设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1562|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    . W  q, |- i! Z: R0 \* K9 E+ K4 m' L+ d/ c8 t8 i5 ^
    解释的不错
    & t9 G$ Y$ J8 |6 I9 m+ ?' T
    / L" W- U8 [) C" J3 ?0 g( B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。/ p, _( ]& l& d0 c* g* @
    ; Z" j7 G4 b: c3 D  J- n7 n$ c4 y
    关键要素9 K2 }  N6 Z2 a; w8 R
    1. **基线条件(Base Case)**
    1 l' r% n5 D, l! y. U8 ~   - 递归终止的条件,防止无限循环
    1 b8 l# c, t$ f* L) N   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % S( ~8 }; R& j$ f
    , Z% x5 T% r6 X" Q. ]# ?2. **递归条件(Recursive Case)**+ B- v7 a2 u3 X0 O* o. h
       - 将原问题分解为更小的子问题
    6 H% Q; w" @, i% W3 S# T, Q. X/ ^   - 例如:n! = n × (n-1)!- ?8 i' U- s- \+ d: g. q

    - b6 X8 ?+ e! _+ y, c. ` 经典示例:计算阶乘
    " r& w  q' r9 k- Spython: S- V3 ]( L2 S8 }; e9 V' p
    def factorial(n):
    ( g2 ~9 W8 n! Q& D& G. n4 [9 v; v    if n == 0:        # 基线条件
    5 ]0 |. {+ w! y$ I# C8 m# k        return 1
    2 H3 J2 v7 z+ M- @    else:             # 递归条件
    * a% x6 L5 R( k6 ~9 r        return n * factorial(n-1)7 I9 A4 G- _! R2 J* {- @2 `' ~2 v
    执行过程(以计算 3! 为例):
    7 G+ y3 |5 e' L" Z* a3 _3 ufactorial(3)
    / D5 j6 A' o0 M3 * factorial(2)
    ' q& Y8 ~* B( s! Z5 W3 * (2 * factorial(1))6 L: t6 \( A+ \  c: p0 t- e: N
    3 * (2 * (1 * factorial(0)))
    ' r: m# R8 C6 {! q0 m0 W3 O1 Y1 e3 * (2 * (1 * 1)) = 66 i. B0 U  U4 K7 _* h

    ( ?9 e% |0 G: i8 t! V: G( W* @3 r 递归思维要点
    ' A2 y( L6 I4 r. {# X9 W7 ^  J1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ' N% X' N4 v0 ~8 ?$ V( X) ^2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  R8 y: c- X9 ?) q9 y+ [
    3. **递推过程**:不断向下分解问题(递)- d/ s1 l' m: B3 J
    4. **回溯过程**:组合子问题结果返回(归)$ y1 m" H/ Z  b- e& z

    % F5 b: C5 k3 ` 注意事项  }$ z0 V$ N% k5 P7 }2 Z
    必须要有终止条件% @1 p) ]4 u% z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- e$ _5 V) ?) \* S) _% V3 H
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ' ]/ H/ ]! k  ~4 J% k2 t尾递归优化可以提升效率(但Python不支持)6 x5 V6 B8 j4 M% z
    5 e2 t* P  i9 E8 X
    递归 vs 迭代1 ]4 U+ ]. S' N$ v
    |          | 递归                          | 迭代               |6 |+ r* b$ c; r4 C( j+ r
    |----------|-----------------------------|------------------|/ }8 ]9 ~6 e* H+ |6 k' F
    | 实现方式    | 函数自调用                        | 循环结构            |8 X. w- \+ K5 _4 q; H
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |. L+ U- a. M4 X; F: j# Z! S
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ ]5 X5 `7 l9 |1 O
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 e# }2 J4 j5 \7 g; a8 u
    8 g/ F+ C! e5 G1 k0 z
    经典递归应用场景- j. d: @0 L+ s4 [- v
    1. 文件系统遍历(目录树结构)4 Q; V( A5 ]* r9 [/ k
    2. 快速排序/归并排序算法* ^5 U0 f8 l+ `' M+ O7 c
    3. 汉诺塔问题9 k- \4 ?4 q* l5 c
    4. 二叉树遍历(前序/中序/后序)
    ; _  [3 P$ v* ^- Y9 x; c5. 生成所有可能的组合(回溯算法)" V) m1 n& l  s+ g, R5 f6 E
      E7 a8 D. v5 ]3 E" O/ X
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 09:21
  • 签到天数: 3121 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! ?6 _  V* `/ l. n) h
    我推理机的核心算法应该是二叉树遍历的变种。
    % c3 o$ W9 s4 h( F$ h5 J0 o另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 w1 B: ~3 a- t! R% KKey Idea of Recursion
    8 M/ V" J# f1 O2 T( W% K6 o
    8 u: b# `$ q% F) i& d1 MA recursive function solves a problem by:: u# Y7 o" I) m

    0 e# _- J# J3 l. X    Breaking the problem into smaller instances of the same problem.; v# j, I: m/ J2 n3 b' u% ~8 f
    ; X3 Z& A9 N) Y" V& D* I+ l
        Solving the smallest instance directly (base case)." V, d- h  @, w# S: [5 l! d

    2 u- }6 P1 d+ Z/ ]$ i: e9 n, o& J. }    Combining the results of smaller instances to solve the larger problem.
    * y% g; R9 J% L! i/ C2 G9 c  A/ V
    1 U+ g/ i- [+ c" t( O$ vComponents of a Recursive Function
      I/ X6 U# F1 r; w0 F+ x  R6 R! w4 t+ }9 b3 a
        Base Case:
    & C  J# ~4 ^2 m0 G% O4 G. m0 b: ], s" y; v0 K- v+ \) C
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.1 X8 H2 u8 N7 d6 ?
    8 J* l4 U' F* f' l% D8 P; G
            It acts as the stopping condition to prevent infinite recursion.$ g( W( e+ W3 d8 }9 `" r

    , W) F' g4 x) |. l" r) T4 u        Example: In calculating the factorial of a number, the base case is factorial(0) = 1./ }7 M" ?+ m: r" v9 D: ]8 T& p
    % Y& y) Q: g) c8 V
        Recursive Case:
    / p6 t7 \- ~* Y) x9 P& N7 ?. a+ A& g+ ~
            This is where the function calls itself with a smaller or simpler version of the problem.
    8 S9 a7 I2 Q0 [: }
      ^0 w/ u* }+ o3 G) G        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 `' P2 k/ O& \8 {( ?' C2 e
    1 @+ N5 s2 W1 ]; C- ^( S
    Example: Factorial Calculation6 [% F8 m$ O" B4 z2 ]

    ' v9 K5 P; ^  O7 T9 OThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! R6 Z& ~% C( @; k9 o9 _8 v
    * J7 W! S. B4 H' y2 N$ p/ ]# {
        Base case: 0! = 14 D9 S4 T* L' J  ?  }9 I+ ~& O

    ' ^# |5 P5 m1 m    Recursive case: n! = n * (n-1)!; g6 U4 w4 ?! n8 U3 s
    * T6 ?/ N; J. B
    Here’s how it looks in code (Python):
    : c  G. R& W3 O2 X9 f: @5 L; Zpython. t) ]5 r, w* K; x2 r

    3 |& H' m. I! Q3 G  _
    4 ?6 m) `; z3 a( o$ {( ?def factorial(n):! n9 S+ _1 L! ?! }( ?6 ^* X
        # Base case
    " R$ B/ p9 I* b6 s  c$ T# |    if n == 0:0 k) C) d2 L; D/ W8 R' W
            return 1
    ) K$ D7 W8 E0 T% L" A# Q+ d) |    # Recursive case4 P0 G+ ]1 @8 `) O
        else:; I6 T+ q8 M/ {1 s) N
            return n * factorial(n - 1)& Z& I$ J9 p/ u2 z, o! a0 \$ {

    % _$ B$ D' R$ {. w! _) v# Example usage0 U$ {+ d4 u2 ]3 H( l5 E/ `
    print(factorial(5))  # Output: 120
    4 O/ H8 s4 y2 }
    7 e7 l  i, f3 b( o( z9 E# jHow Recursion Works+ l# }0 _1 D& r1 @& {8 z7 P' l
    : T7 H6 ~( O# n* g; q  k
        The function keeps calling itself with smaller inputs until it reaches the base case.
    6 g% J# ?7 [! q0 \; Y* g" e% Q0 ]( u5 R* B& h" Q+ s/ s
        Once the base case is reached, the function starts returning values back up the call stack.
    8 u  h9 ]1 K7 u
    $ h: f! G2 m) J7 }! Z  x; {( k6 c    These returned values are combined to produce the final result.) G4 E  N4 J8 h

    4 V3 y5 q. b- l- _3 m% \+ e. [For factorial(5):
    : Q+ T/ ~( N4 q! _/ @
    * Q+ s+ R, Y  i2 p7 I9 x. j+ S& ^2 w6 w- n$ `2 `! q# a) k
    factorial(5) = 5 * factorial(4)
    : G$ {: e- E2 d3 t# jfactorial(4) = 4 * factorial(3)
    - H0 h- W) O& l* X8 S$ Pfactorial(3) = 3 * factorial(2)+ \' p5 r; g8 E4 H0 m
    factorial(2) = 2 * factorial(1)- c! B8 v6 F2 ?+ S
    factorial(1) = 1 * factorial(0)+ p! {1 Y6 ]. A5 _% e2 N, a
    factorial(0) = 1  # Base case" a7 N4 |1 s/ s7 S2 Y( c
    ) Z! s$ K4 s4 q
    Then, the results are combined:
    : P; J) [$ Z( T# Q9 u- y. X. `9 n& z) Q, w

    7 ~4 c1 ^1 f# j4 F' F& Nfactorial(1) = 1 * 1 = 1
    ! l- L* n) g1 Q# x, Pfactorial(2) = 2 * 1 = 2
    ! l% u/ Y  ?1 P5 \9 W; zfactorial(3) = 3 * 2 = 6
    ( q  `) C7 y9 u* O* B( F4 I) hfactorial(4) = 4 * 6 = 244 D7 M: @! ^- w+ x2 W, I$ F
    factorial(5) = 5 * 24 = 120" v) n% W  a! ^( g6 h1 ^6 t

      \5 x7 |. ^5 W$ @0 fAdvantages of Recursion
    & G5 p* C4 `) n  P4 D7 `) g, D) E! s) h% f7 z9 ]  K; B$ b* M
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).: s; p5 W' g$ B) Z4 o  Q2 g

      c$ @) O, p& s% c: T    Readability: Recursive code can be more readable and concise compared to iterative solutions.
      h, y6 h0 c7 S; f' D
    ' @# N: u& s* p8 YDisadvantages of Recursion
    ; H5 P$ ?: J& I0 l# E5 M. x2 \/ C& i6 `
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.+ q$ J/ E2 g3 Y/ K" ?4 f4 M+ F
    ; U% Q% R( p4 R% X& J6 E2 s" ]
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    1 P& m: O: ~+ W9 t! O3 c! ~5 q. L5 m* H# S
    When to Use Recursion
    , W# w: a! l/ v  C9 }9 L- {! z7 F3 ^
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    % z, _. T5 z6 z7 q/ h& n; w1 o% V- _3 y7 q  p
        Problems with a clear base case and recursive case.' q( f. s0 w9 b8 R8 Q- b: Y

    ; _6 `: W5 Y1 @5 c5 q+ ZExample: Fibonacci Sequence
      f# h& w1 Z  T; k
    6 Y1 S/ M$ Z8 H2 h* f/ ?) }" gThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) ?' B! A4 i: t

    2 O, A  G7 m% f    Base case: fib(0) = 0, fib(1) = 1  t4 w+ [5 W1 @/ ?. Z
    & P( M# ~0 E" _* n/ Y$ L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 m' {3 A; }* ]

    * F: }- O; j* K, H$ u; Rpython
    5 u, ?6 D' z; q4 I9 ?7 j: `9 F$ r* }/ h7 @  ]& V/ J

    2 ]3 N& u* r9 idef fibonacci(n):- R: n5 G6 r% H  b7 s
        # Base cases7 o) w: M+ l( l. \% J) s
        if n == 0:
    0 W0 ]% K( f. ^) ^0 _) W0 k8 L& S        return 05 v" v8 R7 z7 F. E: k( X9 `
        elif n == 1:
    , h7 J% {$ c" l# F! D1 T        return 1/ p! u0 k" v( h/ A" S& p/ c
        # Recursive case
    ) H* j% E$ s! N; H3 e    else:! y# r  B  H  I: l/ H) ]8 O
            return fibonacci(n - 1) + fibonacci(n - 2)% ^) c/ ?) {! Y

    $ Y$ {( V6 D% t+ k# Example usage  Y/ F5 |( m* E+ O/ D7 j1 [) R
    print(fibonacci(6))  # Output: 89 f0 z8 H0 s1 w8 D) ?- G

    7 r" R7 _* U# Q( p# a. h8 ]Tail Recursion
    , g$ O) D9 |) Y) B2 B1 q% O
    . }! I+ l! m3 L1 ITail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    / H' n5 A5 Y/ }% U) D3 n* w
    & x1 C! ~8 a3 h3 t7 v% ^. I0 ?- aIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-19 00:04 , Processed in 0.033333 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表