设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1660|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑   k' ]4 b% o/ V7 u# b/ o
    1 r8 N- [0 Q, c
    解释的不错" d0 R5 S( }& X) K( Q6 R
    + I, e7 n  y* C$ U5 J* g
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    . U, o2 @! p' M, D, t" j6 L1 @) M; @4 e4 V' C# |8 J" z
    关键要素
    ' r0 T- B# q4 t3 Z1. **基线条件(Base Case)**9 X& s  Q+ A' }* J
       - 递归终止的条件,防止无限循环
    9 ~6 y/ R3 `/ `, m" A3 G   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    2 A; O7 @- P8 _8 t9 g% w" Z
    8 k% U( o3 x- h' y8 W$ |$ J2. **递归条件(Recursive Case)**1 E$ T$ a8 g3 m  f) o: S
       - 将原问题分解为更小的子问题
    . g7 N8 ]3 |) _. R9 }6 Z4 {  E# g   - 例如:n! = n × (n-1)!' L" @; Z+ ?4 Z

    ' y2 V' m) S$ Z& i. E: { 经典示例:计算阶乘
    7 I( A& d& J, j5 S, t6 b6 Tpython$ T$ e1 z6 h9 n8 A$ p# T4 m( q) J
    def factorial(n):
    8 D! _; n8 R' L8 x    if n == 0:        # 基线条件
    9 |3 s: X+ O) }4 [# n6 c        return 1
    - h2 u6 ^  r% y: A7 A    else:             # 递归条件# C. o4 O" A2 a
            return n * factorial(n-1)$ r3 s2 I# t7 A% T, S8 t
    执行过程(以计算 3! 为例):
    1 K- d2 `3 x6 O8 I: C8 K9 T% U2 }factorial(3)
    ) }9 [3 {) I$ R, E3 * factorial(2)% v. |. D: P- |$ I
    3 * (2 * factorial(1))
    + |6 `9 G& s9 a3 * (2 * (1 * factorial(0)))9 F/ S8 e* {' c/ x+ [6 W% F
    3 * (2 * (1 * 1)) = 6$ D* o+ z8 b' a
    2 r# Q6 o" |1 s' `7 b
    递归思维要点
    + R1 \# \7 Y, \3 z1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    5 W. w4 p5 d& {% |2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    4 U- Y- T4 B0 ^  Z3. **递推过程**:不断向下分解问题(递)% V1 d" q# `2 ~( B
    4. **回溯过程**:组合子问题结果返回(归)7 _! |4 R9 x" p2 Z" }: e' N4 v0 t

    ; t, W$ W& A4 a" f 注意事项: ^% Z, |) ]4 I
    必须要有终止条件2 b4 E1 H- q4 t* G# q4 C
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- _3 B. S/ b. b' h" @( g, Q9 _1 A
    某些问题用递归更直观(如树遍历),但效率可能不如迭代, _# i( o- S! F* r4 \
    尾递归优化可以提升效率(但Python不支持)
    , X3 N; p0 v- _5 l( z( u# @8 m$ M/ V) R4 g
    递归 vs 迭代
      e" h" l: V# O$ Y' N& ^) i|          | 递归                          | 迭代               |
    5 \8 K+ X; {/ s+ z|----------|-----------------------------|------------------|! N6 V/ \+ _* q9 m0 T" \0 {
    | 实现方式    | 函数自调用                        | 循环结构            |
    / E1 K0 _. @6 R( i% W2 y5 z, Q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |- e7 `4 |* {: G9 ]+ ?( \
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + Y5 m6 c1 |$ Y+ k| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * b# o" Q* E0 H% y+ j5 x: R; ^. @7 w; B. m. J
    经典递归应用场景5 W/ t1 L2 N; p% ~3 ^! j
    1. 文件系统遍历(目录树结构)
    2 q, N6 y! X9 j& ~% U2. 快速排序/归并排序算法4 l0 y9 f- T8 i, {6 O, s- P4 C  h4 R
    3. 汉诺塔问题  D( ]5 j: p- m4 P0 L8 N3 a
    4. 二叉树遍历(前序/中序/后序)/ g/ ~# J9 ]4 h) ?
    5. 生成所有可能的组合(回溯算法)1 B. I! ]! e5 c' C4 ?

    # O1 n4 ^$ U2 R' u+ z7 {1 ?/ _试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    15 小时前
  • 签到天数: 3129 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# |7 M; K* R* Q7 w' ]; G: k
    我推理机的核心算法应该是二叉树遍历的变种。% n5 D% L5 y# V; M! y' X: x$ L
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    $ ^# k7 V! w0 w* B6 [' OKey Idea of Recursion
    8 O9 l5 u# ~+ O% {9 `' q
    - v  ?4 h$ D* |. a9 ]% j( RA recursive function solves a problem by:
    % S. [0 z9 f' |; K! v6 |/ R+ l# K% `8 h1 i
        Breaking the problem into smaller instances of the same problem.2 w3 I) N) d1 K3 Z* H; p) L

    : @* k/ [1 l) C! e5 |+ o    Solving the smallest instance directly (base case).  f* X! p! B+ T; A3 k

    ( l5 X' i4 B( l+ z" y9 @    Combining the results of smaller instances to solve the larger problem.3 K6 ~3 M& @& d6 A) c4 A0 `; b
    & C2 ~# S3 G2 n: W& g: s
    Components of a Recursive Function5 y/ z8 P+ T, ?" ?& L5 i
    0 L  E) x& |  b! g' M: ^
        Base Case:" c8 L+ y. \0 ?1 D/ g$ T# [
    ! L5 B( E6 t1 F6 n" W
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion., ?9 J6 Q! Q- B* H5 v* b

    6 N+ [$ p: v9 z% @* e3 L        It acts as the stopping condition to prevent infinite recursion.4 ^/ X$ d7 m* n+ T( `

    5 h- m3 v3 r( K4 J, @4 V        Example: In calculating the factorial of a number, the base case is factorial(0) = 1." A# u6 i+ f4 n! i& J( t

    # S9 b' U, l& Z' C    Recursive Case:
    0 D1 }& E% d+ N+ _! g: R2 n2 p4 d/ p2 R. S5 S% `' a
            This is where the function calls itself with a smaller or simpler version of the problem.
    $ S; W3 g8 Q( L) L9 f" i: v) ~7 o1 l/ ~: w5 J
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* r4 c& b2 }, w$ P, ~

    2 j2 \1 Y- _. F* G3 O! dExample: Factorial Calculation7 V% t" V$ n6 i( h
    8 b. G9 j! D% ?* x) L1 u4 V& ?9 S; L
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 d8 i, G7 O! {

    9 o5 v' R& ~! S, W3 g2 E    Base case: 0! = 1
    0 Z" D$ ~7 o7 A. B+ c, z8 ~, V
    7 r5 Z4 d7 N/ o' w9 a    Recursive case: n! = n * (n-1)!
      O0 [5 p( e. d- L! e4 I3 B6 M1 Q
    $ [* Q  W! q7 r5 EHere’s how it looks in code (Python):3 ~. V2 w  A* z& ^
    python/ j  J- `2 ]9 D' a

    3 u! H2 r7 l6 d8 ]0 Q7 k" V  X* Z
    " t5 O9 M- ^  q9 C# Vdef factorial(n):- m$ f* c7 D' `5 ^" T& `
        # Base case( y% ~1 J& I' J, D0 j3 g0 _# x. ~
        if n == 0:( h+ p! w: K" V  |
            return 1$ u- w' R9 c; P7 G
        # Recursive case
    7 O* t; w: `, J# U$ X    else:
    * J' {, T* m" y- @7 z# H+ ^6 g        return n * factorial(n - 1), f" A$ ~$ W, i+ ]: {. Q0 I) ~

    . z8 S. M) q2 F& K6 h# Example usage+ f) y! i; v8 v2 f3 i
    print(factorial(5))  # Output: 120
    1 M, }+ V$ J3 T8 F  E  ]7 ~& ?% P. o& `
    How Recursion Works9 n1 e# D  E3 p7 n+ B' k4 l5 j

    ) q4 S3 R- h. v3 C    The function keeps calling itself with smaller inputs until it reaches the base case.( r  N! S9 s8 W4 x3 A

    3 n9 I. e. R  f- b5 J( {6 _    Once the base case is reached, the function starts returning values back up the call stack.
    + w7 n( n+ m; w; e/ C
    1 \, k8 G) x  n& W    These returned values are combined to produce the final result.
    ; j- I. _5 Z: f+ F1 S# _+ w: |0 k4 ^) u9 e4 }
    For factorial(5):+ k; b) g' E& Q+ j! y
    1 ~- M! Z0 c+ _: i
    # m/ i5 N9 D- A0 n1 t2 T4 w* p
    factorial(5) = 5 * factorial(4)
    ! ?* `8 e: k# f& j; y# dfactorial(4) = 4 * factorial(3)
    9 z3 t' t7 d0 nfactorial(3) = 3 * factorial(2)* B. S* W9 T/ ^0 L% A$ F& n
    factorial(2) = 2 * factorial(1)
    1 Z6 N. ^" m; |- k/ jfactorial(1) = 1 * factorial(0)) o6 U, M8 J8 R' f
    factorial(0) = 1  # Base case1 b8 J# E8 O% Z* ?, s  _# A" S
    6 S: ~( E( x- k( b7 e6 f) a# S9 t; d
    Then, the results are combined:
    5 j0 `+ N1 _4 x, L* ?, s) D1 I! J5 b6 d4 h& ^# W5 p
    " \6 U0 t  w0 w9 Z3 K/ k+ ]& {1 h
    factorial(1) = 1 * 1 = 1$ r, R5 j# Y2 f- M. D( h7 M9 D
    factorial(2) = 2 * 1 = 2
    3 M7 K; G# J" mfactorial(3) = 3 * 2 = 6
    : _# s2 L# x0 H9 g+ y& `, Wfactorial(4) = 4 * 6 = 24
    7 _! l2 ^, s% \# ^factorial(5) = 5 * 24 = 120
      x3 P1 j: o% K+ L; M
    3 E, V% a9 B3 _& t( @Advantages of Recursion3 R( a% [4 g# V! U
    - V, K; x5 q4 I' y( a" [4 @
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    1 h$ b. J. f: j1 F
    8 D* l$ K! o4 C9 B    Readability: Recursive code can be more readable and concise compared to iterative solutions.9 n2 M5 n3 M3 t' O4 g' }8 A

    " n1 o5 ~7 S5 [3 Q0 |# a+ QDisadvantages of Recursion8 v# C7 ]  |' N" D+ I, z# a7 ?

    . l  k1 ]+ B0 A' S7 h    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * a! R1 {9 X. C& g+ H
    ; W  D8 a5 U9 u/ }    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).$ S; e& P7 }: j3 e

    4 Y# ?# t8 L% [3 U% Z. H: r& KWhen to Use Recursion+ w5 J: y6 M2 m4 Y0 V8 U9 U' h
    # A, W# B  \8 f, C7 V5 s- b$ W
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 w5 g' Y' W# s/ d4 }  s
    ( W- \5 r! _# q! |" i, e    Problems with a clear base case and recursive case.
    " e6 w( u* P1 m4 g
    / a  y- j0 U$ d2 {+ w- ?7 \+ R2 WExample: Fibonacci Sequence
    8 ]* N* m8 X1 o2 L7 g( D8 o$ {( V5 w
    . w6 A) t! w. {& k: V1 |( q* |The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    6 H8 I* l$ `/ s: ^+ l: E4 _% f1 ?2 D) O+ _. B- x
        Base case: fib(0) = 0, fib(1) = 1
    3 H( l. A8 b. r9 Q9 F4 T& \; b2 N  p
        Recursive case: fib(n) = fib(n-1) + fib(n-2)7 B/ ?' Y+ ^, w: \

    - ?: r) M" [. t& Dpython
    4 d4 Z$ I! n3 }4 _; s- q" ]
    6 ]6 M- K. }! o! W9 L1 M2 ]
    5 S* k: Z7 d8 X" wdef fibonacci(n):! S9 Q! V& |0 L) O1 O
        # Base cases
    " d( ~# r8 u4 b' d" Q7 N9 s    if n == 0:
    4 e9 Y7 ]8 _* c0 @$ F( D. m        return 0+ J- M" I- c  [& O* c/ K' Y% o
        elif n == 1:
    + l0 y  a& f1 k# `; J        return 1
    : t8 c; [5 U6 o4 W0 J    # Recursive case6 h9 [8 B: ?; h9 l" r7 x
        else:9 E% ?  f: U2 p6 o+ O  o
            return fibonacci(n - 1) + fibonacci(n - 2)) n- A; K2 m. _- {

    & W5 k' R( R) X8 B# Example usage! i/ z1 T  r: P/ o
    print(fibonacci(6))  # Output: 8
    3 Y" G# b+ ]) a: _( c6 `
    1 q& a, ~2 n1 }7 J; @5 ZTail Recursion5 m( x2 W# p7 `

    ' D( M5 ~" f7 K; ^9 ~2 ]; CTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 b! ~, d! l% g2 c" U

    1 b2 v" d- W  D5 {9 e3 ^In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-27 22:27 , Processed in 0.039280 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表