|
|
本帖最后由 晨枫 于 2025-9-9 09:24 编辑
+ u1 }- d( O9 v J/ w" R. \8 Q# e& F+ ]) ]0 K/ ^9 l
9 r1 w0 T9 y: ^+ U6 g0 r
9 c, z" \4 M& s4 M8 a' N/ T; g # j6 b5 Y( Y" `) d" V
) S8 @: [% h) ?8 S: |. F
% F, n8 I8 R1 Y$ e5 L
4 P" X0 J/ m: ~) d# i
无歼-X在阅兵里赚足眼球。从外观看,很像无人化、无垂尾化、无鸭翼化、单发化的歼-20,一股说不出的“成飞味”。成飞又一次拿出亮眼的成绩,干得好。
( P- v1 P6 F* S; i, s: f' u: l' v ~" ~
无歼-X和歼-20一样,也采用DSI进气口。长度和翼展与歼-10C相当,估计最大起飞重量也相当。歼-10C为19.3吨,正常起飞重量14吨;为简化起见,“无歼-X”假定为20吨和14吨。不过看样子无歼-X不一定有外挂能力,所以14吨的正常起飞重量更加重要。1 u; N) [, g$ l! ]
2 y; r; h: \3 f0 W
歼-10C机内燃油量3860公斤,也就是说,燃油系数27.6%。在第四代战斗机中,中规中矩,不算多也不算少。苏-27属于变态地高,达到40%,所以原始设计里根本不带副油箱。
' Q' `% } M: M- E3 P$ h7 P0 |
7 P3 L& i {) Z7 }6 o. z* V无歼-X取消了座舱和飞行员。飞行员典型重量(连装具、手枪、头盔等)算70公斤;比照俄罗斯K-36D,弹射座椅算90公斤;比照F-15C和F-16C,座舱盖算85公斤;显控、操纵杆、氧气系统算55公斤。加起来就是300公斤。也就是说,歼-10取消飞行员的话,可以增加300公斤燃油而不增加起飞重量。3 }! B7 X0 C, q6 E4 ~
" Z I' D$ U' w% B3 }+ U) W
无歼-X没有飞行员安全顾虑,在结构和系统冗余上可以放宽要求,减重200公斤应该做得到。要是激进一点,用电动作动替换液压作动都可以,那还可以节约更多的重量。歼-10基本设计到现在,30年的结构、材料、3D打印进步和取消鸭翼、垂尾,从歼-10C的9.75吨空中再带来1200公斤减重不算过分。歼-10A到C的空重变化不大,DSI节约重量,但主动相控阵雷达增加重量,简单粗暴一点,可以算作补回去了。
; V+ i6 G- U6 C2 m" E+ O' e. ~! u; Q/ `5 Q
这样,假定一切相同的话,无歼-X的机内燃油增加到5560公斤,燃油系数上升到39.7%。比照苏-27,作战半径可以达到3500公里,全内载、无垂尾减阻可进一步增加。! h% w2 k, Y( G
. ~5 {- x; v0 |" y! |由于取消垂尾和鸭翼,降低气动阻力,采用与歼-10C相同的涡扇10B(加力135kN,军推89.2kN)的话,推重比还是1.04,最大速度恢复到M2.0没有压力,M2.2甚至M2.5都有可能。这不是推力的威力,是减阻的威力。作为比照,苏-27达到M2.35,F-15C达到M2.5。; i0 z8 b( ~) a+ O. {+ l
* Q3 @( j9 \: ?6 _, I$ C& h军推推重比达到0.65,接近F-22的0.7。这里,减阻可能再次发威,使得超巡成为可能。
$ S) ?, ?* \1 i) _. q a+ R. Y" A- d" i m' |( f8 e
在机动性方面,目测无歼-X的翼面积至少不小于歼-10。歼-10C翼载381公斤/平方米,与F-22的377相当。无歼-X看不出是否采用矢量推力,但机翼后缘的控制面够大,确保不俗的机动性。
5 i5 H* \5 E; h" W) Y$ ]
Z$ j% H9 T# a) t3 u5 C; u5 @; g4 m0 k
( N1 q/ p1 p/ ?" B2 A& b! W
8 j2 Q6 \) ]$ e- Y# p; L7 h无歼-X采用了全动翼尖。后缘控制面的作动机构鼓包呈“内八字”,这是因为后缘带前掠,“内八字”才与控制面成直角。全动翼尖应该是像平尾一样上下偏转的,而不是从两端向内下垂的。这可以从紧贴全动翼尖开缝线的大型鼓包看出,鼓包的外侧实际上超过开缝线与全动翼尖下的“肿块”衔接,这意味着转轴贯穿的部位。转轴需要的鼓包是横向的,但不利于流线和减阻,所以有很大的纵向整流罩。机翼内的厚度不足以容纳偏转机构。
- \( Z7 Q* h5 l
% g- d, L" @! V8 e1 Y& j* n' d6 ^: p/ X& h全动翼尖对横滚控制比副翼更加有效,但在已经有副翼的情况下,并不需要更多的副翼,作用可能与偏航控制有关。根据公开报道,大面积的全动翼尖对于改出螺旋特别有效。进入螺旋是低速大迎角极限机动时容易发生的问题,很难改出,现在不怕了。这间接意味着无歼-X有容易进入螺旋的问题。或许迎角限制特别宽松,反正无人,反正有全动翼尖帮助改出。这意味着在同样的基本气动设计下,容许更加接近失速和螺旋极限,发挥出更加强大的机动性。
" x4 ?6 p# K" }7 E( R4 `7 i9 H
4 Z, K5 T( Z% B' N/ |! I+ I$ X& b超音速无尾飞机比较细长,机翼后缘控制面很靠后,没有B-2、X-47B那样无尾飞翼纵距太短引起俯仰控制力臂不足的问题。但无尾飞机的方向安定性老大难问题还是看不懂怎么解决。
9 q) S R5 m( N3 p" E2 b/ |; z! C
开裂式副翼是B-2开始的老办法,不仅机械结构复杂、阻力大,从背后“看过来”,也形成雷达角反射器,影响全向隐身。全动翼尖据说有控制偏航的功能,但想不出如何在通过差动阻力控制偏航的同时不引起不必要的横滚。或许无人机不怕频繁但微幅的横滚?要是不怕微幅横滚的话,没准真是可以利用“反向偏航”现象来控制航向。
, U& h+ P; w7 h- k
: E6 a/ H0 X& o/ i! d副翼在差动偏转时,产生不对称升力,进而产生不对称的诱导阻力(为产生升力而付出的必要阻力代价),使得升力增加、向上抬的一侧由于更大的诱导阻力而产生把机头“拧”向自己一侧的趋势,与横滚本身产生向下压一侧的侧向升力而转向的趋势向抵触。换句话说,向右横滚的时候,飞机整体在向右转,机头反而向左偏转,形成侧滑。这就是反向偏航现象。一般飞机需要方向舵向右偏来补偿。但无尾飞机不是没有方向舵嘛,副翼倒是很好很强大。反正无人,横滚摇两下不碍事。
* h" s8 H* |6 s% P8 G$ ~4 `
2 @7 Y7 t/ c2 s, T* S6 O' ?. R9 |! k" e但沈飞六代机上首见全动翼尖,那是有人机,不宜没事乱横滚,哪怕是小幅度的。看来用全动翼尖控制偏航而不导致不必要横滚的问题解决了,就是还不懂其中机制。( [# S- ~4 V8 j3 W7 R* |- F, L: N
% W- d, M* l' Q. Y+ H
3 u U* W' h+ X/ i/ I: x
) B5 l& P$ D# K2 D% k" f( j& m
这里的沈飞六代机可以清楚地看到左右两侧翼尖都在向上翻,但是否相同幅度看不清,是否有其他翼面配合动作也难以看清。+ z/ A% h2 T* k2 t/ k3 c/ Z
, ?) i0 @5 ^* @1 L }) n4 b
中国已经实现无尾自由了,但还有很多黑科技看不明白。1 u: w& O a$ U6 Y- F
, s j9 a% o# H5 S, \9 ]' @无歼-X的图片多一点,可以先盲猜起来。无歼-Y的图片多起来之后,也来猜猜。但这俩都爱不释手,对美国空军的压力至少和南北六代一样大,甚至有可能更早形成战斗力。 |
评分
-
查看全部评分
|