设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1019|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 u- x4 J3 |( z  ~
    & s% @! l* o# ~' @解释的不错" k9 [& _0 U0 y3 N1 M+ o

    4 \2 {8 |* T% W5 D9 x递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! y* @% m+ ~+ p' ?1 Q. {
    : ^6 O$ X' Q: b' w3 k* {
    关键要素- \* i1 m4 ]4 X1 k
    1. **基线条件(Base Case)**4 L8 B1 q: n+ L
       - 递归终止的条件,防止无限循环2 R* E3 d# l4 T1 Q' c4 |9 w& e
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. H6 e3 w) }1 V
    7 L% K2 [( c& [6 ]" W
    2. **递归条件(Recursive Case)**5 I! k9 \% e9 Y1 V$ l  t
       - 将原问题分解为更小的子问题
    ' v5 q6 b4 }0 p+ q6 I   - 例如:n! = n × (n-1)!
    9 ~- P( }" E9 |  t9 p- d. ]5 h
    经典示例:计算阶乘+ J( ]+ W0 n" p; }
    python6 h; b; @3 v3 v' j
    def factorial(n):8 p8 ~3 W3 Y6 `  Z. [
        if n == 0:        # 基线条件
    ' t1 _& \' M+ `0 D        return 14 v) ^/ F6 C6 j$ n/ F
        else:             # 递归条件8 h, T4 C/ r- j0 c2 A/ A
            return n * factorial(n-1), q% P' N; R- @3 z0 \% w  ?4 X- R
    执行过程(以计算 3! 为例):; J! X! L1 y/ B1 p+ J- w; j6 u
    factorial(3): x8 J# o$ y8 y9 U' g% n
    3 * factorial(2)
    1 X8 a2 W+ @3 V/ G6 j/ @/ J3 * (2 * factorial(1))2 q/ O: A5 ^3 n
    3 * (2 * (1 * factorial(0))), c! g7 L8 G9 B* o+ f
    3 * (2 * (1 * 1)) = 6/ d" u  Z  V% [. L; B0 L& {. ]
    ( Q- W, Y; `0 i: {2 `% |" e+ I0 n$ P
    递归思维要点( {0 Z. q: ?7 s8 I: Q9 `0 e/ L0 c
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑* I# ^; j( a# D: Y6 L. t
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' U( m0 S0 p5 H3 A" B1 ~& B/ e& }3. **递推过程**:不断向下分解问题(递)8 b0 c; x8 z3 x- P9 c
    4. **回溯过程**:组合子问题结果返回(归)5 f, ~) Q: y2 Z1 D  }) o( D

    / k% h3 W8 ]9 ^# E 注意事项
    * [2 S& H  Z4 L( _/ P必须要有终止条件
    6 H+ j. X- q0 C( }' _' D1 F4 |) {递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    7 H9 \% ?  A5 t( q! X某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; b7 W( _/ b6 q0 g8 b尾递归优化可以提升效率(但Python不支持); o+ {3 z$ Y% x/ e: y' `( ^9 l
    ' C0 m5 _: l- S0 K
    递归 vs 迭代
    . i- ^2 F# M  k3 l- d|          | 递归                          | 迭代               |& o' W/ ~; D" L4 J4 i0 H
    |----------|-----------------------------|------------------|3 h# k. H6 ^+ K) ~+ [
    | 实现方式    | 函数自调用                        | 循环结构            |5 L! H" `. R3 T5 H8 H0 W1 s
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 n+ A" M6 w3 w: m0 Z4 E| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |  d% g' l7 a4 I
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    * ^( Q: `, C; g% j* W* v' T3 {9 S5 r
    经典递归应用场景% G2 N8 k! j# g1 }% ]: r; m
    1. 文件系统遍历(目录树结构)
    ) w9 n3 c. Y5 ?. i2. 快速排序/归并排序算法; \# F4 s8 ]/ ^* S" s0 {( ^
    3. 汉诺塔问题- v4 u2 b! S+ p9 ~6 P8 B% \
    4. 二叉树遍历(前序/中序/后序)5 E% m( w" r. |* t. p
    5. 生成所有可能的组合(回溯算法)2 |& M, m7 H! S
    & J+ N* |. |5 E: U+ o) h4 h/ E
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:33
  • 签到天数: 3071 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    / _7 r+ I& f: v/ x/ W我推理机的核心算法应该是二叉树遍历的变种。
    + E' s2 |) u8 _9 j: Q1 r! J另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - @0 |+ i0 `1 g0 JKey Idea of Recursion
    9 h. e* R7 L% Q9 N4 w. r* S3 W3 a. R1 P: q; M, M3 a5 U
    A recursive function solves a problem by:
      a2 Z1 E- I! i7 n4 {, ]  Q
    2 {& N2 k6 m  y8 a# O4 ~8 X7 l    Breaking the problem into smaller instances of the same problem.
    0 V, ^5 ]% i! o/ m; `1 k
    6 ]' l- S! n" T# Y2 L, _7 L    Solving the smallest instance directly (base case).
    - [. J% q1 c( |/ D
    3 ^) v7 ?5 H/ f7 c" k    Combining the results of smaller instances to solve the larger problem.2 b) {, d# {5 j+ @

    # W9 ]- K( n& d) ^3 t' gComponents of a Recursive Function
    - S' E) c3 u# ]7 E5 d
    ) d( L6 G3 v: P* v# O    Base Case:
    * @& _8 Z2 P9 N: I4 a  n, R$ W# \; _6 n/ i! n
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.0 f8 t  F( n7 }6 x; C# W4 t
    / {. ~/ s' g4 o7 \- L& {
            It acts as the stopping condition to prevent infinite recursion.' P( u% e: P. K+ J$ b$ G
    + ?" @- R" X9 _2 p: b* d! n0 N2 z
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1./ L/ z1 ]. }) K) q; \
    ( C( m& s' j3 e3 N% _
        Recursive Case:, Q8 c; \1 s- N' r% Y
    $ A7 n) I6 r7 B0 r' e6 x0 D6 q" R
            This is where the function calls itself with a smaller or simpler version of the problem.0 C0 Z- P+ d. V
    ' h( K$ m7 T5 O& V& M
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : A5 }, }8 `: H3 C6 i! E) @. Q0 ~, U& l' M! R4 l/ x
    Example: Factorial Calculation
    2 X  t' [; q) F* p9 o0 k) o7 M. h9 J
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    4 ^' F0 ^4 G2 C* c- N& M% M
    5 x* P# E$ q1 m8 w* B4 S    Base case: 0! = 19 O9 b6 j0 _7 u1 m1 r. a) B
    . ]% t- O1 C5 T8 {/ R1 r" Z
        Recursive case: n! = n * (n-1)!, R9 e8 [7 T) ^9 p1 P, f8 \7 h
    / i" V, i3 v5 W! u
    Here’s how it looks in code (Python):2 s- i0 I! @# F0 d- M% x7 q
    python
    + b6 q; K9 V9 n/ T. W8 J3 ^+ Y# E; `

    4 Y  Q: I  U; r! E( ~0 {8 [def factorial(n):" T# q& }6 g: O1 O
        # Base case3 s) M2 Q8 \9 X. ~
        if n == 0:
    . G# P  q+ N& [' ]: O+ J3 |+ Y        return 1
    # D2 T* P! `% i& `# i' _' A    # Recursive case
    5 g" T0 u& S6 m  [2 \    else:
    5 H# _, k2 h! |/ p' g! @/ I        return n * factorial(n - 1): D. q! |: D$ \0 W; J/ J2 f
    ( v4 g0 D* k0 }$ N( g( u$ F
    # Example usage: ~* m: r/ ~! w0 t( W! w
    print(factorial(5))  # Output: 120* ~( `0 |. q' H1 [) y/ w

    6 \( m/ ^6 t3 F$ \) ^- c/ g4 q5 MHow Recursion Works
    7 }% P1 I* u. o* c0 g& }4 e0 C
        The function keeps calling itself with smaller inputs until it reaches the base case., x0 I" A$ X8 {
    ( m! z+ Y# W- |& P9 X9 {
        Once the base case is reached, the function starts returning values back up the call stack., [+ E6 T9 m, b- H7 [

    $ S. y( F: T+ v3 \  N! u. Z    These returned values are combined to produce the final result.
    . j7 B2 O, u  A) @, t5 Y
    5 r- K* J! N0 i& K  R0 m+ zFor factorial(5):
    5 N% Q% k) F  h$ q! W& t& u( ^( v, z* R% `

    . {# |- r( |5 t$ C0 O7 h( sfactorial(5) = 5 * factorial(4)2 ^, C& a, G; Z) q* t3 [" l3 i% k5 e
    factorial(4) = 4 * factorial(3). K) {3 A7 o: N0 D
    factorial(3) = 3 * factorial(2)5 ]' Q& i( ?+ I% y
    factorial(2) = 2 * factorial(1)4 p9 h/ N+ Q7 h; w
    factorial(1) = 1 * factorial(0)2 Q  A' J4 p/ A
    factorial(0) = 1  # Base case
    - X" |1 w& c' z5 d- \( I4 c! O) M5 t: t/ L3 @. D
    Then, the results are combined:% g" W( y( Y9 R1 ]& Q
    3 ]# B# F+ N& f3 M. h) R

    ; b' `: s1 m& o, {& wfactorial(1) = 1 * 1 = 1
    0 R. }  q7 V2 A3 e# L+ Sfactorial(2) = 2 * 1 = 2
    . n3 b& g* p" X2 hfactorial(3) = 3 * 2 = 6
    : u2 z# ^: K+ g- y- U! Bfactorial(4) = 4 * 6 = 24# @1 M  ^- l' h' ^+ v' s& W
    factorial(5) = 5 * 24 = 120; C  u# T( v2 s$ e( J% f
    ! @; b- {3 f' C  c/ S1 d: |; h4 t
    Advantages of Recursion
    ! `1 c* v9 m7 r, E5 a9 h" b1 y$ U8 M; v2 |7 _, e9 M; O% R
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).' _' ?8 W# _% @* S. G' F8 i

    5 ^% H" R  q5 N9 f% ]    Readability: Recursive code can be more readable and concise compared to iterative solutions.6 {; P3 C. ]- U3 w+ \

    7 s: P2 Y) k$ }' bDisadvantages of Recursion
    4 C: J7 A0 w9 E; W4 n
    . X& J/ h7 t5 W2 p8 `% u    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " w+ V6 m6 |% M3 z
    : f- c0 V: M5 g9 V, m' o    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 Z  _6 O, h1 _* X) H+ m! Y
    1 I0 y% d& k- w: O6 q
    When to Use Recursion
    ; z0 W" m. y1 j3 j, t6 ]
    : M5 q5 [/ ]$ `    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ b) e& @! [  ^: g# t7 `
    7 c: w# M9 P& J0 ]9 L
        Problems with a clear base case and recursive case.3 e; @: d* o; g0 K' p% \, e

    % R/ J. G4 w8 q% z4 H+ d1 Y* zExample: Fibonacci Sequence
    7 k: D, n1 i, \0 V/ u& d; {
    / T# j. Q# h/ v$ [/ L" j9 F: HThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    / n! h' d; P0 E; e' i6 F, n+ o) _
        Base case: fib(0) = 0, fib(1) = 1
    3 w- z+ A) A& A6 Q4 p8 t' B" C& O% T% k2 A) s; y7 S
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    + E2 H' r' ]0 m$ q1 l, R5 g% L& N& ?2 ^# g; a9 [
    python
      ~" r. h- o9 C5 a8 B) a! T# ~- R

    / R' P, `- Q, A. n- v( cdef fibonacci(n):
    $ C: \- j! I3 E$ E  y; Y9 |( k( J    # Base cases! ~  a  s7 r* G$ q
        if n == 0:0 R3 B, |& ?4 V. }
            return 0' J( B2 i. v# X6 _1 g' [" P9 R
        elif n == 1:' A/ a6 L5 B! J  r  p
            return 1
    & n2 I: g4 R- X    # Recursive case; v6 V8 X: b2 @4 t9 Y
        else:
    : g! b$ E8 }. ]9 V1 z/ Q1 }7 X        return fibonacci(n - 1) + fibonacci(n - 2)% u& I0 \4 I+ _9 R0 v6 |$ K
    - }1 g: z, Q/ w5 S
    # Example usage
    * @+ V* d# U1 V* A$ E- y1 Xprint(fibonacci(6))  # Output: 8: ^7 |, k4 K/ C" J  C

    6 h+ @: p1 O1 [1 c: E2 C& S! VTail Recursion
    ( K3 O% K) E9 Y- u2 J8 l
    ' q2 y# z; q9 Z, b. ATail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 ?. L3 x5 H. L5 e2 |( C8 O4 `+ E9 Y# i/ u. x2 a4 f4 C
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-10-21 02:13 , Processed in 0.032763 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表