设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 879|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2015-11-30 11:11
  • 签到天数: 2 天

    [LV.1]炼气

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 4 v7 {7 o; U8 v* X6 ?+ W' \$ d
    ; X# A' A; N9 h1 Y
    解释的不错) f, @) a  c' ~& u

    ( {( R, ]; G7 O递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    : D1 X& J# ]* f; ]" j* j  w8 e3 L  ]5 ?$ Q/ k/ l. F3 ~
    关键要素
    * o3 V, k3 v* w2 }" b0 G6 w* A; x1. **基线条件(Base Case)**
    # G0 O( U% O3 w1 z( I   - 递归终止的条件,防止无限循环
    5 k+ d! E& |6 p. I   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    9 y$ o' ^/ b9 D9 c/ X+ ?
    9 _8 T+ v0 y$ T+ {! d2. **递归条件(Recursive Case)**
    ; H1 p0 g2 A* [4 u* u1 @- M   - 将原问题分解为更小的子问题
    # M2 {. T2 Q! y2 M9 g! `+ N+ Z9 E% f   - 例如:n! = n × (n-1)!
    3 V2 T0 ?$ A' j& M1 T2 G5 k8 z8 s9 K* _7 s
    经典示例:计算阶乘% i  P" [; A# P. w$ {, _
    python1 b+ V9 U% `& K& E% I, j# n
    def factorial(n):
    ) f: M+ L/ Q6 k2 l    if n == 0:        # 基线条件. d# T* ?. Q( O8 ~& e* W
            return 1
    - e. E. z( z+ x$ p" [% v    else:             # 递归条件8 C# k9 ~- j1 r5 _
            return n * factorial(n-1)
    ) y0 f3 a  ?: w执行过程(以计算 3! 为例):
    # u) c$ {8 F( P8 f6 H. Afactorial(3)
    # j7 ~" z" t. V9 f3 * factorial(2)' t% b0 n0 }: h9 z5 X
    3 * (2 * factorial(1))( e6 R3 v' n! I) a% `! y
    3 * (2 * (1 * factorial(0)))1 V! D6 Z% g* o# L* e, W
    3 * (2 * (1 * 1)) = 6
    6 H7 @9 y8 y8 T5 x8 E1 B: M& f: n* \: l; j2 T* Y  G
    递归思维要点
    2 Q$ Y# @: [9 ~6 Z  T1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % D3 t3 V2 ], D2. **栈结构**:每次调用都会创建新的栈帧(内存空间)9 N4 ~" A' x" \1 e
    3. **递推过程**:不断向下分解问题(递): |) d( q( @1 V8 j) N* G. ]. M
    4. **回溯过程**:组合子问题结果返回(归)7 |9 v7 L- G2 @* D( d/ z8 e
    0 ]( t3 N6 a/ }1 n3 e3 s0 u
    注意事项
    ! ^, T$ B! Q- v+ ^$ \必须要有终止条件
    8 M) O( S, n! T  M  d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' G" w3 M* K3 ~
    某些问题用递归更直观(如树遍历),但效率可能不如迭代8 c/ W& H- P/ M  t
    尾递归优化可以提升效率(但Python不支持)
    8 [, }' x4 ~4 o& S: G5 l& K0 [; H+ p  f/ ~5 A% x% y7 g
    递归 vs 迭代
    # P5 |9 p% `% r5 |) [" `|          | 递归                          | 迭代               |
    5 x4 B7 J7 X; j  K|----------|-----------------------------|------------------|: r/ r" M# f$ M6 f' @" Q+ F1 e
    | 实现方式    | 函数自调用                        | 循环结构            |
    # i( X+ m7 }: R9 j0 J" v| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 n4 A' s1 d0 |% [3 n5 e5 z
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    1 H6 B$ e% A# x& M! `; ~5 \| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    5 C; J. x; k, [6 ?" n# x, d0 i0 A# N7 z& z$ H" T1 j; v% H1 h( m6 e
    经典递归应用场景
    - \/ w1 ]" C' d$ b9 ~+ n1. 文件系统遍历(目录树结构)5 v. A# i7 i, r/ k+ Q  k) Q
    2. 快速排序/归并排序算法
    7 _4 G2 e9 A  h' w. z6 ^( [' N3 i3. 汉诺塔问题6 i, T9 ]( ~/ V2 K8 x" b) w
    4. 二叉树遍历(前序/中序/后序)4 B1 t, J) n3 k5 J4 G: O& k
    5. 生成所有可能的组合(回溯算法)8 x, H( J/ j: A4 F

    " T2 C* @$ a. x' n% ^- p3 F1 A试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    昨天 06:39
  • 签到天数: 3016 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- W/ y, [, i2 s3 ]1 T, \* \1 h
    我推理机的核心算法应该是二叉树遍历的变种。
    " z2 d) }" U+ v另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 Z& z" w2 J, W6 @9 s) h
    Key Idea of Recursion
    " K+ F( |6 T7 q( x
    9 R/ W- O" V, iA recursive function solves a problem by:3 N; E6 H0 g3 y! q  t1 o. r
    2 u! I0 G1 N, [4 X" ^3 d9 b, a, p
        Breaking the problem into smaller instances of the same problem.
    7 M0 L) j: [. }* i/ _
    ) J1 ?, x1 [0 I5 U    Solving the smallest instance directly (base case).
    " l. e: p) m1 d5 X4 G! |; S8 X8 |# S/ ?) h# n
        Combining the results of smaller instances to solve the larger problem.8 L6 k7 A" m" V* e
    8 J, V' U8 F+ |6 l1 E
    Components of a Recursive Function4 v' ]0 C4 b8 v% X7 [, [

    - d# S$ k; ^* V, k" c    Base Case:+ ~. C$ x% T) Z+ ^& ^

    6 y3 ^, d! Q4 {        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 C4 W& ?4 l" Z

    - Y8 M9 b# v; F1 ?$ H0 G; k+ |        It acts as the stopping condition to prevent infinite recursion.
    ' _' R1 k" N1 [: }- I" f- @  |0 S
    ( b- i6 h: D6 p) w7 }/ H% W        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ Z9 Q6 A9 r; v0 T6 ^7 S4 Z% K- ?
    ! i2 s/ B. V" i4 a4 e; j" k, M; l
        Recursive Case:5 a7 N" J! E, G+ H2 r0 Q
    ! ^$ R2 R5 i9 j1 u" o+ Y$ a+ h
            This is where the function calls itself with a smaller or simpler version of the problem.
    ) s/ I; }. F) \' A
    & i& q6 d2 _5 N/ v& W: o; H" A6 g' V        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
      P+ F% u( b4 {$ ^) d! }0 d" ]* S# J8 K
    Example: Factorial Calculation
    - B1 m" y3 q$ u3 v+ L$ b+ t: ^6 f' h5 h8 _" \, T" `1 M
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 {( f% l; N4 ~  g* J9 }/ ]
    0 B5 I' u) b- I9 u. d
        Base case: 0! = 16 E( R# S( N) A: l. h

    ( u" Q1 u9 D3 [1 N    Recursive case: n! = n * (n-1)!
    ) ~# t, \* u6 |# @0 V6 V
    : s4 h* k9 X" }/ h& Z- |) ^Here’s how it looks in code (Python):
    5 o& x! O* m! D! b+ [# Lpython! I1 g  {8 W* c+ k
    ! R/ h& w* O  ~5 N0 I$ z0 m9 h
    , p6 ]3 F4 U. @, W6 {; p
    def factorial(n):
    4 k4 Y, ]/ @$ g# g5 t0 s    # Base case
    . D8 Z; B+ \% h4 ~% A& J' M# S    if n == 0:
    1 x7 x: h1 {; R        return 1
    % n6 j1 D% j0 A. S    # Recursive case
    / Q9 m* O0 j: c$ k& @1 T/ `# P  p" U    else:# C, O0 i9 E- D$ m3 j8 ~. k) k
            return n * factorial(n - 1)  _! v, O, c9 g0 C( G6 w5 ^

    7 I3 z5 E) }! e# Example usage
    ; t4 h+ l% Q0 b" M1 a# ^print(factorial(5))  # Output: 120
    : R' [9 I& l- x2 i, T0 ]' g
    . [( G; p" b+ a+ D) B- R+ K8 [* u$ kHow Recursion Works
    - A' @( s; ^1 a2 @- ^- i5 d  {* _, q/ G3 Q/ Z  b* C
        The function keeps calling itself with smaller inputs until it reaches the base case.7 H4 W) a" G" ^" I# k) m; z2 r% j1 t
    5 M6 U$ S* n( {" H) @" X
        Once the base case is reached, the function starts returning values back up the call stack.
    " |; a( X6 R3 t3 R* g& B0 V5 n& K8 J! T6 y' M+ F: m
        These returned values are combined to produce the final result.  o, L1 r% i- L1 n/ [
    5 k7 m* o$ b: O, r6 ~
    For factorial(5):
    & `! v% Z0 }: c+ d8 {) [) z) D* M. r9 v0 p4 L% i2 A

    / M* ~  x) ^% ^! B1 C, Sfactorial(5) = 5 * factorial(4)
    1 M! L/ g9 E7 w' f  h5 |/ ?factorial(4) = 4 * factorial(3)
    8 A1 u0 D9 M- B0 lfactorial(3) = 3 * factorial(2)  i; r$ ?( g, x( @* G: C
    factorial(2) = 2 * factorial(1)
    8 W- J! T( ^: K0 b8 ?& w4 dfactorial(1) = 1 * factorial(0)
    : Z" E2 t- O9 J& G. ffactorial(0) = 1  # Base case5 Z, O/ W4 f' X% \$ y0 U! `2 H

    % p* F7 j' t$ {7 r) E7 ?: pThen, the results are combined:
    . q  H3 r! w( }
    . D1 |+ v2 N  z/ X( b) ^9 m% c6 F5 K5 J
    factorial(1) = 1 * 1 = 1) f4 D& }' F! m7 x
    factorial(2) = 2 * 1 = 2, I- o# n' r( y/ l5 A
    factorial(3) = 3 * 2 = 6
    / c6 k) c1 \" e5 H) E$ B4 r; s8 i% S. |factorial(4) = 4 * 6 = 24' s5 h$ Q: e* z3 Z) p4 X
    factorial(5) = 5 * 24 = 120
    " ]% O' @: ]8 |  f4 d7 B9 e4 [" {8 R5 N
    Advantages of Recursion1 B9 n- V8 Y6 R3 W, o# o

    # c& e+ q4 e0 @2 Z4 H    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).! m  Z% Y4 _5 I3 n

    : ~3 G& v* B6 L: Q7 Q- a* w4 H    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    : E% x5 D2 N8 Q5 e! W$ u- X8 B" K% q" r  G: f
    Disadvantages of Recursion$ V& R! p& D$ x

    $ C' a/ ]9 V* H8 k- D1 y$ a    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; D# c" K  h; @3 M

    ( M( |1 H: F, V! s' a    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
      \, I" G& ^9 R* D. E$ s' L; Y, X+ `0 x9 @
    When to Use Recursion
    5 z1 D* _/ h, S& ^
    ! r- w2 U! c5 A0 Y1 S    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    & T. u* W* ?6 x3 ~9 R, N7 j
    $ I3 R; k/ e0 ^, B0 ~4 ~$ h" {    Problems with a clear base case and recursive case.7 [9 o8 x# o9 I6 R8 p5 w' p' ~- y

    & \6 s) k* g! V% t; `Example: Fibonacci Sequence  ~$ c  ^' y( J8 a& z$ Z
    * j6 X7 O# B& M* W. h( p0 Q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ T1 d% n7 `" R' H5 E; r+ _
    ' U; W( S- W- x6 g: O4 G! V* q1 a    Base case: fib(0) = 0, fib(1) = 1
    , ]+ ^! \3 `6 I0 `  I* Y0 e# b. `/ k1 ^" ~1 r5 w, J
        Recursive case: fib(n) = fib(n-1) + fib(n-2), W& g, H" T- E6 r7 R! Q4 E, y
    ( b3 H3 ^' M; @; h  ?4 |/ h! u2 K
    python
    : N( f9 S9 G7 q& A
    - \2 O) E) [; ?7 _
    6 c$ L2 U' S1 x. l' A. Cdef fibonacci(n):5 A* f1 T9 [9 a- s3 L7 @: Y% {
        # Base cases& x! i* F" d( o& \( ^: ~1 D& J$ x
        if n == 0:
    : h2 }3 \* X* \* T: c' o% b8 o+ X        return 0- w) i4 m* a8 i+ @- U# K6 [+ h8 n
        elif n == 1:
    " V/ Y1 z& I! T3 m- b        return 1
    1 z6 {- C% j9 C- ]9 S# V, {! H    # Recursive case7 W1 ?9 r0 z% N# S
        else:& X5 H9 }7 ~/ J3 ]# G5 w- A9 w$ ^$ q
            return fibonacci(n - 1) + fibonacci(n - 2)
    8 V* o+ c/ V) p8 N; P9 I$ I- E4 E
      T1 h! Y) w% K) T1 ]7 `9 m# Example usage
    ' s; F  g  R2 f. u9 Eprint(fibonacci(6))  # Output: 8
    & s, q; ~3 H% e% O( m: I1 D! u6 D5 u( ]
    Tail Recursion' {5 v) a2 M1 i" m1 n
    5 ~3 N* y3 d$ G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 P; S; H2 y; C6 _1 C: d! z' ^/ |0 G. A; _- \
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-8-22 04:12 , Processed in 0.043751 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表