设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1483|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 . {. g4 [! q; w+ ~( A
    $ `  R$ `% y( m
    解释的不错
    ; p* B- {" w7 J5 N" |8 E! S  Z% o' D5 u. G- J3 B
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) F; J8 y, _, H0 t9 w
    6 U, A! }# ]- h0 e
    关键要素
    + U! L3 v9 r2 \1 D7 \  Y& F1. **基线条件(Base Case)**
    / c$ U0 f/ e8 G1 x, }/ T   - 递归终止的条件,防止无限循环' ?, |* x: I4 i  V- n6 X& i
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    6 l" q8 p$ d5 T1 ~/ y1 ?
    - P4 X4 ?( }* b, f2. **递归条件(Recursive Case)**- y6 y! G( C9 S
       - 将原问题分解为更小的子问题; A' D/ r& y. j# j- U  x
       - 例如:n! = n × (n-1)!8 w" n" A8 W- Z4 c9 w

    ' W8 _/ k, F* ], F3 q' g* G 经典示例:计算阶乘* D1 W# a! ]9 ]6 I
    python8 z! v2 t9 }# Z: E( A
    def factorial(n):; R  u! A7 i. d$ v
        if n == 0:        # 基线条件* {% F, }: t" Y0 r) A
            return 1
    " K# q4 `+ o/ [6 H) {    else:             # 递归条件
    ) w8 P4 x' Z/ l, W2 m9 t        return n * factorial(n-1)
    ' l7 r0 z+ E0 A) c* {1 g' R1 x执行过程(以计算 3! 为例):9 Y/ P* W% Y; g
    factorial(3)5 W$ V. A: q( s2 `) h
    3 * factorial(2)* a  e9 W' {; v4 \: Q
    3 * (2 * factorial(1))% j- [" @, Z  H$ J: [! q4 f) @. i
    3 * (2 * (1 * factorial(0))), i' D: C/ o& {: q5 N. }
    3 * (2 * (1 * 1)) = 6( Z" W1 w% [" H& W
    3 r, g1 z( b8 Y5 ~/ f
    递归思维要点
      d2 F7 |5 R/ O- y7 T) T1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 G* \+ k0 [# v6 q; s  ~
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' t" E  O7 z: |/ O' C2 w6 K3. **递推过程**:不断向下分解问题(递)
    9 ]% ^- `, B- i- U4. **回溯过程**:组合子问题结果返回(归)- T2 Z; }6 E4 ^4 ~# y. F4 K7 m

    ! [# c5 ]) t( n. b" D1 Y# y! ?4 i 注意事项
    8 t( m- M' z. j0 ]; e8 _8 P# O必须要有终止条件, ~( ^$ f- `, ?; ~+ i
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& Z$ D+ y4 P+ o; R0 B* o& Q5 U/ y% r
    某些问题用递归更直观(如树遍历),但效率可能不如迭代0 R. X; J# S+ C6 N
    尾递归优化可以提升效率(但Python不支持)
    ( a& F$ l  p) I1 P) S) Z2 }* q% j$ c3 D, H4 ?- e
    递归 vs 迭代
    . l, \9 D+ s2 B" ~/ ?/ Y! f) e$ R|          | 递归                          | 迭代               |5 _) T  h- h% L5 t
    |----------|-----------------------------|------------------|- J) \4 `8 S( D9 j2 ?. M* L
    | 实现方式    | 函数自调用                        | 循环结构            |
    ( I' H' z3 d! \| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    5 S+ x* \! s7 u8 B9 M( S5 r| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& U3 S4 |3 d! ?: M, X5 T
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 l7 `2 x5 L6 f5 i( ~" z7 |
    # W2 R4 ^0 t& E 经典递归应用场景8 M0 k. r  O2 {1 S& @
    1. 文件系统遍历(目录树结构)3 }$ i, {$ |* d$ K* z
    2. 快速排序/归并排序算法
    3 f( K* K! S  b; l' p, R/ q3. 汉诺塔问题' w4 i) V1 G2 E$ l6 f0 I( T
    4. 二叉树遍历(前序/中序/后序)
    . R" I* o' V6 ^! l! [5. 生成所有可能的组合(回溯算法)4 ?( \6 N1 V2 ^& A& E/ x
    , k- }9 M0 U, b7 ?5 Z. Q; y- s$ D
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 01:20
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    % x% I' p) \" G( b# C, X. y我推理机的核心算法应该是二叉树遍历的变种。
    . f# P/ X9 v) V7 U7 f另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:- w0 {& b1 ~  e3 W: G0 p9 k
    Key Idea of Recursion8 F5 P. i* ?, g0 W# \  N

    # Q" w$ A3 c7 s, p8 z2 UA recursive function solves a problem by:) T( I# T* r! M/ C0 ]. F2 i6 j- R

    / J8 y/ j  `& q3 P5 f% s  W7 Z    Breaking the problem into smaller instances of the same problem.
    - ]( R) u' C6 m
    , `4 S7 y  s# B, U# i+ Q    Solving the smallest instance directly (base case).# K% |. }: n$ _$ P2 _8 X

    7 w2 b2 `/ h6 d$ g& y+ J# _    Combining the results of smaller instances to solve the larger problem.
    + ]0 G$ i( J! Q1 O! D5 H$ D( |+ S) s5 l/ C) F+ G+ R7 o
    Components of a Recursive Function7 }* H2 I1 u5 H: r, s( z2 e
    # B7 z; G! W. C
        Base Case:
    0 {4 Q4 h! V/ l
    $ @5 K1 Z4 G7 {  c+ b        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    / W* T2 U5 M" R. S' [, e, N( G! f( y5 m: g+ T
            It acts as the stopping condition to prevent infinite recursion.
    - {7 E+ E4 X  ~6 D" P
    " ^) p& i6 e" N; @; r2 _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / y6 x; t9 p; m) K$ L/ p1 m: e' l( V, B
        Recursive Case:
    # A' h8 A3 I, [% o' |1 V
    ! U' w# S  @, d0 R# S  |$ N9 M5 L        This is where the function calls itself with a smaller or simpler version of the problem.2 p5 A' {$ G9 }; |

    % r0 O1 N- m& R        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).1 Z: V% W; o" n/ X" R9 }

    6 C2 ?7 Q( u$ ]9 b! D4 xExample: Factorial Calculation  v. T$ _6 b. w' z

    # B% q% a9 K9 s# g* BThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    - v5 v$ C$ B9 e# O# ~+ w4 ]7 i4 }  R0 H
        Base case: 0! = 15 A0 F' C* ^& J3 [
    % S% g8 }% s4 m  M
        Recursive case: n! = n * (n-1)!
    " }1 p/ |2 e5 y- M% Q3 X/ A( m
    - I& d% x" n' k6 D; E' FHere’s how it looks in code (Python):
    $ m' ^7 z' `! x7 Q# \; rpython
    ! Y  u) \5 `6 C. }1 l$ @5 ?" y' b; c& Z7 n* Z& ~  J* H

    $ U* g# u% K3 ]; d5 W7 o  Ldef factorial(n):0 w( D3 |5 S8 S9 {7 c
        # Base case
    2 {) {0 H" e2 m    if n == 0:& ?9 z. b" l& H% j: n% p
            return 1
    7 d- S7 @/ H7 y, Y, x- J    # Recursive case9 a  O0 n! r5 q3 D& ^8 ~: |
        else:
    + s) e* X& @( R4 w7 U$ R, a! m3 a        return n * factorial(n - 1)
    ' }6 I8 T% K: I# O9 [
    - V+ }( t8 q- B1 U  m+ S. a# Example usage2 p8 Y; y4 z  ]2 R- [
    print(factorial(5))  # Output: 1209 A( r6 x; g/ Y

    % O+ |3 p# u( w9 y: Z6 ZHow Recursion Works9 ?: N" U! F6 F* ?
    ) d3 s5 Q1 @+ n8 ]3 A  _
        The function keeps calling itself with smaller inputs until it reaches the base case.3 Y+ G* G* W5 _9 [0 q

    ) q; O3 w& d( ~" D    Once the base case is reached, the function starts returning values back up the call stack.
    * e; _$ N/ M9 G$ m2 S; V
    ' _6 Q6 j' |+ y4 v* w    These returned values are combined to produce the final result.( x/ K& V9 }* ?* A
    , i0 K8 `. t5 ^+ O6 e
    For factorial(5):0 d5 @. P& E) f. o! @

    2 M, ~' ?  {6 a8 i
      ~7 m8 A6 a6 p8 ?2 r# H( m. yfactorial(5) = 5 * factorial(4)
    0 {& B: y6 a# G; n- l( C2 Efactorial(4) = 4 * factorial(3)
    1 A! k' N. Y+ Q  J3 zfactorial(3) = 3 * factorial(2)& n% x- t1 N& }4 v
    factorial(2) = 2 * factorial(1)
    5 g& ]1 o1 o( l) G1 S+ ?' vfactorial(1) = 1 * factorial(0)( v3 n" s9 v' c
    factorial(0) = 1  # Base case, ?) g- t) C3 \5 M# Q/ s" {

    5 s9 [( N) {9 J! r9 mThen, the results are combined:
    ; [3 ?. x: D# N5 m
    , v) x+ I( O  @- G6 s
    % a% m# Q6 ~. l' m8 b+ Y9 |8 Jfactorial(1) = 1 * 1 = 1
    4 s. g" r6 B+ w0 ?# t5 Gfactorial(2) = 2 * 1 = 21 ^4 s4 s6 W1 j5 o, P+ c% C1 U' z
    factorial(3) = 3 * 2 = 6
    % R# a6 H! s' [& y3 pfactorial(4) = 4 * 6 = 24
    0 K& x' }# F: [0 t4 e6 Hfactorial(5) = 5 * 24 = 120
    9 T/ f* i8 x$ w! G9 l# t3 w. h7 W1 G& ?, K
    Advantages of Recursion
    9 l& @% Z8 s, i% V0 K/ \
    ; g( G7 M6 o6 L2 A    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    , B3 n. p$ }7 ]  H: a
    : ?* X" o' f/ `$ R/ I$ }3 E7 `    Readability: Recursive code can be more readable and concise compared to iterative solutions.. s- k# X) F( I$ D+ r/ F

    ! \1 B  j$ I" y6 g# S( SDisadvantages of Recursion
    ) Q& h6 P2 K1 ~" j$ o% n- G: _3 K- O' b# R* o# _
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ; ^5 m; d7 }/ ~2 z+ e# u5 T1 m* z3 s; ?% O1 i- C
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! A* d5 \4 i! J, Z
    7 ~: L' r& [, t* U. h0 w2 UWhen to Use Recursion
    4 \6 H$ n, e7 K- C; R# }1 i1 z  G$ e7 \: q8 v
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 {2 I1 c' K: _$ B1 T& |8 _; h8 q  S4 I' M
        Problems with a clear base case and recursive case.. o/ n2 w2 G+ @3 Y6 `  X

    2 d! P$ Y; T% E" z: q) [Example: Fibonacci Sequence
    ! s- j+ c6 [2 i( a3 G! h: \$ ]4 s7 g# a, v9 Y: G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:5 Z1 }& ]! H- H8 S3 V& i" e6 C
    ) g6 e+ p: V. r0 W0 b8 b
        Base case: fib(0) = 0, fib(1) = 1( r* F, W1 I3 C2 h, {

    & }- ^& q% o* P! S    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    8 u9 T0 }# C& W5 |, y  f- ~4 e3 j1 w% w
    python7 p  o9 a  [7 h+ v, U2 g
    5 a3 G( J2 X9 a5 \# r) ~
    " I/ d; ]/ q' `
    def fibonacci(n):
    4 E4 G0 C3 o3 L0 _7 A+ r7 L    # Base cases
    & i: p2 l+ L# e6 i: p3 h    if n == 0:$ f& j8 a+ q2 s6 d( d* o
            return 0
    5 e4 a4 s' O" k! f( B- i1 |! W    elif n == 1:
    0 L9 g. S1 c0 n7 L. i        return 1+ d' l5 d8 x* x7 B7 C! R4 p
        # Recursive case
    2 c. X& e3 s: g* c. N6 l6 d    else:
    1 ^: E6 U# ]$ Y* @        return fibonacci(n - 1) + fibonacci(n - 2)( E2 F$ B# [7 c% g- `' S
    ) t; Y3 N0 T$ C' Q
    # Example usage+ k6 L1 r; ]" X' V. l- V
    print(fibonacci(6))  # Output: 8
    + P4 h  R) @# V3 H' @3 O0 ^/ F- J) `
    Tail Recursion
    ) U3 E- y. K" B- @. E+ N. z2 S# x5 Q' t/ m4 n
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., y2 r8 j  _, W+ R" G* Z
    ! r+ j* ?( f! Y" Z" `6 a" j
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-12 18:21 , Processed in 0.032404 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表