设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1457|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 B% F1 ?! k/ p0 E; g8 ?; i$ R. M' \% s. k
    解释的不错: `; M& t4 U; [$ x+ R0 z9 p

    ; l0 P* V; |$ Y4 c: V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) k  z$ r  ^. d. U4 ^
    * K9 t; ?" k% H; I. k2 r3 h9 Q
    关键要素
    6 y" W+ b+ g0 W/ L) A# _1. **基线条件(Base Case)**8 V6 T, L9 x- y1 b4 D  A/ A) B
       - 递归终止的条件,防止无限循环5 R( B# ?; D! ^: R
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. [0 ~2 _5 j! [! k5 ~' Q7 ~
    0 f/ c' @5 B/ J. X
    2. **递归条件(Recursive Case)**
    ( k$ n' b( I6 m, r" c   - 将原问题分解为更小的子问题
    ' Q8 J5 n$ M+ b) ?$ |4 g' |" i   - 例如:n! = n × (n-1)!3 B3 J/ D9 {1 j, C; E% z6 u* W; ^- \

    8 l- L2 H9 d1 g$ o) A+ r: I 经典示例:计算阶乘$ S* c8 k4 }( y# {' S. D+ Z* o
    python. ^9 z3 R; y, c3 o
    def factorial(n):% j8 o& ?: O( R4 ~
        if n == 0:        # 基线条件
    - z' m2 a) A6 |! z& H        return 1* H# ~/ k5 T0 X  a
        else:             # 递归条件
    + b% d3 O4 I# Y/ I( }        return n * factorial(n-1)
    ! Q' p7 Z, S* b1 g4 v2 J2 p执行过程(以计算 3! 为例):
    1 c% [% c+ \6 tfactorial(3)
    3 `: O  m( E" B* R. g- B1 E, `3 * factorial(2)* s1 a* ]1 Y& ^7 u$ x
    3 * (2 * factorial(1))
    6 z1 @) v, [: v- z7 l3 * (2 * (1 * factorial(0)))1 F5 C+ o! k6 G" ?# T" w
    3 * (2 * (1 * 1)) = 66 {! u' ~+ f3 `  l
    0 u2 _( X" w. A$ F& ^( y
    递归思维要点7 s% |" @; k: x" c2 z: @
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ! }4 W2 Y4 u, b8 _( n, Q6 }2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  t" B: f2 H7 W1 P% D
    3. **递推过程**:不断向下分解问题(递)
      ~) V# w6 l/ M( F) J4. **回溯过程**:组合子问题结果返回(归)
    0 T* Y& k) n; Y% n  x+ H! {) v. U" x
    注意事项- y0 U! u2 A& P$ P  ?
    必须要有终止条件$ S+ F# z2 Q- ^, B6 }
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 ?  v7 j( K) U7 W: V% h6 j4 ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代1 z7 A( J" d2 K( J! U3 Q4 p
    尾递归优化可以提升效率(但Python不支持)2 b. ~9 E$ R" z

    + r0 B# }) u7 o0 H 递归 vs 迭代
    9 z& `8 A' g$ F& D1 p|          | 递归                          | 迭代               |# d! L/ a7 O% A* A8 t' S& X7 M
    |----------|-----------------------------|------------------|, F$ w! S/ T% l, m' h- J
    | 实现方式    | 函数自调用                        | 循环结构            |
    3 r- c$ h4 A' o/ h| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    " h9 q+ }% A  c| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    8 L" R6 M# O+ _* `| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ; S' m. k7 t# c& j4 J& K
    ( |) \. L& N) v- ?: z2 T 经典递归应用场景' ^' V2 F$ v' w: N6 [
    1. 文件系统遍历(目录树结构)" r( ~# N& [( @8 b& T3 M
    2. 快速排序/归并排序算法# _  J6 E- z8 A* a
    3. 汉诺塔问题: k7 a/ R: {& [, j% _5 v! _, e( g
    4. 二叉树遍历(前序/中序/后序)
    , s7 i# u& L$ U- M2 H5. 生成所有可能的组合(回溯算法)) C: |7 F3 A+ k2 X) S

    7 a/ B$ u- a0 d- B: i7 n试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    1 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; y7 E5 ~7 A3 Z8 v8 n我推理机的核心算法应该是二叉树遍历的变种。. L8 d4 b/ j2 c6 @/ F
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: b4 n1 S7 r! j* [8 I7 V4 G$ n
    Key Idea of Recursion
    4 F" w/ R  ?% `- e& _, b! V
    ! ^) N: d: f1 S9 A9 E) ZA recursive function solves a problem by:5 _. Z: ?5 V* S: T/ I3 W

    + V9 h4 [% Q; W/ \    Breaking the problem into smaller instances of the same problem., T1 Y+ Z+ w  n! }! P3 [' Q: J
    7 G+ M* V$ A3 m2 D9 g0 K
        Solving the smallest instance directly (base case).2 n6 `& P- M3 g/ F: Z8 j- m

    , D; |+ t5 W, m+ Y    Combining the results of smaller instances to solve the larger problem.
    + U4 l# ]/ ~( y9 b  ^: W
    6 J) A$ d" l( w: bComponents of a Recursive Function8 O+ K7 W' ?# C4 s
    $ i9 q& n% {" y! Y
        Base Case:; J- M8 Y4 j: ?# [* b! h6 S" e, |

    % V0 \. s$ L0 P* T( e        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      {7 ~  Q" e, [) h
    + g& ]5 ^, l, k6 K9 V' ?/ a        It acts as the stopping condition to prevent infinite recursion.8 Q! S1 \2 @( Q# Y# m7 k* H
    . Q4 k- T# R+ {2 O" f
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* Y! y7 O. ^9 |- L
    # r0 n& O: c* g
        Recursive Case:
    9 p9 x# r  s7 }! O4 a* a, q, V# n0 y& v$ s
            This is where the function calls itself with a smaller or simpler version of the problem.: J4 L  D/ Z- _! ~
    # A2 \  Q# b6 R5 w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' l* f, y9 n$ A5 Y' S" h# R& S9 x* V7 G; J* l6 ~0 w2 H1 n) t, D+ j
    Example: Factorial Calculation
    8 C* o+ j; j$ d6 N$ K
    7 r9 d5 D8 ^% [! \% z" ^The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / r8 g/ R$ f# c9 K
    9 K& Y" k0 _; D- v. a* O    Base case: 0! = 1
    & |" F  k7 B7 Z2 Y, P$ e- h  c* `8 E  U! Y3 @- L
        Recursive case: n! = n * (n-1)!
    ! c! X. |* @0 u/ Z, E. `( Y1 B: k& }4 k/ H7 U' A
    Here’s how it looks in code (Python):
    / V. b% b& k- Y/ hpython3 H# y* P; F3 |$ j
    / [' X$ a  j9 S" y' i' M
    8 G' S4 K$ R  L2 x2 X9 r% f
    def factorial(n):, D. i& D& H) q& m
        # Base case
    $ r0 N6 S& n  D    if n == 0:6 H) D4 U. M6 P* e/ B; h
            return 1
    , g0 x, N- g, ?# y* ]( y, Z    # Recursive case, u7 v/ p( l' C1 N0 H
        else:6 T6 T$ \* U6 q0 b! P; C  W1 S& ~
            return n * factorial(n - 1)
    % U1 Z9 k2 n+ R) N2 Q) T
    7 |6 @; H3 P7 T! i# Example usage# z! K" U8 W% Z$ z* S
    print(factorial(5))  # Output: 120+ N/ t5 ]4 C: s7 t! u
    4 V) @& l. p/ ~' n* |1 S; U& ^
    How Recursion Works
    8 q. [+ g, h+ E. V$ |3 l* |; c
      f0 T/ Y; j) r7 E" T: i    The function keeps calling itself with smaller inputs until it reaches the base case.6 `' F4 \0 }- \

    $ d7 m' c" S5 b: {    Once the base case is reached, the function starts returning values back up the call stack.
    $ D! ^. B% P' U8 v& F
    . w/ |& C2 f5 @. a) z8 l    These returned values are combined to produce the final result.
    8 _# Q" H% g) ]- k" d( ?( ]8 P/ B0 e5 a
    For factorial(5):# L; Q; e* _* ]
    ' Q) A$ ^; G) m; U$ _1 z
    * p- Z) Z  m! ~2 L4 b2 r" r
    factorial(5) = 5 * factorial(4)
    & L# K' r! Q! v; e3 V2 U2 d& Jfactorial(4) = 4 * factorial(3)
      T# z! O* D: c5 e) c' ufactorial(3) = 3 * factorial(2)" s$ ?& p0 c1 ]0 Z# n3 c7 @
    factorial(2) = 2 * factorial(1)% f5 g0 _7 J. S
    factorial(1) = 1 * factorial(0)6 X- t7 X1 D) |" s8 D" R
    factorial(0) = 1  # Base case7 ]* {- X, m4 M

    9 ~8 _; k# f, \/ J+ uThen, the results are combined:. A8 z* I: n* g6 C: _
    1 J2 Y% w0 c9 ?1 T
    # k4 S  L# r, U; J" y: X* l( ]
    factorial(1) = 1 * 1 = 1. e+ X* U! e0 h1 P/ K
    factorial(2) = 2 * 1 = 2
    : @% {7 Q, m  `8 U3 ~factorial(3) = 3 * 2 = 6
    $ ~+ m+ f9 Z# `: M1 k) T: efactorial(4) = 4 * 6 = 24: ?/ c$ T" d$ E7 k
    factorial(5) = 5 * 24 = 120
    - |: H. X0 o. p) Z- A) `7 L# W: b/ d" y- @) Y" t5 U% ~, H9 [
    Advantages of Recursion
    ; N( R2 E3 L: U$ T7 {
    2 P1 y, {( f1 ~/ z( [9 o    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ J& ~( c2 g  D/ e9 {4 n
    4 n. U3 A; p" @6 _# e2 W' w  J. h    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 c- K4 Z+ h: s) `
    " }' A/ q- F  k! ]2 p( K- n+ ]Disadvantages of Recursion
    ; j- b' c+ S, b- M- M' W- F4 z2 D/ v$ O. i+ a
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    7 d$ _% x! r( Y4 k. V  {# h- w/ G7 k  k% u% f
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * ]! f- n. h( y, \
    0 Q2 v% Q1 `4 s! ?' n( {( FWhen to Use Recursion9 E' b0 X8 ~, E* B9 E9 @* Q$ \; l

    # S  K% w5 Z  {    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 V5 v2 `9 D" E
    ; O5 [/ }& j( O$ B+ K0 F
        Problems with a clear base case and recursive case." J$ D3 [9 L9 k% \

    0 @/ h2 O# t! c! I4 WExample: Fibonacci Sequence9 c4 m: m' E. M+ N  b
    ' }+ D. e6 f0 @( \. F, r: u* a5 K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 q" |) T) L$ z- A$ M
    5 q- b& c5 n( A/ j0 `7 [6 u1 @    Base case: fib(0) = 0, fib(1) = 1' B$ E; e4 X: ~/ d" A- Z
    + V7 J8 t+ C1 T4 P, y3 _0 ?, f
        Recursive case: fib(n) = fib(n-1) + fib(n-2)" q( d! C! }& x) f  [! ^3 P

    . z1 D8 J+ E3 Kpython% U- D: w+ q  O7 Y
    " g9 L+ O* g  _& Q3 l4 y: W

    % Q9 S9 \, o6 q' @1 W0 ?( @/ u- qdef fibonacci(n):
    5 [" z$ |  C( n& I0 O* b    # Base cases
    2 X1 y* j# ^; R5 V0 t& j0 w6 }4 x    if n == 0:
    5 a& D+ v) W4 b        return 0/ L/ u* {0 @1 D4 c
        elif n == 1:
    & T% G* M  t8 ]* `7 W0 \4 d        return 13 V* R9 Y+ i9 e% Q1 W. ]  q
        # Recursive case
    ! l/ a" f2 [7 b& y$ n    else:
    ) B( v0 Y: m; g4 ]1 q: r        return fibonacci(n - 1) + fibonacci(n - 2)
    9 K. I" T# c0 S1 X) ~5 A# |: O. R0 v/ D
    3 g1 }( A" U  S! J# Example usage0 T2 d- K4 l; z$ b3 m* @% F
    print(fibonacci(6))  # Output: 8
    & Z7 {6 K. l& @( v2 R
    ( p3 _5 G3 Z1 `; k  QTail Recursion4 R1 [- u% V. A+ A# T$ K) C0 C; Y& ~

    . c0 t1 o5 _# {7 k) f5 HTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    % ?3 }& m* s+ d. g+ n2 m. j4 I1 x: d# o
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 02:47 , Processed in 0.030477 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表