设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1769|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * H  B1 j; t+ |0 W  N, V. q. z
      x" I$ s9 z: S+ @& f3 {- U
    解释的不错6 \& c* \) _% y4 q7 _7 M* D

    0 U/ H* {7 H) C& |# J) U递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; C/ ^0 j; @; {" c

    3 C, y; G$ E' f0 P* c4 J 关键要素% b) i- F! Z& [5 S: R* p* d
    1. **基线条件(Base Case)**
    & d5 a9 P5 L+ |) U1 p   - 递归终止的条件,防止无限循环
    1 L/ R" B. ]' o; p! x' s   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# b* }; n' \, z

    % r9 o1 ~& I8 S2. **递归条件(Recursive Case)**  s! G$ t" m/ l& B  X7 E( W
       - 将原问题分解为更小的子问题$ I# o; n. E$ H  g' r% C
       - 例如:n! = n × (n-1)!' v1 N& [. e7 v, }

    # f4 E6 ~  T( F/ [9 U6 U+ P" s$ `) o# k 经典示例:计算阶乘
    , E0 J: H4 M) Wpython
    1 R! {; E" p) l2 bdef factorial(n):
    * K& `* d' _6 S; Y* X    if n == 0:        # 基线条件
    7 E; d) l: o0 [% _: q        return 15 }( N! t5 G! Z. Z6 N
        else:             # 递归条件# k9 S/ F5 G7 ^, {* `6 h
            return n * factorial(n-1)2 X1 @$ t/ w+ W5 h+ i$ i
    执行过程(以计算 3! 为例):
    6 K) J& f- _' h5 @6 Kfactorial(3)3 M# R+ t- F- A( C* q: Q
    3 * factorial(2)
    # `! Z; |, d" R5 ^' l3 * (2 * factorial(1))
    0 w, N: Y& O3 A' T  V0 M/ Y3 * (2 * (1 * factorial(0)))
    7 ~9 E6 T6 A8 v% K3 * (2 * (1 * 1)) = 6
    2 o) L6 G6 Q1 P4 m. G6 a
    2 S. Z8 I6 C' K1 ^. l6 B- e& R) L5 p 递归思维要点
    4 M' }! Y, K( x+ _; p2 F1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 j( Z/ b, B' ~& i  D: b7 J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); O& n) A. |: ~9 [( s
    3. **递推过程**:不断向下分解问题(递)* Q" O1 t7 S! s  m- M' r& Q' g
    4. **回溯过程**:组合子问题结果返回(归)+ w5 p/ N0 Y' f1 d6 |
    1 t; j" e& q  K) L
    注意事项9 A' j$ S) r3 \$ [8 x
    必须要有终止条件/ A0 f2 ~) |$ B5 t# A6 W: j2 L- A2 j
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* S6 S' `( P8 ]% b8 |4 ?8 E" R# n
    某些问题用递归更直观(如树遍历),但效率可能不如迭代9 [! B" z" K5 Q) q& g7 {9 b) c
    尾递归优化可以提升效率(但Python不支持)
    # Q, O7 h; Q1 P: f# R* ?9 m5 s8 t% T8 C; e: b' v
    递归 vs 迭代7 a1 a( M; Y5 M/ l- v
    |          | 递归                          | 迭代               |0 B+ Z/ s/ @$ g1 d' K  v4 k& b
    |----------|-----------------------------|------------------|
      ^( M% g7 g, J7 v8 l| 实现方式    | 函数自调用                        | 循环结构            |
    & h0 r+ }+ C" X1 S' _  s| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( V" b& V  f0 J# o) c9 I( Q
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    * R/ k( x2 Q# ^; C6 Q| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |* J; ?6 M/ k& G4 ]: |1 L2 W
    # f9 C' r# ]* |- y# k2 t5 `) c
    经典递归应用场景
    / @: _. ]  j/ r+ O- n5 R) f1. 文件系统遍历(目录树结构)
    1 F# k2 d/ O( ]$ k! c2. 快速排序/归并排序算法  U. r' }& ]( h  ~2 U
    3. 汉诺塔问题* X+ _- `/ H( W) ]$ i: N
    4. 二叉树遍历(前序/中序/后序)% C( b, x0 u; }& H6 a
    5. 生成所有可能的组合(回溯算法); n% `& O! N1 |

    - U& t  B! v/ d8 K! K试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    半小时前
  • 签到天数: 3142 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( B- Z; @2 T8 r: D+ H
    我推理机的核心算法应该是二叉树遍历的变种。
    & K; z2 z0 G5 j$ r, K另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: w2 }, v2 X" ?4 y2 G0 i
    Key Idea of Recursion/ ^' w6 m( e0 N8 v% y, z* n8 M
    ! [5 P/ x2 _7 a6 x
    A recursive function solves a problem by:: K' z/ ^- T" X. u
    " a7 ?; s% c0 p; |7 U& ~" a5 n% U7 v
        Breaking the problem into smaller instances of the same problem.% \& l, `% J1 p. y8 S! [
      d  H. s- k1 a, g# c
        Solving the smallest instance directly (base case).. K+ d/ z' \3 z- g

    - \8 U$ M4 |) D! j+ `    Combining the results of smaller instances to solve the larger problem.' v# d, B- y* `

      W9 [; L/ d# I' y  m3 c! bComponents of a Recursive Function8 h0 S0 C# A$ T9 }8 k
    - S. W9 C) H3 E2 `: H4 ]
        Base Case:( j$ [' t" A5 I. p5 F1 e* e
    ) f" d. ~' a( e& E) I
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 }: P) f" h/ y
    , R! u$ W! n1 ~2 z        It acts as the stopping condition to prevent infinite recursion.( J4 y4 j2 v, L' }

    * k, ^% Z! T1 j8 y0 C        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 \! x$ E/ L1 v/ V
    $ O$ ^) b3 O$ E% z    Recursive Case:# H  y- R5 R$ _) t4 K

    6 q& F: q8 A. e1 k        This is where the function calls itself with a smaller or simpler version of the problem.' y% H/ n7 U7 ^$ |# S% ^3 R
    0 ^+ s6 D/ L: x  o' ^  L5 Q
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % f: r, d2 H" e
    . I' r' r- x" @1 _Example: Factorial Calculation$ ^' P$ f0 Q2 M1 Y8 z5 i. ~7 d
    9 t) Z0 z; B/ T- ?4 y9 p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. `  A: g5 @0 s% S9 y2 l+ M
    - N5 e( p$ \* I3 C# N
        Base case: 0! = 1
    6 m7 `- [) n& r, K
    8 n: {( q# i" M- m    Recursive case: n! = n * (n-1)!# O' s" e/ f" l. Q1 h$ P/ v

    2 W$ ]& K9 N- ?+ @9 z( NHere’s how it looks in code (Python):
    6 u, R. q1 u8 w  r+ wpython
    # @9 j3 b* r. w1 G. R
    5 |- P' E; _( ^6 z, C  W8 L; ~0 S$ H
    def factorial(n):  T$ u) Y3 I& n3 f, u( K) t
        # Base case
    # M8 {2 Y) a/ E* X    if n == 0:/ o/ t' h6 ^2 L' U( U6 x
            return 19 o) ?- d! M; D: p5 e
        # Recursive case! b! s+ H7 U, k2 m& d5 M
        else:$ ?+ Z6 g0 A6 X: c! a* z% C( s( ]
            return n * factorial(n - 1), l$ [, t  c* Q! S
    % \' K! O* q9 ]& m
    # Example usage
    " S4 ^9 X6 J/ Aprint(factorial(5))  # Output: 1206 Z( w7 @* v9 C0 t4 i
    $ m; [5 b8 N& Q
    How Recursion Works
    % @% g" ?& J5 _( m. m+ l. ~6 ?' U- n$ H+ E
        The function keeps calling itself with smaller inputs until it reaches the base case.4 W2 t. C, `- n5 T- k7 z* F

    ( T3 U  ~! B5 w+ O7 Y$ m2 Z/ t    Once the base case is reached, the function starts returning values back up the call stack.
    ; q2 s* R- ?& I+ R- R9 B. p- E( _3 p, n
        These returned values are combined to produce the final result." T0 Q& R$ _; m

    ; j9 e" T) M4 a( {2 w1 y+ mFor factorial(5):
    ! ?# K% A. g6 B( `0 K  T. Y
    ; l  p+ y3 u( ^0 Z( O% M$ ^- q9 v
    factorial(5) = 5 * factorial(4)7 P6 B7 H! p/ H" O  M
    factorial(4) = 4 * factorial(3)8 H; y( @% Z. S4 ^' S* ?, Q
    factorial(3) = 3 * factorial(2)
    + n  B6 h  j5 Z2 D7 cfactorial(2) = 2 * factorial(1)5 ?# R, q# D; o1 a5 r
    factorial(1) = 1 * factorial(0)# l2 G% F1 t7 V& x
    factorial(0) = 1  # Base case
      L6 U" x7 J' k6 \. f- s  b  C
    + }& L; {1 \- X) M7 L- b( uThen, the results are combined:
    ' `) [* x  H3 o$ E" S0 M. m9 s1 _
    ; F# ]+ Y* H% R1 l
    6 W, b# K  g+ Y( L4 y7 ^factorial(1) = 1 * 1 = 1% c: I$ |' X8 E' b, g2 I
    factorial(2) = 2 * 1 = 28 ]6 ^6 V  W- y! V# F
    factorial(3) = 3 * 2 = 6
    ( [6 q1 D1 K2 }6 K4 F; U: z: Ffactorial(4) = 4 * 6 = 24- A0 ^  h5 X% }+ y
    factorial(5) = 5 * 24 = 1208 J$ v% ]. J9 b5 z0 E! K  F

    % w- L1 z2 K1 v: F& n7 b. B9 @Advantages of Recursion" |3 S  s( N/ T+ j2 b! l7 Q+ |1 K
    , y% H8 F2 K, I# O  }7 e$ b
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ T8 L6 ~, P# V4 W: x5 I" k
    ' S" J6 `# |" h6 B
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ( k! |* N3 K- ^9 |% ~( s* E' B- L- [: K' C
    Disadvantages of Recursion
    + I$ |7 B7 b5 {/ m7 p+ Y2 i3 k/ B, F: \( u  g1 o! q
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.8 I' {/ c: J) e5 }. E' G! l2 F9 z9 ?

    . H* o7 O" W& O  A2 y" \    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ z& a0 l  s+ T5 f7 O2 W: o4 Q

    , S" b' [" Y* _7 P$ G, oWhen to Use Recursion
    - ~7 n/ P/ g2 r3 T
      ]- a7 q5 D- q. l( v% y6 B8 p6 C    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    , J( V$ |5 _6 G7 u0 _0 }# }" v5 l+ g6 q9 t5 k, U* O
        Problems with a clear base case and recursive case.! C" c1 T( S9 Y  g* l& I$ t- G

    * h% f0 s- f! u! b% Z0 E1 wExample: Fibonacci Sequence
    5 Y, J/ D) u8 v. H. s% e1 p, ?) N" f5 ^
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 M' x# S) t0 d' `

    " W0 g% f- K. j/ K0 v    Base case: fib(0) = 0, fib(1) = 1
    " p( ]1 u3 m) |4 e* w* K( C
      Y9 ?7 e- c4 d7 ?( u    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 I6 f# o  q4 t+ \  p" Y3 d: m# m# n5 |* x
    python& q5 w  W. y# u5 x& M9 q$ z% K. X+ S
    % |, [6 s' R* ]: e
    + n$ T, L# E% i( v5 N
    def fibonacci(n):
    * E- B: h& W8 X, ]8 _/ ~/ I" C    # Base cases
    2 _$ ^; [# i" \    if n == 0:8 `9 w8 z) H, o$ J
            return 0/ h2 t- R1 Y2 X5 R
        elif n == 1:4 l; C4 O5 G" y' _
            return 1
    ! m8 g" s. b/ b' w/ N    # Recursive case2 b0 I$ }4 i0 ?) D
        else:# r% n" _6 s9 K" X" ~) z- I
            return fibonacci(n - 1) + fibonacci(n - 2)9 r( k; _& H9 y+ `6 D/ ~
    " F& }) n% [  u; J
    # Example usage
    - n9 @) c9 L( i* y7 b5 Z& _print(fibonacci(6))  # Output: 8, V1 a* v( ~& z  J4 ?6 {
    ; I4 w1 ]) d# x  S7 X1 a
    Tail Recursion
    4 N# a2 `( }8 q8 j. |) j! y: E) V  x( P7 U; ]" e
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 {! R1 r9 n4 b
    ! g8 i7 u' ~. }2 p2 s" X# m
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-10 07:48 , Processed in 0.028813 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表