设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 5639|回复: 31
打印 上一主题 下一主题

[工程技术] 雅砻江水光发电互补是个绝顶好主意

[复制链接]

该用户从未签到

跳转到指定楼层
楼主
 楼主| 发表于 2023-6-27 07:33:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 晨枫 于 2023-6-26 19:10 编辑
) e" z  e  X0 M0 R6 P% s4 s/ S3 x* n5 o
6月25日,两河口水电站水光互补一期工程并网发电。这个位于四川甘孜的雅江先柯拉乡的水光互补是世界最大、海拔最高的水光互补电站,首次将全球“水光互补”规模首次提到百万千瓦级。上一个世界纪录是85万千瓦,在龙羊峡。当然也在中国,这很奇怪吗?
' n0 C/ q3 E, i3 T) h/ P& i! _6 u4 \; _  S" T8 \. G0 D
雅砻江是中国第三大水电基地,海拔在4000-4600米,一年里只有半年能施工。在最紧张的时候,工人要在24小时里安装7000个支柱、1200光伏板架、33000个光伏板、30个变压器箱。但基建狂魔做到了。总用用了52700根钢柱,光伏板总长1400公里,钢结构总重5万吨。估计还不是普通钢,需要低温钢。高原上要换钢桩可是麻烦。+ L) R1 u7 y3 i- Z1 w! h/ M( k, ^9 E
( Q0 Z- e: @. @9 r  f( e/ c" [
现在的发电能力为光伏100万千瓦(1吉瓦),设计年利用时数1735小时,年发电量20亿千瓦-小时,通过500千伏输电线路介入两河口水电站。水电300万千瓦(3 吉瓦)。可供70万家庭一年的用电量。计划在2030年达到50亿千瓦-小时。中国计划在1500公里雅砻江上最终建成1亿千瓦(100吉瓦)水光互补发电能力,年发电3000亿千瓦-小时,可供1亿家庭用电的水光互补发电能力,差不多相当于整个美国的家庭用电量。# `, [" Y, K9 v

1 }; {* @* j* w6 S* z
  Y- T  w5 d5 |, e' G0 }4 W- P# C9 r6 F0 r# ~

7 U, T' k6 A( T1 N可以看到,水库的水位低于通常的水电站7 y( N7 b+ P* t' M
  Q0 A4 e$ ^. Z3 s% U- X+ [
& R; {# S* B) B
柯拉光伏电站离两河口水电站约50公里,占地约16平方公里$ |; C4 |) v' q) N
5 `, V0 ?$ V2 D

+ B, K% ?1 U# F, }- D控制室很现代化,不过双套键盘和鼠标有点碍事,为什么不用KVM呢?怕不可靠?
6 y- @) i* d: I; m- @  ~& ?( y4 U- M) o) y$ O* w3 \- L/ h' a
但最厉害的是水光互补。
) m( \$ ]/ Z5 m# V* X% L% t! d
4 q, y1 V% |- a1 V高原上冬季多阳少雨,水电是淡季,但光伏就是旺季了;夏季多雨少阳,就是水电旺季、光伏淡季了。
/ d* n) _- ^, O, L+ m6 k( w: U- s+ X' Y
水光互补之后,水库自然成为储能设施,正常水位在日夜之间波动,白天蓄水,晚上放水,正好补充光伏的昼夜周期。冬季水位下降也不怕,不会因为要维持发电而勉强蓄水,到夏天汛期前又为了防汛而赶紧放水、浪费发电能力。
# w3 v; O) A- x  m" f1 u3 P
% q$ N! d: x$ v) l! A3 `3 a, f不过恶魔估计在细节之中。这样水位大幅度循环变化,对大坝的建造肯定是新的挑战,大坝一般都是按照大体定常的水位设计的,不会主动的短周期大幅度升降水位。现在这样的短周期大幅度水位升降对坝体力学有什么特殊考虑,就是中国水电的秘诀了。
: u2 Y0 I# ?5 n5 o% _. Y5 d: ]  e% B' j' f. l5 L
大坝下游的径流量也短周期大幅度变化了,这对生态有什么影响,对河道淤积有什么影响,估计也会有大量的研究。
! o/ Z8 {! |. B0 P; [- Q
2 Y4 t8 k& E: C0 w) P好在这一带是无人区,也没有多少野生动植物,影响可能较小。& ^! M6 O2 h; y" n

; K0 X; c$ |1 o& _; A但这样的水光互补正是绝顶的好主意。很多其他水电站只要有条件,也可以考虑,可以有效地平滑光伏的昼夜周期,并共用输变电设施。

评分

参与人数 12爱元 +99 学识 +2 收起 理由
李根 + 8 伙呆了
landlord + 12 涨姿势
helloworld + 5
老财迷 + 8
常挨揍 + 10

查看全部评分

本帖被以下淘专辑推荐:

  • TA的每日心情
    开心
    14 小时前
  • 签到天数: 3378 天

    [LV.Master]无

    沙发
    发表于 2023-6-27 08:59:17 | 只看该作者
    "老尼姑"是啥?
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
     楼主| 发表于 2023-6-27 09:11:37 | 只看该作者
    pcb 发表于 2023-6-26 18:59
    0 F+ f( k+ x& U, t* ^9 ^4 [! E"老尼姑"是啥?

    ) Q4 N/ P: ]6 b2 f啥老尼姑?那不是小尼姑变老了吗?

    点评

    pcb
    哈哈哈哈哈  发表于 2023-6-27 09:50
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2023-8-28 01:10
  • 签到天数: 1748 天

    [LV.Master]无

    地板
    发表于 2023-6-27 10:24:03 | 只看该作者
    我还以为是利用水面设立电池板
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-10-24 22:29
  • 签到天数: 2 天

    [LV.1]炼气

    5#
    发表于 2023-6-27 11:28:16 | 只看该作者
    除了拱坝长期低水位运行有结构风险外,其他坝型水位低点高点没啥特别大的影响。对于水库调度影响大些。

    点评

    油菜: 5.0 给力: 5.0
    涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2023-6-30 11:20
    油菜: 5 给力: 5
    专业人士。说的太简短了,你看这楼主,一天到晚说多少 :)  发表于 2023-6-27 22:39

    评分

    参与人数 1爱元 +8 收起 理由
    老财迷 + 8 给力

    查看全部评分

    回复 支持 1 反对 0

    使用道具 举报

    该用户从未签到

    6#
     楼主| 发表于 2023-6-27 11:52:04 | 只看该作者
    水工 发表于 2023-6-26 21:28$ D  Y( F7 F6 G1 i* }* S* }: H
    除了拱坝长期低水位运行有结构风险外,其他坝型水位低点高点没啥特别大的影响。对于水库调度影响大些。 ...

    4 }6 C& ]' |7 r这就好。如果不成问题的话,现有水库都能和光伏绑定啊,有输电,都不一定需要在同一个地方。效率损失一点,但解决大问题啊。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    8 小时前
  • 签到天数: 3180 天

    [LV.Master]无

    7#
    发表于 2023-6-27 16:50:06 | 只看该作者
    本帖最后由 testjhy 于 2023-6-27 16:52 编辑 # L! b, B' L8 O0 N" H. ~
    & @; X3 y# _9 R( {' G5 [
    因为是梯级电站的上游,所以阶段性放水几乎没有影响,无非是下级电站水位的波动,但下级电站的库容对这点盈亏应该小菜一碟,,前两天我在我们一个群里已经把山上复杂的光伏铺设给大家看了,特别可能还是自动对准太阳的,大家想想如何办。

    点评

    油菜: 5.0 给力: 5.0
    油菜: 5 给力: 5
      发表于 2023-6-27 22:40

    评分

    参与人数 3爱元 +26 学识 +2 收起 理由
    李根 + 8 给力
    老财迷 + 8
    老票 + 10 + 2 涨姿势

    查看全部评分

    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    14 小时前
  • 签到天数: 3378 天

    [LV.Master]无

    8#
    发表于 2023-6-27 21:15:58 | 只看该作者
    testjhy 发表于 2023-6-27 16:50* p. k( y" K/ _7 d$ R# \- y! E
    因为是梯级电站的上游,所以阶段性放水几乎没有影响,无非是下级电站水位的波动,但下级电站的库容对这点盈 ...
    * }) {- {" C+ X) H% F
    7 ~( |  Z' ~/ W* ?+ \
    伺服机构呗8 Y5 ?5 a- z8 H6 }2 \, B
    还是有更简单的办法?
      l0 k! A. w, x7 x  F0 v0 I) H
    : a' y2 I1 u8 Y- Q9 X1 }+ z% o) \求片片
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    9#
     楼主| 发表于 2023-6-27 21:20:31 | 只看该作者
    testjhy 发表于 2023-6-27 02:50
    $ L4 B% z8 i. r2 q2 L# j0 T9 ~因为是梯级电站的上游,所以阶段性放水几乎没有影响,无非是下级电站水位的波动,但下级电站的库容对这点盈 ...

    ; ^. r. a3 K1 U, K9 t梯级电站,对哦,怎么没有想到这一点。1 s6 e( ^5 T4 S1 Q. m

    : M6 Q0 p# \3 P" N2 G: R自动对准太阳不难,但是无动力的被动对准?这个想不出来。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    慵懒
    2022-8-27 22:14
  • 签到天数: 351 天

    [LV.8]合体

    10#
    发表于 2023-6-27 23:02:01 | 只看该作者
    补充一下,100吉瓦里的组成:/ s; ?- R& X8 b, S. r. Y3 J5 h
    根据雅砻江流域可再生能源一体化规划研究,雅砻江流域清洁能源基地总规模超1亿千瓦,其中水电约3000万千瓦、风电、光伏发电超6000万千瓦、抽水蓄能发电超1000万千瓦。同时,光伏、风电出力特性与水电天然互补,辅以雅砻江流域梯级水电站巨大的储能能力,可实现新能源大规模集中高效开发。1 |7 _- j* z+ D: ]" H
    ---3 y" t! _  T. p* ^
    什么叫 榨干一滴水的势能?
      q/ `" C/ Q  m& C" b+ n$ }1 r22个梯级电站,30吉瓦。一滴水要用来发22次电。
    5 `8 u/ R+ k: n/ k) |+ ?7 G又装了10吉瓦的抽水蓄能发电。这一滴水到下一级了,可能还会被抽到上一级去再来一遍。
    ) R6 e- h- f" _( w感情这一滴水从雅砻江源头到长江,不一定要走多久、不一定发几次电呗6 c' U7 Z0 |8 Z5 F) {* r9 w

    点评

    油墨: 5.0 油菜: 5.0
    给力: 5.0 涨姿势: 5.0
    伙呆了: 5.0
    油墨: 5 油菜: 5 涨姿势: 5
      发表于 2023-6-28 02:09
    油墨: 5 油菜: 5 给力: 5 涨姿势: 5 伙呆了: 5
      发表于 2023-6-27 23:22
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    11#
     楼主| 发表于 2023-6-27 23:24:53 | 只看该作者
    本帖最后由 晨枫 于 2023-6-27 09:31 编辑
    , q& O: t. u+ I  t
    老财迷 发表于 2023-6-27 09:02& k( M; z! S2 \
    补充一下,100吉瓦里的组成:
    # y3 {' g! G: x, U3 }$ E( T/ {& ^( i根据雅砻江流域可再生能源一体化规划研究,雅砻江流域清洁能源基地总规模超1 ...

    " f' d' P, K4 p/ ^
    6 c8 H. c' [2 _& n雅砻江这好不容易流到长江,还在在三峡和葛洲坝再被压榨两次!在中国,做水都那么辛苦!$ w/ ]8 \( z( M7 V, M, X
    * B$ _3 s" u3 I) _% i# l% ^
    这是不是又可以来一篇?

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2023-6-30 11:21
    是啊,你来写吧 :)  发表于 2023-6-28 08:24
    回复 支持 1 反对 0

    使用道具 举报

  • TA的每日心情
    开心
    8 小时前
  • 签到天数: 3180 天

    [LV.Master]无

    12#
    发表于 2023-6-27 23:26:08 | 只看该作者
    pcb 发表于 2023-6-27 21:15' R5 _( ^+ L1 p8 k
    伺服机构呗
      c& g: J, Z- l* |% p) \! p$ ]+ d还是有更简单的办法?

    - z( a) ^/ h8 d) Z( B# V: |我也是在观网里看到分析的,有一张图所有的光伏面板平行与天空,只有自动调节系统才应该这种状态
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    8 小时前
  • 签到天数: 3180 天

    [LV.Master]无

    13#
    发表于 2023-6-27 23:27:30 | 只看该作者
    晨枫 发表于 2023-6-27 21:20
    % k$ w9 r  t9 r9 m3 a+ }3 n梯级电站,对哦,怎么没有想到这一点。$ v8 @, F7 l# }1 j1 f% t
    " T  \# \( o; h* w
    自动对准太阳不难,但是无动力的被动对准?这个想不出来。 ...

    + I/ L- m( ^, p光伏电站还怕没有电?自动跟踪太阳光伏发电系统不是新技术
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    14#
     楼主| 发表于 2023-6-27 23:32:54 | 只看该作者
    testjhy 发表于 2023-6-27 09:27
    8 \% ?! y) Y5 P2 s光伏电站还怕没有电?自动跟踪太阳光伏发电系统不是新技术
    7 l8 k! F: F$ `, x. |9 W4 `
    不是怕“浪费电”嘛% X$ B% o3 B7 v: O' }6 w
    " A/ ^1 _4 R. d7 L# H
    自动跟踪太阳方向,这个控制系统我这样的退休老人都能做。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2016-2-18 04:19
  • 签到天数: 1 天

    [LV.1]炼气

    15#
    发表于 2023-6-28 01:43:22 | 只看该作者
    晨枫 发表于 2023-6-27 23:32
    : m! G! n( V( N: m; u5 k不是怕“浪费电”嘛6 Z6 }. p' L+ |6 K/ H

    " g1 _; y. H4 n自动跟踪太阳方向,这个控制系统我这样的退休老人都能做。 ...

      A. w* Z# G5 ]6 \- t能不基于电与芯片,全靠双金属片与机械操作就完美了。 * `( \8 l  G. c. F
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    前天 04:33
  • 签到天数: 1626 天

    [LV.Master]无

    16#
    发表于 2023-6-28 02:29:57 | 只看该作者
    晨枫 发表于 2023-6-27 21:20
    9 H2 b% ^* F% u! @梯级电站,对哦,怎么没有想到这一点。
    6 h$ w+ C# U# O9 l+ N+ h( v' i6 P* u" ~
    自动对准太阳不难,但是无动力的被动对准?这个想不出来。 ...

    ) U! s' u# x0 \2 Q+ h8 R# m7 ?学学向日葵?
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    2025-12-24 06:16
  • 签到天数: 1995 天

    [LV.Master]无

    17#
    发表于 2023-6-28 03:59:17 | 只看该作者
    大坝一般都是按照大体定常的水位设计的

    8 t* H5 @. f9 D3 ^應該是用水庫底部的應力力變化控制水位,水庫那麽大的面積,水位變化一點水庫基礎承壓變化大很多。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    18#
    发表于 2023-6-28 09:34:02 | 只看该作者
    水工 发表于 2023-6-27 11:28$ m9 X4 P3 k9 {9 o( n! x
    除了拱坝长期低水位运行有结构风险外,其他坝型水位低点高点没啥特别大的影响。对于水库调度影响大些。 ...
    3 O$ D  Z# D# j% D# |0 f
    0 d3 O; j1 m, p( X0 X7 N) m  H0 N
    恐怕没那么容易。
    7 j0 r" Z, z( Y& p& x我不做水利,纯粹从外行角度瞎说一下。 水位高度变化产生的应力变化对于坝体是个低周疲劳问题。通常,注意是通常啊,水坝水位的变化是非常慢的。假设每年水位高低对应四季变化4个周期,坝体寿命100年,那就是400个疲劳周期。水电行业对于这个应该是有足够的经验了。
    0 q0 {% y% w; R+ c: `但是对于本题的这个水坝,水位每天变化一个周期,相当于每年接近400个周期了。基本一年就要面对通常水坝全寿命的疲劳周期。那这个水坝能不能扛住全寿命内的应力周期,恐怕水电业内人士也没有太多经验?
    5 [7 j& V7 Q6 [# R上交一系的海洋实验室,一直是全国领先的。建设的时候特地做了个假底。所谓假底,就是一个可以升降的底部,这样实验需要用到不同水位深度的时候就不需要灌水放水, 只要升降假底就可以了。做这个假底的理由不是要省水费,而是因为经常改变实际水位的话,水池四壁很快因为应力周期的问题开裂报废。
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-10-24 22:29
  • 签到天数: 2 天

    [LV.1]炼气

    19#
    发表于 2023-6-28 11:12:06 | 只看该作者
    雷声 发表于 2023-6-28 09:34
    + E; z9 o1 f2 O& @7 r恐怕没那么容易。" K: J( l( u+ c4 w) ~( ^1 |
    我不做水利,纯粹从外行角度瞎说一下。 水位高度变化产生的应力变化对于坝体是个低周疲 ...
    , K- E* }2 K, D/ D' Z
    水工建筑物对于疲劳的研究确实不多,因为比较难达到疲劳的条件,并且水工建筑物都是身大力不亏的,结构的应力水平很低,都在弹性状态工作。水库水位变化不可能速率很快,这种大型水库,一天之内发电引起的水位变幅有个1米就很了不起了。现在变幅最大的水库水位就是抽水蓄能电站的水库,基本就是一天一次的循环,好像也没看见有专门针对疲劳的研究。至于你说的活动水池底,活动底一动,周边水池壁也是受力发生变化,也是循环加载呀,没啥本质区别。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2023-6-28 20:47
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    开心
    2020-10-24 22:29
  • 签到天数: 2 天

    [LV.1]炼气

    20#
    发表于 2023-6-28 15:03:33 | 只看该作者
    水工 发表于 2023-6-28 11:12* Y% B' g3 v. C6 u# P( d: K8 `
    水工建筑物对于疲劳的研究确实不多,因为比较难达到疲劳的条件,并且水工建筑物都是身大力不亏的,结构的 ...

    : a9 C  _9 d7 Q5 M, s6 f5 u我国建造的海洋深水试验池由水池主体和一个深井组成,水池主体的有效工作尺寸为长50米、宽40米、最大工作水深10米,水深可在0~10米范围内任意调节。在水池中央有一个直径5米的圆柱形垂直深井,最大工作深度可达40米。如果用1:100的模型进行试验,最多可模拟4000米的深海环境。深井内壁都是用高强度、高抗渗材料制成,倾斜度被严格控制在千分之一以内,底部也可以上下调节。
    , i2 O4 p' ?0 k. A/ G; w4 q
    0 C6 e6 V3 c& f试验池水深的调节是通过一个可升降的池底来实现的,设计时巧妙地利用了水的浮力,而不需要任何的起重装置。这个可升降池底其实上是由多个密度比水小的空心浮箱组成的,上浮时只需将一个起固定作用的的抱紧装置放开,借助浮力便可自动浮起。下降则是通过电机拉动浮箱底部的6根拉杆,到了所需位置就启动抱紧装置将池底固定住。这样,通过池底的升降便可以调出各种试验所需的不同水深,也便于安装、检修各种实验设备。
    # S  l0 A# l+ G; }# y
    7 O, a. _6 h. \  V% c# P8 G由于海水腐蚀性较大,密度又不易控制均匀,因此整个“仿真海洋”中都是经过净化的普通自来水。在试验结果分析中,还需要通过换算消除淡水与海水的密度差。

    点评

    给力: 5.0 涨姿势: 5.0
    给力: 5 涨姿势: 5
      发表于 2023-6-30 11:22

    评分

    参与人数 1爱元 +10 收起 理由
    常挨揍 + 10 涨姿势

    查看全部评分

    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-2-21 14:17 , Processed in 0.067772 second(s), 20 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表