设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1592|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 u7 c3 l% V3 S, B/ u5 e' \, x  k
    解释的不错
    . T& b% I. r: s% W+ m: G5 b+ h+ |) j5 e6 K, N; L5 d
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' G- x! c8 o& J/ v0 W

    * H* K, d7 p! z  E 关键要素. @* _" G9 f5 `/ _
    1. **基线条件(Base Case)**) C8 V6 Q7 Q7 E6 R# |% K: W
       - 递归终止的条件,防止无限循环$ J# l5 P4 {0 K' N5 l9 x
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- I. E* s5 h9 C" {6 O
      D& j5 \. i3 q. Y2 P
    2. **递归条件(Recursive Case)**
    + J( S8 q& [1 k0 Y, l   - 将原问题分解为更小的子问题2 S0 Q/ [: h5 z! w" h
       - 例如:n! = n × (n-1)!
    ; A, d& O$ E- ~2 I- F1 a' B$ W1 x
    % F2 R  k9 K! r% U. m9 o 经典示例:计算阶乘% B7 R$ z& D5 o
    python
    ! H! s% i8 v; ~& W, U. Sdef factorial(n):: F+ C# i8 `6 g4 r/ \+ }$ {
        if n == 0:        # 基线条件
    & d& {; h7 c/ W6 ~) S( m7 {* v3 L& A9 M        return 1
    2 W" x5 S2 X5 F    else:             # 递归条件
    ) n# z/ S! j  G2 S! M        return n * factorial(n-1)! J5 h: R# G4 f" H
    执行过程(以计算 3! 为例):
    " c8 ^$ B  R: C! K. Q: R! |factorial(3)& c" X3 W: s* E
    3 * factorial(2)' }0 s- l4 ~; e9 C1 H: X/ @$ ^
    3 * (2 * factorial(1))7 E% j6 G5 }& ^9 L+ J9 L1 S
    3 * (2 * (1 * factorial(0)))
    4 X% n: ]: N* [& V5 D3 * (2 * (1 * 1)) = 6. o+ s4 ?/ c4 N; X% q
    ! z- T7 z3 e9 d8 R' }
    递归思维要点
    # R1 f3 Y! G& j1. **信任递归**:假设子问题已经解决,专注当前层逻辑, n0 k; A0 {( ~
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 M; @# \8 y8 U% a7 k  r
    3. **递推过程**:不断向下分解问题(递); y' a* G! \- {0 `9 F$ @# u9 p
    4. **回溯过程**:组合子问题结果返回(归)
    . F* c- M7 @. U
    5 M+ E& c3 ]9 r/ u! \* Q" u  ] 注意事项
    + Q6 v/ F% X& @! E必须要有终止条件
      H) i$ c2 t* O5 L$ M8 N* G0 r! f递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- u9 K  }! F/ n% T- F. f2 l
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    / }- {3 ]. b  ]尾递归优化可以提升效率(但Python不支持)
    - h# o; x6 [/ M; X9 k
    6 W. O; i4 N1 J' d3 |- y+ v 递归 vs 迭代; N3 w7 A5 @$ s+ {, R
    |          | 递归                          | 迭代               |1 c. Z' T# s& r5 A" k, F; D) M
    |----------|-----------------------------|------------------|
    * k: Q: `( _! J# F| 实现方式    | 函数自调用                        | 循环结构            |
    / D6 w- ]2 G; x" |. U- j- K' j| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    2 E/ z3 I7 ]; Y0 f$ S| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    3 Z( k! |0 C7 h) B5 b" ]/ d| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |$ Z2 E# c; ?; Q

    ) G2 A  c8 H3 M' o' L 经典递归应用场景0 V, d1 D& Q  U5 ^6 k' u# o. Y
    1. 文件系统遍历(目录树结构)! A* u1 k9 x4 f( G
    2. 快速排序/归并排序算法
    3 z4 G5 ^& P0 x8 _4 U3. 汉诺塔问题
    # V+ L, ~1 @% I6 h4. 二叉树遍历(前序/中序/后序)
    % ~- {6 }( j; L0 r! m! S5 B' s0 q5. 生成所有可能的组合(回溯算法)* h- x4 w0 D% ?1 t+ g! F" L: w

    / [( R9 X/ q; g4 @6 d% q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    前天 08:28
  • 签到天数: 3123 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," c. M5 n( [- o( w/ J' q& [
    我推理机的核心算法应该是二叉树遍历的变种。# P; ?2 ^1 O' a! E( U6 ?
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ z- j" r; K& O# b* bKey Idea of Recursion
    2 q+ a6 ?. G& \* Y
    # Q, z' ~( }+ s* g4 o0 a4 I& m8 sA recursive function solves a problem by:
    2 K) m3 U5 n3 B' W8 ~& }' m7 {
    6 P& o6 E0 v/ W1 S$ q    Breaking the problem into smaller instances of the same problem.
    9 D' p$ J1 s' Q
    4 O" u* B( D2 a7 u; g' o    Solving the smallest instance directly (base case).  j3 M9 K+ R- d* `1 U; P  B
    + z8 _# U% h1 l' P1 ]! d3 k7 ^
        Combining the results of smaller instances to solve the larger problem.- @# z& }) `! s# q

    0 ?( T- n7 _% DComponents of a Recursive Function
    / l; Y! ~2 W4 C% D& ^# R  z2 V! @& i: t- m9 A! P9 C
        Base Case:
    * c$ y2 I5 y  d/ K
    5 g: h" _0 C6 R; w        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.- C' f5 C2 @) ~8 b- B) N2 |  K

    " s! F. D0 d: W  K7 l8 F        It acts as the stopping condition to prevent infinite recursion.3 e& K) o( ]  }! f+ p/ u

    % Y, P# c0 J: h        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : _6 Z* m% E& m) `, ^
    ) f$ W/ e; S% c1 P3 U1 Q' D    Recursive Case:6 }" W  |/ P9 r

    ' `7 n3 C  z" Z: M        This is where the function calls itself with a smaller or simpler version of the problem.7 g2 E. v% P9 P" b/ A; x

    # C" w7 Q5 I& }: o        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 i6 M* [; E* E# r4 r
    9 o3 z- ~7 E1 N6 ^
    Example: Factorial Calculation( n; x- A9 \6 w) S# b8 K
    # z- _/ |5 `$ s+ ~2 a+ |1 g
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:+ u9 N. k; r: w8 n  v" N

    - b# |+ c, ^2 V# t  y+ W! m6 D    Base case: 0! = 1
    % T' M  ^! _4 X- @( y- a' w$ [8 y8 p+ ^1 a: V
        Recursive case: n! = n * (n-1)!
    / d- G, K# z% m. |& x/ F; r7 @8 w" X, T* g5 E
    Here’s how it looks in code (Python):
    " \4 U/ R; o. t8 hpython, {/ ?5 x: e- f$ p
    0 i- W; k  I/ @0 g
    % s6 U- {: R1 R' t! \1 r
    def factorial(n):
    2 K9 z# |% c3 o; O: ?, Q    # Base case
    $ g) b" @5 @5 \7 q3 }7 S    if n == 0:
    & u6 H7 W3 P5 v0 M) \9 L0 D        return 1
    0 w7 e# s- }! u2 q6 m3 [    # Recursive case* V9 X' e* Z/ D+ j
        else:
    * k: \+ R6 A$ H        return n * factorial(n - 1)+ t! Q) B) ^1 s* N; O
    + b  Q, T6 {5 X3 k$ C; e
    # Example usage
    , U5 P4 U" A6 ?. `2 oprint(factorial(5))  # Output: 1205 E' k) h4 @- j- \" [

    3 k. {4 n8 N( I4 T0 J' jHow Recursion Works
    3 i- [& e2 }% t2 R( A
    - Z7 e6 w7 v+ e3 M    The function keeps calling itself with smaller inputs until it reaches the base case.  ?; M# X" I. c4 W+ w
    , x: `# A/ c) }3 |! ?- Q6 O
        Once the base case is reached, the function starts returning values back up the call stack.
    - M& ^6 |; K  b9 T" H
      X  W) W4 U3 t" k    These returned values are combined to produce the final result.0 |0 x& U" J! z
    1 y# S# Q6 V. ^0 S$ D, g
    For factorial(5):
    6 l' z% T4 ~* j& ]7 _  \; x; {4 R; \% T1 X8 x1 d

    ' h) {6 f: ^5 p% m) x0 @) `  mfactorial(5) = 5 * factorial(4)
    5 y4 v" ]  Z9 [- S( |factorial(4) = 4 * factorial(3)
    1 }4 k9 @: Q. j6 ofactorial(3) = 3 * factorial(2)+ F9 @0 ?' i4 X7 i
    factorial(2) = 2 * factorial(1)/ O4 E" ^6 t% U+ m  g% V
    factorial(1) = 1 * factorial(0)) T! U9 Y) s% P5 j' P" S
    factorial(0) = 1  # Base case
    / z8 F7 D; ?5 j+ \" R6 k( D. C8 J# j4 F
    Then, the results are combined:0 j* p  i* F  y% }

    : {3 K, t; m8 w7 w, c7 A; S5 _4 I! Q5 N- ^9 y, @: m; U% i2 z0 U
    factorial(1) = 1 * 1 = 1" c$ s1 v& }' P# k! I4 m& E  R
    factorial(2) = 2 * 1 = 2
    & q; r1 {, l: A6 Zfactorial(3) = 3 * 2 = 6  N. s; d8 Y) S) X6 m$ j# I
    factorial(4) = 4 * 6 = 245 E& z; u& c- b5 n+ {
    factorial(5) = 5 * 24 = 120" E# x/ ~+ m8 N
      M" [5 S& z+ a  Q1 _  t
    Advantages of Recursion
    ! W( `/ o: V& U- }6 v$ V0 k$ v: p/ R, y7 a3 C5 I( g# _( W# M
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 K8 B9 M- U, w8 D
    - \" d6 D  K( E5 ?! F    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 W5 B0 L8 ?5 N, H
    . X. G  D. q/ ?
    Disadvantages of Recursion
    ) E. K9 k/ ?8 m1 H2 M7 R" O- h" }! J- g
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.* m5 M, r0 u/ V( q: U5 d& W

    # H  t8 @7 L5 v& ^0 f- S    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. W6 Y4 q+ [0 }, V- m

    . z) K2 v+ C( B. `When to Use Recursion
    7 R6 ]) j# C$ |' p  x( g  p. H  _" m
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    . J! O, v- y3 ~) G
    ) k. q/ r" a7 v, [$ F8 H2 K    Problems with a clear base case and recursive case.
    ) Q# \; v7 X$ v3 b0 @/ C0 ?
    ; ^* Q0 m6 C- e4 QExample: Fibonacci Sequence0 s' d- e5 b5 C) n7 U7 L, M
    : v1 Z( C4 S; X8 i! K4 b0 i  x3 w
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    # z7 t$ B' p7 c4 i$ A# ]
    0 C6 P, m& t0 J) u    Base case: fib(0) = 0, fib(1) = 16 X9 W# l% R- O. d

    & |' |1 x1 w. f: G/ v    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    % h9 v/ M+ C) K: q2 g5 g1 p, t8 |/ q3 P% o2 v9 v6 J8 E  k
    python
    1 l& b- x+ E. W0 P3 S
    ( J4 V" G8 A8 ]2 m% q! P
    - h! V) @" d$ s, p" C, ]" {4 Edef fibonacci(n):
    5 u- h* b- G3 `( j2 r; c    # Base cases$ ]5 j9 X% S1 K* H5 N5 [
        if n == 0:
    $ f( R) C/ G9 i; r+ T& ]: z        return 0+ `, m, ]; w1 v  O% D
        elif n == 1:
    3 _% j# Y9 ^: n) _        return 16 l2 Y+ Y9 [' s  i
        # Recursive case
    ! e2 I/ f% ]: s    else:9 J9 O+ @5 h0 `" m! b
            return fibonacci(n - 1) + fibonacci(n - 2)1 B. s  e. B9 N) c8 {7 H' ^

    / P3 [! t% o7 T6 E# Example usage. g+ Q! v8 J+ L5 x% H+ M0 f
    print(fibonacci(6))  # Output: 8
    7 l* n' o+ J$ }! h8 J* d1 j: S) b' J9 M
    Tail Recursion" ]* _9 Z" t4 D, w1 |, I7 J1 a

    ( I& o# y3 r4 C+ [( ATail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).  f. F! y' R/ C5 N
    # A9 u# z! s" P
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-22 04:08 , Processed in 0.034592 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表