设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1531|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 # g! F; u% B; _$ t5 A" R# E
    , ?( t6 |0 {4 {2 ]4 W0 G& X/ x
    解释的不错
    $ f* `4 y6 R7 u" w" F* |3 ~# i* U! _& U+ n# u$ Q
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ; _1 Y: A: t$ D( s3 f& k
    3 x5 X1 C' {+ V8 _2 { 关键要素
    4 H% v" q3 [! A) C8 L, T: l1. **基线条件(Base Case)**
      g2 n3 i5 H" [  v   - 递归终止的条件,防止无限循环; I" `5 ]  r  V
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    , B& M/ Y; d2 E; Q' B( e
    / }1 H" u' ~! }  H5 M5 P2. **递归条件(Recursive Case)**
    " Q7 D5 B, J8 O% I* w5 K   - 将原问题分解为更小的子问题
    ' C: E! M; s  m# G* t0 }& K   - 例如:n! = n × (n-1)!( Z0 B( L4 S( I

    8 O; U8 u& }: u$ R5 D 经典示例:计算阶乘
    6 k3 T# C; [1 T, P& P) hpython
    ! k' c6 W% ?7 }, w" xdef factorial(n):  K! O# J  O# O! _2 w5 i% k$ L9 V
        if n == 0:        # 基线条件
    & P( f* t& i8 o7 ]9 U5 L        return 1+ L6 I: ~3 X7 s7 ^: z
        else:             # 递归条件6 ^* R4 \% Q: T8 G7 X! \! K
            return n * factorial(n-1)/ ?$ G: c/ j8 P1 I
    执行过程(以计算 3! 为例):/ u) Z6 m( y7 [0 y+ X
    factorial(3)
    9 d" q3 w3 H; T+ |/ d1 l% O; c9 P3 * factorial(2): [+ y, i) ^% F# H5 J2 L, E9 [
    3 * (2 * factorial(1))
    ) Z8 k9 [4 ?# F3 * (2 * (1 * factorial(0)))
    1 \7 [( X0 r8 [3 * (2 * (1 * 1)) = 6# w0 ?3 U* c+ ]7 h; @3 T+ d6 c
    * x/ |4 S" F' |. K. m2 L
    递归思维要点3 D( [1 X+ }  L: n9 [) i
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    $ N9 Z7 Q7 a9 O6 t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ! v& @& {# P- F+ l, j: N9 R, I3. **递推过程**:不断向下分解问题(递): |" K5 p; u9 y3 e/ i) s9 Z
    4. **回溯过程**:组合子问题结果返回(归)3 |9 H8 N1 q6 b0 P0 T; o; y
    ; u. T( v2 f' e
    注意事项
    0 D6 s* z/ B6 r- L必须要有终止条件8 U5 N: m' m! [, ~2 O
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * V. I4 S: O5 j, t* L5 r1 V$ Q. c某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ) b$ J5 n3 m, q* j( L尾递归优化可以提升效率(但Python不支持)
    & ^8 p; @& t6 d$ D& b" ~8 X
    . D# [! A2 S! W2 a$ a- r& ~2 e3 Z5 D 递归 vs 迭代9 D0 |4 c7 g6 O/ K
    |          | 递归                          | 迭代               |5 w: o! |" e8 Q& y
    |----------|-----------------------------|------------------|" T  v2 |3 z7 p0 R
    | 实现方式    | 函数自调用                        | 循环结构            |
    3 x& J3 X$ j2 Q5 ]4 k. || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 ^% F# T1 Q( {3 `8 x3 a
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |. |( w! Y; ^3 h. _* t) t" a
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    , T/ q6 t0 l3 Z5 {# ^4 [3 S
    & {0 q9 H2 q9 N& E6 J4 I2 O 经典递归应用场景
    ) ]# l6 p" }* A2 t1. 文件系统遍历(目录树结构)
    3 X$ d) c- d7 a; m+ ~2. 快速排序/归并排序算法" Z7 G" n# e3 Z% [5 F# @
    3. 汉诺塔问题1 G' N6 Q. h7 R: `# Y8 p9 M
    4. 二叉树遍历(前序/中序/后序)
    ; K0 z) r5 f  s+ Q- h5. 生成所有可能的组合(回溯算法)
    2 `/ P7 ?$ x8 b" q! R: r  p
    & w& c( f/ j6 W$ }% r: N4 a试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    9 小时前
  • 签到天数: 3119 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    " z+ d, t  J: ~5 g/ O; V0 `我推理机的核心算法应该是二叉树遍历的变种。! T( S* G" G1 r8 S
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; ]: @6 v+ o+ T
    Key Idea of Recursion
    - h0 X1 l0 e, P' `( ~6 @9 \6 x: V/ @% z9 I: i, S( a$ q; z; T
    A recursive function solves a problem by:" ^7 Q" I8 v4 c/ I4 T6 P* |& k" ^

    $ b$ T1 M0 s% p. \    Breaking the problem into smaller instances of the same problem.
      n4 v; g% `+ M+ i/ E
    ! T+ \3 S9 K& t; ^    Solving the smallest instance directly (base case).5 z4 `% |$ F8 j+ [+ y. B
    : ~' l8 C! L2 \8 ~( x
        Combining the results of smaller instances to solve the larger problem.8 _9 }8 R9 W5 k8 S  a& ^

    / {, Y! [$ a8 [5 }- \  ^Components of a Recursive Function# G4 U4 |7 y5 }4 ^8 }

    * L+ r6 y, k6 z# K7 Z! ?    Base Case:
    9 ^: w+ L# g, _- x) D: i
    . w0 P7 v6 R" ]& y$ G        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; t" }% ]! m; ?( O# c5 ], N

    ; q6 ]9 \4 u! j$ D& y! |0 P        It acts as the stopping condition to prevent infinite recursion.3 ?; q0 D% I2 _3 E3 f# A6 x8 @, }8 u
    ! G2 q. U' L  ?
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    1 Q9 r; X, Z+ {, V
    & J* Z) d) w1 a# x& m    Recursive Case:
    & c1 Y3 ^% R, P; J
    " G3 K6 E  v. \# k2 F6 f" y+ o        This is where the function calls itself with a smaller or simpler version of the problem.
    * M  s/ m# F6 u6 m9 h5 ~
    + K# j; ~% ~! f6 a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ' H; {6 X9 S9 K  J7 n& x3 z/ Q" N  I, j6 A4 i' t/ y$ |
    Example: Factorial Calculation
    4 {5 E' F9 `$ Q' N' z5 z$ ]$ A
    , V( W! g9 j! z  uThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    3 J% R$ \' t% m) v$ x4 W- ?9 M, k8 N; e! V' x1 X- J
        Base case: 0! = 1% P0 H9 b2 q- @2 r/ d! m, a

    ( B: [/ S1 T, l- |- d% ]; e8 B    Recursive case: n! = n * (n-1)!
    : M3 J% @& z' i9 K. ^# `+ d
    8 `( T) ^% V& N# z  Z4 e. `5 h. H2 E& JHere’s how it looks in code (Python):
    6 }! }1 V; K5 F6 q, p8 c3 ~python
    . }" y/ [5 l0 N; h9 m: B$ ~! x2 @: \$ J1 l0 G* J/ ^( p

    + l/ q2 U3 l. x! o( B0 Rdef factorial(n):
    1 \+ S: X& m4 J9 x    # Base case
    * W8 b. w2 y) Z1 O( E9 x    if n == 0:
    7 x2 p0 A7 h+ k# k, X- ~        return 1
    1 n, N+ I7 F4 L: {8 m    # Recursive case) P! O. T) R0 |) n0 }/ {/ Z( }
        else:
    4 _0 K2 h. C3 A2 H0 h        return n * factorial(n - 1)+ E2 F* I- S0 L% f* R; |! K/ p) x
    6 [2 f& s  j; j. [) J5 _
    # Example usage
    $ b: \) Q0 N5 qprint(factorial(5))  # Output: 120
    3 S& g. \) G4 H, h/ d7 ?: ]" P- I2 u0 O0 |0 W" {. I1 m) f
    How Recursion Works
    ; E' f$ Y; g" V  S1 S/ v% `7 w% s7 `' r* H8 P# l% r
        The function keeps calling itself with smaller inputs until it reaches the base case.
    5 n  k5 l6 c" B! h# O/ m8 r. h2 U1 u
        Once the base case is reached, the function starts returning values back up the call stack.. i  @3 h! d9 G+ `, K4 A0 p1 a

    ; r' O2 }" q! k4 G3 n( V  h    These returned values are combined to produce the final result.
    ; ]  I0 ?* O% z; |2 B
    7 [* g; _2 S* a" ^& R) ^7 `For factorial(5):/ a$ r" O& W* C" j

    1 s) Z+ X" W" |( B' x+ N: {$ h, q: @1 _* K
    factorial(5) = 5 * factorial(4)
    5 Q$ O# c( Z  q$ B" Jfactorial(4) = 4 * factorial(3)
    1 v, g. E5 ~2 ufactorial(3) = 3 * factorial(2)) _6 }$ J5 g* Q# }* ?, {  z$ ?
    factorial(2) = 2 * factorial(1)
    4 h1 B; a; S; J0 o; r- Afactorial(1) = 1 * factorial(0)) y1 G8 n2 P6 t7 i6 C8 j6 x8 ~% z
    factorial(0) = 1  # Base case* y3 T( y7 i7 F3 s
    4 T! r1 x+ {0 P+ ?9 o6 v
    Then, the results are combined:
    + X7 O3 [# H6 H( Z2 d, ?# F( m4 o
    ( |: j" Z9 S% \( i0 M9 _) R4 h! v* `# q1 C3 T
    factorial(1) = 1 * 1 = 1
    8 |! Y8 p& ^" F! `2 K/ `factorial(2) = 2 * 1 = 2; n0 x' i6 W3 P* a1 ^
    factorial(3) = 3 * 2 = 6
    % ~; t- _! V3 v+ y: _factorial(4) = 4 * 6 = 24) l: \, B0 d" p2 ?; l5 v/ L
    factorial(5) = 5 * 24 = 120/ y& ?6 _' D0 [) B7 S9 f! [2 E
    5 R0 l4 X7 j0 o' _
    Advantages of Recursion
    4 c/ A; x% ~6 C1 w, z4 Q/ N  k8 S* Z+ J1 x
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ' o6 _. r' M5 p2 P& \% U6 `; j, T7 s* U' I
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    6 M0 ~6 M4 Q/ Y' W6 l$ t3 Y- @) S7 L( v4 s8 j: p
    Disadvantages of Recursion
    2 U9 W" e  }9 v, A! d" p
    . A3 z) b- K& T; g% U8 }    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 X' H4 W6 j# X
      p3 L1 @. ]1 v( m' y! R
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    * o- I+ j, g' y6 H+ ^. m: m9 O+ v, R
    When to Use Recursion" K+ p7 ]% x# _$ W' m

    9 z2 s) n  D& a; s' a    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( z1 L8 \: ^0 L  P9 g

    # j9 n5 ?$ d2 p: L8 ^, n( M    Problems with a clear base case and recursive case.
    ' Y7 m) Q% K3 T* X& w9 `- H/ [9 m5 D  U: u3 D& _+ U! Q
    Example: Fibonacci Sequence
    . C. i% a  o7 N8 i
    ; l- [5 ^# T$ W  M  iThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' l6 s3 h9 E% {$ b' g1 g3 t4 o8 U+ |- T& G( m  m
        Base case: fib(0) = 0, fib(1) = 1) [/ P. C) B' K8 x; M, v

    ! Y! v+ T. s0 @, D" |/ W% q2 w    Recursive case: fib(n) = fib(n-1) + fib(n-2)) P7 i' {2 W: w; Z' ^/ t
    0 O3 o% {6 w* R. n! U9 ?" w
    python
    ) V% s( m$ ]2 X
    , A& J6 \, }; C
    # u0 a& D' ]  xdef fibonacci(n):0 u# _6 o% Y: ]9 K0 \
        # Base cases
    ! B# z: O$ Z5 P0 B0 f& d3 n    if n == 0:5 M' `. a- e+ v" q, h9 A. N
            return 08 M5 C% O# H) I  _
        elif n == 1:
    & B# K: W1 a3 _& M  X# b+ A4 v  t        return 1
    & G& ^- M/ ^2 n    # Recursive case
    0 }+ }$ c  L" j8 j2 E2 Z; o    else:
    - \+ x0 p+ K1 v2 T4 ~! m3 w2 G9 J        return fibonacci(n - 1) + fibonacci(n - 2)# z4 q- ^% y% _" _

    % P+ i; R# z  l: Z9 n- \7 [! ^% |# Example usage
    * j; Q! \% Z& p2 v; K9 Dprint(fibonacci(6))  # Output: 8- D& P; E7 o; G- l& P; k% \

    : {5 E0 z7 J) r+ p% X6 ?+ e( ]Tail Recursion
    ; H& z+ I# b$ z, s/ v$ x1 m! Z1 k. B7 K0 ?6 U
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    0 {; y0 V4 a* p1 |& p' P* m4 |& y0 C$ U+ h- ~# W
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-16 17:04 , Processed in 0.033942 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表