设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 265|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 4 天前 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    " [+ W- J4 l, g8 K  ?) p1 c( E$ p6 V% [
    解释的不错
    4 w. j. Z8 F0 V0 b3 c& R' Z. Z8 r! c; U  C; s& `. z
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    0 E% V! {! R  Y7 G
    3 t0 {: T9 l7 F1 N 关键要素+ y, g% O% y$ ^8 [
    1. **基线条件(Base Case)**4 r1 \  E' w  K
       - 递归终止的条件,防止无限循环! |5 m! U: ]3 K1 {; H- W
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    7 P( y' v- u3 O2 c  V1 F" T
    9 l* y9 a, u* _/ i( z2. **递归条件(Recursive Case)**
    9 B. E# M# t; c$ Q. u8 @   - 将原问题分解为更小的子问题
    / h7 L/ b0 v0 N# ?, k; K9 d7 l# L   - 例如:n! = n × (n-1)!1 Q2 h& ?7 B# f3 g6 W& ]4 U

    4 \& B4 n6 x3 n6 C 经典示例:计算阶乘
    ( q: a+ M+ e5 q; Z! ]python
    9 _4 {! u2 t6 @- i/ t& jdef factorial(n):; x) q6 b8 o4 @% A
        if n == 0:        # 基线条件
      l6 X/ W) s7 ~2 ]7 _        return 1
    6 _7 \" t" M( b" X! q1 A+ u0 B    else:             # 递归条件
    & Q. E+ \2 Z8 y        return n * factorial(n-1)% z3 h. K  s; `4 y* c( ?
    执行过程(以计算 3! 为例):
    ; J- n. X) [& ifactorial(3)
    # a+ n- c- d7 b" X9 H  Q' e3 j2 I3 * factorial(2)3 W' I9 z1 M4 r, g; u$ ?! s6 l
    3 * (2 * factorial(1))
    $ s; C' ^( M7 ]. R3 * (2 * (1 * factorial(0)))
    5 C3 D2 t# l! z" @3 * (2 * (1 * 1)) = 6+ `+ h. u. |3 X5 X
    $ P* B' c% Z2 z# m2 g' p' s6 [1 k
    递归思维要点
    ) J; l) r! S/ M1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ! B* |& m( m8 U& |2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ( u- W" ^( {* w, ^! ]! W3. **递推过程**:不断向下分解问题(递)
    0 K. H1 x4 p, ~6 {- R6 E4. **回溯过程**:组合子问题结果返回(归)0 i& y) D) |0 S/ ^
    . B1 m+ ~; [; S+ H' H4 K5 g8 m$ B) G
    注意事项
    ) `: n' u6 K+ Y2 N2 O- D5 F必须要有终止条件1 B1 T- l3 ]6 B. F. f4 l; ?
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ' x. q# V) e! J7 d8 A" I& m某些问题用递归更直观(如树遍历),但效率可能不如迭代8 s9 b% z9 S9 D' g' g! [5 N
    尾递归优化可以提升效率(但Python不支持)
    + i  Q/ Q- `1 O$ U0 r1 G% }% O. s- v9 P" g
    递归 vs 迭代
    " p1 e: b& W/ I4 l  S- f8 \! F* X|          | 递归                          | 迭代               |
    ' Z. @% x$ w9 T! Z2 G|----------|-----------------------------|------------------|
    7 B( W" v' L$ q" w7 {| 实现方式    | 函数自调用                        | 循环结构            |
    ( B' ]$ N1 Z6 @| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 \. D) w3 d) Y" J
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    - z7 d2 ^8 |) `1 i0 @| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |7 s4 ?1 v+ L0 U9 {

    0 W( y9 y0 v" t 经典递归应用场景
    - J" Y- e- r  n3 m1. 文件系统遍历(目录树结构)
    3 b' s# |- v: ^2 l; i  U( a2. 快速排序/归并排序算法
    6 u+ W" T" d+ k' U& |3. 汉诺塔问题- h  @1 a4 S7 A' }# H( b* @0 Q
    4. 二叉树遍历(前序/中序/后序); L) H) H0 `6 Q( I
    5. 生成所有可能的组合(回溯算法)* U* `( C9 @  P# b2 S

    - I5 B' S7 S# h& S' B试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    12 小时前
  • 签到天数: 2820 天

    [LV.Master]无

    沙发
    发表于 3 天前 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    - a0 u. g( J- n我推理机的核心算法应该是二叉树遍历的变种。
    - h/ c4 }  N0 I5 K! e" ?& }5 B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 17 小时前 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! D1 b! ?6 y8 L5 k; [) N) u! l
    Key Idea of Recursion
    ) m; J- ?* n8 R3 a% w0 f# l3 O( x  o8 }. E
    A recursive function solves a problem by:% v. @# R" n% |6 j$ x

    2 p4 ?6 O/ g2 A9 z6 H8 X* e9 J. ]    Breaking the problem into smaller instances of the same problem.! C' u' w2 C& K) a- F3 [

    5 e5 @3 T' D/ \    Solving the smallest instance directly (base case).7 ]* t9 k$ M* B- H$ `% E
    ' ^6 f5 M6 v9 f6 u& f. r# z
        Combining the results of smaller instances to solve the larger problem./ |  S" N! R1 g) b3 E9 M

    3 n9 `5 C5 A9 T( O) mComponents of a Recursive Function  D1 K! ~' h$ L- o
    . u. o2 s# D. }$ o  K# Q
        Base Case:& _3 x" m: F0 X# p- g

    : ?8 S0 i+ l2 S+ ]$ [; q2 @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ U) {' Z. c! j# E. k
    ( G/ O2 P. Z/ {$ v5 Y
            It acts as the stopping condition to prevent infinite recursion.
    # R; i6 U2 U9 l# U
    6 u1 \4 P) `7 k  d! p! h        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 @  O6 v8 m2 f) A. N

    5 h, @6 Z+ b6 D2 d    Recursive Case:5 H% w  D4 d/ E5 N1 X  l# o

    # ~: e4 v/ t+ G! K) r        This is where the function calls itself with a smaller or simpler version of the problem.! h3 t4 `6 q4 P$ C# x( y0 f% K3 K

    % g" C# H0 p) C. J2 K) v        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    4 g# f* @6 g3 v$ a+ M5 \. l- ?# p2 C
    6 j- n/ e4 n( [5 tExample: Factorial Calculation
    ; E! m/ f& z/ T: }. u" [- f. W/ n$ _% u
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % q$ P! ~2 }! X# d2 o: D1 ^- a, i# \6 `6 w. @) v* }7 X
        Base case: 0! = 1
    & V  `8 S6 s# H0 o  x7 ?
    * k7 V; }( v, W6 P  `4 @    Recursive case: n! = n * (n-1)!
    * s- t; G6 s& L2 v/ V( `, W4 S6 {/ X. Q) Y8 W* ?
    Here’s how it looks in code (Python):7 v) J  E# F& p; d1 X0 B4 `$ r
    python8 z6 _% [4 \3 {
    , A9 a2 g: [1 w+ B' H$ u
    4 ]- y) r3 I! e" X9 [
    def factorial(n):
    ! z( `+ H, @8 k  ^. G    # Base case, o, O1 {' z8 E
        if n == 0:
    & V2 V( F( T, v7 ]9 [5 _2 F1 ~* w        return 1
    , w8 @" b8 U& ?/ g    # Recursive case
    $ v* M- X' x+ ]' D* v5 A    else:
    9 x$ B  W/ _- ?0 E, C        return n * factorial(n - 1)" k0 x& J, i% m% @0 q

    & j3 ^) ~, Y: D- i- J9 R$ D7 {# Example usage- R- g! j' k+ [
    print(factorial(5))  # Output: 120- }5 Z9 ?2 x' w( n9 {
    2 f& [. ~) ]$ W& m2 p" f
    How Recursion Works
    ( ?' ^! k8 ~6 Z& y  @5 t8 }" P$ L
    4 K$ r, Y1 D  T, n    The function keeps calling itself with smaller inputs until it reaches the base case.
      h0 i% |" K7 ~1 B/ ^# Z
      p/ q" k9 j( S1 w. `! W9 u! Z    Once the base case is reached, the function starts returning values back up the call stack.
    / i; Z* W/ P8 u# r
    - Y8 ?6 G7 N- {0 r& _7 t    These returned values are combined to produce the final result.
    7 t* d2 \3 L8 u9 J- }& K, S- n
    $ m& _( {& p2 v8 @0 u4 mFor factorial(5):6 }% O# r1 T% F" K0 H* X
    9 c& z0 N9 `9 m  K
    & T% X; ?  ~2 d. n  F1 ^& y
    factorial(5) = 5 * factorial(4)) r8 P: B/ _* F# n' S$ [8 E$ s
    factorial(4) = 4 * factorial(3)
      K9 P' X* R4 u6 h" m: ?# Wfactorial(3) = 3 * factorial(2)0 ~$ W! W+ D* a; z
    factorial(2) = 2 * factorial(1)$ D9 _3 N" s. A5 E- d0 s, h
    factorial(1) = 1 * factorial(0)
    ; X5 u! H% P: n/ B% }" Ofactorial(0) = 1  # Base case1 B3 E1 g3 }% B/ U& J1 s

    & x: |) y3 h. }; C( W7 N3 ^Then, the results are combined:
    7 m+ L+ r+ ~# a1 O8 i" G* w7 V" [6 J, E6 ~; s9 M

    ; J* S$ `! i. f: R1 V& `. L9 W, z  }0 ?factorial(1) = 1 * 1 = 1
    : S; m& R8 H. V8 l- h6 Hfactorial(2) = 2 * 1 = 2
    9 e- V2 E6 c% s6 N2 ]% ofactorial(3) = 3 * 2 = 67 Q; ^6 m. O& ]
    factorial(4) = 4 * 6 = 24
    0 m( J0 d$ d) M5 lfactorial(5) = 5 * 24 = 120- Z3 P6 p) O- T8 `+ X: W

    4 X& w# A) ]7 I- R" ~/ h, ^  VAdvantages of Recursion* V# ?% C5 o1 g- Y1 X" A
    6 p8 M& y# p( r# g
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).: J0 Z6 x/ s$ H% u3 `8 M

    " o% M$ h: m  f6 ~0 H: a' q3 D    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    , i* [" N. u" [$ s4 c% [, u, _$ D9 |' S: n! T* ?4 s/ s( c
    Disadvantages of Recursion( ~, i) C3 P* b1 i
    9 f4 G# P7 w4 W4 H
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.- b/ D" c, r" L. l
    4 d) u7 ]. j8 C; B. J9 f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    7 b2 o5 X+ l2 }- O2 ]' h. e/ O- O1 c7 H, Q+ f7 W4 e
    When to Use Recursion
    7 @0 c2 p7 U: I, a. _5 g, i  P2 o/ ]' J1 c* w+ K  S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* p7 h1 \2 L, T9 O
    ( Q$ i4 P  I/ }: r/ z* R6 L3 [
        Problems with a clear base case and recursive case.
    % V7 C8 y% B# e1 u
    - ^/ x5 n+ G* r" O: ]' uExample: Fibonacci Sequence
    # d" ^9 N9 x8 K. n4 R& C" ^1 ^1 I+ m$ d2 A# X5 f+ Z/ l0 G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& |; Z' x/ I8 q
    - Y! o, F7 w) m' r$ K
        Base case: fib(0) = 0, fib(1) = 1
    " }# i2 }6 a! P
    9 D& h# h/ V4 i! T    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . B* \; \1 ?1 y! c& t) a$ _
    9 a9 e3 t1 Z! }$ z& U/ _7 Kpython' F3 `4 B2 D4 M+ ]6 O

    $ H2 F. q$ t1 X' N' N/ \; ]! r: C3 a% p* W3 x6 U' p- h0 ?
    def fibonacci(n):
    8 |! N6 O' o7 i$ |- T4 ^7 e" u/ Z' M    # Base cases
    4 j- @& A* m9 F) D    if n == 0:
    + M! V1 W' o) k7 c% e) P        return 0. `2 R6 A: G' R  D
        elif n == 1:
    ( {6 D% a( I' l. r5 z! p$ g        return 16 T  c& _  P4 s
        # Recursive case. e: U7 P8 L* _' I
        else:
    , a: ^2 q: r2 ?2 `        return fibonacci(n - 1) + fibonacci(n - 2)0 P2 K3 }$ R4 g; p8 q
    6 X6 t& \$ h" ?# J
    # Example usage
    " H7 c. ]- N- X; l( Dprint(fibonacci(6))  # Output: 8
    1 A8 v1 B% G* U+ z0 M. G# R  r4 `2 p) i, v* ?, e
    Tail Recursion
      J! m- x2 j" A- s2 A; m
    * N) U% b, D3 D+ _! k3 y2 QTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: A$ R0 C# n% Z; g

    9 b6 g0 {0 Y4 S$ h$ dIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 17 小时前 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-2-2 17:56 , Processed in 0.033577 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表