设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1076|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 X# W+ ]$ ~& R( l2 i4 p; H0 v, N( j  D5 F* y/ i
    解释的不错! l, X3 C2 v7 s/ V% A
    % p, c0 W7 [8 @5 t( O9 l  c- F
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) _7 h* d4 ~2 m& [/ r/ F2 H

    & F! a2 q# F6 j5 P; J5 t( I3 s$ i. q 关键要素
    1 i; V8 h0 N7 o! Y) ~  H( j1. **基线条件(Base Case)**0 O9 ~7 G' d2 J1 q- T
       - 递归终止的条件,防止无限循环
    # {  W& Y* v  g8 Q. M  }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    0 E  X* ?5 D6 a$ L5 ^$ i& O1 D: g( o9 k( d' q1 g" P0 ]$ d
    2. **递归条件(Recursive Case)**: }, D; w  {2 s
       - 将原问题分解为更小的子问题0 P' [9 {8 c8 b" x6 J2 m! s
       - 例如:n! = n × (n-1)!
    7 S! K4 @8 G, _$ ?$ \  H+ {
    + B$ l7 K3 T# {  L0 H 经典示例:计算阶乘0 q0 {4 u. w3 H+ E. j9 w
    python
    + G+ Z: _. ?0 a, J, ^def factorial(n):- s  I# K+ h/ f8 D! h
        if n == 0:        # 基线条件$ q7 f& o9 _5 W/ v
            return 16 d; {  T: r. m9 x( H3 b
        else:             # 递归条件# j+ k9 o# g/ d/ n' B
            return n * factorial(n-1)4 N: M9 a2 @# B; f/ w
    执行过程(以计算 3! 为例):! |5 G" h8 y& [. V4 [3 d1 E
    factorial(3), M: ?' }0 d& e5 U( R) M8 `% M- O6 B
    3 * factorial(2)6 z( o4 Q2 p- L4 Q$ u6 |
    3 * (2 * factorial(1))
    8 {9 [0 x* [" ~( G2 A9 ?3 * (2 * (1 * factorial(0)))
    7 e1 |  L( a" }3 f6 o9 p2 P3 * (2 * (1 * 1)) = 6
    : J/ {- v2 ]! y8 w0 T% z$ X: b8 |( l! t+ Y# J, Q
    递归思维要点1 V7 k( q+ N- {) _' f
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 w" @6 {: ^/ a2 j* \( |* o
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 E% v0 G2 e8 ~3 B: Y
    3. **递推过程**:不断向下分解问题(递)5 g/ z8 i' D/ c9 L8 n
    4. **回溯过程**:组合子问题结果返回(归)6 R, L4 q9 m/ N5 q  p
    7 X  G. [4 b, P$ h' i1 h8 m2 @
    注意事项& }2 D0 c; ?& V9 @+ [4 ?& }
    必须要有终止条件
    $ H0 O- [- u, r! C# S  d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    * B7 j9 u' v7 v0 G2 f某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 C) f0 S1 p1 K尾递归优化可以提升效率(但Python不支持): \# w- M6 M+ r% }. V; d# J& ]# ?, S. @
    ' T# z; S+ X- j
    递归 vs 迭代
    . c8 d* V* y4 u& ?8 i|          | 递归                          | 迭代               |# f: K( K; g+ n; `4 s
    |----------|-----------------------------|------------------|( U: T5 e* Q$ n2 j3 V
    | 实现方式    | 函数自调用                        | 循环结构            |- Q9 ^! Z* g& G0 k6 f
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 @  L& n8 w& Y9 r5 z3 U$ R| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |! H6 o" E. p! I2 b9 W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 H( B, m4 p, A8 o; K# O

    # W9 v- G0 ]+ E# v3 h% v 经典递归应用场景
    ) I* A4 [; _7 w* a8 Q9 f) h1. 文件系统遍历(目录树结构)
    8 ?7 v" c: `' f& H$ F9 X2. 快速排序/归并排序算法* G. k2 u; q- h0 r$ i) V1 D
    3. 汉诺塔问题/ Z* D; i( S( L8 _( O! [& ^+ p
    4. 二叉树遍历(前序/中序/后序)) J$ g! P* N0 Q# [
    5. 生成所有可能的组合(回溯算法)
    3 o1 \1 k4 I! a3 [5 C
    1 Z, ~7 g, _( X! F0 a试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    1 小时前
  • 签到天数: 3092 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) c# ^* Y0 Q# Z0 h& }; q6 m
    我推理机的核心算法应该是二叉树遍历的变种。0 @9 Y8 C) J$ d2 `6 v1 M" d4 H+ {
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    2 s, }" K- U" Q& @+ S2 `Key Idea of Recursion  C( A7 ]6 c: n8 y3 x% E5 C

    " i. }; T# S. f2 o* J1 fA recursive function solves a problem by:
    4 n  E: E0 k' b4 I5 @* g  `
    # C% z8 Y' ^5 s- o9 T! X    Breaking the problem into smaller instances of the same problem.* P7 v. |% S8 O) ]8 G% L. Z* z

    ' I4 D. |! a0 w5 U2 _# D9 M" }2 P2 s    Solving the smallest instance directly (base case).
      x, o. i7 Z- ]: a+ ~
    , C) ~1 T% G4 f" |' C+ T8 i9 {    Combining the results of smaller instances to solve the larger problem.
    ( C  A$ d9 X, I) `, i! P1 ^% f$ x/ i# p3 @
    Components of a Recursive Function( R# Z  r% H8 \# T/ H

      V0 D- P: ~2 H    Base Case:
    ! U- {, b& c4 X# M- `
    ! ]6 n0 x8 _% H. U        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    9 j  J$ m3 Q7 H" W- b# Q# ?2 c1 J* f2 |& b. @1 {7 j& a
            It acts as the stopping condition to prevent infinite recursion.
    - H/ D  r8 U) z+ r7 @5 u2 E) K5 r. Y/ H; A/ d9 j" d2 j
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.1 e6 S9 A1 _+ i  g1 v7 ~. g

    ( m" G$ c5 m+ w  G/ `    Recursive Case:
    ) B+ T# [% Q9 m3 I. I! f: n( w: N! Y3 X
            This is where the function calls itself with a smaller or simpler version of the problem.8 I+ A4 v8 }2 t3 Y
    , z1 \* X  m; B
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    # G9 G/ c4 c9 r0 L* B' p% ^8 B' T8 B0 R
    Example: Factorial Calculation2 d8 j0 l5 S- |

    ! v/ O( m( G9 h: wThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    / W2 X$ |! l4 W3 z) r* {* b4 I  \: \) d! t& Q
        Base case: 0! = 1- S: M0 m) w( K, ?+ d" E

      \( d" z8 p6 [" S2 c    Recursive case: n! = n * (n-1)!
    9 {# O% W( Q% R, w
    7 q8 B; m/ x% H, W0 j5 X! S2 I8 w" aHere’s how it looks in code (Python):
    4 [- L9 P! q7 h( U0 Epython' r9 G! [- }( v, ~9 D0 {8 v% ?
    6 `  {% r2 o$ u/ \- o% Z4 Y# I: B

    ) k  Z7 u+ j& l( D5 C2 x! B" {" ndef factorial(n):/ n7 d: Q# K& P( H& _+ Q
        # Base case, S0 i6 O- f7 c9 M! M7 v/ N
        if n == 0:
    ( K: ^0 X* a" d+ V7 J7 U! \        return 12 t  I" ^9 I) q* j; {1 P( M
        # Recursive case/ G) A/ K  C( w7 K0 j  {
        else:
    6 ?& ~! O" [" y) d        return n * factorial(n - 1)# z' m& R; C3 ]& u; k" G
    6 E6 {& r" c, X
    # Example usage
    8 [( o% N% @/ C! ^print(factorial(5))  # Output: 120# ^% N+ s# _2 h  b" E$ V
    ! k6 p/ L! l% Y( o
    How Recursion Works
    . _2 V% L2 \" I) U: t% W
    1 t  t* P8 ?" Q" l( e    The function keeps calling itself with smaller inputs until it reaches the base case.3 T# w2 A5 D" T% s

    - D5 R5 e. t) ?' k) e( ]3 I" @    Once the base case is reached, the function starts returning values back up the call stack.
    ' J  {( G$ g, q% p& s7 _) n' v! C- `/ [* l; R* w+ E
        These returned values are combined to produce the final result.
    % s: Q# E( Y4 |/ Y3 A; S% C
    9 ?' F4 f% B' u" q; wFor factorial(5):; u8 z( c& o2 J* z3 O, }$ |2 l
    * d4 M5 |8 N8 {2 Z
    ' Y+ S1 |. @( g0 c6 s
    factorial(5) = 5 * factorial(4)) R( B% N- O7 a0 e/ U3 Q
    factorial(4) = 4 * factorial(3), ^" z* @# W" s2 H/ e
    factorial(3) = 3 * factorial(2)
    . h- c+ R0 l8 ofactorial(2) = 2 * factorial(1)
    4 K- x& P1 t% m8 M, p- |3 ^# Dfactorial(1) = 1 * factorial(0)* ?4 w6 o/ _6 F6 C8 C) r+ C
    factorial(0) = 1  # Base case
    5 z- B  x* c7 o5 z7 P8 P
    6 a: I. g0 n6 s2 [4 H+ yThen, the results are combined:
    3 L. E% u; d0 F+ v- D' \3 @5 f! n! A& Y$ y1 R: w$ p, W

    7 e" j- c' K9 L5 k+ E' U9 Ufactorial(1) = 1 * 1 = 1
    7 }6 d- n. b$ W$ r9 u& `: m0 `factorial(2) = 2 * 1 = 2
    ( X9 Y9 B3 w4 g: Ifactorial(3) = 3 * 2 = 68 _+ S7 }1 e) {0 a( H0 S& |, C  G
    factorial(4) = 4 * 6 = 24
    6 b; d; ^$ J+ v. m" {factorial(5) = 5 * 24 = 120- \( L% }2 _4 G* y! m) M9 S

    4 [8 G* C( A* H2 Y$ \9 BAdvantages of Recursion$ C1 P& a+ Z- B( Z

    6 Y1 M: }) u/ \9 q" N    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 w, T1 W* H# l- w8 b+ Y8 Z3 P% M+ m! n
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    # S+ ~1 w# E7 ]! G1 T
    . Q7 I9 b0 }" c9 J) b, oDisadvantages of Recursion
    / K# Y  {: Z& o. A7 r8 w( x% n/ K
    - E) w& g0 v5 K2 O    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & L8 ?8 \+ r% D" ?$ G; t+ W5 p# n2 R0 I5 y3 k
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 l  s  J9 P# \& e3 Q% Y( X+ E5 P) p9 x+ f+ Y
    When to Use Recursion0 R" m- e, j. }. s7 Y
    " Q% ]3 B1 L( ?1 |0 D2 e- X
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    $ a6 \+ \2 E) L5 _- P5 _3 u4 w9 I
    . Y8 h- W. u# o6 Z, p. o* L    Problems with a clear base case and recursive case.' K4 l. a+ l4 R' Z
    5 O5 v7 c. e; h8 w9 h5 u, r
    Example: Fibonacci Sequence0 F" `  j. [% u/ P, X1 S/ q; }

    " N; b8 S; W* p, w8 B! o" TThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:7 Y3 a' O: \5 L

    " `7 m5 n3 u+ @# c; \* K    Base case: fib(0) = 0, fib(1) = 1
    4 c# @/ L, H  b/ z: a
    9 e3 t/ Z! u( w0 k7 s    Recursive case: fib(n) = fib(n-1) + fib(n-2)$ f  a- W: S9 a8 m0 H0 @

    . b, A! x5 e  R# rpython+ {) a% D8 {8 O2 W( ]6 v# A, W

    2 H  K, t+ q& n% Z0 b) S" G2 R& Z. b( K, v7 \9 b/ n3 r  c* p
    def fibonacci(n):8 U( }5 L0 F6 v6 m/ n7 _
        # Base cases6 [. g5 {5 t( O+ N0 z" S+ c. q
        if n == 0:
    " l7 @, L! w6 D1 {- ]* ?7 l* l        return 0
    " t& L6 Z: H4 F    elif n == 1:' p, c( _( R: K, D! m/ k
            return 1
    . z8 {/ [* d2 H5 G    # Recursive case  M: f0 S1 `3 M$ @- p% e$ q% f- L7 m
        else:
    : l0 A' m) y+ s) N        return fibonacci(n - 1) + fibonacci(n - 2)2 m: v" u* j8 n( u- c/ T

    1 \! p( F- J5 j1 `$ R; w3 L# Example usage
    " b5 q$ @. b4 Sprint(fibonacci(6))  # Output: 8) b$ o2 `* [( }$ ^. u
    : b7 r2 ^! q3 n5 b. E& L4 S: B
    Tail Recursion& }% P5 ?1 h7 l/ x
    $ \' Y) Q" i& D) c. t! R' u, }; C
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& Y! F7 n5 Y6 m3 K

    6 K1 x* q+ }# ~+ @3 bIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-14 07:34 , Processed in 0.034937 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表