设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1395|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + e7 {! p8 q* Q+ `- U) Z% A
    / U" n; e" @' C& B
    解释的不错+ a& ^. K$ \! u1 Z

    - N$ _: U. g: S. l/ t5 w$ K! ~递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . K' M. [3 l. |$ l' T6 S! R  n# t7 j1 [. v0 ^* [1 t
    关键要素5 |: d* r: E8 {8 p
    1. **基线条件(Base Case)**; Q4 R  h) X: q* G' @2 X" j
       - 递归终止的条件,防止无限循环
    0 Z9 e# H4 i' t* i. e   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    + S: D( {1 O& i, [, Q
    4 [, I7 }( G  w/ y9 A2. **递归条件(Recursive Case)**
    & v2 g9 f0 |  D5 h   - 将原问题分解为更小的子问题
    5 c" k# u. V! e4 ]" Y   - 例如:n! = n × (n-1)!% T1 y- H8 ?0 T

    ' r. D' e/ m& K. p, v 经典示例:计算阶乘! h: l( Y' @, e) S2 }& a
    python/ w8 S" y7 s+ t
    def factorial(n):3 k8 k/ b/ _; |6 m3 v
        if n == 0:        # 基线条件2 G" \6 P$ Y" y/ o
            return 1
    + p& n; E. Q8 r, ~  L    else:             # 递归条件
    4 Y' i) L; r8 V; S' d        return n * factorial(n-1)
      v' E: I3 M6 T5 A执行过程(以计算 3! 为例):# S5 c" b2 H4 p2 x) K
    factorial(3): G1 J# w3 l0 k( s6 g8 U
    3 * factorial(2): a0 s" R) N4 z" \
    3 * (2 * factorial(1))
    + P+ K5 @" Z/ k, U+ i8 F3 * (2 * (1 * factorial(0)))% ]$ ~2 f' n0 d; e5 u
    3 * (2 * (1 * 1)) = 6
    $ P; @6 O7 e) W% n1 [: M  N( x( P& N& N# |  }6 e7 a
    递归思维要点
    0 W$ O  \6 ?4 A1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    + w0 F9 i6 o5 ~2 _* M4 P2 V2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 _/ i+ _9 B- e# I; a
    3. **递推过程**:不断向下分解问题(递)/ Z" R; _! M# r: ]9 B+ ?5 A
    4. **回溯过程**:组合子问题结果返回(归)
    & U" s" x0 D( l& {! y3 s  ?' B
    # F1 A8 ]3 t5 g" X& x 注意事项
    # w5 A/ U& H9 }+ H5 N必须要有终止条件' @8 N5 o, ?6 D! z9 F/ w0 C
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) _, d% ^! X; ]2 x! \; `3 ?$ M$ ^  Q0 g
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    * q# I; T9 V: l6 ~! A& m) L( p* i尾递归优化可以提升效率(但Python不支持)
    - _- P- C1 C+ @+ u. T8 @, ^& V' a; X4 |, |3 X& m
    递归 vs 迭代
    5 o) S7 [; S* `2 Q- C& ^) i+ O|          | 递归                          | 迭代               |, T1 w1 R' m# q; G, {- f9 h
    |----------|-----------------------------|------------------|9 ?) C& n- F( k& T
    | 实现方式    | 函数自调用                        | 循环结构            |. A% w' y3 Q. j5 T. [7 s' ^
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : N, F- o: _/ ]9 P/ L, C% o| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! s5 k3 J' g! G4 {- U7 G
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    0 U- _, @; Y+ Z4 p" j% v4 ]4 J9 c( w  ~
    经典递归应用场景
    ; j* A! O- w, Q" a0 U5 G1 @1. 文件系统遍历(目录树结构)
    3 G. a  b# e% E6 C. ~( V2. 快速排序/归并排序算法5 O4 z# y! l9 N  w& g
    3. 汉诺塔问题
    1 i4 r& f1 B$ d4. 二叉树遍历(前序/中序/后序)7 ^  h5 t- H2 t2 S- z$ m
    5. 生成所有可能的组合(回溯算法)
    : h1 U# p  F' |! [# P
    4 K, t% U, z1 w. U( u% d试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    昨天 06:53
  • 签到天数: 3111 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 O& F0 ~+ u1 `* V5 Y我推理机的核心算法应该是二叉树遍历的变种。
    : ~' t1 n' ~4 q, d. f另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- n/ S$ w8 M# x
    Key Idea of Recursion$ H, i# |( R, u4 S5 {7 g
    ' j8 F( ^2 _* d8 U- |/ y/ v1 u
    A recursive function solves a problem by:  a! s1 g# e7 c- n* H, D$ i* A# `

    5 A0 @& r) v- G# T" N% C    Breaking the problem into smaller instances of the same problem.
    ! J- U2 _2 Y7 P) n
    3 z' G5 p! V0 T7 J! C. L5 `2 I! k    Solving the smallest instance directly (base case).5 }5 [7 x! `" J) @  ?. C- ^
    6 c5 d- S- h$ n4 _2 V
        Combining the results of smaller instances to solve the larger problem./ V- @  C8 x% S3 W. z
    1 z, I; J+ ~& f: {
    Components of a Recursive Function
    ! R' F7 M% u# s3 X# |9 h2 W6 E$ }8 [/ L
        Base Case:% T7 R' `2 o) h: W; o3 ?, U1 s! i
    ! `. M& K4 C# ~2 P. D
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ z; K2 J% o7 z3 X* ]. z4 F
    + x& N/ _2 j% _- g# G5 g' m+ o
            It acts as the stopping condition to prevent infinite recursion.  v! v% i% l, }: t
    6 F) W1 D3 O3 t
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : P9 y( e% u. x
    - M6 ?" `* V. }, o0 u1 Y# u  e2 @    Recursive Case:
    / h# d/ ^1 P: S4 c. F
    4 T0 P7 `) ]/ m# u4 r" A        This is where the function calls itself with a smaller or simpler version of the problem., u$ r0 v$ P! F9 a/ L; i
    2 ~4 P6 `0 g; h, B
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ t2 @" @7 W3 b8 u3 _5 j
    5 E( Y' N2 n! M: \- h2 d0 x
    Example: Factorial Calculation$ E# Q/ F- t- B) n
    % W/ ~% h) x' `* H
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% {9 {5 h; y6 z7 n4 R
    : L9 r4 Q1 s7 T! ?9 T, n# ~
        Base case: 0! = 11 q4 I& o9 p$ H( e+ H, v# P. ^2 K# k/ A

    9 X, ^5 J, s4 s  m: j( J    Recursive case: n! = n * (n-1)!% N6 \9 c2 W4 Y4 Z7 w9 a
    , I) H: q* E3 g9 m% A2 W' C: J" b# O
    Here’s how it looks in code (Python):: H+ p4 Z5 D/ _: f" |& b4 I. R4 q
    python
    9 W' a% R' I& ]
    1 I. q7 d8 q* P' [6 _$ y- X& E, m( p) w* Z' k
    def factorial(n):
    ( a: d( n7 x: J+ b7 D% [2 K    # Base case& U# \+ c4 ?1 k, r4 o% L  j
        if n == 0:
      G1 R8 O: z4 b" W        return 1
    2 F- a2 `6 p- U- d( N    # Recursive case, B4 X9 K4 v. J/ O$ ]. a
        else:
    + K+ C, ~, X. a4 ^9 p0 o        return n * factorial(n - 1)
    , Q. {1 @+ n% Q  q% E+ F8 ?- }0 ^
    1 v# d& l9 H3 n) e1 _0 r6 D6 ]# Example usage
    + l: d# l9 Q- kprint(factorial(5))  # Output: 120
    * s5 O. Z5 e" e- p% v: @$ _1 N) }, Z  w$ @) y6 H' M. k
    How Recursion Works. I1 X  S+ L0 \+ N
    7 o' X8 B5 s3 @7 @3 `$ N# g
        The function keeps calling itself with smaller inputs until it reaches the base case.& V2 C; M* d) B
    - K) E4 M# v9 a. [: g
        Once the base case is reached, the function starts returning values back up the call stack.; |- t: y6 D$ Y& d2 g' S

    * f: w8 A# |  G    These returned values are combined to produce the final result.
    : X9 S: ]& X/ s+ q- A
    0 ^7 S0 O* k1 j5 c' f0 X8 u1 UFor factorial(5):! o, A- t" |1 b, [$ m

    $ S: p* \2 T1 w& d. L4 t  n2 |3 v9 q
    factorial(5) = 5 * factorial(4)
    * h. @( y6 B0 h, ]factorial(4) = 4 * factorial(3)
    ' C. d# @$ p6 v9 j: C, M9 Ofactorial(3) = 3 * factorial(2)
    : B7 l! {7 s' @8 Q$ Pfactorial(2) = 2 * factorial(1)
    0 q! u7 w4 ]" _9 I5 b4 tfactorial(1) = 1 * factorial(0)
    / h2 ^7 O0 Y$ [# s. Cfactorial(0) = 1  # Base case
    3 _8 D$ {3 W" n$ f: i5 X1 x9 R. K% {; t  U, E* e; R
    Then, the results are combined:
    3 I: k# b- N- G5 Y; s, \- W# D2 ~1 w& H, q7 A& B
    2 A, l# v0 v4 `, t6 h" {* Z
    factorial(1) = 1 * 1 = 1
    % |  u* u7 r7 O* t/ Jfactorial(2) = 2 * 1 = 2* J- ^( z0 w# Y) |
    factorial(3) = 3 * 2 = 6' s; c5 w* f% @, W9 q7 _( W0 z
    factorial(4) = 4 * 6 = 24/ Y# h/ r* |/ @6 j3 H6 Q
    factorial(5) = 5 * 24 = 120, ]1 ?, d+ b! w2 K& {" q( b

    ' N2 c+ f8 I2 w' Z3 b- ?6 tAdvantages of Recursion
    ! u& v' X3 S% H6 P' [! k5 N  G$ l: y4 B0 Z& {# r
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).4 m+ r# d5 F8 g* g& [

    1 `" u4 T, d* n! S: x4 p    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) K/ b/ b' w3 |7 @4 l/ e
    2 s# ~1 f$ X8 V6 @6 cDisadvantages of Recursion! W- }  m! @, {3 a3 C4 E9 D
    5 E* r$ V; w$ s% w. ?
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion./ D( x& D9 y4 M1 c" L# `( c

    + G6 }2 H9 ^  l+ b/ m2 C- R' r    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).7 l# A# ~6 n' X/ ~4 p

    . E5 Q) }2 C+ C/ ]" k: eWhen to Use Recursion
    ; G  y2 F6 M7 I( V7 _: d0 f4 _4 [5 f3 ^* n& j4 L1 n, \
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ S/ r0 u: |4 D& D# G, q
    1 b6 I( F. o* L% E" c    Problems with a clear base case and recursive case.
    " f* G+ T" j: I  T4 z% O9 K: F; m; o1 O+ P- m+ Z; E3 Q2 ^' z
    Example: Fibonacci Sequence& Z6 O. r1 E+ s
    6 s! z& h, N4 @2 e/ Y
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    1 {: R4 v' u7 p- L! I2 J* l3 C' q% Y7 T  Z. P/ E
        Base case: fib(0) = 0, fib(1) = 1/ g5 e& g' g0 [) N& i. r8 `% k/ `

    / g, D! p- [3 f8 I. Q/ |    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . V- j2 l$ N% _* l* F) I& v5 P: x2 `0 w
    python
      H" U& Z( L8 o# G3 B4 M9 i" U/ |! ?+ Y* `% `

    ' H  z0 x9 w6 M9 y% y; X% xdef fibonacci(n):
    7 g  f. A- R  H& c  K. w    # Base cases
    4 w- G7 d  _/ X+ m: _: F    if n == 0:
    ( G# I" V, W: t  B' `  V! s        return 0) l0 {& K9 W  n- n
        elif n == 1:
    & Q* ^# z: v0 z, W* R0 _6 g        return 1( y' T# x( ~4 [; [- b; W- `
        # Recursive case
    5 D6 E, l  }( l3 t0 j7 Z6 f    else:
    1 d7 ~; W- I9 D        return fibonacci(n - 1) + fibonacci(n - 2)
    8 b2 q# J+ G6 Z% H* o. A: O
    " v0 _& \5 g+ w# Example usage& x0 p! v8 O+ l% M& C, |# z2 L$ y# a
    print(fibonacci(6))  # Output: 8
    ; a' I2 h% j6 W! ^: r/ W
    1 d' h* k8 s6 K( OTail Recursion. T) D; u( p. O. _  i% s5 s+ c

    7 p3 q. v+ ]1 t' _Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. ]8 E% s: U* q  C5 a  k
    0 o9 f) e  k; {  O1 |
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-8 00:04 , Processed in 0.033856 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表