设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1788|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 [% R* e( w: L( l
    1 h1 O+ L6 N3 J+ E
    解释的不错
      [! d. Y, y, v4 g# n1 t3 X+ M, F( N7 z4 X/ Y$ w- Q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 x) x. c  q0 x' B& X2 Y
    / f$ ^4 M! z0 V( J" k
    关键要素: b# U! z0 B5 O( K7 d7 r
    1. **基线条件(Base Case)**
    ' `" b8 s/ i; r; `  o$ F   - 递归终止的条件,防止无限循环
    # g# P6 n' N" j   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% l5 o3 |" i7 J9 P

    5 E' M& ^; i& p+ H2. **递归条件(Recursive Case)**
    % z$ q  }* U5 D9 v: h' a2 @   - 将原问题分解为更小的子问题" z5 m: y% W+ f1 P+ \
       - 例如:n! = n × (n-1)!
    ; v) P- r7 _1 }/ ]8 g9 ?9 I, M0 t8 ~: w$ i- h: W. j
    经典示例:计算阶乘% e+ m" z$ Q/ l  L3 {: H! u
    python  O3 s6 h3 g+ v( e) N
    def factorial(n):7 b8 L1 @2 E9 |) x( `9 u
        if n == 0:        # 基线条件
    : F$ u: [2 g4 `: E1 x        return 1
    ( x8 x/ M& O3 L. X. V  b' w9 B8 O    else:             # 递归条件& j/ k( ^1 [5 F$ i6 o
            return n * factorial(n-1)
    ! V8 a; I- x: J+ n5 v5 D执行过程(以计算 3! 为例):
    ( M) `+ T( F1 Jfactorial(3)
    ! K( Q$ K; F4 `# r3 * factorial(2)
    ' \: `1 k' L, Q0 r' v5 L" R4 m3 * (2 * factorial(1))
    ' f3 n$ o  n5 H% D5 f: G8 b3 * (2 * (1 * factorial(0))): I: e2 U/ S5 P) ^( h0 Q
    3 * (2 * (1 * 1)) = 66 @( y- M1 B- c& h2 ]) Z# S1 C

    4 H% M2 L& s( p+ F# |0 Q9 A' j1 I- F 递归思维要点
    0 S0 W. w/ L0 ^( B$ M1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 _7 G+ }3 s7 C2 Z
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)+ Y' q5 j- Y% _! `6 ?
    3. **递推过程**:不断向下分解问题(递)) d7 M. D; s  G- L
    4. **回溯过程**:组合子问题结果返回(归)
      S% }- R$ d" J4 T0 q8 N1 ~/ o; G; [3 ^3 t( L% r0 g* I" Q
    注意事项
    9 n/ {( }3 x8 {0 c必须要有终止条件+ H) P& p" N% E, e  z) Y" F
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    6 w: T% U- \) ?/ A7 w- g4 M3 w; v某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 `# v' y% A8 s9 W0 h尾递归优化可以提升效率(但Python不支持)' `) J2 o, O- `0 i/ o
    % W4 r9 D" D2 M) X6 k& j2 e
    递归 vs 迭代3 r) s; S+ p" {$ ]" p8 c
    |          | 递归                          | 迭代               |
    - S7 L  n' n; X' i7 z9 E) l|----------|-----------------------------|------------------|
    / {' U& i/ Z9 r% x' }| 实现方式    | 函数自调用                        | 循环结构            |' V( x* w$ ~8 {3 ^5 }1 l, A% E; o# B7 ^
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 A3 q3 H3 d" E& Z
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 T# A' Y9 M0 q0 D| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 @( q* u  C( h4 i8 v6 i! y7 i2 r) m; d% d$ I, Y" G! \8 }
    经典递归应用场景
    2 L" L+ W$ V- `. H- |: V1. 文件系统遍历(目录树结构)
    & p4 t/ l) O/ o  e! _8 S$ D2. 快速排序/归并排序算法
    " U" ^0 Z1 }: f3. 汉诺塔问题
    ( Z- J! b" K' R1 Z4. 二叉树遍历(前序/中序/后序)- C9 o) `( G6 Q+ y$ _
    5. 生成所有可能的组合(回溯算法)
    " @% y4 }, Y9 c7 P" i; H
    + ^7 k8 c; R1 E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    半小时前
  • 签到天数: 3144 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    : K8 {  B1 \" E: ]我推理机的核心算法应该是二叉树遍历的变种。! M$ q+ I% e7 v; M5 {0 k( \
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ; @6 l% m) o/ e" @0 g2 uKey Idea of Recursion7 c5 r# G) S2 K, X, V6 R) n% ^

    2 `* H' j2 h! q3 @A recursive function solves a problem by:
    3 M  e* g$ S4 O4 m1 q* S  K' ?; D5 K
    ! ~9 ^+ W4 Z6 L    Breaking the problem into smaller instances of the same problem." a7 h1 S6 P8 r3 y' z6 T" j  b

    ; z. l! K% P( m4 a8 T' C( r    Solving the smallest instance directly (base case).
    ( P, p: r. c5 x" f) g
    . k! [% {0 u$ h2 j" ~- n+ i1 I    Combining the results of smaller instances to solve the larger problem.5 \2 w+ G) R8 `, ]# I! q0 b
    & ]- z# Q1 u2 S/ j% Z
    Components of a Recursive Function/ W5 N+ k! d. A4 Z- _

    ' G' D1 @5 ~; g+ \9 F7 M" N    Base Case:
    1 E5 R9 v& e1 f9 r7 x
    6 p/ R- @! Q8 r        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.6 W1 H/ W+ I' x2 P* k) `

    " @' j3 M6 \' Z7 `        It acts as the stopping condition to prevent infinite recursion.$ G2 ]  J* ~* }0 Z
    3 U$ M, s! _$ w7 F, H
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    5 P' I. S) M* N0 t9 u) m& v  W$ G0 b6 p, Y* e$ G+ q' h  M, ?; u/ W
        Recursive Case:: o' ?* P) B7 x/ y/ r3 [5 N

    9 Z5 r/ W- T& C        This is where the function calls itself with a smaller or simpler version of the problem.
    $ h/ H7 @" Z; W# w; |0 `% o* q% f& D
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    - `& K: b5 [' v8 q0 Q$ g2 q7 d1 G. w* G" W3 y
    Example: Factorial Calculation1 {3 b, U' K2 Q& y: |

    ! @- _. n8 T6 _! z% T4 s) X3 HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ L# L+ x, t) @$ h* W2 k: D0 U* b. A
    4 b! {% f" s# H
        Base case: 0! = 1
    0 u* L# T/ z! n" d- S# L1 \- s( p- h4 A5 p9 W2 w; T; o: P
        Recursive case: n! = n * (n-1)!
    # t; H+ i% h, G( Q
    , \9 y9 M6 L7 S& e5 K" H/ xHere’s how it looks in code (Python):1 B2 [$ T. q8 ]) X4 H# R  \+ K1 H
    python: H2 y, J0 X5 D5 N4 j& M! q

    2 ~: {1 j5 J' D- s7 o6 D$ k) Q+ v# D/ O: C. _1 W/ P! D
    def factorial(n):
    * C. q) h. s; r% m    # Base case
    & C) d, Z6 u' ~& F. C. ?- k    if n == 0:
    8 c; z1 T3 F  v. b) v. f        return 1
    7 j" i2 W# [( c' d& `1 }6 K    # Recursive case
    : O6 u9 o; l! P, M% @+ |7 W    else:
      L# x, J) W3 O! E7 X. @8 C        return n * factorial(n - 1)8 |) M3 Y5 r  C9 S6 L
    1 l- K8 O' ]+ X1 N" H$ m0 s
    # Example usage8 r+ f+ m+ c# b8 D# p: Y$ Q; d
    print(factorial(5))  # Output: 120
    5 D: J% C! \1 ]& R; j# U$ n5 m# ]' |2 N7 V* }* x( R; F: O
    How Recursion Works
    / @/ }0 P- j: l; H: n1 f" f6 @2 _! I" F# b! B
        The function keeps calling itself with smaller inputs until it reaches the base case.) G4 R9 K$ |/ j, R! |) D" x$ }9 J
    9 Y5 a9 i1 C" D3 `  f. j
        Once the base case is reached, the function starts returning values back up the call stack.( ]- Q' S6 Q9 ^1 D
    : R, D8 ]( E4 O: s3 e! u0 z9 K
        These returned values are combined to produce the final result.  m2 c4 m0 N) D. e

    ! _& Y( `( V: c; V' B  ?% gFor factorial(5):1 S0 I: {6 }9 H+ U: G/ H

    4 t5 {. E! q) `6 x6 B2 R8 d* \. q" H7 e
    factorial(5) = 5 * factorial(4)
    2 _; C% ^9 V) e! e9 I: G2 H7 o8 xfactorial(4) = 4 * factorial(3)
    6 r, v1 c! d  P) Z5 lfactorial(3) = 3 * factorial(2)" r( M) o: C0 V  D2 g8 r$ W) ~
    factorial(2) = 2 * factorial(1)
    % f6 G! P& ]( J- |# Jfactorial(1) = 1 * factorial(0)" r& v6 W+ c) z  Z% ~: d
    factorial(0) = 1  # Base case5 b' `. o8 ?1 N4 ?$ p
    9 |; ^- t1 {8 {) Z& D0 a; {  O! u! M
    Then, the results are combined:
    0 Z' ~( }* C* i5 {5 O. P% g. X, L$ B$ ?% [/ c: K5 k) G
      K8 Q: w5 \' R3 V/ u$ m& ?- w
    factorial(1) = 1 * 1 = 1
    0 q! q) {3 z1 [; o1 s- b* G: `) xfactorial(2) = 2 * 1 = 2; d/ l* ?2 t3 m0 \" u/ y+ V
    factorial(3) = 3 * 2 = 6( J+ ?6 E& w" i$ n
    factorial(4) = 4 * 6 = 244 {  X' ?( D) M& x. m
    factorial(5) = 5 * 24 = 120: `0 K! o& ~7 ]8 o$ N1 k5 O

    ( g. _" a# i. b1 {- Z6 t  d, iAdvantages of Recursion* `2 `7 ], z. E6 o9 w; s1 p
    4 @$ V! i! C. e8 ~( {2 m5 E' h. w
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ t% L! l6 t( L, X% g: \0 K+ ^

    & B! [. O; |, J& h0 M+ h    Readability: Recursive code can be more readable and concise compared to iterative solutions.+ I! T' z. w: T% y

    $ l, |! y0 O" P/ C8 A( h' ~Disadvantages of Recursion
    % ~8 k- x8 C5 o* ~* k, ?- s4 u9 r9 y8 {
    # _- ]5 W  I2 Y/ m. B# V) B5 W$ u    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 i- Q7 }: I7 B7 t' g

    % D( M+ Z  L0 V4 I1 u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  f% `/ m1 \& E( D3 L9 U$ B3 q
    ; Y- m" }! H% M7 d0 t8 @, V) f
    When to Use Recursion7 [4 }# a$ b5 p& Y8 Y

    & {' P% D8 \/ t, O( p    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    . M! \# c7 {2 R
      w, W& f0 a# t    Problems with a clear base case and recursive case.. z8 g- B2 B6 m5 q

    ) l: s/ P1 Z1 x2 jExample: Fibonacci Sequence4 q! @. F6 O" L& o5 z! @

    1 @; G* E! M3 n. vThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    1 j! P2 n  E5 M# l! b# _, C; F+ j6 I2 Y8 W
        Base case: fib(0) = 0, fib(1) = 1
    8 ?+ g3 j" S! N8 z
    " Y, c; h# P% O8 Y! B. h- k5 b    Recursive case: fib(n) = fib(n-1) + fib(n-2)2 J3 L$ B+ J2 b/ K' P  u9 x

    2 S5 ^0 @9 n& Z  j6 c7 O, I, p' hpython2 U. z! Z3 L, X! R' D4 v

    * Z: |1 r8 d% l2 m4 V% b
    * b) N9 N2 j* Q9 mdef fibonacci(n):6 H4 e; I# j; f7 K& R# Y  ^% ~
        # Base cases
    : K; P( |9 O/ w    if n == 0:
    7 m$ G% a" G- R& u7 O        return 0
    , w- U$ }9 S. a2 J2 E* h% k    elif n == 1:: o+ j" I" i' V* E9 e
            return 18 n5 D/ q; ^* @+ ?" k% c2 \2 g
        # Recursive case# l/ ~/ s: H5 ~5 z, F
        else:
    ( @5 A% }: d1 f# P# P, o' O        return fibonacci(n - 1) + fibonacci(n - 2)+ x2 j+ F0 Q$ R7 R1 ]+ o, P. T

    , Z! a  L% j' C5 e! a/ W# Example usage
    ! z& ~4 L0 r8 i. @2 yprint(fibonacci(6))  # Output: 84 S' K# x3 x& J& \

    7 o. r* U9 X' X. N% o$ _Tail Recursion3 Z! U9 u. ]+ e1 X; N- `
    5 y8 e: v8 {: R% t" _
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).# {) W; z! V& G0 y5 F3 v
    : R, a% Q( q8 r9 z. O4 R
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-12 08:01 , Processed in 0.028924 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表