设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1451|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : z/ a. m8 ?6 ~) T2 D

    . a# P  H* o, i4 w7 d& o解释的不错2 _8 |5 P  \" P2 ?. `) e% A9 Y5 P

    # d2 y' I; D7 @% o/ W递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  W9 x) e1 Y9 B5 {

    , I3 k4 Y( D" k5 |/ Q/ i5 z: p& }2 w7 B) M* W 关键要素5 d% |6 V# O8 Y8 U$ V' C7 w# V
    1. **基线条件(Base Case)**
    + P. Y2 \) V. V& g   - 递归终止的条件,防止无限循环+ C3 k1 Z3 T) z; s- \/ ^6 X; r9 s
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 `9 @$ W4 Q$ H4 i0 W
    5 ^7 c0 B: e  [+ L) {
    2. **递归条件(Recursive Case)**" Z, k- u; |/ O  l5 |9 b" w
       - 将原问题分解为更小的子问题, H* N. l$ C7 K5 y0 T# N8 x8 C
       - 例如:n! = n × (n-1)!( a* S% w0 x+ k* d0 C; {) j
    # ~4 E! S& F2 U& v/ b5 {+ u
    经典示例:计算阶乘* l. S, X$ f  k. M: @' Q  q& }
    python3 J$ u: M' w" a4 H/ a% m
    def factorial(n):
    6 G+ \8 Y; I+ w! {1 U* R    if n == 0:        # 基线条件
    6 _: q" }* V$ A. f        return 15 W* G- e3 i6 }; `
        else:             # 递归条件" Q. J: ^4 M- E
            return n * factorial(n-1)
    & y: \: {4 U) ]0 Q! b" M执行过程(以计算 3! 为例):
    ! ~! D5 [( [) Sfactorial(3)
    6 N% m! g+ G; H: a7 y3 * factorial(2); `. E# s, }! S: u8 V
    3 * (2 * factorial(1))
    5 i) p5 F0 |! m' S( g- _3 * (2 * (1 * factorial(0)))& m$ P; N# e- d3 w$ m
    3 * (2 * (1 * 1)) = 6+ A- ^- F. x5 ^: k9 E% N: X

    . e, Y' P, t1 ~' s4 M( ?7 \+ R0 h* U 递归思维要点
    . u/ o& h, O2 c  f% w& V1. **信任递归**:假设子问题已经解决,专注当前层逻辑* H7 j8 ^" ~! P- K6 V
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; Y' I8 \* _! t' c5 f+ `1 x3. **递推过程**:不断向下分解问题(递)
    $ ?0 c" a2 |* K! q0 r4. **回溯过程**:组合子问题结果返回(归)' c9 w9 ]2 k! r, _9 Y1 d. f
    + ~' G0 ?6 b1 \$ v
    注意事项
    & {7 f% x0 f  [& Y& N! s# j必须要有终止条件- X3 T" ?  [% s$ _4 _
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 b) H. h# @5 ]$ `8 Z' |
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    , i, S/ x. Y7 [, J6 s9 F9 O尾递归优化可以提升效率(但Python不支持)
    % u- e# n4 `0 ?* U5 Q! m$ i! }2 l+ q
    递归 vs 迭代; M# k( r2 m# {6 V7 L7 z8 k# q1 w
    |          | 递归                          | 迭代               |- V& r0 R& q6 c
    |----------|-----------------------------|------------------|
    4 h" v2 e. r% W) J, b/ D| 实现方式    | 函数自调用                        | 循环结构            |- |$ e6 o5 R9 S2 x
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 e/ K, T- M# |; F: o( ~, z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 L( f; d5 S- z. S- \# O( x+ t| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : q, Z5 S  c# V7 }2 H. M" B/ }8 N. w0 n* C& V
    经典递归应用场景- n+ y5 x* z/ Y1 g
    1. 文件系统遍历(目录树结构)  t' V; ]1 \% l: w$ E
    2. 快速排序/归并排序算法
    ; ^* z+ x; a# Z. z+ ]( G3. 汉诺塔问题( X7 l* O5 a0 \1 M% H
    4. 二叉树遍历(前序/中序/后序)
    8 E4 m9 l/ L& h7 u$ n; O5. 生成所有可能的组合(回溯算法)
    , s( b0 [- J( g- h  t6 j9 Q  Z
    , h4 y7 M/ ~5 L6 V试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    13 小时前
  • 签到天数: 3114 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ B& C3 S) t, F/ L. E; e" \( }
    我推理机的核心算法应该是二叉树遍历的变种。- ^( W% X7 S! |) t: F
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% A! H7 R, H2 \( G, C
    Key Idea of Recursion
    4 w+ H& F. }, W" b8 ?
    2 o. M1 E. G$ f1 ]$ LA recursive function solves a problem by:
    ! N, m( m( O& ^& P' w) J1 o, A
    + z7 ?6 ?) |% R- d    Breaking the problem into smaller instances of the same problem.
    , J5 Y$ E! {. t! I1 X) U1 l& Q
    ( a$ A5 v- s0 r1 M! G/ B" n    Solving the smallest instance directly (base case).% u1 Q1 ^' G+ t. w7 g. ]
      k& U) }5 J' B: X8 J8 u- k0 T
        Combining the results of smaller instances to solve the larger problem.) s0 {  d" X& T, U! v9 Q

    : R% c3 c' Y0 R. }& f* u, LComponents of a Recursive Function8 X3 b6 y" U. B) x2 z* N
    ' f' m, }: y+ L' W  l* N# V
        Base Case:
    ; o3 r1 f2 e7 M/ K( ^7 \' E; y# q' v$ N% y% m( x0 f- Q
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
      t* C( f& K+ l9 }' ?9 K; D( c1 z8 a. ^& f4 B; Q
            It acts as the stopping condition to prevent infinite recursion.9 V4 m; ?2 {& w
    # R' n! ~+ y% A8 l+ B
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 s4 Q4 ^$ p% W2 @+ e3 `  _

      q5 S; j/ b3 A( ~& e3 _  t    Recursive Case:5 P( L( z  N+ p0 `9 M: K

    ; G8 Y$ }; F. ~% f% w" R8 \( S        This is where the function calls itself with a smaller or simpler version of the problem.. A/ q& V# x$ B/ Q; u
    4 }6 F$ h/ p# H4 k" H3 J9 E/ u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( ?% p0 `5 \/ z0 Q! {9 A" y: z1 p% U) f
    Example: Factorial Calculation
    0 Z9 H1 X0 d% F( N" s4 _* F. L' ?) A/ _( P7 a
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    : |# V" A* q' P4 Q8 {/ U, s5 m% u
        Base case: 0! = 1
    & I+ ~$ K8 j6 e$ @# k0 p0 R3 _: |( J; n6 j7 \
        Recursive case: n! = n * (n-1)!
    ( T. Y  [9 ?+ c' P- K- {: M. a3 P% j
    Here’s how it looks in code (Python):! g7 E8 c5 X$ H# a+ |4 B
    python1 m& H$ k& s* H% I# c

    : j4 P  X/ O* ]$ B6 _
    ( I8 Y1 y4 s+ m8 Jdef factorial(n):3 P, F8 D' o8 c& ?% t& C
        # Base case/ X" ]  T5 n+ r
        if n == 0:
    + x0 Q0 N3 O9 {2 H- o) b: {; u  f        return 1
    6 ?* W' B6 x0 x& W/ c" H    # Recursive case" ^" S2 o4 U  E/ l1 T
        else:/ w( Z+ h" Y' O) T/ y7 [+ x
            return n * factorial(n - 1)0 x8 Z5 k; A7 v! e- R
    " k$ P& n# @8 [, p
    # Example usage5 a6 z, @2 N# {2 q
    print(factorial(5))  # Output: 120! C7 Z  E) P6 U

    # j$ {$ g: N+ B9 q4 CHow Recursion Works
    - b1 g' ]( ?6 l% D2 {/ W: Z1 i% W( p* S4 `
        The function keeps calling itself with smaller inputs until it reaches the base case.
    7 f( }3 @4 `8 l" k
    $ T+ Q: t5 @3 v' M    Once the base case is reached, the function starts returning values back up the call stack.
    $ _( o" e7 v. |- F  n) ^3 I! {9 l0 j7 G; m$ ^
        These returned values are combined to produce the final result.6 L% r: x: [# b  S) |

    5 _9 j# z! i' a' z, S; F  AFor factorial(5):
    % r. [8 ^& C; u% {2 I0 H6 I; B5 X' i
    8 W! }8 Y4 H5 o( |- }
    factorial(5) = 5 * factorial(4)
    & L: R" w) {; M" n) x% mfactorial(4) = 4 * factorial(3)  F2 |1 |5 `  p' P7 R5 g
    factorial(3) = 3 * factorial(2)
    8 j# o/ i" _3 u) t) p! M: `9 afactorial(2) = 2 * factorial(1)0 d7 C  X3 C3 h' J/ O- G
    factorial(1) = 1 * factorial(0)
    , Y& ]. R$ a2 [factorial(0) = 1  # Base case
    ( c8 |6 K2 ^$ W7 Q) l8 o' P' E2 I/ ?2 W; a) `
    Then, the results are combined:) ?( d! f- A5 S# h% x9 \
    ! H/ Q  E& i! N  M

    ) K5 v. O  u+ bfactorial(1) = 1 * 1 = 1
    ' n: Z, e( Q: i/ l* ~factorial(2) = 2 * 1 = 23 p6 ~/ x0 q& A4 w/ b2 k3 Q
    factorial(3) = 3 * 2 = 67 k/ K) ]" G# o- P! ?+ j
    factorial(4) = 4 * 6 = 24; o% `  y) X3 N( J$ Y0 g
    factorial(5) = 5 * 24 = 120$ W3 @+ D; w! R4 w
    ; D( R! B" j2 l5 ?8 k0 x1 q, @
    Advantages of Recursion
    2 {8 a" e% o' _# m( u
    # h, _. c8 l( l# Y1 ^3 E' H1 y/ E    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 T5 \/ z" u/ E: T+ P9 c& P1 i) A: @. u5 R) e' w- @
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 [1 a$ p9 K6 f3 W7 R. ~
    & i  _- d2 g& NDisadvantages of Recursion. V% {1 `6 @; [* a

    - T; b6 A0 w3 r9 F# |    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
      i9 m8 Q6 E( p# i! l& S% g
    # Z: O" P6 T; J& t( ~- z# b    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    4 E' }8 J/ q9 R+ e& Y6 }$ q+ h( J! c2 b. r+ u! e; l
    When to Use Recursion
    ' H- h  t: b/ |* ]7 e8 E  `5 W+ J
    : h7 `1 l2 ]0 q    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 x$ P/ e! U! n' i

    " I9 O1 c6 [2 \2 P/ G) ~# t    Problems with a clear base case and recursive case.) U) e; i8 c( M* l) t1 o  U

    $ Z2 s7 Q* s- I' d0 |Example: Fibonacci Sequence4 W1 N2 H" y4 z$ w7 L; E+ k
    ( r# b% d/ _7 X
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 A3 u, I0 x' E8 b" f- v

    $ O" _5 T* Q1 Y; B+ l7 Z% O. o    Base case: fib(0) = 0, fib(1) = 1  G8 b8 r3 A4 C8 B' Q% R
    : P8 J  ^, i$ s1 ^, S  W8 s
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 t9 W3 A5 R% d9 Y6 R- W1 j0 f0 K
    ' m% D' G0 z8 E9 L" z) `python9 Q* V& j/ ?- A  x

    5 R4 S) H# D  m) n
    1 }$ e$ ?# I' P# bdef fibonacci(n):
    4 p6 G* R# K  X. M" h    # Base cases; s8 ~. }5 G6 A  c1 |) k$ X8 `, @
        if n == 0:
    , {4 ^% T6 q4 g# T; J# N        return 0
    + j( q% S0 M# u! e    elif n == 1:2 K; ]( S- e& s( F- E3 R
            return 1
    ( d" `; Q/ }! V$ k    # Recursive case
    9 e" j; \$ t' b7 A    else:
    . Z/ n4 R5 O1 M/ G4 @0 c        return fibonacci(n - 1) + fibonacci(n - 2)
    ; J' h: A1 N3 ^& k4 Q/ g; E- x7 @( L
    # Example usage
    ; r: [& n5 {( o% R5 |print(fibonacci(6))  # Output: 8
    5 X( j$ h  z. j5 |6 [. O7 r. P" ~+ a) ~% A4 I4 b" f# T
    Tail Recursion
    5 t  F2 a" W: Q/ `
    5 G9 m+ H+ t. r0 a9 h& p6 xTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).' ?/ ^; T/ P5 X0 V; T( E3 q* S

    , @) z0 Y* l0 |In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-10 20:24 , Processed in 0.032540 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表