设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1726|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    + B" V$ {6 L# t: m+ ]3 T" d+ V) M' n2 X8 x& p8 b, S
    解释的不错0 ]0 Y4 G6 G' P4 p

    4 x0 F7 t& j8 _% h2 ?, N递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # ^8 M: x6 r( ~$ C) R
    " U! J, K# M  R: B8 [8 V3 n% j 关键要素' H* o8 d* y, F* d
    1. **基线条件(Base Case)*** Q* U6 C5 t4 T/ K1 U
       - 递归终止的条件,防止无限循环& _' N: W$ `& f3 [" s) k$ ]& T
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    " P+ d. n' ]" h% S; Q: q3 a# e( p' q
    - o$ g$ M6 I+ b# G) R3 [2. **递归条件(Recursive Case)**/ g1 g" T% |1 Y2 [. m
       - 将原问题分解为更小的子问题
    " a+ c+ ?3 n4 l# h+ y. d; n* W   - 例如:n! = n × (n-1)!
    : w; c& N# f5 ~3 T; @8 r9 ~3 `5 N& h
    经典示例:计算阶乘6 X# ^) L8 d% w& f( N, z
    python' \  A9 H' q2 ]' C  Z* _, b3 O
    def factorial(n):- J: T$ D, I6 }1 `- u) `. n7 [+ I
        if n == 0:        # 基线条件  ^  i6 Q& R, ?5 ~) b
            return 1
    9 _2 v1 d! C2 k% C; X    else:             # 递归条件" A' p# \+ i2 s
            return n * factorial(n-1)
    7 O" Z, O  C' d- B. ^执行过程(以计算 3! 为例):5 `: Q$ h8 A* B* m
    factorial(3)# g" p  {9 g  h
    3 * factorial(2)0 P# P9 j% u* a) F$ ]; w( J
    3 * (2 * factorial(1))
    6 S1 I, p/ l8 j+ G: h$ ]3 * (2 * (1 * factorial(0)))6 X, i: U$ r. n2 b' }/ K; j$ |
    3 * (2 * (1 * 1)) = 6
      f" p% m( l" N6 A$ u& w' g# J
    . ]! R: N' y- c7 b; m# M 递归思维要点
    * V3 v0 Z. I! e% l! t2 T: d1. **信任递归**:假设子问题已经解决,专注当前层逻辑# u  Y0 }' |+ g- G1 L! i
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    5 c5 M9 N4 d- a8 f5 R" q9 ~+ E3. **递推过程**:不断向下分解问题(递)
    % T3 \" Z  z6 C& Y5 Z) n4. **回溯过程**:组合子问题结果返回(归)7 D5 D& J  b0 r: z7 B$ B

    1 g  @) J- R; I' ^ 注意事项9 w7 a  N! s3 a$ H4 |, l5 `* f
    必须要有终止条件
    7 a( S1 \% `1 |: i: e6 Z递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ( C( C% G% F! s& o$ G0 R) ?  _某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ! o. v5 m7 c& p尾递归优化可以提升效率(但Python不支持)8 H4 e: w1 k% W6 w9 x  z6 |' C3 Q

    / U( p" Z/ F  T% {  i% | 递归 vs 迭代
    : a$ |+ N9 M% V. g2 c8 I5 Z|          | 递归                          | 迭代               |
    $ p6 J$ U6 E3 Y- K6 c: \|----------|-----------------------------|------------------|
    * y4 _2 u) w3 T  I( u' V) J+ p, ?| 实现方式    | 函数自调用                        | 循环结构            |  ?0 g/ J/ P' W  u
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    0 \" q1 v: X& }" I| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* t4 d/ J+ Y$ r* N# I- H
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( q$ ^: ?6 Y: A3 z6 J- |
    " G$ I; r. B+ H) ^& K2 Y  c
    经典递归应用场景8 K. T- p1 I: b& ?
    1. 文件系统遍历(目录树结构)
    " r5 N! @7 T: M9 z, T2. 快速排序/归并排序算法
    ) Y' H' x" B5 j1 L8 D5 X& e3. 汉诺塔问题2 ^! K+ z4 C+ M# H
    4. 二叉树遍历(前序/中序/后序)
    ! a" _/ f0 ~9 q& g; y- M, @* k5. 生成所有可能的组合(回溯算法)5 l5 w% r% T# G, O6 K0 R5 W  t

    # ^# q9 E) E" [9 A9 K试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 14:57
  • 签到天数: 3134 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,6 Z8 _# f0 j3 g+ b
    我推理机的核心算法应该是二叉树遍历的变种。' O6 |" E8 i/ p+ Q$ a
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:1 s" H% ~- h" \& G8 r" ~# B
    Key Idea of Recursion$ r$ q! h' T- {9 a! g9 A- O
    : Y6 r& m: b; `6 D
    A recursive function solves a problem by:
    % r9 \! [  P. o3 M# G7 e$ m% E5 \) E# l
    . `2 {' |3 G& h1 w    Breaking the problem into smaller instances of the same problem.- Y. Q7 s, V9 j2 S+ _% u2 L

    * s& c" [, H* c) Q' j& K    Solving the smallest instance directly (base case).
    3 K0 _8 e) j8 X* I* b* E
    9 K5 {4 {3 p: h, w# [    Combining the results of smaller instances to solve the larger problem.6 y6 D# {, c6 p4 D& V* Y

    * E0 n1 U( ?% @# ~. IComponents of a Recursive Function$ W) b6 g5 J! L& b, {/ P
    / o2 Z& Q# k* L/ J/ U
        Base Case:
    & \( S/ K. N/ L- A: C  q  f8 W% l- ^; X) [2 u  S4 H  x! u1 u" k3 G
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. D3 R9 q; h' }) X1 ]0 Q) [6 w# |
    7 }6 k( g7 q" K- j
            It acts as the stopping condition to prevent infinite recursion.
    0 s' m! l  `  U+ x& X9 V* s7 }! r0 m4 J* M! n: H! @! \; Z& |7 _4 d/ K
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ H8 |$ u" W, O' d3 _1 B

    9 ^  R) t% o! k    Recursive Case:
    ! c# |. a" M2 G
    " [/ A- s$ Y% f. r# r. J, @) l        This is where the function calls itself with a smaller or simpler version of the problem.
    & x8 l  h7 m3 m0 t  z
    6 K3 q2 V( {3 e1 W; `) p" P        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ d, N0 \( h: O  A+ o
    2 O0 k  R4 }4 O3 d
    Example: Factorial Calculation4 D1 x+ u# _6 g6 H& z; I

    $ T3 l3 M. K9 S; x: A, D+ H& r7 aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:0 @! f7 O- i6 p3 |# U, w
    ' Z8 X! o/ \/ Z, K' y
        Base case: 0! = 1
    , H) {( j# F5 e+ C$ j, o& f7 [& ]
    2 f. r, C0 g- `    Recursive case: n! = n * (n-1)!4 \/ S8 O* E9 U/ F4 Z6 K  `
    ! K7 P* X, D' ]( `1 W$ X
    Here’s how it looks in code (Python):  Y2 @, s3 C9 F. l$ T& p5 b
    python
    6 ~6 r4 j- X4 {
    ( v; d1 H2 [* K9 p' A9 o9 I- L# a) W8 F4 j9 Q$ F5 T+ V& G
    def factorial(n):
    - u" v; y/ l: c: p, Q5 U/ }8 C6 g    # Base case
    $ Q, O+ q. ~7 w  }7 D4 |8 z" e    if n == 0:
    ! |9 I6 O) l- \- m* f        return 1
    ( R$ F+ k1 v, ^9 v    # Recursive case* g8 h$ {  A9 J1 R) ~8 h; F
        else:
    4 x, L2 e* v1 v' y9 N$ p0 H        return n * factorial(n - 1)
    6 c* a! \. J3 z, {/ H  l/ p* _" d$ L5 N8 ]) y/ J
    # Example usage
    ( e% i6 W/ A" e. Q& hprint(factorial(5))  # Output: 120: p  B- Q7 V+ ^

    6 Q, k, T7 r6 Q" ~/ q2 E& D3 C2 XHow Recursion Works
    ) {. A0 h7 P8 v8 T
    " X8 Z( h1 x8 Q( s3 I: ?, J4 N+ ]  j  ^    The function keeps calling itself with smaller inputs until it reaches the base case.
    9 X* ]1 _* T  m; z: Z! {) W
    & G) @& {  |% c) L3 s    Once the base case is reached, the function starts returning values back up the call stack.7 w/ A* m$ {% O$ Z: j9 q" Y) o/ W6 g# @

    . H9 g  {3 s$ y* U$ `  B/ F    These returned values are combined to produce the final result.5 D/ a8 I! Z( f" y. k
    ' a, X- B3 c7 D  C4 ]
    For factorial(5):
    8 x* d3 [+ k7 L' K
    3 h9 x# i: \* i: f1 [) ^! v  f0 V/ o' U; q( y
    factorial(5) = 5 * factorial(4)
    " t) M* k- D# K% U' v1 qfactorial(4) = 4 * factorial(3)
    0 b3 L# |! W+ W/ q, p% z& i" Tfactorial(3) = 3 * factorial(2)
    , \! W5 `9 ^! a% T" I/ Hfactorial(2) = 2 * factorial(1)
    , i/ j4 d, s: k, d5 B) }factorial(1) = 1 * factorial(0); U" a7 A% m7 k: Z( N) i' Y( i
    factorial(0) = 1  # Base case7 f: {( p3 F, h* v
    0 z. z2 W/ M( p  ]  G9 O* Q' |
    Then, the results are combined:
    7 P/ ~. U) b+ k6 b! l) ^' M% x- w' [* Z5 q
    & O3 n6 a, P0 ?) H! Y# d0 x5 F
    factorial(1) = 1 * 1 = 1
    2 k9 B  Q( A7 z, f4 X9 H% xfactorial(2) = 2 * 1 = 2
    & S4 N* i- `* `0 kfactorial(3) = 3 * 2 = 6
    , ~; v' K4 k5 \. q- e4 Hfactorial(4) = 4 * 6 = 248 A- ~* Z3 t% o$ P( p% S
    factorial(5) = 5 * 24 = 120' A8 `4 i7 q2 S; \

    / N2 {  C, z  \: kAdvantages of Recursion: [. K/ w- B# s% E  z* g) Z+ }
    3 R& U  {' {# j2 K' j4 E8 c% U
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 h. z( T8 }, i" ^" N3 S
    # N( ~1 }; m1 Q8 d+ |    Readability: Recursive code can be more readable and concise compared to iterative solutions.7 j: Y/ b% ]* L5 `1 A* _$ V
    * w/ P- S/ s- e6 U: u( |
    Disadvantages of Recursion
    ; W1 _# e1 I8 H- g% d
    % x( u+ j& i  T8 @" x    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.8 k( V$ s. y. \: h" d4 e

    : L& `2 t( f' |# K9 ?# m! W" I  ~( ?& H    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ; u, i: E! h0 e4 V" U
    , Z# O' K8 G6 f/ \7 R6 n2 E! d5 @' nWhen to Use Recursion# j5 u! ~. Z0 ^+ e+ X1 O/ c- K
    / q# ?& F# S6 O4 T( T8 r0 S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! p" N8 ]8 T  g: [

    4 x) y- j  R( C7 F! r6 H! H    Problems with a clear base case and recursive case.
    , ?& F% N+ ?( s* c2 {( v1 ]! j, u2 N
    Example: Fibonacci Sequence
    ) M0 V6 m0 s1 {- y' o( R( j# K3 G2 Y4 t
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ( p+ g" }" p5 m) c5 u: ?. I0 U  d5 L* b& @  t
        Base case: fib(0) = 0, fib(1) = 1
    ' @& V" g5 Q9 q/ o4 @# q0 j" r
    3 X2 M0 T. g8 D8 G    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    : k: ~6 C; Z$ l& @
    ! i5 ]* [. ~: s9 f. }python
    & {$ o% B9 I' w' T" N! {$ X
    0 E' b  w& \5 n: D6 B# T, b1 E  M* B) f) q
    def fibonacci(n):
    5 @9 n5 s2 Y& K% v  y    # Base cases
    * w% u* K9 d) v( E) W+ u% g' @    if n == 0:
    ! o( g6 m6 a* |: I$ s6 n# s. M        return 0
    . E$ K: p5 }7 p0 g- ]    elif n == 1:! |  }- B  E; X8 j
            return 19 }1 x1 @7 k0 |4 R
        # Recursive case. I. y4 s2 T- h4 Z0 L  r
        else:* r4 d* V, j* ^* \! n" n/ _
            return fibonacci(n - 1) + fibonacci(n - 2)3 Z0 t! t; z9 H5 C* q
    - w& T* p2 M- {) h6 n
    # Example usage
    7 j5 R% i2 ^4 [) X, k! n) m  I0 P; }: Bprint(fibonacci(6))  # Output: 8
    " R- T% z& {  P2 T+ s- ]$ W# o8 q; q( C- k/ B
    Tail Recursion
    1 u; Z* L0 n4 m/ n) x7 f
    8 M8 P: i: X& K  E2 W8 X) kTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).' n" f9 H" T/ y5 }4 r" l6 E% }

    8 O7 z7 l, x% R/ ?) iIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-3 01:38 , Processed in 0.105097 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表