设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1348|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 E) `5 x- X. q
    9 {$ F; E0 T0 g  S* G! n2 B解释的不错0 A7 s/ |; O% P# ]) n

    6 d. T5 O6 L( K递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
      t; e6 L0 ^' s# e
    $ u1 l  r/ B6 K, {  j5 e5 h7 W 关键要素/ c! S; \% e3 g# v8 }4 M
    1. **基线条件(Base Case)**2 ?" B' R8 L- j
       - 递归终止的条件,防止无限循环
    : P1 p* o6 T# n8 W! m* f5 c   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " C7 U. C- W: Q
    # k8 ^- `' ?3 B9 A2. **递归条件(Recursive Case)**; u5 F- k/ b1 `' D0 E( o
       - 将原问题分解为更小的子问题2 e: Z" }2 U. E/ ^7 L" V+ ~
       - 例如:n! = n × (n-1)!
    9 c) h, k' @+ a& ]( R
    , z& Z7 |! Z" J1 I 经典示例:计算阶乘5 Q7 S% Q# y1 E8 o) r9 [
    python6 a7 o$ i/ f, V; l" [
    def factorial(n):9 Y$ c2 {' m2 b! s) ~9 O
        if n == 0:        # 基线条件
    * o. G" `( @& {) t7 b$ y4 L1 u8 P        return 1
    / h( J- G' N& E    else:             # 递归条件4 q0 ~. h- q5 `
            return n * factorial(n-1); Z# w+ Z$ U. V6 @: A! ~' h$ @
    执行过程(以计算 3! 为例):
    ! s. L6 Q" d; S( _factorial(3)
    # W+ n' }+ c, E  p3 * factorial(2)/ c" h5 Y$ Z: k9 ?8 z6 ]
    3 * (2 * factorial(1))
    " @! a, z5 ^% T/ K& l* z) m1 b. N. Q3 * (2 * (1 * factorial(0)))7 y6 L% w# X3 A$ M7 v# @5 q
    3 * (2 * (1 * 1)) = 6
    5 a+ i0 ^$ K( H, F; N9 Y+ Q
    % i0 p( @8 j( q5 V 递归思维要点
    4 P4 D6 V/ I% n1 B9 m4 S* \1. **信任递归**:假设子问题已经解决,专注当前层逻辑! s8 N' f3 W! ^* v
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ F; x  v% B8 Y' ^, _
    3. **递推过程**:不断向下分解问题(递)
    ; ~+ U, N: O+ ~$ E+ w3 I6 g4. **回溯过程**:组合子问题结果返回(归)3 ~3 D; S: M8 D- |

    ( D# h/ w8 @  ~ 注意事项/ q  {# @, W3 Z) X2 M% W
    必须要有终止条件
    9 ]8 `# }- u3 Z7 k递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ j9 I; k6 G) ?- `/ V' @) L
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    + z- f  r- z; ?1 A2 }! x  H尾递归优化可以提升效率(但Python不支持); q  g- ]4 k% z( L* R7 m
    / N  q2 |5 N& [6 q; h5 f
    递归 vs 迭代, B8 O( i* g0 Z. |. k
    |          | 递归                          | 迭代               |
    + W' w9 U# f8 c# r" D+ H|----------|-----------------------------|------------------|
    7 {' E* k* D4 G| 实现方式    | 函数自调用                        | 循环结构            |
    " p) `: Z; `) C7 }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    * [' S- t! F' Y5 H: O& m| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 O, p8 I2 w7 ^| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * P+ G9 R" V8 l0 @2 B' q/ z: ?
    + V+ n" j" s% S5 m+ T 经典递归应用场景
    0 }7 C8 ?9 H+ {! z% a9 }; _' f9 @3 y1. 文件系统遍历(目录树结构)
    $ |! @8 x+ Q7 u7 R2. 快速排序/归并排序算法  {! ~8 m! x3 }: C$ T1 p3 y; P" Z
    3. 汉诺塔问题+ I' f0 W5 @  N
    4. 二叉树遍历(前序/中序/后序)- j: n$ Z( G. J" \  h; ~& a* e
    5. 生成所有可能的组合(回溯算法)
    ; G, ~0 A$ |# X3 j' ^: [3 ^; }4 q+ N5 j% F
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    6 小时前
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,3 y! P! z- }  I/ ^$ t
    我推理机的核心算法应该是二叉树遍历的变种。
    " G) L7 f. V1 ^; C  J3 j! H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 H! v: {0 n" s' L$ r
    Key Idea of Recursion- w, R% x; [8 v
    ) o4 A8 k8 {9 g& r
    A recursive function solves a problem by:$ Y  v5 a0 p" t0 s9 [. n
    3 _0 D2 z. ?1 X3 }2 U( f6 `4 N4 }
        Breaking the problem into smaller instances of the same problem.& r- M+ b% l$ j; i

    / e7 [* {0 q& n5 [( d    Solving the smallest instance directly (base case).
    2 i& A9 e: `3 O9 w$ O
    / w. h8 k. J( Q) c    Combining the results of smaller instances to solve the larger problem.
    - w/ B( o  _' O8 X6 _0 e+ _5 z3 |
    4 o3 m' G2 K' s4 BComponents of a Recursive Function
    ! c& }; g! ~5 Q  j" ?9 e: V( M  C! }6 z
        Base Case:2 t: _; _$ U( }# D2 ]3 a
    9 o; `, e; l4 C( ^" ?/ M
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # a! N3 ^3 Q8 `
    1 J" V1 \3 D9 N" i' B! l7 G1 Y8 O        It acts as the stopping condition to prevent infinite recursion.+ |+ V, a, k! W0 n* C/ l  N( ~

    0 A0 }4 J; R% B/ V' _* N: I+ k        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ v5 s' f" ~  T3 r
    ' d  H) t0 w* [+ a1 Q
        Recursive Case:& d) ~2 D) b1 t2 N
    ' d- |: t) T0 P) m
            This is where the function calls itself with a smaller or simpler version of the problem.
    0 o7 x" L4 x: n5 p$ Z0 J9 x
    6 k$ [6 x) v1 E3 g        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % |1 x9 g3 _7 S! A- o! d7 N2 F. I6 p1 Q. ^  @! S5 M, q: Z
    Example: Factorial Calculation2 R( |5 k! H( G# T
    6 P/ i- }6 X( ?' i
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ; I5 }7 w. ^3 _- v; u
    - t' A! `, Z( I' `8 m4 d; F- Q; |    Base case: 0! = 1
    ( q# @2 ^: @+ q- z6 Z/ F# \* T0 c0 s4 q% [; |" A2 d( T( x' |* |2 F
        Recursive case: n! = n * (n-1)!
    $ @  X7 j1 A$ r9 {2 L7 _2 p
    # ^- P% q. M  M+ T9 dHere’s how it looks in code (Python):  [, X3 Y; x4 h  p6 }  ^+ i0 Q
    python
    ) t' t& \; r( O" C
    0 U% L3 A6 ]& L6 P$ \5 I4 L/ v4 a5 e% l
    def factorial(n):9 [+ _% _( Q( I$ G/ }
        # Base case
    5 C. Q/ O0 K( A2 y1 u    if n == 0:
      U- ]& ]# k6 a+ K  ^& h        return 1
    ; U/ E2 j' i" t2 i    # Recursive case# L5 f* ^1 u3 d' ~& f
        else:
    , A2 c' ]7 r- G* y5 z, P        return n * factorial(n - 1)0 p8 `7 {/ x4 c! C# d
    ! l! \; ^6 U  G& W/ P7 q
    # Example usage
    5 I3 ^1 J. b& s! Fprint(factorial(5))  # Output: 120
    % d7 _8 C& u4 Y+ b2 d$ ?; u. |% e) {, f7 `# e( F% Q
    How Recursion Works- F1 V; C7 f. U0 q+ E: _) r
    ) x! [: ]* J  c3 O+ A. G
        The function keeps calling itself with smaller inputs until it reaches the base case.
    , M! h$ c/ Z' [- R  u4 G- }2 ^4 M! L  ~& q" @' Q- w; g
        Once the base case is reached, the function starts returning values back up the call stack.% G+ J, ~/ c: a" n& {: u/ F

    7 S5 _3 ?* g; S0 g* ?1 d7 s+ x    These returned values are combined to produce the final result.2 l0 Q1 t+ x+ m

    % P& P- u: \; I: `* Q# n' _8 a+ kFor factorial(5):0 |- _6 @1 ]" l' m
    & i+ ^8 C$ j" i0 {- S
    ! |; v6 }- \6 S% C; O
    factorial(5) = 5 * factorial(4)$ @/ H& O/ i0 }' ?! P
    factorial(4) = 4 * factorial(3)8 y; B. U& [. u5 R/ k- L2 |
    factorial(3) = 3 * factorial(2)0 Z5 P3 I- s, P, V9 ^  I( ]
    factorial(2) = 2 * factorial(1)4 Y! Y0 G, K: \: c* S2 i
    factorial(1) = 1 * factorial(0)* S8 O, h, `0 ^+ r2 k& s
    factorial(0) = 1  # Base case
    . d1 Y1 l3 M& V5 |; R" x9 w1 @  A! H, s# E1 n0 y
    Then, the results are combined:
    2 o/ M" U: L0 y2 B* J1 K- O4 o4 K) N9 y$ f

    3 ~9 M, j4 C, k% @factorial(1) = 1 * 1 = 1& J+ n, J8 {% z! l) Y' d
    factorial(2) = 2 * 1 = 2
    8 x$ n* n# N+ x: Qfactorial(3) = 3 * 2 = 6
    ; n; U$ ^3 k, I4 {. k: nfactorial(4) = 4 * 6 = 24
    7 d' p4 u8 ~% M4 gfactorial(5) = 5 * 24 = 120
    6 Y# }3 x9 @6 b% V2 S4 g2 \6 C+ J  ]  c# q+ p( C9 W+ I8 D
    Advantages of Recursion" K# W8 p; ]5 f3 R2 G
    : g. x; Q' I; ~* J# p6 |
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : c- P6 @6 u( r, ?* @/ e4 ?9 U; Y+ {! Y8 b) s
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    2 e9 N" y/ |/ y3 z5 n7 U1 k
    # Y3 {3 W: s# u" s& VDisadvantages of Recursion' S! m% w5 s2 S1 o. g5 Y3 U# `
    5 ]9 k! B! D7 t3 y1 n
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & ~: B* Y2 W4 N& ~7 R/ n& a% A) S% Z# N4 j( w
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 j$ n2 V. d! ^, C5 L( N5 o2 _) l1 P" l( t: t# d
    When to Use Recursion- s, I* {. c1 ^; y- ?
    " X, i5 G( p0 d  l4 r$ W* q8 B
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: g4 B( v7 ?( C2 {" l: T9 A( l
    , n4 N9 T  w/ Q7 u4 J
        Problems with a clear base case and recursive case.& v2 D6 ]- V5 N) A8 C

    % d+ e/ C$ k! z- }+ AExample: Fibonacci Sequence
    * i& Z" a% ~& ~" X0 L: R
    + w, E! T+ r& g" `; N/ W- P; eThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' c2 ?0 Q2 @& x5 Y0 p  U9 X9 {' A3 Y" i: e' }
        Base case: fib(0) = 0, fib(1) = 1) @  C) P1 x% Z' d
    4 r( K7 n& U& @) Q" B
        Recursive case: fib(n) = fib(n-1) + fib(n-2)% o5 ]( y% [0 K* y( Q+ U% e
    * ]7 `% p* x: P* q  `6 U
    python
    / e# V% ~+ a+ }, v( j$ N
    7 g% Z/ I% V* ]+ b# I; p! f3 R
    + J8 x$ F* {$ G0 `0 V& s/ ?, ]def fibonacci(n):
    ! o' z5 n- x9 x- ?    # Base cases
    # W2 T% ^8 w& T' C+ n    if n == 0:
    6 z0 [( ?/ @% @5 e3 i        return 0. O# Q. U; F3 ?) ?) z8 J' f! k) x
        elif n == 1:3 N! G% Y' d. V9 V( e
            return 1
    , _: Y2 I( N! x5 X% w$ d  V    # Recursive case% C- N  I2 J5 q
        else:, ^* M  I! w1 t$ Q  D
            return fibonacci(n - 1) + fibonacci(n - 2)
    6 O2 s+ |2 A5 E& [
    3 D+ O$ b) T' |* T( {# Example usage6 ~% F, H- B0 X2 c0 V/ e
    print(fibonacci(6))  # Output: 8# n& i  G7 m0 Z2 C" N7 t( F

    - a7 u3 q' B5 M. F9 C1 @- X% kTail Recursion
    2 O1 r0 z6 T) r; ~& u+ K! d
    / L/ i3 T) a- o4 x! p( m, PTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* r6 Y6 v6 U- b# l6 V* M' J6 c
    8 i" m9 Y/ n. q9 C/ E2 Z
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-5 15:42 , Processed in 0.032099 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表