设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1520|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
      ]$ }; G/ ]% I& S  L9 R* i' p: K% a, W2 t7 D
    解释的不错
    ' r  O8 j7 J1 N. ?. o, f3 H& x/ R
    - X) D8 L, r$ A  Z# j0 a" a递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。: T7 ?& Y3 ]7 q$ V7 }

    * M( t* }" K6 B  u$ y 关键要素
    4 p  X* f% I6 f$ D8 C1. **基线条件(Base Case)**2 P/ n; J- i& {$ @, }$ Q, c
       - 递归终止的条件,防止无限循环( s' r% k  F1 G; C" U$ ]2 s
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % k# m& P( P: Y: h# B) T( D' Z3 f+ T; G. o/ B0 _" ~
    2. **递归条件(Recursive Case)**3 V5 e% e* M. s0 ?9 X% E* A
       - 将原问题分解为更小的子问题
      i8 t& F; _" D+ B9 A   - 例如:n! = n × (n-1)!8 s4 ]$ a& x) @* A7 H9 l) l
    1 G% `* \: q( Y3 r* S) J3 d
    经典示例:计算阶乘+ U* A& Z* Y# x* {
    python
    + B3 U5 ^$ z7 r" D+ p7 Sdef factorial(n):7 v4 y0 g& T$ }0 h+ T6 y
        if n == 0:        # 基线条件
    & t: c; P) C8 B9 E8 m        return 1
    . c; H2 S, {4 C4 o# R- s    else:             # 递归条件
    & t7 s- S* P6 O, J( i        return n * factorial(n-1)
    ' a+ T8 b( N& E! q5 x! b执行过程(以计算 3! 为例):
    ; q  g& L  e7 ?: K. nfactorial(3)
    " \, w$ w0 N6 e) q& B3 * factorial(2)
    ; g( Z# m5 v+ C7 z3 * (2 * factorial(1))
    7 a' w5 Q$ G' C- r3 * (2 * (1 * factorial(0)))
    0 o/ M% J1 W6 J" f1 w: M3 * (2 * (1 * 1)) = 6) K/ G- W, d$ k/ r4 ^

    1 S# ^" j2 s5 U0 P 递归思维要点
    . r6 w( U$ C3 \9 Q/ J/ B0 z1 l. t1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    0 Q: b( ]9 W  F" s& T! H2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 Q3 b5 A! y- g. G8 u0 X+ C
    3. **递推过程**:不断向下分解问题(递)
    ; Z: A- T1 o- T4. **回溯过程**:组合子问题结果返回(归)3 h" Q! K: v+ V3 _- ?# a
    % W$ W) F' J9 m
    注意事项) f, t' o3 f# l4 T' d+ l6 ]; R
    必须要有终止条件
    " w0 p7 n1 v7 Y0 U8 Y) P递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      p, w0 B0 L$ D9 a3 }9 k: G某些问题用递归更直观(如树遍历),但效率可能不如迭代( p; X! P* I0 ?" I' p1 k
    尾递归优化可以提升效率(但Python不支持)/ X5 b/ z- d' [% Z/ Q6 ^! N
    4 E9 S& k7 _# N! g1 a/ `( o5 K
    递归 vs 迭代
    % a# x# L: K1 y8 R$ j* \& b|          | 递归                          | 迭代               |; T4 ?4 r! n. I1 x( C
    |----------|-----------------------------|------------------|
    7 C9 b2 h$ b0 P  R+ }| 实现方式    | 函数自调用                        | 循环结构            |( ]9 U% E1 ~2 V4 A5 ~6 P+ ~
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 \5 [0 s; D) @( S* A+ G6 v
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 J9 S5 t& K0 a  g3 S4 d5 ?| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 B" y0 ~) M" [1 R
    $ _* ~/ W1 t- J5 D# |6 `0 v 经典递归应用场景
    9 E6 `3 x& X9 k  J& c$ Q3 p1. 文件系统遍历(目录树结构)3 g0 d& S  W9 v
    2. 快速排序/归并排序算法
    $ D) W* a5 L0 Y0 j2 Y$ z3. 汉诺塔问题% X+ C  E9 x2 D3 w
    4. 二叉树遍历(前序/中序/后序)5 u0 n( N# r7 B
    5. 生成所有可能的组合(回溯算法)) v/ W, g) T" g5 m, G# b2 [
    , Y  B- {  }: j: [  O
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    4 小时前
  • 签到天数: 3118 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; D4 d; o& e8 ]9 L2 V我推理机的核心算法应该是二叉树遍历的变种。; S$ J  e) x" E' J/ g' E: b
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' |; M) V$ q5 W2 X
    Key Idea of Recursion
    3 Y* J* ?, I4 {5 p9 h) t! j& v: w) L" P5 o, O( [" B
    A recursive function solves a problem by:
    7 F- ~  E; _; W' H! r
    7 C8 B9 G. L  x- ?$ I. }. V    Breaking the problem into smaller instances of the same problem.
    . U1 z6 e7 c8 v
    : q8 U8 x! F9 g% q8 ~6 ]    Solving the smallest instance directly (base case).
    # \, N5 s% z4 h* Q- B  B7 [% F! E6 Q
        Combining the results of smaller instances to solve the larger problem.* Q. H1 K. m3 }7 m: I# w7 \" Y; i0 H0 ]

    / a/ V6 d7 T& O; qComponents of a Recursive Function
    & G- n7 `; x( U9 h: A7 E- I& l3 F  e0 j5 a% k6 x5 F# j
        Base Case:3 B5 j- x/ Y; n( B. h

    ( e9 N  O* i! ?; D, y        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. {$ ?9 k6 c) q5 y. [
    * ?9 R9 e3 w7 Q( T+ D4 I* S) U6 w
            It acts as the stopping condition to prevent infinite recursion.8 @/ W& l4 g1 }  h5 {1 I
    4 P/ m# Y+ H- g" y: j6 E' U3 E
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
      \) A" l( D) c0 ^0 S9 P; h$ M; V. h  h( j! U
        Recursive Case:
    . j3 a$ D: _& O+ w) R- _( }& q' M  J0 A5 V- e
            This is where the function calls itself with a smaller or simpler version of the problem.7 }) d# ?# s" m0 l3 m- J1 B

    ) N4 ]  s5 d( T8 F2 ]" K5 @        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).5 W" s: F! D2 Z% B6 b" j7 o; i
    ) H& ^9 Z+ ~5 W, K1 E
    Example: Factorial Calculation% I- b6 X0 _3 X7 v

    ) U3 J* Y  F- t, _9 @' h; q0 T4 N9 FThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 B  S8 o6 c0 K

    7 e3 z/ k) O$ d3 c    Base case: 0! = 1
    * t9 C! E% u5 ]; n( m+ }5 x
    # H' |# b4 a7 T" o" E    Recursive case: n! = n * (n-1)!  k9 }4 d  w( y
    ; M/ [0 j& p! F. @& B
    Here’s how it looks in code (Python):
    ! w- |6 s9 C2 I7 m7 E. m9 q) p. R- }python
    8 S: G" ~, n' L* A2 [4 p' }7 y9 A6 Y/ D4 N8 D8 R/ A

    7 w- O4 X# O  e0 c8 |1 Ndef factorial(n):$ s: z2 `0 V! ?3 j
        # Base case
    6 z8 R+ I* Q8 \% N& i$ S. |8 {: }    if n == 0:2 V- T/ [3 ]+ Q6 `
            return 1
    % o1 l* w' \$ ?6 H1 j2 c    # Recursive case
    # V- j: Z1 Q6 I    else:, B$ |% s% D: E5 k4 P8 v. V* f
            return n * factorial(n - 1)( t7 c2 }' n0 t% b; a8 @
    ) [% F) n* ^2 X5 b: V' q* M
    # Example usage0 w$ P" ?' d4 e( H$ w% f+ `& k0 H8 f
    print(factorial(5))  # Output: 120
    / P0 j: J7 z( F  E+ ~; a- r& s# J" P) c
    How Recursion Works
    ) l5 T/ T. d4 k3 Y7 g7 H- e$ t5 ?7 z$ {' F0 e6 T
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ' U- }! N0 z; C+ y. U2 s
    * [$ ?: T! q% j# `    Once the base case is reached, the function starts returning values back up the call stack.
    + R! }6 P$ w+ f( a+ J: D( q
    # o! x3 T' h' _: C# m8 h    These returned values are combined to produce the final result.
      z4 A" k6 n- `- P
    5 O" J: B" v8 G) D  NFor factorial(5):4 H* A- Q7 R$ U

    6 n" }6 M# j- g& d, ^/ B! s* N; l1 m+ d
    factorial(5) = 5 * factorial(4)5 O; @$ K& [; w% b' f
    factorial(4) = 4 * factorial(3)
    0 x& c* I- V' _  k" Nfactorial(3) = 3 * factorial(2)
    2 a' O8 k) u8 O6 c( Mfactorial(2) = 2 * factorial(1)1 n+ z- i+ H4 d  H$ g: F& e
    factorial(1) = 1 * factorial(0): ]$ l1 h& g$ J, j- m* `6 P( I3 S6 X
    factorial(0) = 1  # Base case7 f9 M& M& [/ c+ E# f
    6 s! P. h+ O! T: B+ G# J* m
    Then, the results are combined:9 Z) Z; g( x$ C" H
      [$ ?2 u. G! D7 h

    4 l% r3 M2 H% X% H" j) pfactorial(1) = 1 * 1 = 1, X# c* A+ G4 {
    factorial(2) = 2 * 1 = 2
    1 t7 h8 O( X+ ?( Z* j$ [+ G4 T. S, `& Afactorial(3) = 3 * 2 = 6$ L, ]* f8 H$ t+ n
    factorial(4) = 4 * 6 = 24
    + }( M+ Q4 e; t+ T. N% x# |: Ofactorial(5) = 5 * 24 = 1203 t3 Z( M4 l$ z- N, A1 x' Z7 i
    $ B, E( X, \* @, G# f
    Advantages of Recursion2 T" A" b) t! z9 x/ S
    . e+ K% A% B% o# ]3 Z$ ^
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).; ?; E: }! I. S5 N
    ' T# O6 @% \; c" `
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 q  \4 P, C, c9 [% b! Q) y1 i, L" [8 G. T5 Z
    Disadvantages of Recursion
    0 j6 @% ~- a& u) ?' c4 s* K( D" C0 \- e( ~: Q- f
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    , r1 ?( N* F$ z5 E) t: O* Z* |- L8 o0 Y. d5 y. E) O9 T6 a% y+ k) B
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# i' h. E: J0 c! ]% f

    6 i+ h& \% K% L# ^; sWhen to Use Recursion+ h6 u6 M% Z3 S2 K3 O

    7 B3 g1 u/ H( Z1 o    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ ^& Q( [" J; H& c3 J; t0 k4 G7 I. U4 r
        Problems with a clear base case and recursive case.
    9 G7 O0 l9 C$ O& ^2 Z$ U9 a; d% m* p! g" L' R4 ?
    Example: Fibonacci Sequence
    . D6 x* C) M  x6 y% ?
    8 `  S  C3 `* k0 O9 \" aThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    4 a/ _6 M# T; l
    , X) A- W" E3 |+ o& H2 z    Base case: fib(0) = 0, fib(1) = 19 R: C. Q  c1 M+ _1 J; x  i5 h  ~
    . U, `% E) @% d) t6 L
        Recursive case: fib(n) = fib(n-1) + fib(n-2)" h; h% m: h2 E$ m5 x! i9 Z. ~
    / B% u6 \# W, G2 b2 t5 x
    python. y0 H$ ~# b  \2 @

    & H* N( k/ o2 w) u% h3 w% X
    * k" [# y0 f% pdef fibonacci(n):& V. ?5 R) w, r; Z8 Q6 D
        # Base cases1 X% r7 E) M, z6 ?$ M5 U$ g
        if n == 0:/ z5 x& d5 h( o% w
            return 0; `. [! c& p# W0 l' O/ x
        elif n == 1:( S; V. S. P; P$ D( `" j( |" H" V
            return 1
    3 q5 p2 V+ }/ Z0 }1 N9 I" Z    # Recursive case0 Q% }& F2 R' O7 s; p: @+ W/ E, S
        else:
    , \& d% k( [0 P( g5 O        return fibonacci(n - 1) + fibonacci(n - 2)
    ' B5 y# [) W! j: }6 i
    ! u  c& x1 }$ \# Example usage
    0 W. \5 S9 A3 q$ ~- S1 J; Gprint(fibonacci(6))  # Output: 8+ s+ |- E  E; p% B4 @6 n
    ( o- E2 F( N2 Q% _' i& c: o7 K
    Tail Recursion0 _6 P4 p$ h. Z9 h8 d+ N

    . n$ O9 z! ^0 ~. J9 f9 _4 dTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 J4 w' P. _- C1 E$ N; V

    / p) h' b7 T  |) @# _" U; PIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-15 11:31 , Processed in 0.029386 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表