设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1368|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( T0 ]9 S- E+ w( b: J

    2 l1 o3 e& Z6 J* U1 w- A解释的不错! r2 z5 B1 \; I4 R. R- {
    7 v' [: i0 s) f6 }- x  [' m( _
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* }0 }: Y+ g/ O

    0 A1 z" U7 Z0 l- l 关键要素1 U* X1 L; K, b8 ~4 V, A/ ^6 ]
    1. **基线条件(Base Case)**5 X" F6 `% c5 V" g% J! r
       - 递归终止的条件,防止无限循环
    ) Y% k2 B  W' h- w- O4 P& @   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 10 m; d/ ]1 k0 E% _

    . Z" b0 K" @, X: s! r3 S) P0 v2. **递归条件(Recursive Case)**& f) P- p# r* k' ]7 U7 k8 R! J
       - 将原问题分解为更小的子问题9 O- c- o, `2 X+ N5 r( Q/ w
       - 例如:n! = n × (n-1)!: w, q; J' U# ?* Y4 _; j3 z
    + C6 v; t# [5 R# }$ v! \7 ^0 a
    经典示例:计算阶乘1 y" r0 `/ n, f: v1 T( {9 ~" w3 f! z
    python  [# \7 l" I' B! s. e1 {/ t" a
    def factorial(n):! j! |4 c/ j  X* z2 |
        if n == 0:        # 基线条件" ~4 Z! t9 I5 i- @% G0 O$ z0 h; W
            return 1- _- q1 J" h' a
        else:             # 递归条件
    - P0 [( d) @. w& K* Y        return n * factorial(n-1)
    ! h! Z' H) C% s0 o" h" v% ^; v: ?执行过程(以计算 3! 为例):; |1 w9 D' B# O
    factorial(3)7 e( k2 r1 y4 V4 R2 @0 K7 i7 P
    3 * factorial(2)
    , Q! y2 \& G) U( X3 f; s( Z8 V3 * (2 * factorial(1))8 S; V; I( ], p4 Z9 a
    3 * (2 * (1 * factorial(0)))- W; P: I4 h* w  o$ F" |
    3 * (2 * (1 * 1)) = 6
    " E( p, P6 }8 A6 E# y
    ( j/ _( P. e8 W' c! m- @ 递归思维要点
    # l7 {- W( I- G1 k0 q/ g1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ' i; m! b. F! \0 j2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
      v! K2 K* {5 d1 X& b3. **递推过程**:不断向下分解问题(递)
      h5 C9 [9 T$ e4. **回溯过程**:组合子问题结果返回(归)
    9 j% X$ l5 l! H) }
    ( e- j3 S) T: z% d' S( |6 g 注意事项% [  }6 p$ k5 B
    必须要有终止条件
    " Z1 E: S5 j/ D1 L4 ~" K3 A, p: c递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  w% M; _4 Y, M: i) g
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    " @0 W* z" ~/ `. I( ^尾递归优化可以提升效率(但Python不支持)& b- x8 F) k; S& w; b5 t6 ]4 d$ M

    , T  L5 H" Q  R- d5 S. D 递归 vs 迭代4 N% S) {5 t2 }; L, h& [8 x2 T% }) O
    |          | 递归                          | 迭代               |
    , c2 k9 e4 I5 g6 _|----------|-----------------------------|------------------|* z% V% e2 w! O' X/ I. k+ {( ~
    | 实现方式    | 函数自调用                        | 循环结构            |
    9 i: u  g7 c+ |3 s. a% n' Z| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & G4 k" D) `8 ~" v) n0 e& v2 M| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    1 @- O8 r! z# A1 `| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    8 b/ k: k+ w) \: }0 a
    : w: x& l) G% Z$ a- | 经典递归应用场景
    ( [+ q) D8 L& C1 Q1. 文件系统遍历(目录树结构)6 @. t; \0 ~1 q
    2. 快速排序/归并排序算法
    " H% E5 T! E" i$ C, A! G3. 汉诺塔问题
    % b# J. R) }& `+ I1 ~; T8 Y: W4. 二叉树遍历(前序/中序/后序)6 [. x! R( N" D* e7 e1 }
    5. 生成所有可能的组合(回溯算法)
    ) r3 u" l9 X& ~0 H2 y! M2 b
    ' R/ d) j. G( p4 D. _6 v试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    11 小时前
  • 签到天数: 3110 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 B* A* u: F/ b4 l) E; g3 e我推理机的核心算法应该是二叉树遍历的变种。
    $ I6 I" N* r* f% K/ ]+ V/ z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ( U% a% E7 N: f$ Z) _2 f/ VKey Idea of Recursion
    ( d( Y7 [3 {5 y. c8 Q+ C) B; N
    4 ], U3 o" O1 n+ [; t, A8 fA recursive function solves a problem by:
    % j( H! @. ~9 w+ U+ m: p* t. {$ s9 t& d
        Breaking the problem into smaller instances of the same problem." X2 O% S2 V" ?  O6 Z

    , F/ i1 h; [3 \, x: ~. P    Solving the smallest instance directly (base case).  V9 q: b( y/ A! V8 N' ~& d( F
    ) Y5 B* H9 a% N. ]# y
        Combining the results of smaller instances to solve the larger problem.3 X0 `. w* n( W6 N1 Y
    4 o! X  Z! g$ L( b6 K0 V
    Components of a Recursive Function
    . q; C, S- ?7 S% w7 H% D' _8 ^8 I( U% x* K4 T
        Base Case:- ]. |; e! F4 f& ~" N. y

    % Y9 U  k+ O; u        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    / p0 ~" z5 z; R2 b1 Y8 H, L, k3 a' c* r. J# V5 P& c
            It acts as the stopping condition to prevent infinite recursion.  N3 g& p, c% O3 N8 E& T
    ) a- Y0 H" z) I3 M; r# H
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- C+ n$ P& L  o! U2 _+ S
    % E& Z3 b3 p0 P; c& O
        Recursive Case:, `( E9 T: V0 k+ d1 w! M  U  j

    2 O1 t' T+ u) v! M" n        This is where the function calls itself with a smaller or simpler version of the problem.
      i# w( R/ H1 U- f% ^7 h6 f" v0 c+ k- a
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    " r# |- M2 s) {( J' Z8 x8 H: T% \# a% S
    Example: Factorial Calculation1 f; `  R0 M: w9 J7 @) L' N7 w

    ! i  X. n  _' AThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 ?& `& ^, F3 V- R( O

    : h2 c5 o9 `  @  A* g! A    Base case: 0! = 1
    9 g0 c/ @' P( J: k4 ^1 K  {2 Y$ Y5 ~- _. S( A* @% r; K( H- ^& |
        Recursive case: n! = n * (n-1)!3 i  D4 j* o- r3 E+ _# |$ \

    $ q8 c7 d1 \2 o2 ZHere’s how it looks in code (Python):
    ! w. S0 a4 c  t9 y. q& I/ upython6 m3 H3 G1 R8 B+ D4 w

    ' k9 U+ f3 |' L- d% H( b- X' F2 z( x' q7 I" o& e& w
    def factorial(n):- ^, V2 J' t) Q" m$ `7 B3 B- t
        # Base case
    $ I# n: t9 d( m    if n == 0:
    3 x& M$ R" l- a. q        return 1
    # ]0 z3 }; C4 p4 j6 C2 H    # Recursive case
    6 T$ a$ x: Y1 c4 S  L; Y! ^    else:
    * R" `" ?; X7 D        return n * factorial(n - 1)
    ) ?5 l1 o4 Z: ~, E4 _4 F
    7 h; ~. v7 b8 r# Example usage
    ' }0 H4 n0 T) K& v9 ]print(factorial(5))  # Output: 120" F1 U5 v3 V& _. `' E  @* I& C

    $ [# U  W* Q  OHow Recursion Works) p) C5 K! e  K9 w, \

    " z1 m& ^* P  q+ b# A1 q    The function keeps calling itself with smaller inputs until it reaches the base case.
    7 R& t- @1 Q8 f, Y& K% ]5 F' G4 Z3 H" j. m# q
        Once the base case is reached, the function starts returning values back up the call stack.
    1 u; s  b1 {* e6 j4 P* w, i* G. n9 X' Y# r
        These returned values are combined to produce the final result.% _) a, @0 n# K) F1 K5 L" Y

    ; V$ R) }) b5 R5 zFor factorial(5):
    ) G3 r! J! G) D9 V
    4 [& C# D5 u8 A2 x7 N
    ( H3 b/ t+ Q+ @, Vfactorial(5) = 5 * factorial(4). o3 ]! P' z+ |4 i0 f6 h, O" r- q
    factorial(4) = 4 * factorial(3)
    4 ?4 i+ h4 X% u1 }factorial(3) = 3 * factorial(2)" k) T0 B) v/ [4 r/ C8 j
    factorial(2) = 2 * factorial(1)& m' ?; ]+ v8 }6 h
    factorial(1) = 1 * factorial(0)4 h: W& `4 G  r8 F) s+ |4 |
    factorial(0) = 1  # Base case& U4 S+ ]& U( ?" v0 T) I
    . S8 M- |3 A- i
    Then, the results are combined:
    / q% E- O0 ?; T3 N! ?/ F
    % g- m" h: B( E: q0 [  `9 |, m) L
    + K! G4 `4 J- A% d  @3 m- n2 @, afactorial(1) = 1 * 1 = 1
    6 s3 i) x% z) B& ~$ R* efactorial(2) = 2 * 1 = 2, q: [1 X1 \1 p
    factorial(3) = 3 * 2 = 6
    + `; q3 o- }) P' T/ d* c$ M( ^factorial(4) = 4 * 6 = 24
    7 \& P6 c' t$ C, y6 m5 ^7 Y# T: qfactorial(5) = 5 * 24 = 120
    / |2 {/ h0 o2 R9 c# n) F0 `
    # t; U9 q" K; u4 j% aAdvantages of Recursion) X/ ~" n5 K; z) c/ g8 B

    ' `" T3 S( H3 X; x* x: A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    : b. h, X$ P8 e1 G- X1 G
    # v& U6 n0 W1 v/ E2 _    Readability: Recursive code can be more readable and concise compared to iterative solutions.. d% \% \5 }# k+ c; k3 k9 u' K

    5 ?6 y4 Y+ _" p" `Disadvantages of Recursion
    % y8 p- H5 L- \$ @: ^4 S; v
    8 R% H9 q' X( ?/ n- }" Z    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 t( \" W' i4 G; A' ^1 [
    ; e) f( l  _' ?( D$ V9 G
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).3 i% L' J' ]: r( t! z8 i0 j; \
    ; I8 R  i! g* t5 }6 |# c
    When to Use Recursion
    5 a2 X+ v' O9 p& V6 m8 g
    . T, ]$ |3 O# a$ v    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).: Z% U, [6 k& ]5 A( w
    8 y2 T/ x- _# I1 R! j# V
        Problems with a clear base case and recursive case.( ?/ L! `, ^5 M: c
    5 H' H. U: q$ h  T; `
    Example: Fibonacci Sequence
    % ^0 r+ M5 F4 l; u3 i
    2 n2 z4 S8 Z7 a7 j0 n" ~+ q6 AThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:+ f9 a4 A2 Z0 B$ {7 x
    8 E# U9 f4 M! q/ c
        Base case: fib(0) = 0, fib(1) = 1% K! m4 Q8 c- o/ ?9 o# R7 Y) w

    + H4 T; U" z9 B; z6 V1 m& s- }    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    " D  R# f5 |" g$ Q; v' A7 a, d" R. m$ O- B- e" f4 i% u3 m% @
    python6 |% n  C( ]7 }4 R

    7 I0 `+ q: `+ w) p  N" I) ~/ y* g/ Z' K$ h+ W
    def fibonacci(n):
    2 \) x: c$ V- ~+ j    # Base cases* i# V3 w7 Z$ H! T9 ]
        if n == 0:
    9 K! [6 m- m/ A        return 0
    0 n* Z; A. V( X    elif n == 1:
    3 _3 Q+ T4 A4 ~8 |3 i% J2 v% S        return 1
    + d2 l4 G: K4 t4 O9 c    # Recursive case+ i2 M- S; B; X/ T
        else:
    9 F/ _; ?; q$ M2 q, v        return fibonacci(n - 1) + fibonacci(n - 2)3 ?+ G5 n) L' B# M
    " P" U8 a& Q% b9 V2 h
    # Example usage
    3 x$ p: i3 G$ k0 H  y1 y! ~print(fibonacci(6))  # Output: 8
    * P. q0 n( M, @4 t& B/ b2 A0 U) C2 w5 T6 n$ O, M! m
    Tail Recursion6 o9 y/ V$ s& f9 x% m

    2 \, o: I% I( E, L; LTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    9 Q2 m/ I7 f. Z, Q
    2 b: u: d& r! i+ O+ }. E2 jIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 17:49 , Processed in 0.031385 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表