设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1583|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) X& \' ?% B3 f" K# v, j' p. ?1 G& |4 Z( w) Q7 l$ |
    解释的不错( n9 Q, n* P" W0 g, f- n9 _% N

    + M* h; D3 X' b4 t6 J& }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* G% k* ?8 o9 f4 N1 F' Q
    3 i9 c$ i8 Q/ e  t$ N, Y# U
    关键要素7 l! f5 ^7 d6 f1 i/ h* ]
    1. **基线条件(Base Case)**, W8 U6 l7 z+ j' `3 f2 b
       - 递归终止的条件,防止无限循环; _$ U/ N: s0 |8 y- z- |
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    : A! p! B1 B# W, z# d& W% w! ]- k* d  G* |( {; L5 y
    2. **递归条件(Recursive Case)**
    + {5 w* z. U& W   - 将原问题分解为更小的子问题  x6 k3 `3 d9 `5 Q% F+ B& b: \9 x
       - 例如:n! = n × (n-1)!
    0 U1 g" J* `& }. z4 ^8 i: S& k' ~0 N  P+ P; B
    经典示例:计算阶乘& Q/ y4 m' d' W: Y
    python
    - W, W/ y4 N$ t+ w9 w$ Idef factorial(n):
    8 V7 X* E6 U9 ]2 c0 c( F  }! ~    if n == 0:        # 基线条件
    . U$ y, u8 P9 e& K" Y  T        return 1/ E& V; f& c! F& o3 O
        else:             # 递归条件. p; {, F- D+ t3 ^6 }/ H
            return n * factorial(n-1)
    # F% U4 X5 D. X2 F7 H7 N* y* n执行过程(以计算 3! 为例):
    ; p; V, g0 m9 P  ^* m/ |) y8 X. ?factorial(3)
    , t5 r  I2 ?3 k# z! j7 B3 * factorial(2)- |4 e8 p$ f! L- z7 g# \
    3 * (2 * factorial(1))5 B, V4 \: v: T' F, r. k
    3 * (2 * (1 * factorial(0)))
    1 ?# E& v) |" b# g. r8 @3 * (2 * (1 * 1)) = 6
    - U( j& P$ n+ g+ b) ?7 ], w
    - Y* s4 j. l3 }* I/ k 递归思维要点
    / Q0 p: N2 N  R3 ]4 F: b" Y1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    2 a& r4 f6 h- z& E% B; _) s2. **栈结构**:每次调用都会创建新的栈帧(内存空间)8 I: u& b" r' k) R* x
    3. **递推过程**:不断向下分解问题(递)( d  m/ s& c7 ^+ k0 ~1 G# l/ m( T
    4. **回溯过程**:组合子问题结果返回(归)
    ; n) a! O7 b. p/ T: I* b& _4 f. ?3 N) r8 A$ R" P) s+ E2 @5 S
    注意事项( u/ U& w4 ?5 ~1 _. p
    必须要有终止条件3 h3 @+ E8 _1 U5 a5 Z# z" N  x5 z
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 y  L0 _* S& K9 c) N
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    , {  K  e, o8 }8 O尾递归优化可以提升效率(但Python不支持)% d% H7 B( a5 V/ R& b  k0 e
    - q9 y, e' F4 z$ u, K+ d
    递归 vs 迭代! B6 }" i3 N( W( Y& p# v" `. k
    |          | 递归                          | 迭代               |
    + {$ M/ l/ h* c" d4 w% ^|----------|-----------------------------|------------------|3 K, a5 ?4 f& W1 Y; o0 O7 C9 [& {" N
    | 实现方式    | 函数自调用                        | 循环结构            |- ]* E* ~- {  q# P2 m- z
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    : N, j" Q8 D0 d7 |$ p6 a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( P$ b5 x  y$ T/ c' S: X| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    : c7 a5 o6 Z( ^% F5 k5 k3 _0 i: j+ F& \
    ) A8 d7 x# d# V 经典递归应用场景
    0 _0 q! l. ?$ ^& u4 I1. 文件系统遍历(目录树结构)+ e+ Y: Q1 i7 Y) z+ J6 ]+ e
    2. 快速排序/归并排序算法; F0 o' M' Y/ s1 Q1 I( o
    3. 汉诺塔问题
    7 F4 s6 u3 M% q2 H5 `% j- Z$ U4. 二叉树遍历(前序/中序/后序), ^- E" }% H- u9 U
    5. 生成所有可能的组合(回溯算法)  P8 x) w; o1 r
    ( I1 U/ f: y: B5 J. I8 O7 d
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    14 小时前
  • 签到天数: 3123 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,* N2 `" u1 N' J5 G) M
    我推理机的核心算法应该是二叉树遍历的变种。+ Y/ o" G' C1 G. a
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    + r7 }6 x8 H. J! X0 m' `Key Idea of Recursion
    2 J' f* j, U# F( f& B
    " J7 w5 n- F4 U+ |A recursive function solves a problem by:+ O' g) h/ z* x4 Q- M) [: g1 D* R

    * b+ \5 e) x  I' W    Breaking the problem into smaller instances of the same problem.9 P; d; G( _! h& A" g) d

    1 l( I# Z; y( X5 @. t) q' Y  j    Solving the smallest instance directly (base case).
    * Q4 G8 P' z: v* C/ o( N* V9 q
    5 Q, j6 A) Q( {; L+ n0 z    Combining the results of smaller instances to solve the larger problem.
    ; P" O' H4 R  S  Y/ W
    8 ~$ a% N4 i% {# k( u/ E$ y9 KComponents of a Recursive Function6 }7 y6 t8 N2 _' u: N: ]

    - E# u$ B, E2 ]6 J7 b$ e    Base Case:
    8 z( u) E' U2 q
    4 Q, B* f0 y4 d4 l        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & Y# W- J- e  E* o: T2 t; a$ s) \% M9 N% A# z6 V5 d5 c5 {
            It acts as the stopping condition to prevent infinite recursion.. Z. U9 f- ~3 Q# H. M
    8 H1 r1 M6 e) o
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / |# X5 M+ F, a( [! Q; g
    9 e. X9 i$ Q" x& U2 c/ X    Recursive Case:. D" i& y! c3 f1 K$ e! S0 H
    8 _& i0 k4 h9 L8 E; o  v- `
            This is where the function calls itself with a smaller or simpler version of the problem.
    1 m' B9 A+ Z& \0 k
    0 d4 ^% M. M7 Y6 N4 m$ o" K        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    2 z7 g. U/ N. J5 T! D" m: r$ N3 n' o
    Example: Factorial Calculation7 i4 q4 S9 ~( }

    . h6 R" _! I, E$ LThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 i0 N, H! X+ w) @! g

    ( d! o; t+ d" k& [# H6 O" n; K    Base case: 0! = 1
    " ]8 k$ ~. q$ v8 t
    . c7 B8 S% Z6 F    Recursive case: n! = n * (n-1)!
    , N& m  ~2 a: \; k2 Z
    , a9 u6 d' ]7 i' m) IHere’s how it looks in code (Python):
    . W! n+ g5 M; J% }python4 T8 a5 o+ w. y8 s6 Q/ @

    # I. k5 j" d$ |3 N% C
    . n, H, u+ E9 @9 M! k- d( F4 vdef factorial(n):
    ! R# [% i9 S( U" E  b' o    # Base case
    5 [/ P8 s8 U. o; I    if n == 0:; @) _' ^2 `$ `' ^
            return 1, q6 ~' v. b' F1 K
        # Recursive case& h9 [" j# Z9 g2 Y& b" f
        else:
    . n) `" i) D/ a8 j7 g        return n * factorial(n - 1)
    / S7 }" i  A) Q& J0 C6 T6 v( u9 |+ G* w; @' p' g/ _* P2 b* A
    # Example usage2 V5 K& Q! O* Y4 R
    print(factorial(5))  # Output: 1202 k; Z- V7 w! \# ^+ `& Q7 m* a- [
    8 u7 {* L: `$ N0 Y
    How Recursion Works1 A# V6 }2 g. P+ U3 ~

    " P6 P5 K1 o9 H8 B    The function keeps calling itself with smaller inputs until it reaches the base case.
    $ k+ I. v# l: \! N5 e7 m. z' @  {$ B4 [/ B2 y/ P8 F
        Once the base case is reached, the function starts returning values back up the call stack.
    5 |, V. \8 O: X7 j: U( J
    5 m" ^" g/ b! Y) \3 d/ W; r/ k9 I    These returned values are combined to produce the final result.4 j+ c) X6 f) T' _. U

    , e7 R2 H4 a, m0 U1 l% QFor factorial(5):6 g" p7 u8 A0 T+ @1 G) c* p2 h

    * _5 s) S: n* |. g! F& ~: L0 i# O* Q
    factorial(5) = 5 * factorial(4)
    ! C9 N! d% F5 V. Mfactorial(4) = 4 * factorial(3)& y' a4 s5 E1 H- ]
    factorial(3) = 3 * factorial(2)
    $ c" m+ r9 Z1 I3 @# jfactorial(2) = 2 * factorial(1)
    % M  t( U2 B+ M  S' O- Y+ Jfactorial(1) = 1 * factorial(0)
    5 [) u0 e$ l, U0 M3 K( ]factorial(0) = 1  # Base case
    ; y# C9 n/ e* J1 V) a# o2 I
    ' F. T& `* S; F! K) zThen, the results are combined:
    ; @. E7 [4 Z& p4 t& Y; j) \; y1 p7 h( Q. C- g' T  Q7 {) }& Z# @' q; F

    8 Z! p3 \) Q4 q6 B  {factorial(1) = 1 * 1 = 1) r" ^4 }* j9 _6 a( A
    factorial(2) = 2 * 1 = 2( b( O6 E5 w0 p( m) u
    factorial(3) = 3 * 2 = 6
    : [  `4 h. p/ zfactorial(4) = 4 * 6 = 245 v1 @+ P; w, h2 s6 \
    factorial(5) = 5 * 24 = 120, }1 t* M* Z6 A: `+ `' w0 ^. _
    1 K; N; w* r0 a" p. A3 p( q
    Advantages of Recursion" r9 H) \2 x- w- {% F

    ' f2 m  j2 r6 ~4 d7 H8 H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    $ G$ b* C9 e: X& ^; x* d( h8 u6 c$ Y% e$ @# n8 h
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ! U5 n, H% {# x/ u' z/ r& O, H* o2 g7 n. u
    Disadvantages of Recursion- _) f, x1 y4 X& S

    . U, A! H  k) R5 T    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 i  o* X( r2 q7 m! c. {9 W/ h  i1 j* u
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    0 [1 }$ i/ b: x# G$ h/ V/ |4 Q0 y" `( G! i
    When to Use Recursion& `/ u& ?5 H* |5 M0 H% ^
      n, @; L" G, R9 L/ x
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    / S$ C. a+ k$ G, @, ~
    5 P6 Q: O' |1 b% |    Problems with a clear base case and recursive case.+ Q& O) \* T: ~  C' x* [
    ) M# y! Y1 O4 }7 y/ Y
    Example: Fibonacci Sequence
    8 D, a; `9 H* g7 s) D/ `7 l- }% I
    ) u' l7 Q  U' e" ^7 \4 S% D0 PThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    * b" k* g  X, @6 t5 A0 W3 T" Z! l; a! x/ o+ Z" {" P/ I# U2 w+ ~
        Base case: fib(0) = 0, fib(1) = 13 e' [4 L% U: Y% j( ^

      J( v# s$ x4 ?: m" M! o' i: f    Recursive case: fib(n) = fib(n-1) + fib(n-2)" t! x- J, m9 G) C( e. h
    # _0 R7 [* M& d8 k
    python7 f" @7 ?" V5 Q& _/ y8 D" s
      L( P9 x3 s( L% s* ]0 x: [
    . y' D. X# }8 W8 n
    def fibonacci(n):
    1 x, {/ L6 X. d, l7 V# s3 _    # Base cases
    ( u4 D& r# ^/ f& t, }8 H    if n == 0:0 f; i& g; k) ]5 C, j" t7 P  f
            return 0
    . e) Y0 s+ m5 J4 |$ L) O8 G    elif n == 1:3 z  S( Y, P2 A6 ]: g9 b0 c
            return 1
    + ^& D, f  U3 V# ]3 [! q    # Recursive case
    ) F- Y$ \- x, N  z  y    else:
    ' f9 r3 }- w" P# O' e! ]! @        return fibonacci(n - 1) + fibonacci(n - 2)
    7 s) e1 T: J- J( _, _1 p: |5 }9 Z' N" F4 B8 B
    # Example usage
    ' l: u1 a# Y2 L- |, Rprint(fibonacci(6))  # Output: 8
    " ]; a# @3 N2 l# G" |' y, e
    # `8 W) _0 _  D, i0 S7 b. c* FTail Recursion
      q# a  l. C) N0 V. ~2 `- W/ N$ T2 \0 Z* z. A5 q
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).$ u2 P8 g/ r2 t) n
    # f9 P4 H( F7 d$ _- b2 |5 m
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-20 23:27 , Processed in 0.030638 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表