设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1860|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ( f$ t9 J& m6 G: V  I7 S) X/ H  M) s4 d, ]
    解释的不错! `2 W3 e: P7 U- _; m1 \3 F/ p: b

    + C+ O# B5 H) i  f8 {递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# c4 r7 |' l; C% D# M* o
    * j; d7 b+ J/ E# h( ]0 |/ a1 B8 }
    关键要素
    1 u. c$ v# B* Z. H/ w' h" b" I1. **基线条件(Base Case)**  J1 p$ |: w, n& k$ {8 e% J+ H
       - 递归终止的条件,防止无限循环
    2 a' Y5 m! G4 K* `* u" s" j9 F$ `$ m   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % s1 x; |( A% ^5 q( W+ h& [5 x9 x  A0 S& t- s" B) z4 P6 V5 D
    2. **递归条件(Recursive Case)**6 `/ N0 ?7 G6 Q: G1 _
       - 将原问题分解为更小的子问题
    7 d% x9 y1 [% y: `   - 例如:n! = n × (n-1)!
    & }% F7 H8 A6 _) w/ m$ W
    & ^0 Y4 o2 S8 \" s 经典示例:计算阶乘/ p: C$ }) b, `( H5 ]& i
    python# e  v2 i& y1 Z5 m, s
    def factorial(n):4 b" k0 y( ]. n0 [& D' T
        if n == 0:        # 基线条件
    + S. e+ K8 A, L# e        return 1
    , X: w- g. f# V7 @    else:             # 递归条件: {6 p+ P# G; o7 I4 q
            return n * factorial(n-1)
    & a- N$ Q8 U5 X* F- i( r9 }: Q执行过程(以计算 3! 为例):
    - n. {6 K/ I0 M9 f9 Rfactorial(3)
    ( x0 s# d. m7 N( H' R  ]/ [3 * factorial(2)) J8 V, A5 {+ J! b+ ~
    3 * (2 * factorial(1))
    " Q2 n0 n# P# z+ G% M. o3 * (2 * (1 * factorial(0)))
    5 O) B: t4 G0 v3 * (2 * (1 * 1)) = 6
    - n, z0 h8 O, I; ~& P9 q) i2 b8 c) d2 V- Y  G( O; r
    递归思维要点
    4 \- m- Y- r- b- x6 n- u& m1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ Q, e4 ~' O8 y0 K2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    - Q, l5 @6 m5 M3. **递推过程**:不断向下分解问题(递)  q3 a1 n$ f; K# o$ x) J8 z
    4. **回溯过程**:组合子问题结果返回(归)
    5 b% d& w% Y$ J# [9 L3 H  `
    9 ~1 `4 k- ?' l7 N/ N 注意事项
    0 o; N: k) @) F必须要有终止条件
    ) h/ B7 p% K' R8 J递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    0 w# D* \% {, T  I# m某些问题用递归更直观(如树遍历),但效率可能不如迭代# m+ K" W* E" ~$ J
    尾递归优化可以提升效率(但Python不支持)! P/ o" m# i$ Q" ?3 g

    % [2 P* ~; p0 q& ? 递归 vs 迭代
    7 r' d1 v: t, Y% j# B|          | 递归                          | 迭代               |
      P, |" u3 w' g) |1 @& d|----------|-----------------------------|------------------|0 p8 W" `* q- |$ d9 s$ O
    | 实现方式    | 函数自调用                        | 循环结构            |
    , k0 h( M7 {0 G5 K7 Z| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |5 H0 h+ b) x' N" r" ?8 {( w
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 g9 g. c( w6 C2 G0 Y) i( I
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 x3 W  w& k* @
    / _/ O- d( f0 g3 p: p" a4 y" B 经典递归应用场景3 y3 {. J: T3 p8 i. t, ^
    1. 文件系统遍历(目录树结构)
    9 }: z. p/ D8 A+ m2. 快速排序/归并排序算法9 t  M4 O1 g* f4 C2 y6 ?
    3. 汉诺塔问题- N: A, t% h% Y# B
    4. 二叉树遍历(前序/中序/后序)- v7 u+ j) W. m5 u+ o
    5. 生成所有可能的组合(回溯算法)
    $ b; k4 r2 }) g2 g3 I
    * i6 v3 v( q9 x* g; [5 R6 @试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    3 天前
  • 签到天数: 3146 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    & u' H+ `" _- l  U我推理机的核心算法应该是二叉树遍历的变种。
    0 J; D  A: |( F% C另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 o/ p7 ~- E9 q4 h# U# DKey Idea of Recursion
    8 m+ I/ A3 u. L1 j$ [0 Z6 E: f
    - F& F0 ^# D$ V( ]; d, z5 r8 j" VA recursive function solves a problem by:
    / b( j/ k( ?' |0 N
    ) L% A  l3 b" z+ _1 u    Breaking the problem into smaller instances of the same problem.% O& K# E. ~: {1 L5 g1 C

    - [& u0 T+ Z! A- M& ~    Solving the smallest instance directly (base case).
    ; Q/ a2 u0 I$ R; a* u, H1 d% e* u" p4 l: E
        Combining the results of smaller instances to solve the larger problem.
    5 R3 _( U9 J* d
    : z0 [( a0 z& d! ~! w. d- ?/ xComponents of a Recursive Function
    + [) z, _) {+ Z3 }- H5 `) \  u. }: k- Y( k4 M* j, I" E
        Base Case:; z* a" M7 _5 i

    5 ?7 i' `" O( _8 o( T' T        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 l9 l1 c4 k9 F: k
      S  y: Y& v$ c6 C& u8 Z
            It acts as the stopping condition to prevent infinite recursion.
    , x6 K' O+ `8 p( {3 `: |: k8 Z' E4 G$ Q  S8 ]* s/ k
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 [" O7 M; K; I% q) Y+ `
    1 U( J) H8 n# Z- `    Recursive Case:
    7 {7 i/ ?, C0 Z- I2 d  w* ^, I6 C( O4 z. D4 ~: f% F
            This is where the function calls itself with a smaller or simpler version of the problem.8 e. H6 C: Y- b" a5 m& f

    / N! j4 U% v9 D) U9 |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * `4 s/ H: I& g5 k2 t0 r; E7 e4 @* l) E# B8 [6 P: r
    Example: Factorial Calculation
    " v; `! W4 `1 u" A+ q& H6 Z" r. @$ Q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    + s5 q9 P$ Z; m' j6 a  v, O4 X0 X: q; k/ B
        Base case: 0! = 1
    " X5 ^1 z4 |( F) |% ?5 e
    ) s. P$ Y, L$ L# G& z    Recursive case: n! = n * (n-1)!  t0 e( A3 A; f( C4 e& S& K6 R
    , Z7 j) H# ^3 y) f
    Here’s how it looks in code (Python):: U' R2 N' `" s/ G
    python6 G& T8 N2 }5 q

    & j; w8 S, T" D: z4 v
    * U/ q7 a  G9 p& _& Vdef factorial(n):' S8 q0 {8 U3 N& M
        # Base case
    ( Q: Q; n' P5 s9 M    if n == 0:1 V4 o" l$ I9 ^1 X" q% y$ T
            return 1
    " d  }( \! M8 d4 U& S    # Recursive case
    + ~3 _$ ]+ p% C4 G    else:  Y! ?1 k2 u: N8 [6 ~
            return n * factorial(n - 1)
    * N. h+ O4 F( h! _+ s. }4 p; W6 @# q8 l( W0 n% q3 M
    # Example usage
    ' ?9 p- L) @- W9 M- ^; |print(factorial(5))  # Output: 120$ D" O) H4 h, j0 R8 F; i0 t& o, g

    2 @- R5 J* N; n6 r+ U/ ^, g4 p5 ?/ `How Recursion Works0 u. w( i2 m. v* Y

    . `) a2 e1 J3 h; U! S' p" U    The function keeps calling itself with smaller inputs until it reaches the base case.
    & a* j4 ]9 F. r& O: y" n6 Z
    " p- e+ A5 w. E8 S    Once the base case is reached, the function starts returning values back up the call stack.
    4 s9 z, g* A7 m' Y
    . G) v# N3 {3 F, E    These returned values are combined to produce the final result.' d. R  F* v! Z: L7 c$ ]' o5 W

    . a; v- X/ n9 Y; f# K- j3 ~4 MFor factorial(5):% H. I( Z) P  X) `$ j/ o
    & K! ~/ Z! N6 z+ _; F; W

    1 }* U( t9 K6 M/ }5 w. {factorial(5) = 5 * factorial(4)5 e9 G# w  b& a, L& |0 D+ o
    factorial(4) = 4 * factorial(3)
    * B! C) i, O6 }" r; ^factorial(3) = 3 * factorial(2)
    * e% x) k8 Z+ v" B5 s, E1 Cfactorial(2) = 2 * factorial(1)
    . V$ m; z& s& Lfactorial(1) = 1 * factorial(0); H3 W! o# E9 ?0 `- \  Z5 X5 i# A
    factorial(0) = 1  # Base case5 x" X9 l6 _& m# i# t9 o) ?% N, O
    * O% F0 ~! \1 L& F/ e8 U% l
    Then, the results are combined:" R- n9 e& H, S$ l5 P& @$ ^
      j$ L1 K! y4 t1 Z5 I, [$ c2 Q
    * Z! i5 W/ _! a6 q
    factorial(1) = 1 * 1 = 1
    0 a' s) ~/ o+ ?5 {& x% Rfactorial(2) = 2 * 1 = 2: d1 N: t+ w5 x8 M
    factorial(3) = 3 * 2 = 6% b) \9 J; ^( z" P# a
    factorial(4) = 4 * 6 = 24
    * F; Q! M0 I+ H  j/ i! _factorial(5) = 5 * 24 = 120
    ! w/ C+ P! u5 x' f) w& _- _
    3 ]  E! G" J7 r5 GAdvantages of Recursion9 |3 }2 T8 [- m7 g5 U9 u
    6 m& N7 w- P4 b7 f6 |& t3 }* _+ w
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ) a% G( b9 `3 g6 Y0 ?+ o: ]7 c9 p! l) I* q+ G  R. J$ u
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    . R# j# ?$ y1 e% ~" \& B9 _! E5 e
    Disadvantages of Recursion
    , d2 |' `0 O( u" u2 b" ~2 L# J
    : s& E+ q  P1 I1 s/ X    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! U! |/ |; [  M( D
    6 _4 a6 E  f/ T% ]  @6 u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ p! a7 I4 v3 c# Z8 J. i, ~
    % H/ O& [/ u) p* n
    When to Use Recursion' o& R, @4 L2 o- U* P* h& o

    * h; S2 w4 ?7 A* Q' `1 P  _    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 l# y4 h  a/ q. A
    4 C+ c3 n' M2 R1 L* y    Problems with a clear base case and recursive case.
    0 n+ s6 x  O& b" I( \
    , k' G& U- H4 NExample: Fibonacci Sequence, ?2 K1 m) n5 w' D
    % i) W0 y8 k7 _7 y
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- d$ z5 j1 k9 l
    " g5 \) x# N. k
        Base case: fib(0) = 0, fib(1) = 1: L  p1 n. P+ F) M/ \; s& y* N$ J0 S

    7 ^$ }! [; L% W! w0 k/ {    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    / g2 [8 T( v9 T2 X5 C1 \  \/ j+ w: Z  I8 ?+ k4 [3 ]# j& O+ a7 U5 C
    python( S' j; c* W7 U
    ' A8 q1 }& i8 _

    ; n/ N/ `# g4 x2 mdef fibonacci(n):
    ! g# a8 c/ t/ Y9 {: p7 H    # Base cases
    ; n3 {4 |9 W) x! v$ V    if n == 0:( f6 G; i' I+ C( o; {
            return 0
    3 }2 ~# @' q9 }4 ?1 i0 _    elif n == 1:
    0 T; C" p8 v# ?% Y        return 1
    * G$ I" f) U) d    # Recursive case
    5 l8 _" O; K+ r' E# ~* Q    else:, @1 |: |/ B$ o( W( Z
            return fibonacci(n - 1) + fibonacci(n - 2)' K, ~# S% W3 {$ J- u6 i
    3 p; L  U5 V+ J0 X
    # Example usage4 e# c2 ?  ^4 |7 `1 ?
    print(fibonacci(6))  # Output: 8
    * M8 R3 {3 K$ m: L; u. [$ R- G1 k3 M8 b5 G3 I- z
    Tail Recursion
    # o1 F- i# ~4 q$ ?
    6 v  H4 X( S# E$ O7 m- O7 y! G1 x( oTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , u% |( v' V0 J9 g' P( r( O" \$ U6 H/ K; _: g0 l+ B
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-17 00:22 , Processed in 0.030552 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表