设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1397|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    # {& r) L0 `% _4 z3 [+ ~7 k5 t* U' ]$ j+ S
    解释的不错" |' {, j# C8 S2 P, I( {
    # t$ s' g! K+ K4 k3 s8 j
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% P! f; g: i; @/ k# S0 {0 S$ H
    ; D- B1 J. [3 ~' b( l! M. k
    关键要素
    2 b# t2 i2 T- C8 E5 W1. **基线条件(Base Case)*** y0 D( g$ x3 x! k
       - 递归终止的条件,防止无限循环, R  H4 e. E7 A& e& c( ?2 v
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    7 T3 h# z$ N; U0 l
      e4 G% G: @- X8 K# ^2. **递归条件(Recursive Case)**, P  z/ n4 }: Y! c/ S' L
       - 将原问题分解为更小的子问题. G8 s5 t' L* e# J! q8 a9 U0 m
       - 例如:n! = n × (n-1)!! L% a0 \/ P+ ?) _
    1 |! [" ?) {- ^- K
    经典示例:计算阶乘
    . L7 K: g+ x* [$ m5 q1 b9 ypython
    % d- \, a1 \( R* O1 ^' i% V+ X2 gdef factorial(n):# c! o7 M! a7 g0 [! I
        if n == 0:        # 基线条件& n  H# ~7 N3 J" y) a
            return 15 o' }- Y2 ^( U
        else:             # 递归条件$ g& q3 e- C' _- z! |& T, A& Q
            return n * factorial(n-1)/ g! A4 v0 W0 x6 [1 ]" x4 ^
    执行过程(以计算 3! 为例):
    : i/ S# }/ ^; T! F  A% Ofactorial(3)( p$ W0 ?* A+ O; M. ]7 B' U
    3 * factorial(2)
    ! v! R# [' R: s5 }3 * (2 * factorial(1))3 Q# a9 I4 n; K5 K7 f' Y4 W
    3 * (2 * (1 * factorial(0)))
    ) b8 b9 R7 J) B8 y0 J8 C1 u3 * (2 * (1 * 1)) = 6
    ; i2 x, R" X5 h) n% C% @' R1 S$ E* m- b, b4 p9 i; x/ q. Y
    递归思维要点# k  C( ~* m: h" V
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ _. z/ ^. Y5 p
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , W  q: s3 G, Z% C# G, j7 n$ ?3. **递推过程**:不断向下分解问题(递)
    5 w; f# J1 ^' k/ o: d4. **回溯过程**:组合子问题结果返回(归)
    ! X3 B& c2 ]: j4 {3 c' m( v* q) p- C! U# B$ N1 R7 m: N, M
    注意事项6 m7 n; ^, S, w1 Y
    必须要有终止条件
    % f: H* V. |' X4 H4 \2 J递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- c* o- ]% C. M, M6 Z
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 Y) x9 H- @- ]6 r& w) \/ V: F尾递归优化可以提升效率(但Python不支持); O( i9 a9 m( Y6 V4 G" M
    7 u8 x. e, b% L6 J" j+ c& ^' V6 e* K
    递归 vs 迭代4 z# n) S' x1 J0 A, k
    |          | 递归                          | 迭代               |
    % f  K# A! z9 ~& E5 b, g|----------|-----------------------------|------------------|
    / Y" q$ M' r" s5 r| 实现方式    | 函数自调用                        | 循环结构            |. J! D* u. s, `  ], m
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: T2 D- ^/ y/ Y
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# C' q4 R8 K& Z) Z$ k' S; J; u
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 G  o0 X: r5 h4 W; `, s

    8 T* }4 F- M& ~0 T! x6 ]4 ^# m 经典递归应用场景
    * U& M- D9 D0 U; C4 o4 W* t1. 文件系统遍历(目录树结构)7 n) M) O) F* G6 V
    2. 快速排序/归并排序算法7 u; D5 Q, K9 K' o4 g8 D8 W$ d
    3. 汉诺塔问题
    # d0 X/ U! U6 F0 V/ j3 u4. 二叉树遍历(前序/中序/后序)
    7 f& b4 {/ N* w' D, R5. 生成所有可能的组合(回溯算法)
    ' J4 ^. y' F9 @" `6 J) A- r, g. |6 v: K! U3 C
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:53
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; d6 K: G; ^. j  W0 |
    我推理机的核心算法应该是二叉树遍历的变种。4 j' k$ @7 f' V% V' D: @
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    8 C: G- g& s- FKey Idea of Recursion# ]7 ^5 |  t" P

    4 a+ j; P% n+ d( O4 e4 n2 o( KA recursive function solves a problem by:% \  C$ O: X6 `

    # ?* r, E1 R5 a. ^6 Z7 [1 b9 z    Breaking the problem into smaller instances of the same problem.- e, d8 d1 Z  w1 x9 }1 \

    # d+ d$ |* O, w5 f& E    Solving the smallest instance directly (base case).
    $ T' f2 p, h6 J& j: T, a
    8 g* a4 O  H" |4 D- a  p    Combining the results of smaller instances to solve the larger problem.6 [: C( F5 n% C9 h0 |
    ) W, w3 V& E9 b( b" b. x# T( M
    Components of a Recursive Function
    , l' M& Y( t4 X, X" `) y8 A* R/ v- s0 t7 O9 T
        Base Case:
    5 o$ z- S0 y8 \% }+ n* R5 w$ c0 d% e" n) P6 }  a- `! d3 h9 h* D+ ]* }
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.8 z- o- r" W7 L7 w2 E

    . t7 `9 J8 P0 g5 x: q1 ~- w        It acts as the stopping condition to prevent infinite recursion.% K9 e" }3 X* Q! v, y( g

    ' s; }! m& U' `9 i2 b! d. \        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: Z% L! d$ j$ k( f2 S5 N( [
    : `) Q/ z: h! H9 ?( f# l3 i
        Recursive Case:
    ( g4 Q0 ?; E( d) i# _5 C
    3 r, s+ |7 c; O        This is where the function calls itself with a smaller or simpler version of the problem.
    6 y& q& A- v6 R4 ]& Y. q' J$ ~1 ^% P# @  Q2 G
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    0 @2 F' f8 v+ w- [! K7 z
    7 l4 G/ F! P& E/ Q4 I  sExample: Factorial Calculation
    0 {+ s3 M' J( J; K6 ]# J- B! ~2 b! k$ E, S) Y
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:/ O5 m, q6 U7 g+ b( L- C$ ~
    1 d5 R( T' {) E  f3 k: s
        Base case: 0! = 1
    2 i3 q& v9 u2 j8 v
    # F. t0 o2 u; P    Recursive case: n! = n * (n-1)!0 E- R; G& t% m
    2 M. u# O3 q) l+ {/ S/ @2 t
    Here’s how it looks in code (Python):
    ( y5 p, o! ?, }  p7 z. e# ?: _1 gpython: j9 d$ W) `5 B( c! F
    " y1 u5 n! G3 {

    8 n2 P) l" b0 i9 w7 ~. ddef factorial(n):
    $ E3 g* s$ m. O0 m) u% y    # Base case8 G" l) P( ?- q" r
        if n == 0:
    ) y2 _& u8 _5 N  R, Z9 p        return 1
    , _. J; Y3 F. `' w/ n    # Recursive case
    ) m0 b$ b, G3 G    else:/ q6 `4 |" w8 Y" h; l. @
            return n * factorial(n - 1)
    ; z+ z6 Y, `6 q0 a/ {2 G
    : |! B- X; D, d; B  R. N, U# Example usage
    ; |: u# Q/ O: Q5 ^print(factorial(5))  # Output: 120
    0 w. z: _: E& r7 P& H- d. J9 L3 b$ P- C% U. C0 d/ {4 }: o
    How Recursion Works
    8 L& X3 P; T7 G# _  V) @! ~/ v3 P
    ( [* R+ S- s+ R! s: u! W    The function keeps calling itself with smaller inputs until it reaches the base case.
    ) `+ I. Y8 p# b7 _! O
    8 y4 \8 g; \+ q! U    Once the base case is reached, the function starts returning values back up the call stack.
    % a6 ?/ R9 c. Y: P6 I( v; e7 m& d# u2 w2 i' E  ]4 |' ^
        These returned values are combined to produce the final result.
    ' i1 x1 T8 t- n7 h$ S; c+ n$ Q. u8 d$ t! A; Q0 }
    For factorial(5):& _. p9 e6 t* O, o
    ! e) |2 v1 q% F1 W9 j7 ]
    * A+ Y9 X/ |* l4 v- a' o
    factorial(5) = 5 * factorial(4)( s6 g0 z0 c1 n# v( `4 D1 T
    factorial(4) = 4 * factorial(3)7 c/ @% L$ ^5 N
    factorial(3) = 3 * factorial(2)
    * o9 k+ @; m2 N2 [" Z) ~) P# @0 ifactorial(2) = 2 * factorial(1)
    " c' S2 c. J% N6 j  z- Wfactorial(1) = 1 * factorial(0)
    ; `, B/ V: g# Z) Ifactorial(0) = 1  # Base case
    ; ~, H8 O+ M- d, ~& b
    % a2 P' F  y1 B; A) }% ?3 iThen, the results are combined:! n. o: x: ^5 v1 N3 X  V; x5 N
    % v0 ?8 i. \. m6 P; f- [
    0 j2 s+ L6 N1 K3 K2 b6 G. {
    factorial(1) = 1 * 1 = 1
    2 t+ J* m* b2 y7 k( R; Tfactorial(2) = 2 * 1 = 2# V) g/ e5 ?6 z
    factorial(3) = 3 * 2 = 6
    ) |+ A3 t2 N. j* g" G9 T6 zfactorial(4) = 4 * 6 = 24
    ! b6 t( L8 T' X/ \2 }: }7 H1 h7 ifactorial(5) = 5 * 24 = 120  e3 w4 |2 ~0 f6 y! O

    6 F, q, }8 f- T& mAdvantages of Recursion/ }, f7 S4 u: z8 s

    $ x* w1 \7 Y9 Y" T    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , p; p9 k& b; v, U; a1 _& M9 _' u7 K8 N$ D' r. `
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % a! }! v! p: y( T5 i$ W8 u' l
    Disadvantages of Recursion( o6 t/ V0 v$ J1 x0 v. V7 H4 G

    ; j. G& q( ~, z; y$ ^5 m& K2 S    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 H8 L% X: G8 V6 J  h& d
    $ N$ U- D3 Q2 `$ N    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    " _6 w% K9 }1 b, l( l, i4 y9 j' ~' I* k" D: W7 u+ O$ b+ M; x
    When to Use Recursion
    ! l' `4 t5 r% I
    ( ^) F2 [8 I0 M    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# D2 l  e) c9 `
    ! }' n+ j) ?8 a
        Problems with a clear base case and recursive case.+ r' \. m6 i  I% A- J, q

    3 Y4 k# o' r- Q. }& L) L% `Example: Fibonacci Sequence4 [' _6 f/ }% o4 C
    3 N( M* R8 Z- f" L" ~
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    3 F4 F* P& [, G+ P8 b2 h7 ]4 E! ]
    - I# w* A7 O& b    Base case: fib(0) = 0, fib(1) = 1
    9 R8 Z9 P! j2 E# i5 V/ L3 E' K$ z  P% l/ M. j" r
        Recursive case: fib(n) = fib(n-1) + fib(n-2), f; c) ]4 ~$ a$ Y! O- J

    - R( A$ z  U6 |5 Epython
    ) P; I# }! v" H5 e/ J% P) o; A# [8 ?, G8 _

    7 T( t. t, W% V1 g1 }2 ~9 l; R9 A1 jdef fibonacci(n):
    9 k1 \, Q) J+ l: X: w  e8 f$ }1 i    # Base cases7 {; t$ A9 Y6 i) A2 t# j
        if n == 0:  I1 {/ A, G% `) P) Q
            return 0$ B: N' X7 Q. C3 A
        elif n == 1:$ d; N1 d2 v9 ^. i% f8 f5 m) f
            return 1
    & V1 H, ^3 w5 k* |    # Recursive case
    " x: q2 O( T4 ]. }) s& ]    else:" L( O( I/ f8 \; m! m6 s
            return fibonacci(n - 1) + fibonacci(n - 2)
    4 Z- _+ a& |3 u) r$ I; b( d6 L4 H5 \; w) X
    # Example usage) m* o" B, q) w( U- B
    print(fibonacci(6))  # Output: 8: @: P: W  h  E% J* M

    ( `" Y9 m( f+ Y1 xTail Recursion
    9 h6 G0 [- Y5 L! t" C" }
    ( V4 C; F* C/ O4 M* ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( M0 ]  |0 ]$ {1 V  `4 ~  J( w
    ( [3 j4 Q$ g$ I6 Y% z8 R& U: k  o* M
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 00:53 , Processed in 0.033160 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表