设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1430|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / ?! E4 _' z- s' j) o+ l7 q

    ! j% V6 w( P# E4 l解释的不错
    / t3 p( g* K7 y1 K# e
    7 x6 k; q+ E6 I- Y递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。$ F1 @# v- y$ G+ Q' ~

    9 w( ~5 I) U* t 关键要素8 K9 c, d8 q3 F5 X1 e% x
    1. **基线条件(Base Case)**
    3 F  v& C7 B% q7 W3 f   - 递归终止的条件,防止无限循环
    ) `( j" b1 b: J) c3 a% L: ]/ x   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( |" a* n( }" M' x$ d' b

    5 j. Q9 J$ S  {8 Q! w: w3 U/ ~# _' S2. **递归条件(Recursive Case)**
    " L0 H( c# x  Y, _   - 将原问题分解为更小的子问题- G, V3 Q1 z9 t+ K7 l
       - 例如:n! = n × (n-1)!
    6 j- M& U. N+ X
    , n7 R+ v# j5 K6 Z: Z  `  [ 经典示例:计算阶乘4 k( T! j2 k. C# C
    python
    1 m# V; u4 i' I# z2 v' wdef factorial(n):4 @& g) ?# @& C5 V
        if n == 0:        # 基线条件' k# h+ R( G; V; w# |4 ]/ \$ x- F
            return 1
      x; o; D5 _4 x' Z) B    else:             # 递归条件2 F+ p! d  [; D2 K3 o6 D' K" z; C
            return n * factorial(n-1)
    5 D! l7 d% h2 w( k( q* Y执行过程(以计算 3! 为例):
      u5 t, x" m( v/ r, Rfactorial(3)
    , v# x/ o5 c2 i1 a' I' j3 * factorial(2)
    8 G( u3 B* _' Q# d1 Y' S" N6 l" D3 * (2 * factorial(1)); m* r  p0 e8 y8 W: y' t* d  V, G
    3 * (2 * (1 * factorial(0))); w5 U: f6 n0 a  U
    3 * (2 * (1 * 1)) = 68 g4 G' \' [2 n2 n+ Q
    * s/ l; E/ o' {
    递归思维要点
    7 \- I' f9 C( H; ?4 H$ d. a1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    . W# d/ C0 p1 A- E' i! z% L) {: E2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    & G, t. B" r  _4 C8 K3. **递推过程**:不断向下分解问题(递)
    0 Q+ E5 s! X; z) o7 d$ _. }: B4. **回溯过程**:组合子问题结果返回(归)
    ! ]0 h' H8 A! E! R0 d9 x2 I
    ) @. f6 \8 ^9 ^+ d$ t 注意事项
    8 m1 S: y! _9 _: @1 A, u必须要有终止条件+ n8 {" i0 x) a$ S5 b) }
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 w/ q; D; b2 M. B" O* W1 q8 c- r1 ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 H9 D8 H2 p0 h& g- G, ?+ T% _尾递归优化可以提升效率(但Python不支持)
    # N2 f+ B, p( G: D( o# x+ _9 P* K+ L
    递归 vs 迭代# B4 ~! r5 o3 i
    |          | 递归                          | 迭代               |
    $ Y+ b& c9 b- A2 X2 m5 n|----------|-----------------------------|------------------|2 U. X7 X2 X4 [4 l
    | 实现方式    | 函数自调用                        | 循环结构            |
    5 H5 V  e9 N2 @0 s- A9 X% {7 N| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 _* K1 e' u: p
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    # i: v, F2 N$ t2 _3 q1 c| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 e/ b0 n5 b. \7 T+ E0 t/ a3 `
    7 e6 F& [; ?# J( m4 Z
    经典递归应用场景
    9 C9 t4 _3 k$ h1. 文件系统遍历(目录树结构)
    7 H2 C, L) l* _/ h9 q0 l  j2. 快速排序/归并排序算法
    / c7 ?. y4 J, s  y3. 汉诺塔问题
    * k* @. F6 a8 ?7 q& h4. 二叉树遍历(前序/中序/后序)1 L& D$ Y+ V* E, x* {
    5. 生成所有可能的组合(回溯算法)
    ; R6 ^4 B0 v% }! Y7 q2 d3 T5 U: q% z6 C8 D  R) I' n3 M3 o, Z7 T
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    11 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. `  I; f2 f9 o, J9 j: d' n0 u
    我推理机的核心算法应该是二叉树遍历的变种。" V6 E0 o* E. r+ E
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* K  \5 W/ G" y
    Key Idea of Recursion- K' L1 u% q. ^9 n. D! h3 m
    * {3 f/ z! _  u2 H
    A recursive function solves a problem by:- @/ N* Z: s/ w/ L# ?& e
    7 c+ c1 w+ t* c# t! W' l8 a
        Breaking the problem into smaller instances of the same problem.4 a# u# y! Z- r1 H% j7 T" W, K5 ]& _
    3 F. i/ z: _" r2 r  L
        Solving the smallest instance directly (base case).$ u+ b5 |$ B4 J) A" Q

    2 t2 O3 ^! H3 ~, U6 r! `. ]    Combining the results of smaller instances to solve the larger problem.
      u3 j. k. \8 d- s' X. k7 ^, \0 z+ I+ g/ Q' G
    Components of a Recursive Function; H1 ]$ L7 u0 O) a2 i
    7 R  a5 e& |3 Y' i  v! G
        Base Case:
    * _* Z6 {; c: W; f/ S  W1 R8 D7 Z# u  }) O# ]% N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ k, x( B% n8 J% H
    . W& d: Q1 F* d0 n" s/ g" w1 {5 ^
            It acts as the stopping condition to prevent infinite recursion.! W" E7 C, U. y! G" l

    - X2 b# A' V1 y( g        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( O3 n$ G# B) i1 N4 d2 d
    4 X! _5 v5 G7 Y9 _) h; q+ H0 f
        Recursive Case:
    0 u  p% y/ d" Q* L2 D) o: M
    8 t: z1 S/ G) b+ `) t        This is where the function calls itself with a smaller or simpler version of the problem.2 B( d  \* K* D" \; j! ?

      R" x) j# r* O        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: N' f- l$ R8 ], T" ~3 v& ~5 B

    6 O5 I% L6 G% E  zExample: Factorial Calculation: n& b  @6 I) @2 Z/ N8 O

    ! e8 b3 o- S: ~/ L; Y5 ^0 hThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, N: T7 L0 Z2 ~# Q4 \
    7 [7 Z; E* m/ F# y, F7 @
        Base case: 0! = 1
    ) \) j& z+ A& x+ ^7 }" V% e: e) ~& N; ~
        Recursive case: n! = n * (n-1)!( m, x# F0 p3 I( x/ B
    . S" H5 T/ _, c
    Here’s how it looks in code (Python):: V$ L! \3 {) w5 e# a
    python
    - A* M0 D  H4 V- P  E6 L
    7 J8 I7 n+ N# [0 g6 R) U8 K  I6 d  o' ?/ B4 O, I
    def factorial(n):9 L/ t3 R/ ~/ H) W
        # Base case$ `! e5 n- V! l% S+ o
        if n == 0:
    5 z& z. ?# o9 |8 O3 ^        return 1, d$ T+ e0 X  M( o/ G
        # Recursive case
    : }# W% W) c# N" X$ G    else:
    % q) e" a3 _! C- T' Y$ M# J        return n * factorial(n - 1)- o' m0 B& n; I9 N' O4 M% F. S

    7 f2 I6 [6 h; C/ w" D# Example usage
    6 t- ?3 J5 e- `# ^# A! wprint(factorial(5))  # Output: 120
    2 D# {# ]1 y, q& Y/ U
      ~+ c/ Y' {9 w2 yHow Recursion Works& o! x1 W& E0 F0 S

    , R9 |0 L% V2 m* Q    The function keeps calling itself with smaller inputs until it reaches the base case./ z! M7 C7 L( K, y- C+ {/ `
    " Y  U; T( z$ ^' I, `& _9 ?
        Once the base case is reached, the function starts returning values back up the call stack.6 Y3 S! W( U( H& m' ^

    ! w$ M  @9 A5 s  ]    These returned values are combined to produce the final result.9 B  P, L# }4 |4 z4 L7 L2 V4 e& R7 @
    & h, L# V* q  p1 |( ]
    For factorial(5):) K0 l: D& O, U( ~7 x8 g  i3 V
    6 s" G; ~! a8 Y) u$ ]
    ; {1 t) f+ p- V3 W) I( B2 ^
    factorial(5) = 5 * factorial(4)& Y+ \+ i: m; s* `: E- ~8 }1 k: ~
    factorial(4) = 4 * factorial(3)
    . D5 m$ R) ]4 U; O0 L$ H) g( p; Vfactorial(3) = 3 * factorial(2)' c/ f8 D& p$ q4 U$ e+ r* f1 r
    factorial(2) = 2 * factorial(1)0 ~+ \  Z0 b4 n: a9 I! Z7 \& A
    factorial(1) = 1 * factorial(0)
    - ], _; g& E/ b/ sfactorial(0) = 1  # Base case
    ! ?. ^0 s/ T; R- f
    . V/ t5 w! C) `3 |Then, the results are combined:- {6 \! _6 b% N" \7 y: D4 F5 i! h

    # c1 g+ `& J& F" n! B+ y
    ) u9 s& B/ o9 {9 Afactorial(1) = 1 * 1 = 1
    ; [+ n4 Z2 p7 K& o. A5 ~2 gfactorial(2) = 2 * 1 = 2( }/ `! t9 t+ s2 R. K$ \3 B
    factorial(3) = 3 * 2 = 6
    & N+ U' \6 B; A7 r0 ?' A4 }5 Rfactorial(4) = 4 * 6 = 24& w7 c. v$ y/ g
    factorial(5) = 5 * 24 = 1203 V' k2 `8 ~2 t  x$ [' F

    . a6 Z: l( |0 t, {; z) TAdvantages of Recursion
    + i0 W, |0 w1 H# B! |$ Y3 X4 t  j, [6 P$ S2 l
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 O1 F3 q$ w6 n

    ) k, G* |& j. t5 B7 Y9 E    Readability: Recursive code can be more readable and concise compared to iterative solutions.
      m* U9 g! @% Z% W; a& S
    + E  {6 I; ?+ n2 |Disadvantages of Recursion
    3 m" N! q! h3 |; b4 C
    2 k2 w  }+ C9 x" B    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# @; Z/ r' I6 S- J4 a$ i7 o
    2 a  P  ~1 k# g3 \
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 Z1 x' k6 v. y8 `* O- Q* M
    ' F0 G4 X* Z0 _1 p! TWhen to Use Recursion4 p' S, Z# ^% y: o' k$ M+ k

    3 Q- p2 G: e: L- T( t    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* `. h$ e  ]$ ^! T. c+ S
    ( e5 Y0 X7 F5 B
        Problems with a clear base case and recursive case.
    + _- D' T- U& a* b
    5 ?  L2 s1 [! q5 ]% x9 l' g; uExample: Fibonacci Sequence$ I' h% @5 K0 f. E9 V: E+ J: M

    6 K" d& w; K- l4 b8 p4 [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    : m; k5 t, ^3 @: B# `5 ?: ^9 {; e( l$ t. J0 r
        Base case: fib(0) = 0, fib(1) = 1
    5 p7 a. X0 |6 {3 F" r# g& G
    - P3 ^' y5 l/ ^    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) Q9 X% {2 K; L. H, l) A$ r
    7 B. c, @% N: V5 S' F! a/ ipython
    1 H. }! F' _# K
    ) h% {  g) R* i0 K, ]. ^  X9 _( u8 [$ ~
    def fibonacci(n):
    & F7 g/ h/ p& |2 _# O    # Base cases1 }1 B% m- [2 w4 U* C& J! t! n
        if n == 0:
    % Y( j2 I3 Y, k/ q. r        return 0
    * ^; S: g* k4 n: C8 z/ I0 g    elif n == 1:
    . [& e/ u+ c$ |2 @4 T0 j# d        return 1
    . y# a) T5 O2 r8 V6 g$ |    # Recursive case/ Z- j7 u1 k# G7 U+ C
        else:8 x! L) q, x6 s6 I; N2 b3 ]% `
            return fibonacci(n - 1) + fibonacci(n - 2)4 R$ k" i1 S6 E  h5 l0 e
    : s$ n: z; f8 I% j. d
    # Example usage
    ' |  `0 }3 ~& ]3 v. Lprint(fibonacci(6))  # Output: 89 O4 r$ |; u9 A" n, T2 I
    6 H( ^$ c+ z+ c* b  S7 c. R3 y
    Tail Recursion; h9 r' q% v( L! g7 Z
    1 s- K8 o5 K% r
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; s! f! T; m! L. Z9 ^) u6 W( c# g' @
    ; J' Y; `) k; q9 F
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 18:43 , Processed in 0.030083 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表