设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1312|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . R- \( y: l; ]+ b) [' f% Z
    " N  f; t  C2 b1 W! D9 i解释的不错4 j7 z" U: `. [* {# {7 z

    , T  B5 t, T$ A, j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # v2 N' g. s  O
    % p' [' ?" u4 S- I( o 关键要素% u6 T: ~4 A+ e: B3 o0 r. q2 U
    1. **基线条件(Base Case)**
    2 R8 U* I. H8 K9 @$ I4 F   - 递归终止的条件,防止无限循环1 u% y6 Y5 I% E$ z
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ @6 K; ~; ^9 t0 w/ H6 S5 ], k. z+ [) N1 k, w5 S5 d; u- i
    2. **递归条件(Recursive Case)**
    8 }% N. N# _: H   - 将原问题分解为更小的子问题  Q) q2 S# m' s. s7 `
       - 例如:n! = n × (n-1)!" K  a6 d* b9 v8 Y" S8 Y+ G
    ; O3 b1 @4 A: X5 s# R: [5 t
    经典示例:计算阶乘
    " ^% ~, I7 Y0 h+ tpython8 z9 y9 c( B9 l/ G. i
    def factorial(n):8 s0 R& m- }* i' H: \9 K
        if n == 0:        # 基线条件$ Z) i/ y* _4 k' u
            return 14 ~, d- a, K' R) I$ ?. H# U) ~
        else:             # 递归条件7 i0 T3 }8 R' A& X* u2 M3 I3 E+ R
            return n * factorial(n-1)
    . t4 ?8 y; a) F% {0 T- t& v$ ^" H: w执行过程(以计算 3! 为例):# m* l7 o& h2 o
    factorial(3)+ x/ F& K) e7 k
    3 * factorial(2)
    ' c. u1 i# K( H$ U, m2 r3 * (2 * factorial(1))% H: }2 T% a1 E& U* o* {
    3 * (2 * (1 * factorial(0)))
    : J& q$ B% T% ~4 K# q0 z. A6 k3 * (2 * (1 * 1)) = 6( d  C# b) W3 O
    ( T1 d- F3 b& N4 F0 G; t
    递归思维要点
    5 U' U$ `% _6 \$ }! d1. **信任递归**:假设子问题已经解决,专注当前层逻辑# I8 l1 K9 B% {" p$ J. d
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( `( E2 X7 z9 A# ]4 ]( x
    3. **递推过程**:不断向下分解问题(递)
    : {8 `, A! D4 n+ E" E9 d4. **回溯过程**:组合子问题结果返回(归)6 O8 G" \9 G$ R& s' o( u2 a2 n8 x
    " s8 h; J7 N' X+ A( L2 M
    注意事项
    0 H9 H2 ~; k" n; Z( A必须要有终止条件
    ) ?$ d1 T% @0 s: [- J5 J6 [9 W: ?" f) a递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    - y. H% u. F& {8 O某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; q8 ^6 v& b& P( p" G% I& K尾递归优化可以提升效率(但Python不支持)- R. ~3 `* p% `, V$ P6 X( l  h

    / E& f) @( e' | 递归 vs 迭代
    ) v6 \6 {6 c+ N|          | 递归                          | 迭代               |3 z! o, I7 k2 H6 a' P2 C1 ]
    |----------|-----------------------------|------------------|0 ]* ^( w" X: I
    | 实现方式    | 函数自调用                        | 循环结构            |2 i% F  n% ?7 R5 E( i. g- Q% L& w
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    . K$ N+ V& i, v7 e3 I: ^| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |0 R% @/ V; b6 [) q
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 ~" D, G/ o1 F% I

    - w" x  z; Q, Y7 ~; T4 n7 l 经典递归应用场景5 M+ V; u5 c1 O% M0 P  G
    1. 文件系统遍历(目录树结构), g; w! N/ h  J7 W+ t  c3 N  w
    2. 快速排序/归并排序算法
    % |4 F* f3 ^! i2 S5 \; M5 {) m' p4 N3. 汉诺塔问题
    7 k& B( ~. A8 d( F. Q- I9 x6 B* f# D4. 二叉树遍历(前序/中序/后序)
    . S9 `& }6 v; y) U4 N) F5. 生成所有可能的组合(回溯算法)
    2 X+ P* A, W- ~% o4 f3 j# L& @+ c# ?4 B0 L
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    5 小时前
  • 签到天数: 3107 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; S8 V1 o# _: t我推理机的核心算法应该是二叉树遍历的变种。
    # \& W6 v8 O( Z/ M" C  e/ y另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:( N/ k. e& U" G) ?7 r2 Z
    Key Idea of Recursion
    - J- i4 t; A, j/ E
    ; d  M, f' E. C2 g7 z# e# UA recursive function solves a problem by:, b# ^# ?. P0 ]! ^9 ~2 o- G
      w; J% R9 [5 P' h6 Y3 P
        Breaking the problem into smaller instances of the same problem.( L; P0 S2 o& P4 R

    $ a7 [+ n! w2 G1 F" w+ n    Solving the smallest instance directly (base case).
    7 e7 E+ E6 X/ t/ X: W! e2 M8 u% j1 u- l2 G% V4 }
        Combining the results of smaller instances to solve the larger problem.
    / Q7 d  V2 l# z; T, c& s" G
    - M0 x% \( L1 t1 }! _: }Components of a Recursive Function8 D2 H1 L0 D; W0 R
    : W. j4 N* f# T4 m. R
        Base Case:
    % e+ ^  q' W$ d: H2 A0 n+ c1 S8 V0 h8 ~4 N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    , Q9 J6 X: U: Z
    " x) K3 o) x. p. L/ z        It acts as the stopping condition to prevent infinite recursion.  t' ~1 s: @. g1 I# Z8 D
    * I! ~* D9 Q1 V) ~* Y0 q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    * U/ _2 @) _. j5 W+ C/ i  }+ Y( O
    3 C6 G' @# T- K    Recursive Case:
    ' r7 Z7 I+ O4 I. E3 h! F1 E! o1 q% M. l+ }; H
            This is where the function calls itself with a smaller or simpler version of the problem.$ v6 `2 G! y) y& V  O5 b
    * l; {& y8 U! `8 I. p6 D  U: A0 Y! l
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # h- i1 ?  I1 H; D2 @( D4 g  Y3 F; D" @- f
    Example: Factorial Calculation: p3 k' y7 q) ]: J" ~( R- w
    & d% I- n4 o3 {( x, l
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, b* g7 I2 `: i* A/ {2 p% ^" P0 i

    / F" d9 ?' f8 `# F( t( A    Base case: 0! = 1
    ' h0 \6 k( M$ l0 S0 c4 D! [1 o( ^2 g* T
        Recursive case: n! = n * (n-1)!" _0 l( Y, ?& V1 T
    * Y0 i3 B* o1 D" Q4 F
    Here’s how it looks in code (Python):
    % X& r0 c5 t1 R$ J6 A* a# j/ mpython
    : C  D3 n: B: {0 O( w$ i6 u
    5 d3 {0 G' ~3 V9 A. l, U: i
    - L4 J7 n6 i6 z8 tdef factorial(n):0 y8 a) j2 ~  \  O) F$ R/ {
        # Base case
    & J8 |9 y+ Z  L6 T- Z  ~7 p4 |5 D5 K    if n == 0:
    7 Y# D2 r# A7 t6 F. ?        return 1
    + p0 z+ A/ i# T- ?2 K5 N    # Recursive case
    7 }* e  ]6 T3 Z: _2 d3 _0 A    else:* X1 q0 U. H3 g
            return n * factorial(n - 1)8 U5 N! H0 n1 Y( p

    4 v5 H) U) Q2 J, i+ n. M: Z# ]# Example usage
    " a3 P9 n+ z! ~print(factorial(5))  # Output: 1203 g; A9 S. A9 X, c

    . I3 d2 B6 y& KHow Recursion Works1 t! A2 O" g  m2 q5 r
    " ?, W0 t; L( s
        The function keeps calling itself with smaller inputs until it reaches the base case.7 r5 l$ Z# L8 U

    / O$ N4 g* h8 S1 W* i2 a" }* I    Once the base case is reached, the function starts returning values back up the call stack.
    : |5 J# o/ f: Z) }5 K* k" ~0 ]. R7 i( ^
        These returned values are combined to produce the final result.% Z" I% q! u" W
    , T! N# Q3 h3 Y" q3 \* Z6 ]- {
    For factorial(5):4 a) s$ P' p5 r% ~$ n& B- P6 Q
    8 h4 ]( F$ M" Z& P' A# \- a" {# V' E
    + y- s/ s* B) [7 \, r4 C& C! ]
    factorial(5) = 5 * factorial(4)
    5 G# S8 `% s5 d" W' {+ n% C( Cfactorial(4) = 4 * factorial(3)# N: p# m) O" n8 L& x& Q
    factorial(3) = 3 * factorial(2)
    9 X7 a3 T% `4 t* h1 ~) I5 n+ ifactorial(2) = 2 * factorial(1): H. v0 z0 i  _3 W7 R2 Z
    factorial(1) = 1 * factorial(0)+ U9 f2 M8 s1 `; r- v3 r
    factorial(0) = 1  # Base case
    2 g7 I5 E* E0 ]% J& x0 f7 x( u. j% f+ b& u: K
    Then, the results are combined:
    1 n! w+ d2 I- V% `  ~4 Y( r) f! G' r! [0 K+ B6 V& }8 H
    6 D3 s2 ]& Q2 K2 d# F
    factorial(1) = 1 * 1 = 1: N, f9 D. D7 z. S
    factorial(2) = 2 * 1 = 2# T7 D. M5 W) a7 Q  q" b, `
    factorial(3) = 3 * 2 = 6
    2 q% r) r; [$ ~& {/ O7 C! d: ofactorial(4) = 4 * 6 = 24
    + U2 h8 x6 K0 K" G4 Z5 Ofactorial(5) = 5 * 24 = 120+ U# e) [* [% @

    & z% Y, M2 f& f: X3 GAdvantages of Recursion5 e& E1 O, G" r/ J, I/ ^: @1 E1 N

    / Z4 [2 c( ^5 C5 J: }2 n    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 f8 {, O( m# v3 V( {" u& c3 h( d6 t7 z+ T% O  l# g! O/ Y2 h! W
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    $ v1 P, Q3 K% v1 r. i" e  }
    ) ?8 ?" j$ S4 ~( MDisadvantages of Recursion
    5 w( I* P6 j) L( V; b. w( G4 v7 D6 d; D2 K4 y3 P7 L& O
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 J! w+ s/ @* x7 k0 m% o- M; F3 X" f+ |1 ]" g, g( M/ E4 f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * p3 H5 u3 _0 ?8 |4 Q1 K" z
    ; g7 w; |) a4 v  x; N3 d1 XWhen to Use Recursion
    - [. u) @$ e% f
    0 S: G; M5 d% H" I% t9 A( Q! l    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." @8 `& [3 n0 E  U8 l3 [, {4 f

    3 V% l4 L1 w9 t; M* z- N- u    Problems with a clear base case and recursive case.
    * p- l( S  \+ U( r. r9 o$ y  e: r6 H4 `+ [' R% S# q
    Example: Fibonacci Sequence/ C7 I  t" I8 {. A# o
    : x! J$ g+ [* i5 }+ Z- W
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:3 |# q; g& ]0 U- V
    6 {9 Z$ p& @1 k& G8 ~6 s: ~
        Base case: fib(0) = 0, fib(1) = 1  s+ P; x' n  {9 P9 M& a
    3 _0 [1 t2 Y% \! s' h0 q
        Recursive case: fib(n) = fib(n-1) + fib(n-2)( ~- a! y% l1 K" L; W
    1 m  s7 H. Q( H* ]
    python' g9 y4 q( O. ~0 W; @& y& H

    . S9 b% h! `2 z: |3 @
    - s/ @1 h% u2 F& t% T, K9 H( Jdef fibonacci(n):0 g# u: \5 j6 h; \$ V. D( C
        # Base cases- c% y9 p' u, [! E9 H% s
        if n == 0:- N& v/ p4 ]" B+ i- p* K
            return 0
    + F. ^  v/ L0 g8 h7 e    elif n == 1:& i7 b$ z9 z6 j* a: t
            return 1
    + S5 Z3 l2 J3 C6 f) G2 w5 _0 B( ]    # Recursive case# l# ]7 j- o* ?( p, X
        else:  z. ]3 h; T& b. a8 T9 D' Q
            return fibonacci(n - 1) + fibonacci(n - 2)
    ' I$ s2 l  e% x
    - }* @0 U9 T4 p7 _% t# Example usage
    $ C3 R& |# Q4 O# N. f. h$ Dprint(fibonacci(6))  # Output: 8% l: W1 h$ ^: y. c
    $ \" i& F, `/ V" J0 L* K9 p
    Tail Recursion1 k3 C+ q3 m4 c" j/ P

    ! a% i0 Z2 j* m8 H0 H, B: p/ B+ WTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  d6 }8 p" b; |( R5 C$ \* g
    0 h  {) V3 F5 m; G* ~
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 18:11 , Processed in 0.030351 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表