设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1330|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    1 m9 q+ b+ k+ j0 [. ~9 Y& G- F! g- e  H' _' F* J3 b# _
    解释的不错! w2 i( y$ K) C5 \! L
    ; u' T1 c9 F$ n* z
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - v$ a5 S( i. T- Q( t! ?+ S% _$ W) |) ]) u* o& P- q' |- x# W1 _
    关键要素
    : y% D2 d( m7 K( I3 r4 m& s1. **基线条件(Base Case)**
    9 l5 @- H' P4 o* {: z% D" ]   - 递归终止的条件,防止无限循环
    ( m  I8 ?4 T; j4 ]. C  }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 ], ~& ^( `; P: D. ^' ]
    0 W! F; e* O% }4 Y2. **递归条件(Recursive Case)**" b4 T/ n6 A% N' ~8 X( o
       - 将原问题分解为更小的子问题3 x5 W8 B/ ^, Z' e4 N
       - 例如:n! = n × (n-1)!
    6 w. w' U9 I1 b; c3 A
    # |! i) G! B& {$ q( S. X5 ` 经典示例:计算阶乘
      s! g0 o) ]1 e5 q% b; ipython- o% u2 d& T. B& C
    def factorial(n):
    & z9 u- b5 X# p- l7 a+ l- ], \    if n == 0:        # 基线条件
    : y& z: s4 Y: K6 ~9 {: \7 g        return 1
    5 A' X4 C* m- G5 `/ x; O    else:             # 递归条件
    - m9 F! A' x) y9 u& \; T        return n * factorial(n-1)8 q  N5 x0 D# F2 C
    执行过程(以计算 3! 为例):
    0 N7 {8 g9 G3 i. u* H2 }7 O% O0 ffactorial(3)6 A2 G( c" v6 }8 B# B
    3 * factorial(2)6 q2 N( `  E7 m! E: f  J7 W. r& m
    3 * (2 * factorial(1))/ ]; Q4 A* u0 [9 v3 j) {  z7 n5 ~& h6 r
    3 * (2 * (1 * factorial(0)))
    % x; b4 y! F8 y9 l! H  F  K3 * (2 * (1 * 1)) = 69 @  x  ~4 K' [* Q, k/ I

    ; ~% v( V& I& C% B2 ~7 G# z 递归思维要点
    % R. O' J$ j$ q2 r) N7 |1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ z1 `% l5 t& P; ?7 R8 r
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间), c# l) ]. ~/ }& ~0 I
    3. **递推过程**:不断向下分解问题(递)* F- p) |8 c$ C: h/ |% v
    4. **回溯过程**:组合子问题结果返回(归)
    / u* i" f- \8 D& ]  Y/ O6 }/ F+ l4 d) S5 Z
    注意事项  D) W2 \7 P2 t. h* C- p& p: z
    必须要有终止条件3 y# Q- m3 {" G
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    $ {( {3 R4 B& P某些问题用递归更直观(如树遍历),但效率可能不如迭代
    7 i3 n) w" s+ c! D+ W尾递归优化可以提升效率(但Python不支持)
      y1 j, h2 G. `& J4 L  V. I# U0 V- p7 G9 x# O; _, }9 p
    递归 vs 迭代
    ! T/ j% y9 m" P2 B6 R; e|          | 递归                          | 迭代               |
    # Q) N- W& U( z: b: }0 z( d0 H9 u|----------|-----------------------------|------------------|4 p# j" H9 L0 m0 b" ~" t/ S, V1 s
    | 实现方式    | 函数自调用                        | 循环结构            |
    7 e& Z; |* l3 C9 ?| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |3 w& P( w1 G: J" ^" r
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |4 @! y( M: x, z+ D2 t. n
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + P  T; Y- T/ u4 B! i, K
    ' g  Y8 R+ A5 I4 H; C) ~ 经典递归应用场景; r) s9 P/ V" c
    1. 文件系统遍历(目录树结构)
    ' J# f. M, X) ^2. 快速排序/归并排序算法
    $ ^+ [# m0 J- `" \1 c3. 汉诺塔问题
    2 U! i% \6 `# |7 ?; n4. 二叉树遍历(前序/中序/后序)$ {7 e- r1 f7 h7 ^4 H
    5. 生成所有可能的组合(回溯算法)
    ! ], X: p8 X  O. f" W* F4 O$ \" i
    + S: V0 `1 V! d3 w1 y! I9 _2 y  {试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    8 小时前
  • 签到天数: 3108 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    , F8 a* e7 D4 C0 S9 [! m0 {我推理机的核心算法应该是二叉树遍历的变种。
    4 q. b8 Z% f9 u3 B; K+ W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
      w7 v/ @+ q# d+ M( K3 V/ mKey Idea of Recursion
    . _8 s/ W5 d( G/ i. r/ Z; n; k) f7 i- g
    A recursive function solves a problem by:( x* k( ~, O/ C$ ^3 W( e" [& `

    1 v1 t6 s2 Q+ ~) N    Breaking the problem into smaller instances of the same problem.) p8 T4 h* w+ F; e+ |

    5 `0 J$ I- L- o$ l9 A: D! m    Solving the smallest instance directly (base case).; F: D: q9 G5 x) V5 D
    7 t( G. L1 ~- v$ ~1 W8 e
        Combining the results of smaller instances to solve the larger problem./ o6 K/ z$ M5 ?1 h1 ?: f
    $ @# u# p9 j9 k# D0 m  W3 A
    Components of a Recursive Function
    5 o( ]4 g$ {* C/ W1 H0 J2 G& A  X: @6 N5 K. R$ \5 l& S  a
        Base Case:
    ; U7 t8 s. ]& u2 ~9 B' J5 m7 K/ O+ e4 D
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.0 @% O1 [9 M5 L
    ! [5 J* e$ G' K" _
            It acts as the stopping condition to prevent infinite recursion.
    ; G5 Y3 @( \5 j& K" ?+ @1 s
    - H/ g1 ]  h" H! k& L  i* n        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ! S0 [+ ~& `, ]( e, Z3 H/ W
    % V( @; q/ N4 P7 N    Recursive Case:
    ) J5 a5 Z3 Q' W( Y8 j4 u# ]* N9 ~3 ?* `
            This is where the function calls itself with a smaller or simpler version of the problem.
    / t+ K( }6 u  N/ P! Q2 |5 C/ ^4 z. u6 s/ D: a% O% |+ m
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # e5 t8 ~  V& c" d) g% v" Y  s
    ; ]  P1 B* @  ^4 tExample: Factorial Calculation$ j( `( q" d8 @0 C$ g1 x
    ' U5 u- D' s: U2 _% H. r! Y- F
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:/ ?, T+ M3 n: U  z

    8 ~- A4 x0 v0 |4 V& |, R7 |& a  V    Base case: 0! = 1. v( S5 I0 e6 S1 {& A; x
    1 h: n. \# m1 o2 U% \
        Recursive case: n! = n * (n-1)!
    2 J# {$ {- h5 V% b+ a' q# s0 Z% \
    + ]5 c0 j/ X3 E8 a5 G  KHere’s how it looks in code (Python):2 H6 x8 {* G* P
    python
    % \4 Y: a$ {9 x% R! P) l$ _6 F( B, q* \: H
    2 d9 f9 T' D) T0 h* t; d
    def factorial(n):
    4 r2 n. s& [8 M3 `    # Base case
    ( O8 u1 u* u5 D) M    if n == 0:0 p! ^; D2 _0 y( u! u0 t8 K
            return 1
    0 a% t1 C! _8 ^8 S4 @, X: y# \    # Recursive case' C8 n" W) A3 V$ D0 @
        else:
      B- I- m6 F0 _' d  v+ V        return n * factorial(n - 1)
      k: Y! h  D+ K1 e# K! @) x* m5 B3 f8 }; n0 l3 S8 Q: @
    # Example usage
    4 q) P2 x* ?0 ?" u9 ?# Zprint(factorial(5))  # Output: 120( _- A& J' ~. `" R7 q! n) O% {. I) L

    - @' v+ Y- z' H" x3 qHow Recursion Works2 q& o/ R! Q' U4 P1 U2 ]6 d

    * S7 ]9 O: c* V  H, l( Z' [    The function keeps calling itself with smaller inputs until it reaches the base case.
    , f$ X# Y; L9 m0 }& P4 r$ a6 b$ Y7 F7 I% z
        Once the base case is reached, the function starts returning values back up the call stack.
    5 ~; d( k5 H/ Z) W
    1 U" j: F4 J8 Z0 |5 i$ L% t, g! |5 K2 k    These returned values are combined to produce the final result.0 f4 N. f0 [/ D3 p6 D

    ' `, v# |8 G5 r: X+ fFor factorial(5):( n# U1 Q# a; K' l& {  {
    6 W; h2 u  I; n' r: j% I3 g9 C

    6 U3 {8 Q% M/ ufactorial(5) = 5 * factorial(4), w* P; t- Q' @0 k0 x6 _: g
    factorial(4) = 4 * factorial(3)
    0 x& f: J8 y8 w) `% S$ ifactorial(3) = 3 * factorial(2): `/ p9 L/ h& \  D
    factorial(2) = 2 * factorial(1)3 o- ~6 t* Z! K8 ^
    factorial(1) = 1 * factorial(0)
    9 H( q. R( {5 M3 N  Rfactorial(0) = 1  # Base case8 R( B/ A) A8 a/ `, t% _$ t

    % F- H) e1 S0 @3 f7 I' ^( [Then, the results are combined:
    5 F+ y$ b8 \6 Y; D! ?9 X
    ' T8 _$ L4 A2 _+ S; H
    $ J* K- s& U/ O& jfactorial(1) = 1 * 1 = 1$ w, ~# r( J: @  [
    factorial(2) = 2 * 1 = 2
    ' O, ?: x+ G. M+ n( d2 Gfactorial(3) = 3 * 2 = 6! g) r! ]1 I. s8 O  C3 H; @( M& z
    factorial(4) = 4 * 6 = 24
    " B* Q. Q- r( W% {! [factorial(5) = 5 * 24 = 120
    ' ^+ L+ T- `$ p! q8 K2 `1 {* J' b8 r# B! S% J
    Advantages of Recursion/ ~2 P2 S5 J6 ~9 t0 N3 y
    4 z$ u( \- K; D0 g0 ~7 A
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    5 c  T- V- C8 P& O, |- P2 U! z6 A" m4 {0 j; q
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    + \0 X3 g! M5 @7 ]' J5 Y5 J  a8 l6 J3 R$ z
    Disadvantages of Recursion
    3 l" ^9 s: _2 {* ?# ~$ N$ Z* z5 s" \: n
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    6 z# h: |) k2 K  B0 j
    % l, E$ A0 U% X3 A- W) Q9 u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  a* O/ P+ U4 ?+ h+ r4 C2 z0 [

    9 g: D) o+ k8 S- q1 r' Y) z, pWhen to Use Recursion2 k' G7 t1 m( K

    0 S3 o0 J6 P1 H3 s) V* F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    7 A: `# E; J' O  w$ C. X+ C
    : k8 ]% c5 i. n! ~  U( |    Problems with a clear base case and recursive case.
    * [) `- u0 `# Q9 s' X, K1 q, x9 L6 C
    Example: Fibonacci Sequence" q* G$ \, U$ Q. o; a) p6 B

    4 F, x3 y5 O/ G# H" c9 t7 NThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ; t. o* B  q- H% X5 v6 j
    ; j7 v2 Q- {4 @+ F0 N# W; l1 H    Base case: fib(0) = 0, fib(1) = 1! ]* W0 l) z. q6 V6 @

    . C% `5 W7 L3 f3 N7 A- R6 R    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    / a( j1 F8 a6 n5 ?: l
    ; `* M2 @  s/ ~# l. E2 D" e/ Opython
    8 i) d! e% P% V* k# i( X4 ?& G$ }

    , e: V) m  t5 ?% O( M& l2 r/ r7 Tdef fibonacci(n):9 S' f5 r0 V, X: C
        # Base cases& [! Y9 X: c; c1 Y9 Q
        if n == 0:
    + {+ {4 V& X: J        return 0' O: d" {3 ~( G
        elif n == 1:
    : e8 O: T1 c  w  _% |        return 12 }' `) K- K4 {$ Y% R
        # Recursive case1 p, B9 _- g* ^- j8 ^9 B
        else:
    % o) S) G8 U0 _- k        return fibonacci(n - 1) + fibonacci(n - 2)
    ) i: [, x& L0 q( j# I
      T7 }% e6 p% F  |+ @2 N$ c6 U# Example usage
    % }) X/ K: x! W7 X7 hprint(fibonacci(6))  # Output: 8
    ) A; @/ ^& {8 G0 F( G2 Z( V6 L' R: }4 b' y3 \/ w
    Tail Recursion
    ' m5 v, A, A5 w6 _6 Y8 h& ^1 H9 q
    2 l' ]( o. c( i- Y9 R' wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ' z) B2 E9 C  v% L/ R
    : q5 V7 {) c5 f: T, g- G' ?% uIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-4 19:50 , Processed in 0.094602 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表