设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1764|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    0 M- H. L, ~/ A( z. h! m. m) I/ x6 P- P3 D/ n9 @
    解释的不错
    * a- V- u# A! j+ [8 m
    2 Y4 l0 x" m* j% g* i+ K% I/ |递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : l% G! k' k: d/ R  |" @
    8 e# c. Z/ u% a* Z/ n6 g5 Q3 b; o 关键要素6 N, |' ^/ U$ L7 ~! E+ J6 W
    1. **基线条件(Base Case)**
      \# w2 h/ N. ^4 R+ S2 Y' D   - 递归终止的条件,防止无限循环
    ( J) B$ z9 f- @) }" S2 R/ k   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1$ Z( Z1 Z. w- x

    ) ^" K7 f4 Z2 A* d2. **递归条件(Recursive Case)**
    3 M! ?8 }+ M2 K% a3 I$ N# D6 a5 g2 N   - 将原问题分解为更小的子问题9 S. U8 Q  j5 I" O$ n# [0 E7 C1 @
       - 例如:n! = n × (n-1)!
    ( K% g, I8 `0 E& X3 `$ U! X3 z% @
    经典示例:计算阶乘4 I7 [! D6 x# i& L. B0 k
    python! ]# w7 m& T' W- Y' L6 s0 Z
    def factorial(n):
    " Y1 ]. ^6 [- _: R% k( r    if n == 0:        # 基线条件- A2 v2 ^' \- [
            return 1
    2 w  g5 h0 U* s    else:             # 递归条件
    + m  b+ |; a; J' q% N: M* }        return n * factorial(n-1)  R# s  V7 L0 D0 n' O
    执行过程(以计算 3! 为例):
    7 m% o6 l9 B# \! q, z& gfactorial(3)6 Y' o9 E( ]+ |8 m  O; O  p2 K2 \9 d+ V
    3 * factorial(2)* E, q3 t; E7 J
    3 * (2 * factorial(1))
    / p2 \$ Z6 O& G0 D9 F2 h/ R3 * (2 * (1 * factorial(0)))
    3 Q! M$ q- i- f$ ]$ E3 * (2 * (1 * 1)) = 6
    ( R' H  K3 @1 S3 O
    + R1 v& Y1 O/ P- R' S: n; G 递归思维要点
    ; N) @) L" |$ z1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ D$ {& G+ A+ G
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 O  S: l" F0 v2 f) W+ o
    3. **递推过程**:不断向下分解问题(递). b0 K+ ?1 I, X% M
    4. **回溯过程**:组合子问题结果返回(归)' q' \% K6 {6 i4 @- ]& `0 L: X. O( G

    9 X7 F1 r6 s" ~/ w 注意事项1 t9 c7 S# v1 t# ?) `
    必须要有终止条件
    * a& P- i* p# l& U3 `/ G递归深度过大可能导致栈溢出(Python默认递归深度约1000层). a+ ^" Q7 @$ i+ W9 {) B4 J" @7 V
    某些问题用递归更直观(如树遍历),但效率可能不如迭代( E7 y$ n) |- \; T  j: N4 b
    尾递归优化可以提升效率(但Python不支持)4 M( C; X3 B) t/ |# t0 w9 m7 ?: ^

    / I2 v/ E( q. B  [ 递归 vs 迭代
    : H( i4 t# T* v, A; d|          | 递归                          | 迭代               |
    + i: O$ y6 N3 b7 u+ F|----------|-----------------------------|------------------|) ~, p$ Z. d3 ?, l
    | 实现方式    | 函数自调用                        | 循环结构            |
    # |, B' `4 U* N1 E/ s5 N3 U| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! ~  y( h: ]0 m) B) d9 |* Y6 p
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) F: {' ~9 j2 A5 }
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    1 \6 r' K3 m$ j" Q9 J) r, ]" T0 X5 x! _7 X! h4 f2 I7 O
    经典递归应用场景
    7 F: O$ D9 ?3 s! ]# Z1. 文件系统遍历(目录树结构)! g, G5 T! K. K, I
    2. 快速排序/归并排序算法1 S; @8 q" S5 e  W0 W0 V
    3. 汉诺塔问题
    : c5 I0 J# P2 L4. 二叉树遍历(前序/中序/后序)
    8 m5 Y( k. v( v7 W* b" `5. 生成所有可能的组合(回溯算法)' {" @& {+ q9 E! Y, s+ k) r

    ! R" z8 M# p( a0 F$ {5 R5 n& v试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    半小时前
  • 签到天数: 3141 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,3 J! ~8 D/ m& x: ?" w4 M
    我推理机的核心算法应该是二叉树遍历的变种。6 l4 S4 S" `& n. @
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:" N( i( q! U& W% P
    Key Idea of Recursion
    - z& h" A: t8 J6 V: k3 w, y; t8 {+ I
    ! V. A% R: u" u: J+ |& S  _A recursive function solves a problem by:
    . }; Y3 ]1 t2 ^& p
    ; P; z7 S7 h& f    Breaking the problem into smaller instances of the same problem.  e- ]7 `6 R# a3 Y" x% z
    + x( t* w9 r  x, R! x6 u
        Solving the smallest instance directly (base case).
    ( H: ^% W! M: Q* Q) r  W
    $ @: p9 i9 U# ]6 S0 K0 N; c    Combining the results of smaller instances to solve the larger problem.5 z( x& k; Y9 r& ?
    $ L1 a! f8 a5 t! F! y
    Components of a Recursive Function
    - E6 a3 X6 I; w3 N
    $ R- p) T* ]& r5 u  k6 _    Base Case:  N* N, l7 e9 l7 a
    5 Y& V* K1 e& D2 i# R
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 B" B" s9 h. ^' W
    " Z; u3 P+ l' Y- s8 w( Z+ Q
            It acts as the stopping condition to prevent infinite recursion.
      A- m% z; m8 ]5 {% i5 r+ C" ~: i2 c; _6 L  S% [  w
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.1 t. ?0 K: E6 j* e2 i

    2 `: F3 D: I' [% H5 j5 Q    Recursive Case:+ h" J+ f8 z+ _6 o9 V
    + B2 }; u# ^1 f# M5 e6 `
            This is where the function calls itself with a smaller or simpler version of the problem., ^6 w. I$ m8 g2 ~8 _) @+ N
    $ ?' v/ _, B* `3 x( X; M
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    1 C* }  M, i/ D/ R  Q' h2 o: ]. M* o7 {* i4 c
    Example: Factorial Calculation
    : v! l0 a* {$ K: P7 B+ `
    7 S/ ^8 R/ z; O' Z, T0 qThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 d9 ?# h5 v* G$ F" w* @+ ?; o5 }3 j2 G# b: G
        Base case: 0! = 1
    9 Q( V8 _& [, \5 k  }. ?! d* i4 k
    6 L3 k9 H- Z5 b/ U5 x+ u    Recursive case: n! = n * (n-1)!9 ]3 U# p1 r; S: Y. Y
    $ Q" K3 P; X! S5 I% R
    Here’s how it looks in code (Python):, C% @. G4 Z6 |4 g6 u
    python
    8 p5 b  T; Z* m4 _8 |" t, N4 A' {0 ]$ V! C1 O( V3 v
    " b( Q7 `; B% y0 o0 ]& a
    def factorial(n):
    + Z$ P5 z* A: W4 c; Q8 h# d! P! S    # Base case; S! u; ~: Z  K# ]1 z. w2 ~7 x
        if n == 0:+ W! `  i6 ^1 H3 e! B
            return 1! D/ x. {. \5 y
        # Recursive case
    6 d- E& ?$ ~  U    else:$ J2 w7 z6 \2 B& x% d8 H
            return n * factorial(n - 1)
    + |. J" |+ h( u# M. z2 M6 z% V$ l# O1 i& P& F- _4 }+ J
    # Example usage% Q, ]& J, i8 ~7 }' K
    print(factorial(5))  # Output: 120
    5 P$ e5 x6 w7 q2 R! ]4 M( N4 V" O0 |7 d
    How Recursion Works
    / c8 W3 ~" }1 b! h4 [
    * d3 D- r* s: z& R0 N5 \) p2 U$ I    The function keeps calling itself with smaller inputs until it reaches the base case.! g0 s6 f# u# ]1 X* P3 k. u5 W
    ) ]" e8 v/ e. I% v
        Once the base case is reached, the function starts returning values back up the call stack.! I! {8 |) K* X
    * J  j5 x  I, U) f1 t) s+ Q
        These returned values are combined to produce the final result.
    - V9 \$ r8 p/ s3 ^# M+ i: e2 T6 _7 I2 j
    For factorial(5):
    # {; P3 l6 t2 p. `
    # r1 j4 ]8 X) F) |  L7 d. }. r" C
    9 w: [% q+ _- [$ Z( e2 Rfactorial(5) = 5 * factorial(4)
    : ?: a) P+ d1 V6 C( b" Y" ~' m6 U6 ffactorial(4) = 4 * factorial(3): E$ @, \: H; g$ d
    factorial(3) = 3 * factorial(2)
      @1 l% J6 @9 x- r9 @factorial(2) = 2 * factorial(1)
    . U8 [) q' C- F$ h% o  Z$ @factorial(1) = 1 * factorial(0)3 ^4 [: _! K! `% y; d
    factorial(0) = 1  # Base case4 h9 b  x4 D  \+ l- {

    # T9 Q# p" G1 c- ^Then, the results are combined:/ F) ^, R% Y. ~  H- `

    . r1 G. y% o  \5 b: v
    1 @4 _" `# G+ k8 s' b& g, Jfactorial(1) = 1 * 1 = 1* U5 J: z+ u& M
    factorial(2) = 2 * 1 = 2
    & Y- ?3 N: y/ m1 C% Lfactorial(3) = 3 * 2 = 63 f0 I& ~  H6 }
    factorial(4) = 4 * 6 = 24. ]' q' }' F' ~7 k$ {
    factorial(5) = 5 * 24 = 120, X# ]! B7 F0 S2 `0 z

    ' f# U% x( ?# o" YAdvantages of Recursion
    # V7 j6 [9 r* f# L7 P! F0 \
    7 g) o5 ]3 ~) E    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    " z% o$ c3 ?3 V. u3 j" t3 j" Q+ w4 [! K+ @5 f: @4 ^  D/ F
        Readability: Recursive code can be more readable and concise compared to iterative solutions.) p' H8 v1 e3 Q1 |7 N
    3 C( f3 M) T9 @
    Disadvantages of Recursion
    ; G( M* G' G3 j- `+ Z. J7 y' I5 r" n7 U! x3 z/ U: A  [- S$ r
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  e0 F0 V5 Z6 W) R! i# h( ]1 h
    0 R& p! T5 S& F. c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    / t: V- i! o; b* q, f/ P- X7 O9 d2 M5 X! I6 y* A1 l$ Y% R
    When to Use Recursion
    $ j6 ?& S7 Z2 o; f) c
    6 e! n3 p! G6 O2 w) a" c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; H5 J( P3 _3 W, X8 V6 P

    ) ^0 x  o2 q; `    Problems with a clear base case and recursive case.! v9 O; `3 I  J7 L6 }* ?

    $ L6 @# ^4 K8 y9 w  E1 XExample: Fibonacci Sequence
    # R$ f7 B2 l* p7 t& C" o! v" V3 ]2 m* f. v2 Z
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    9 i1 v& s8 d; m+ f) e) _( C1 s
    % c1 y! v* R: b' b6 o    Base case: fib(0) = 0, fib(1) = 1
    3 }! h7 w; r' f( ?6 v: G0 s
    ) A3 c0 f! p2 W; U) z    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : q5 W5 S( {3 A2 a: f! I0 l! h
    2 @" r2 c2 p1 Z" o4 G! Fpython
    * ^1 I! z, h1 G  \9 l* l1 |
    7 c) x( }1 w3 B/ ~( [5 v
    9 W) ^# ]0 s$ j: q2 t: v3 bdef fibonacci(n):
    ' d' G# u9 S! f) B    # Base cases
    : `4 c1 h6 }% @8 A. v! x- _5 c; g    if n == 0:3 }! c$ `9 h6 D
            return 0
    9 t  k. f! y! l8 E4 R    elif n == 1:1 }: V* e7 @1 e* A/ y% j0 M
            return 1
    9 s+ S# f2 q4 [: A* c$ T1 h    # Recursive case
    0 [$ z0 p' `/ B3 N  ]    else:
    . {& @" F; H" y" ^. u/ F9 n+ Y! q4 c        return fibonacci(n - 1) + fibonacci(n - 2)$ v7 X" ^: N( H1 m; W, {) i
    3 h4 C' _& z) H0 _! H
    # Example usage
    8 D+ ?. E8 h  N4 k# |0 Gprint(fibonacci(6))  # Output: 87 M- l# Y( C! \9 K# q) F' w; B' ~4 x3 ~
    ; ^* W, O: H) M" X2 a0 b% \% ~' i1 M
    Tail Recursion
    " P; k/ U; @5 K- v1 f- V, U
    6 t' @! w- v' |) j* @0 c+ ITail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    7 g. w2 v: u9 _5 x8 n% e- n8 V; @3 H( @
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-9 07:04 , Processed in 0.034916 second(s), 22 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表