设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1511|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ( P) U# |! U; J6 Z& j
    / A, j2 Z# L0 B( `
    解释的不错/ j8 B- B) w2 e- b" G
    4 E* W  v0 g9 w6 e; \& K
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' O7 X+ s3 }% P' L7 p' s" x/ {

    7 ]& D3 X2 `8 n0 x 关键要素( X7 O- N; H) n- k$ [9 Q9 ^7 H
    1. **基线条件(Base Case)**9 x* h( B6 Y+ e1 v, h6 t7 P0 h# x
       - 递归终止的条件,防止无限循环
    3 h& \/ W# w3 J   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) I/ d. `0 N2 k$ h; B% [
    ; \, K9 S$ z. V; `' b
    2. **递归条件(Recursive Case)**
    ! E" x5 w) P+ o* {- _   - 将原问题分解为更小的子问题& s8 ^9 j; A1 \
       - 例如:n! = n × (n-1)!1 Q( p" Q9 o9 P4 g( k

    6 i/ c3 h1 A* x+ I% ?1 n 经典示例:计算阶乘) `* h0 b" Y+ r% }/ d/ c# h
    python
    + x( {$ i0 L  H, W" J* W+ [def factorial(n):
    % o0 W# k2 X4 f. X2 s4 c+ U6 i    if n == 0:        # 基线条件, q( w* B1 e% i0 l0 K
            return 1" F7 O) e4 h; h
        else:             # 递归条件
    / C4 \7 \2 e2 w: `        return n * factorial(n-1)
    ! R: M5 T& f, \4 d执行过程(以计算 3! 为例):* F; g5 @; S  S
    factorial(3)" |3 o( b5 R" A+ ^
    3 * factorial(2)
    & u4 D2 d9 U1 c2 }6 G. n# }8 F" ~- Z3 * (2 * factorial(1))( |( k! s+ n( {" s
    3 * (2 * (1 * factorial(0)))
    * f( D" N8 E. Q2 q3 * (2 * (1 * 1)) = 6
    ; z" y' X3 W+ I1 [* d* J8 K0 O) h, F$ ]; q5 D  O
    递归思维要点$ k; [; I: n+ g9 K
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑  t0 D9 Y6 p; u/ o
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 `( e2 o/ |2 Q7 M
    3. **递推过程**:不断向下分解问题(递)
    & q6 E( z8 ]  L3 V& c. R4. **回溯过程**:组合子问题结果返回(归)
    % w) C1 c4 K. k" U0 b) i. d
    4 _  e+ |8 v: P7 @) D6 ]! R0 x) Z 注意事项" C) _5 R" i, b  v1 L! ^, T5 ~5 R1 H! t6 z
    必须要有终止条件5 p) j2 b) [/ S$ J* m: C
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 P- w% b. E- d: E9 V某些问题用递归更直观(如树遍历),但效率可能不如迭代
    3 f* h: u% v" u' M. J( m尾递归优化可以提升效率(但Python不支持)- y8 B* x" h2 ?& a% m3 H
    - R: F& f! E4 X1 T" d- h' t
    递归 vs 迭代) s6 Q: b. _) b% Y' k* A5 M) A
    |          | 递归                          | 迭代               |
    4 f$ w; }: I% h8 `1 \* C. x/ M|----------|-----------------------------|------------------|
    4 J4 P" S& x3 R! A| 实现方式    | 函数自调用                        | 循环结构            |
    / c9 A% L- V  C! b$ T+ b| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |1 K' g0 Q! N8 a# M
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ |& ?# r( P1 ^! z/ V
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 g+ {* ~: j: t: A
    1 s% |/ j5 y9 L9 t* T& \ 经典递归应用场景
    5 K5 L) r4 o' c# h1. 文件系统遍历(目录树结构); v$ T/ x  I  V3 z& t* E
    2. 快速排序/归并排序算法
    + }* C2 D# z5 Z) N6 b# p3. 汉诺塔问题( }0 x# M2 K' |2 s' q
    4. 二叉树遍历(前序/中序/后序)
    $ c6 I2 \! A7 S1 j. p: z5. 生成所有可能的组合(回溯算法)
    $ _+ z5 u( ~& W' o% O# E8 }. F2 G- K( D) C& t" |/ P7 O
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    12 小时前
  • 签到天数: 3117 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: i* x. x9 p. k+ q: X8 c
    我推理机的核心算法应该是二叉树遍历的变种。
    ' V+ j  }6 B  X6 Y2 l; Y: Z) @另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . c7 }- a% j$ BKey Idea of Recursion! r* J; b. ~8 d8 D- z5 u0 n

    7 ^6 b& ?" |9 e4 DA recursive function solves a problem by:
    3 E) ^& N# U5 y: ~; q, A( t# [# _- ]) B) ?7 @5 m3 M" Z
        Breaking the problem into smaller instances of the same problem.
    1 R& ]2 Y6 E* H/ }  u# G
      E0 J# P7 i  J6 Z    Solving the smallest instance directly (base case)., i: N! Y' W  l2 l! [* ~
    . H/ ^3 e# i5 \$ ]' [) o3 A
        Combining the results of smaller instances to solve the larger problem.
    7 t1 l3 ^) y8 P7 y* W1 O& R' @% z
    - H4 T% v7 P0 PComponents of a Recursive Function6 O" r5 T3 ]& Q+ r& p7 d7 d
      ?+ c/ U$ b8 m2 H4 S
        Base Case:
    ! P/ O) S& U6 ^0 [0 a  m9 {
    / H& v2 b2 Z- |/ e" `        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. Q5 R. G; V0 e* `0 L6 t+ ~

    4 O; j3 b- t8 e+ k7 U        It acts as the stopping condition to prevent infinite recursion.
    ! q8 u9 w* W" t0 N* J+ @1 F
    4 z1 k  l( ^5 o) A        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 Q# H" x: l5 _% ~# P6 z2 v
    # d9 Z0 m2 j* p. p8 F5 z
        Recursive Case:" ?- U- d* _% g, c; D: o* c

    + g+ ^* ^* i5 Y+ b$ H        This is where the function calls itself with a smaller or simpler version of the problem.
    7 J- q5 j* f1 a/ }9 s7 n$ r) a; C3 l
    , d& l2 Y" a% R8 Q# K5 N        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- s) ]. \0 D9 a3 J: c& I

    $ q' w- V# u* y6 n7 QExample: Factorial Calculation3 [& Y( d0 N3 @/ M
    1 Q6 `$ @  _* \  V/ N# z5 @# f* z! q
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 X  }% `2 j4 N4 S
    5 F! }" s: ^1 T, i0 L8 ?7 u
        Base case: 0! = 1
    3 v' x7 b& x: O; N
    ) k; k: J3 H7 ^/ g    Recursive case: n! = n * (n-1)!1 j5 \5 ?0 l" w, d* Y/ P
    & W9 y6 h: _) L" P7 |  y4 T1 G
    Here’s how it looks in code (Python):/ S6 _  e7 l/ ?2 O9 h
    python
    - ], ^7 Y# W; V/ _4 s% ?$ K) \
    3 Z! ^( M2 w0 Q! \. s7 S& o
    3 J" d2 X! u$ e3 ]6 c2 o# s$ kdef factorial(n):
    3 i# u) l2 F( I; u# l+ z    # Base case% K3 N% b5 D9 {- ]$ Q" g
        if n == 0:  U& ?7 I  d# ]( [
            return 1
    6 F9 q/ a2 R& p* u    # Recursive case1 N, S& w( n( |, P( L/ k8 B2 N6 S
        else:( }2 F  I7 o1 G. J( Y) y
            return n * factorial(n - 1)! @0 a# m5 Y: B0 u: w

    8 z. Q5 s; s" Q; G# Example usage7 O6 D% M& W% @5 X2 Q
    print(factorial(5))  # Output: 1203 D4 I) Q6 [, Q9 f

    : A9 i! i, R1 {- PHow Recursion Works! J4 O% b1 E9 r2 D7 _
    7 A" i  x( L+ R) x) N2 i
        The function keeps calling itself with smaller inputs until it reaches the base case.
    & L5 x7 b* T6 Z1 Q! o! q
    - f$ @7 u# p6 E6 q: E! t) ]' q2 h    Once the base case is reached, the function starts returning values back up the call stack.
    ) _) \& o- ^2 k5 n3 m) Q
    ' r/ b$ Z0 [& B4 j8 q5 O9 u    These returned values are combined to produce the final result.
    ( C, L. v5 y: Z  _
    , c7 I  Z+ a: f6 D# {  NFor factorial(5):
    % @8 o3 V9 v9 g* O% k2 C0 |. z- N) V. u, z( x
    ( }% o& }8 D5 d
    factorial(5) = 5 * factorial(4)
    / _5 S4 \2 L, D1 ^8 Ufactorial(4) = 4 * factorial(3)
    4 n" w& z# P- q9 M8 {factorial(3) = 3 * factorial(2)
    5 l4 i3 r  E# z0 q# J/ zfactorial(2) = 2 * factorial(1)
    4 S# T( t! C( d2 U. a1 ]" Cfactorial(1) = 1 * factorial(0)6 u3 X6 m& B4 O, o) w
    factorial(0) = 1  # Base case
    1 G: B1 ]+ _, l! H1 e& n% V
    - V& ?& L  C6 ^Then, the results are combined:8 n  ~5 T( L/ Z" s
    ) X5 }' {6 `4 |- |
    7 d: }3 L& ?: E/ i6 R. q0 N
    factorial(1) = 1 * 1 = 16 }  Z3 H. O% B. K( L* r2 @
    factorial(2) = 2 * 1 = 29 s1 Y" m$ c: n: Y5 H
    factorial(3) = 3 * 2 = 6! B/ A$ ~9 v' l0 \0 j
    factorial(4) = 4 * 6 = 24! j- C3 e. S  n3 `; p4 [0 f7 R
    factorial(5) = 5 * 24 = 120
    , Y# P- s" p# R9 M; b2 k  s  S- E$ T2 W( b/ v$ }* N
    Advantages of Recursion
    . R7 h+ m0 j8 x/ T( q/ ~1 e. [8 X$ Z" _# N
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* ]1 ~' T$ |9 V' w7 w
    8 W- Y( N* R/ W
        Readability: Recursive code can be more readable and concise compared to iterative solutions.8 y$ b- K) D. g& e# E

    8 e, r! @; ]3 H0 Z% x2 z( fDisadvantages of Recursion2 v) t$ }6 d2 o; I" ?7 c2 q: [
    ' O% e' G# @; x* h' _/ X
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 y5 r# I: k1 Q7 G' u
    / q# U% o2 Q# c0 b$ L    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 e3 L0 A) r0 F: _# L

    5 R  d; |% ~. v+ y) QWhen to Use Recursion; L; r: P# H; j8 ?; E
    5 A. P6 I) G6 R& U: H9 {
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ' p9 O! @. v9 e9 y% W+ a6 O2 s5 ]' N4 g$ @* f3 r9 s& w: Q
        Problems with a clear base case and recursive case.
    , o5 l# z+ V3 Q! a; B( W4 `& l+ U. T' N+ a
    Example: Fibonacci Sequence
    : S0 S, i- E- J" L$ l! ]" P& \7 ]! H- d( _
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 {1 G$ L2 u7 q. m  J; s' D& A3 O) U5 d) E: z
        Base case: fib(0) = 0, fib(1) = 1
    ' @) u; t6 a7 S- f4 A/ [9 ^: t, r; l  X, C9 }9 U' j4 x
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) M6 b5 G- ^: x4 e0 `0 f* h' P, t4 z  h+ T. S$ M9 w
    python' p. q1 }# a4 L0 ~

    8 R; X4 C8 m! v8 S) ]4 U7 L( [+ u- Y4 |* D1 a
    def fibonacci(n):
    ! d( R+ K' u+ x, d    # Base cases' ^& |$ X# ~+ W% F1 t
        if n == 0:
    : T2 q/ f$ X: a        return 0
    , {+ x5 {8 G# S6 {; o    elif n == 1:, D6 P" _( M) C( X5 `
            return 14 P7 K# k* j1 ^* _0 r
        # Recursive case$ Q# {& L& L# N. P6 \% q" `- _; Z
        else:1 e# S9 S, B3 `$ a
            return fibonacci(n - 1) + fibonacci(n - 2)
    ( L6 Q! ~7 y7 n% z% i1 C9 `  Q& r2 I6 p* {  r
    # Example usage' d$ T/ _6 P( Y
    print(fibonacci(6))  # Output: 8
    " G" F9 N) B! _$ }% B, t) q" l  G* M5 A
    Tail Recursion: r7 \5 l6 Q9 E, e5 }
    - d& ~9 h* }# l) }
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 L5 a. t6 i$ O* T$ |; w0 x- ?1 k
    ( i' ^" j. C! a+ L0 `
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-14 19:43 , Processed in 0.033330 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表