设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1406|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 / g( }2 A2 v! s0 p$ K0 M6 B* g6 V+ C3 e
    5 p% F; R  N" l4 p$ t1 P
    解释的不错
    % c6 a! N, w* X6 o# _4 Z0 a
    3 b5 V6 B( x- Z5 Q! H) q* v递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 o# T8 [( l0 W2 t
    % T0 [$ }- V0 M6 X5 y( q% @
    关键要素
    8 i% N' X  j3 l1. **基线条件(Base Case)**. m" Z  z/ w" f, i0 w/ p
       - 递归终止的条件,防止无限循环) Q1 z. \* w' c3 ]$ Z! `/ J
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1/ X& Q: h, S8 q* _( \# I: ]$ I( p+ {
    9 S& i/ B# w1 }! w( U
    2. **递归条件(Recursive Case)**
    4 [& ~. ^; E6 f( I- h   - 将原问题分解为更小的子问题: d- }% Z3 A! }! B
       - 例如:n! = n × (n-1)!
    * @' a, S8 t: c$ S6 K' k6 ]9 S$ I7 z
    经典示例:计算阶乘* w! [5 l. Q* x0 w9 y  L% Z  v
    python
    ! k2 y# V3 m- z" ]+ ^+ Udef factorial(n):* Z" ~8 Z% T! l7 V5 l
        if n == 0:        # 基线条件
    1 s; n, H; z$ N6 ^/ E2 N        return 1
    6 V; L: p, T3 _$ m    else:             # 递归条件
    / [4 w, [+ p$ m$ o        return n * factorial(n-1)
    . L, ^4 ?( e$ h4 f) Q执行过程(以计算 3! 为例):# I1 `8 F2 E  p- a& u- \7 v
    factorial(3)
    4 n$ r4 ^; m* F1 r2 V3 * factorial(2)% a4 ?" j) x+ U3 q6 b
    3 * (2 * factorial(1))! k2 T4 L0 l( |- W
    3 * (2 * (1 * factorial(0)))
    ' j; O6 j. P8 `2 z7 `& E3 * (2 * (1 * 1)) = 6
    ! {& d* R8 @# f& B* S- s
    * G; s' O5 [& { 递归思维要点
    ; z: X# m! U, H1 g1. **信任递归**:假设子问题已经解决,专注当前层逻辑' E. t$ {: r# W) ^
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ F2 P. ~2 P. y: }& k  `2 b6 c
    3. **递推过程**:不断向下分解问题(递)$ g( w* Q. E' t6 p
    4. **回溯过程**:组合子问题结果返回(归)0 o' j" w; I! g8 t

    8 D) n4 Y5 H: C 注意事项
      |5 M% p4 C( F( v3 [8 k# s必须要有终止条件
    4 p( L( ^2 r# u递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' ^- Y. Y' q% K2 R. W; B" P
    某些问题用递归更直观(如树遍历),但效率可能不如迭代$ {' N# ~. w2 \) q' V. Q3 \' v! X1 _" l5 D% b
    尾递归优化可以提升效率(但Python不支持)- u& o; J, y. m0 I2 ^( H
    # h! R8 Q8 M- o, m
    递归 vs 迭代1 g  t" U3 Z" Y# h0 U8 M, X" x
    |          | 递归                          | 迭代               |2 x' J) e$ q: d3 S
    |----------|-----------------------------|------------------|
    5 U: e$ Q; R7 ~| 实现方式    | 函数自调用                        | 循环结构            |
    * i' I; N4 Q6 n/ m7 J0 M7 Q6 ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# o# E8 M5 \% o2 n
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . l7 c; {* i! f% ?' B) T| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 U6 |7 J  B4 {$ z3 H  `! z

    7 M6 G& r+ I4 ^8 D# U$ u0 \) U6 x 经典递归应用场景- s' ^; `: W* T/ O! p4 [+ }& s
    1. 文件系统遍历(目录树结构)
    2 |# Z  E2 ]/ \1 _2. 快速排序/归并排序算法6 h. R9 q7 v' n% m: T) z
    3. 汉诺塔问题6 [) |; \* A7 E% v
    4. 二叉树遍历(前序/中序/后序)  M- y, e) W( f
    5. 生成所有可能的组合(回溯算法)" w) Z% @6 m' d1 o( s
    4 O: `/ W  X1 C) {# t7 V& `
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    1 小时前
  • 签到天数: 3112 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,7 y( S3 h1 j4 @. F8 i; C
    我推理机的核心算法应该是二叉树遍历的变种。. r2 U6 N* N7 r' H
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( ~6 p; a* o/ H+ O) C/ v7 gKey Idea of Recursion
    - Y, ?. _1 X3 X& p# m, R+ ~1 m! I) r# j3 q! ~5 L5 u/ C
    A recursive function solves a problem by:
    * \) c# `9 o9 h7 t: ?0 h  s0 P1 ^$ s* j* e
        Breaking the problem into smaller instances of the same problem.
    9 P) M. Z, G/ M+ y: j2 i" `( M9 W/ E
        Solving the smallest instance directly (base case).
    " g; ]7 x* Y; _  k% N! f0 u4 }5 ?" U+ K, f/ B
        Combining the results of smaller instances to solve the larger problem.9 s1 v. {% C( l

    " }+ J+ Y% [( i3 ~, \1 BComponents of a Recursive Function- S4 W2 Q* K% P* Z* ~9 d* n

    1 e  W) J) _- w0 E- e8 ~6 ]    Base Case:  `5 H1 D4 I0 s$ z1 P3 f

    ) Y6 o2 S6 c% T* z* W        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.! j6 J# I' h+ E- X! f( f
    : U. n- f4 K' @# E' I4 d; V
            It acts as the stopping condition to prevent infinite recursion.
    / d% g+ O; t1 ^8 v4 c4 |. `# z2 H. s- P1 \
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / I5 M, C& j: R1 ?6 G  N. r  m& n$ W
        Recursive Case:
    : b, f) P/ G! g0 x$ G( a8 U- `; n* O; }; j. w& d
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) J5 A7 N% z  O% h1 J. x9 ^! W/ a  W. s) o/ P, L1 J
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).& b* G. [- Z5 }: g" ^

    0 g6 n% v) j: K& s" F, }Example: Factorial Calculation$ P3 t. ~3 e# X  N, F/ L
    7 u8 O$ A* y+ F& I+ R2 ]
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    2 A" E3 J. S/ c7 l, N4 _
    7 M- s6 u6 D! P2 j5 ~7 P: J- C' q    Base case: 0! = 13 |) o; b2 A( e7 G# L
    ! w, }  p; d5 i
        Recursive case: n! = n * (n-1)!6 E( w! }0 J5 ?. o: U. t) k& F
    + X: `! ]- m& c$ D; [; c
    Here’s how it looks in code (Python):! W2 n3 j* q6 d4 y0 h
    python  @. d( ?% u/ r* r) R! x  n& P- b- Z

    / `4 y6 U' Y- S1 T) x: w9 @
    * z' ]' y9 S& S. m/ z1 Hdef factorial(n):8 l* X. i$ Y! f1 N  u
        # Base case% T, j5 w* O) O
        if n == 0:
    ( A8 G. e' R3 W, ]/ _        return 1
    ) E, }( X9 E( c" r/ a# _    # Recursive case' T# P; }0 e1 j' v( h, _: h
        else:
    5 C  z, y- K- ~2 }& j: P1 a6 G        return n * factorial(n - 1)# K! s; N, w* M4 _
    $ O2 Q' e" b$ F. A
    # Example usage
    ' U* E! Z! {% `2 mprint(factorial(5))  # Output: 120
    + U9 q/ P( T% p" D6 I. F: P3 J+ e0 V4 s2 @, S
    How Recursion Works% \$ x( O+ w1 H- J9 {

    ) f, s/ l# o! a& |6 T: h    The function keeps calling itself with smaller inputs until it reaches the base case.
    8 d/ i& u4 c. j: Z; z4 {' k5 N, o6 `' ]; {$ }* e
        Once the base case is reached, the function starts returning values back up the call stack.1 F0 w9 A3 K% J" H! X% @  A
    & }6 N! o$ Y& U+ A
        These returned values are combined to produce the final result.  B6 ]5 ?# d( B! K5 E

    , ^' M: i) _* cFor factorial(5):. Q) G& |1 T/ v7 Z! ]
    3 L* P- L; z9 @) Q
    3 F- z3 v  R5 B; a
    factorial(5) = 5 * factorial(4)
    ( ^) O8 f# r; d" A+ q# g5 M& o  Ffactorial(4) = 4 * factorial(3)
    ( G9 ~9 r2 F4 b  s; u2 q6 w* w2 x  {factorial(3) = 3 * factorial(2)
    ( q7 C) j1 I; b; t* I9 i6 x3 |factorial(2) = 2 * factorial(1)% L) N7 Z# g7 w# V  g
    factorial(1) = 1 * factorial(0); m6 {% }- x8 E! C% k8 H7 g6 c# l
    factorial(0) = 1  # Base case/ ]5 t( v5 C4 r. ]  H' B
    * O: C# S' A6 M+ g) x+ _
    Then, the results are combined:) w) P4 y8 t8 p( ]5 R6 s1 ?0 [

    ' d7 d" u+ a8 l% u
    ! ], `! v1 y4 n- r; C  wfactorial(1) = 1 * 1 = 1# ?9 ]; Y) a% l. d
    factorial(2) = 2 * 1 = 21 S/ W: V5 J) g/ o- |! ^
    factorial(3) = 3 * 2 = 6
    " d* V$ ^* x6 V3 K5 xfactorial(4) = 4 * 6 = 24
    ( R1 w- K  {" b/ Y3 nfactorial(5) = 5 * 24 = 120& {( w6 G% C  k" f% b* @6 ^9 L/ k

    + m) a7 R4 d+ Z2 V! IAdvantages of Recursion
    ' L5 x# S3 j2 l3 M7 F; k$ V, X1 p
    * E) D2 T3 w3 p' O+ p3 C    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    6 ^: o- ~- q! f( e
    . d2 D4 \  m3 j- w0 E; y1 E" G; |# d    Readability: Recursive code can be more readable and concise compared to iterative solutions.; L7 D0 P8 `2 o* c

    . _) C. s1 U5 xDisadvantages of Recursion+ F. D' H: c5 V; \  ]- {
    ) n! C( v. g  c$ \3 O- Z5 U& O
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / H' Q8 f3 [  A) X* |; r0 F
    ' \& |& _9 Z) L8 p& w+ e    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! Q$ M; Q- Y$ P  E$ F: T" u/ M
    When to Use Recursion
      u" q. N4 ], K* D9 _' x1 U# k
    9 h9 i/ {0 M' D' G# W    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % B4 i% U2 E% L& \/ ]. Z0 l
    # W( d" f) [$ t$ i    Problems with a clear base case and recursive case./ f: j, J, Q8 t) ^  e: _
    7 _4 i  g( z3 o/ L: [
    Example: Fibonacci Sequence
    ( Q2 t; B0 c1 A9 f
    ! s0 D/ N1 Q7 ~) l: bThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . g& ^1 K% m$ Z* j) b0 c8 ?" w$ a
    & ~% L+ u2 Y% D% ~- }, Z& E    Base case: fib(0) = 0, fib(1) = 13 {" I% E- E+ T, j8 @

    ' q7 l/ Y, W, v8 S7 |    Recursive case: fib(n) = fib(n-1) + fib(n-2)% W7 P, `) V/ G( e/ n

    $ d) h, F5 P4 j8 tpython! \7 ?. ]" H" u  H/ Z
    7 t( t/ J5 c2 K% Q1 \- U0 s7 Z

    ( }2 K+ I0 R! `/ S) Xdef fibonacci(n):
    9 V3 S2 H8 p; r% H3 T    # Base cases# u5 R$ p, B/ y) \; W5 S
        if n == 0:
    6 d' `9 O' x) d% b        return 0
    $ u# y; ~$ }0 t6 ^7 L    elif n == 1:" E( z0 R8 `6 O4 \( T
            return 10 v, b" n. J9 g+ u1 S+ O" }
        # Recursive case
    * k/ ?/ z# Y6 t+ E    else:  H. q2 v$ @/ U2 ^
            return fibonacci(n - 1) + fibonacci(n - 2)/ e( d3 n1 @  N' q3 z
    7 v3 o3 a5 B* m
    # Example usage8 f) l7 d4 K% y  W. U
    print(fibonacci(6))  # Output: 8  g! @8 M) k6 ^

    4 ^4 o/ V) k5 J$ qTail Recursion: c3 a0 Q9 b9 Q- x4 Q
    ! V9 P, u5 d9 t# B) d' V
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    0 _+ x# b1 D  y7 `8 D* g6 e# b- t9 M% x) Z  G) d
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 08:45 , Processed in 0.034445 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表