|
一开始我一直顺着原文的叙述试图理解概率为何为1/(k+1), 很困惑。谢谢数值分析坛友的提醒,终于想明白了。下面试着用同一思路但不同的语言叙述一下,作为总结。( T: d Y* F( `+ Q* W& k; K
" }3 c* n4 u8 m- o" @& L s3 P
Let S be the set of the n elements in which there are k and only k elements that have value x. For each element w, let I be the indicator if w is examined or not, that is, I(w) = 1 if w is examined and 0 if w is not examined. X, the number of elements being examined, will be the sum of I(w) for all w in S. Accordingly, E[X] will be the sum of E[I(w)]=P{I(w)=1}.
1 Z* ~1 O; e( e5 _+ l; f+ s3 }9 R% e
For w that has a value x, the chance of w being examined is the chance that w is at the first position of a permutation of k x-valued elements. Therefore it's 1/k.# @4 S! A# X n* M% ~
7 N6 Q1 }- i5 Q0 S
For w that has a value not being x, the chance of x being examined is the chance that w is at the first position of a permutation of all k x-valued elements plus w. Therefore it's 1/(k+1).0 K% _/ c! P, L$ p, }) N
* r8 [0 [3 r/ ]4 ?3 @5 @, E" R- T
There are k elements that have value x and n-k elements that are not equal to x, so the sum of all these probabilities will be k*(1/k) + (n-k)*(1/(k+1)) = (n+1)/(k+1).
2 w1 V! W" J) T% p. u3 N, D c
. G1 I' ?. n+ \, _$ a理解上述解法的一个关键点是对于所有不等于x的element,它能不能有机会被查验取决于而且只取决于它与k个值为x的elements的相对位置。 |
评分
-
查看全部评分
|