B% m# n3 {- S
    python# {; U& b) i/ w/ D/ c
    def factorial(n):. d% u6 ~7 Q' v4 a: L
        if n == 0:        # 基线条件* \, s) k" e- r9 r
            return 1
    ' w( Q' r/ m- p. J5 W+ q8 _    else:             # 递归条件8 W% N8 ~# b9 i3 f: F- d3 w
            return n * factorial(n-1). n! n# [  t) }3 f% p' @
    执行过程(以计算 3! 为例):3 q; C/ C/ b2 @/ l9 k! }
    factorial(3)
    5 \* O3 c( v3 @9 d8 Y3 * factorial(2)
    , E3 J; c. J/ f: p4 J3 * (2 * factorial(1))
    $ L7 w$ `' w. {  a0 ^3 * (2 * (1 * factorial(0)))5 q' r1 R8 K' d7 \& K: r, c6 F: o
    3 * (2 * (1 * 1)) = 60 M. i* |3 F0 R, Q) t5 q

    ' R' `8 Y6 A6 L6 s3 m 递归思维要点
    - b1 ~1 \- n0 ~$ \1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & T4 b- f7 F; P- U' ^2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . e; e" H. ^! K: L  e3. **递推过程**:不断向下分解问题(递)
    ! W; y1 C7 J' g4. **回溯过程**:组合子问题结果返回(归)
    : \% [7 J7 o: @5 q
    7 Q$ D& L% |0 s; v9 \$ E 注意事项. L; z9 z" t9 r  [7 i, D: s! H" x
    必须要有终止条件: _8 Y' s) A2 X
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  b- ]! D# G. ]1 J3 i8 {
    某些问题用递归更直观(如树遍历),但效率可能不如迭代8 m7 Y! |( E" }' d- \; U
    尾递归优化可以提升效率(但Python不支持)( q' d9 `: X- o+ I
    # F& P4 t, x( |
    递归 vs 迭代6 M4 @) e' f+ K% f, b7 G! }7 I
    |          | 递归                          | 迭代               |- j# w9 K  k3 {0 A+ N* h
    |----------|-----------------------------|------------------|
    ' w/ _, g- ]4 S- w- R/ R$ _| 实现方式    | 函数自调用                        | 循环结构            |9 v9 V; _& g+ ]# |1 u: D7 B
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ) _& ~3 ~$ f3 t# G- ?| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    6 F1 M( H/ x2 T' E: e+ j" l, d| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 o$ J9 G/ B% n) Y/ K3 [

      R6 M& [$ x+ o9 m1 d+ M 经典递归应用场景) e9 ^% ]$ r! |6 X' `2 f! l
    1. 文件系统遍历(目录树结构)! k8 {- k- ^3 L# o2 R0 q) n
    2. 快速排序/归并排序算法7 R7 M: w. B1 h9 z  t
    3. 汉诺塔问题# a/ y+ h4 M' V
    4. 二叉树遍历(前序/中序/后序)
      p: X$ Z, p; }- e' j7 J8 x* F# ?3 w5. 生成所有可能的组合(回溯算法)
    * q1 O+ O4 m( d+ s7 ^9 m9 u# S, m
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 07:17
  • 签到天数: 3120 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) d1 Q9 d9 _7 X! D+ I! J
    我推理机的核心算法应该是二叉树遍历的变种。
    ) e$ s' p9 g: p9 W5 q另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' ?* e! k2 C; A; i
    Key Idea of Recursion
    ! E9 k- w) f% h6 b" t; C4 l# o+ W% Y5 C" P
    A recursive function solves a problem by:5 b/ L6 h6 k! k1 }3 H

    2 b3 Z+ o/ s# G# {( X' g    Breaking the problem into smaller instances of the same problem.
    / c9 ?8 }0 P6 r4 R
    1 h) F" H$ f7 o( ~- I  n- t0 }    Solving the smallest instance directly (base case).  j4 |1 u' U: M! o( d

    # f6 a1 T$ p# G5 {3 c2 T    Combining the results of smaller instances to solve the larger problem.
    9 ^, y7 `$ p  c) ?6 C: g$ u
    8 \! x5 J- I7 y9 ^3 r9 N/ tComponents of a Recursive Function
    : V' J9 A/ I, z. q( C
    6 L6 [) a7 a" q+ x( S4 ?    Base Case:
    , r! m! s# Q, \* K: k  d* A8 s; c' n- o
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- p0 L& i# n2 M+ B  V
    ' y' P3 I2 g2 j: I9 l
            It acts as the stopping condition to prevent infinite recursion.
    6 W( y! l) b/ s6 H% F5 ?! O+ ^' r. _5 Z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 x: Q+ S1 e# [$ R6 O- B. z% [
    # u( M9 N9 h0 x4 ]2 U( s2 U4 r
        Recursive Case:
    ; d+ O: j; J0 ~' I: Y- \) H$ ~, G8 r0 e) j+ D3 J
            This is where the function calls itself with a smaller or simpler version of the problem.
    - C3 ?: }. K% B# f9 \# g) g/ S% Y" l" ?  z- h
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / E. u$ K6 }1 ^$ D1 W3 k/ B8 x/ P' E
    Example: Factorial Calculation" Z* \6 r8 k# a( G

    # l$ k3 |& b/ ^The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% ?; o* `) j  q1 f2 F) r, b# r

    # _$ S) W: V5 c3 }    Base case: 0! = 1
    + X, n2 J% M$ A+ Z: S% @/ N+ s4 ?
    - q& e. n" Q6 Y7 y/ B# A$ f    Recursive case: n! = n * (n-1)!
    3 \. G7 g9 g9 Q; B/ {5 n- o
    ! W; M: e! t% N, CHere’s how it looks in code (Python):
    0 j. ~+ E) c( T6 l$ J8 |; Apython: I3 d+ }- i6 A* Y. N& b

    + u  m  G, |0 S! m* O8 n6 g' H* Z  U5 F0 R2 N1 ?
    def factorial(n):7 A  s$ l+ j; m8 d
        # Base case2 k4 D2 }6 h. B3 R/ s3 y
        if n == 0:6 D/ O; `8 ?- F4 R' Z
            return 1/ V2 L. a, q  \3 S2 R* t
        # Recursive case: z) x" S4 y/ F7 z- R
        else:
    1 E' U% {6 p" P; |% G! F" }        return n * factorial(n - 1)* T" B1 |6 J. ]  v6 }$ h- W) ?
    - @+ `; h8 A- z: L- b
    # Example usage
    9 y6 z: S0 L! G+ U. Mprint(factorial(5))  # Output: 120
    9 @9 Z* i# N/ y& S" |6 Z
    7 P, j& o: x# kHow Recursion Works! E8 G& }: }3 X
    8 ?6 G0 G6 `( n$ q
        The function keeps calling itself with smaller inputs until it reaches the base case.
    0 c! l& t  D/ m* l
    $ |+ o- s. n" }7 H; f4 e: R/ J    Once the base case is reached, the function starts returning values back up the call stack.& O* v' ~, H& x9 k0 f5 u8 ~

    2 o% @& b6 e1 \" o4 i    These returned values are combined to produce the final result., Z; K% a# T; r3 e7 U- U

    8 [4 o5 |' x! q/ ]+ sFor factorial(5):; V2 A" f3 _( ]' ?: S
    8 E2 f( ~, a1 |# n" U  l% K  H
    - w) O! z) k* I6 V/ t2 i6 o
    factorial(5) = 5 * factorial(4)/ _8 o" o: ~) x  @) r8 W
    factorial(4) = 4 * factorial(3)
    ' l! x" L- \# j( P) x) W" Lfactorial(3) = 3 * factorial(2)  U4 k; a( k' k" z/ g
    factorial(2) = 2 * factorial(1)
    " S" u, X' J) Y  x+ b: p3 afactorial(1) = 1 * factorial(0)! M: b' K9 \- p" n% d. }
    factorial(0) = 1  # Base case
    . h' l3 I7 j9 C* s
    ' x2 A/ l$ e/ V; r2 f& }Then, the results are combined:
      \% c( R' }, a$ u( I4 |4 `4 X+ z& ]8 u! z4 [6 O( f: L
    - c- s( H8 x( @  K  d
    factorial(1) = 1 * 1 = 1
    4 Z; a6 D% W7 K6 l8 Z  N+ afactorial(2) = 2 * 1 = 2
    2 A+ T1 T) B$ y$ t0 ]" {factorial(3) = 3 * 2 = 6
    " M8 L& L& T4 M; P  g3 ?7 Qfactorial(4) = 4 * 6 = 24
    : D: J$ R% s  c9 y- ^factorial(5) = 5 * 24 = 120' J! ]: r" k- F3 ~
    . f  v+ k" A! q6 [
    Advantages of Recursion
    2 N$ x/ @4 K" g5 r. Z" k% w3 |% @  M6 _; S# E
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 o4 ]9 z6 F% v2 K4 D( e. ^( A4 p/ W

    & E) x- \( B: G) `6 T2 Y    Readability: Recursive code can be more readable and concise compared to iterative solutions.% M  r8 A0 g5 l  f# f$ e7 F0 \
    $ Y/ ?. n; T8 R5 e
    Disadvantages of Recursion1 b) N7 Q: G# U

    ' W% m% x3 |3 _% F; X3 l9 t- `    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    4 @$ L. o) m' ]  D# R0 M0 r- ]5 q( l, q# O
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( N9 _- l' f* q* ?4 [/ H8 n! H
    9 K5 R( S" m7 Q( v( ^+ E0 H8 V' J4 g8 z
    When to Use Recursion, \. l, ~" Z5 F7 r, }8 D+ Q0 _

    0 E2 D9 C7 r6 E0 y3 ^& _. ?5 ~    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 k, g' x/ R! g! H3 y0 q

    / s! C; _  h; o3 Y. X4 Y9 O    Problems with a clear base case and recursive case.- H6 E$ I. C2 }/ c, o

    ) l8 d! E* f% t8 r/ x% SExample: Fibonacci Sequence
    5 C- r4 ~* ]/ K1 H+ \
    / ?5 ?5 I6 y$ x! `: PThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    0 O" ?2 ]( K! I" I# L$ C8 I& f
    # M8 j. r; l( u8 o4 J3 W    Base case: fib(0) = 0, fib(1) = 1$ m% M) r* [) R3 X7 n- U) x; W

    8 b3 r4 ?2 [  l: B- Q- r" D& Q. l    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    9 s1 P6 z  ]7 R5 m! \* M
    ' \$ z5 v. W+ {& H! I8 fpython
    * g& N0 {$ z% }$ N/ u  p: I. d0 N# Q$ o, K# W+ R
    7 c3 ?% X5 [  d9 h. p, t( \2 r
    def fibonacci(n):
    % i. f+ ~% w9 G3 E" e& [1 n1 p    # Base cases
    - N9 Z! D+ r5 Z5 _    if n == 0:
    1 _0 a/ o- P3 o4 Z6 N7 w        return 0
    & w9 L; w1 q, g2 p# X0 n1 k    elif n == 1:
    * S5 C, V1 ^, T8 F( V/ ]        return 1  e* R& R( u0 v& O% }8 X3 q
        # Recursive case
    4 j# [5 k5 Y8 J    else:
    ! d$ C* u; S  |3 p$ z2 G        return fibonacci(n - 1) + fibonacci(n - 2)3 ?3 @( ^8 t. ^8 b- Q0 y3 M# R% K
    9 M4 j* X# \* R0 Q
    # Example usage) a0 p: \* b* [5 H
    print(fibonacci(6))  # Output: 8- t% b, n4 k8 H  @  c+ r5 t  ?
    - w5 J' e9 S5 b$ p) s
    Tail Recursion/ |6 S6 ]! x. [8 [! e

    0 {; ?- [& x# u& u  K, \Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& X8 i( N; T3 y# S% d& y  S
    8 R& V9 I/ v0 K1 w6 \- z' M( b- K
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-18 04:37 , Processed in 0.077716 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表