设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1195|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 Z& I+ P0 w/ @  d  S
    / Y, }- @  A( L+ r解释的不错
    , ^4 t( N! z( w& [7 r# P
    ) a+ b- E- r7 \4 [1 D( j# M递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。7 r5 k" k; O1 K* A9 U/ |( d& p

    ! f, M2 F4 D& E& H; p3 W4 Q! m 关键要素% B5 w/ L8 M  }
    1. **基线条件(Base Case)**# b2 O1 V/ A/ a# {! @( ]7 T
       - 递归终止的条件,防止无限循环
    ) i) @- [- H  W# G* W* k' k- q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  H" |; o3 X* S. D2 ^
    ( x! g4 |6 L/ _; \. r2 t% G
    2. **递归条件(Recursive Case)**
    , S; y# V# H5 c9 O   - 将原问题分解为更小的子问题! E5 ^, Z6 V! p& _/ f/ K. J% m/ \
       - 例如:n! = n × (n-1)!# ?8 L$ N9 c1 l5 W+ C; H; w# p
    8 b# M! G" m9 n% b& C7 A1 f# \+ R
    经典示例:计算阶乘
    * B3 F% z5 f+ f4 a& N6 g- n8 J  [  p" Zpython5 s0 W! ]+ l0 e# }/ x0 w
    def factorial(n):
    . K4 W' W. t! l3 U$ c: p1 C    if n == 0:        # 基线条件7 V: s7 |. p! Q. q, F
            return 1
    : {# x: u4 G' `( L( z, g    else:             # 递归条件
    1 V" P% q$ I! c  |1 w" ~: T        return n * factorial(n-1)
    1 L1 Q3 g. }' Q, A" X8 ]执行过程(以计算 3! 为例):$ V1 r+ Q9 ^, D! M; V2 ]
    factorial(3)
    / L  e( ^( {% E( O( X0 G7 a; ?3 * factorial(2)( ^5 I2 y, E( [- |# d2 q' h: x
    3 * (2 * factorial(1))# @0 U2 r  ?: X  S- W, @
    3 * (2 * (1 * factorial(0)))
    + u  f. Y& M) w3 M9 \3 * (2 * (1 * 1)) = 6
    ' N4 n/ [1 ^# [% _1 H* g: j1 a# v& t* x$ d9 @$ |& }
    递归思维要点# ?% {* D$ C4 U& z( `# f3 F
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    3 q+ y: H; {3 u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ; t: D+ }/ o' ]: i3. **递推过程**:不断向下分解问题(递)
    + v/ r, m2 {' q: m3 Z4. **回溯过程**:组合子问题结果返回(归): J1 W% A  R- D$ ^9 P: A
    * e. ~0 k, V  y2 g3 ]; e
    注意事项
    ! \) T1 O9 |) U5 g0 \7 e必须要有终止条件6 v1 C$ L/ B; V
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / a  I4 D* h, ^: J  N0 A某些问题用递归更直观(如树遍历),但效率可能不如迭代: \% v$ j: [/ }
    尾递归优化可以提升效率(但Python不支持)
    0 S+ a$ z$ F- D+ D$ i$ ~/ {
    ( m# g! d& a) Q; W 递归 vs 迭代! D- h' y. B2 ]9 s  _
    |          | 递归                          | 迭代               |: v7 H2 l& D+ _6 _  g
    |----------|-----------------------------|------------------|3 S: v& Q" F" C0 r/ N9 j3 J& Y
    | 实现方式    | 函数自调用                        | 循环结构            |
    & ~0 e4 ^* G% i| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    . [# ?  |% {$ H4 s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* N" e) P% f+ j. C9 W
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    % H$ p1 e- M, Y- c  h# w4 Y# B* }7 @
    经典递归应用场景
    ' r2 e8 [$ R( E) z9 d1. 文件系统遍历(目录树结构)
    " _2 j/ ?; g, x2. 快速排序/归并排序算法* R9 |1 t1 N$ ?8 J2 B
    3. 汉诺塔问题+ E0 z) m# S0 }3 V% e$ K
    4. 二叉树遍历(前序/中序/后序)
    1 c5 n1 w. k3 \5. 生成所有可能的组合(回溯算法)* Q, t. }$ X; _% t0 B

    ! c+ P8 x$ k  V1 s) o试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    1 P- {) _. I# q& ]( D我推理机的核心算法应该是二叉树遍历的变种。
    , }' ]& W" f4 n& ~% `另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:% B! [+ `  }% l1 n+ k- [. w: ?
    Key Idea of Recursion
    # f- ?- v# W# S0 K
    - `0 y( }- N9 k8 Q# X) JA recursive function solves a problem by:+ W" f. d. W: d

    ; R" j7 a6 O* `; p: M  F  K1 p8 Q$ c    Breaking the problem into smaller instances of the same problem.6 y8 m9 t" y. B$ j

    0 x* s6 M8 E2 @. a( i    Solving the smallest instance directly (base case).
    ' K  p& ~7 g1 `% J2 f; ?3 d9 C. u$ z: ?+ e- C3 |2 c2 S
        Combining the results of smaller instances to solve the larger problem.4 u* ?, X8 C+ n' M: G# j
    - S. K/ a* y: g& c4 @- L
    Components of a Recursive Function7 \* k) N( f! A9 t6 k" m

    / L4 Y' h, D5 d" M$ `    Base Case:4 v' F  v) o9 k3 A) a' u2 ^

    ) o1 Q9 o( d7 x        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% \+ g& v7 T0 ?. V% M+ O* I

    & w$ l1 q( q; q  V% ^        It acts as the stopping condition to prevent infinite recursion.9 Q* |) u- Z% f' m4 i: C0 N& X
    , Q8 u* w8 O8 Q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.4 }1 L0 |2 L- m# O4 [

    ! M3 Z8 V. X: _9 I, i) w6 H4 X' R9 H    Recursive Case:4 A- g$ H) c2 c+ a2 X6 B0 r1 ?4 o

    0 t% J! D3 `. f" }0 H8 ?/ r        This is where the function calls itself with a smaller or simpler version of the problem.
    % }: {5 z2 Y% K2 F' L+ ?) h" E3 m) \7 ]1 y) D
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., ?) E3 S( Y3 M$ a+ g4 E$ D9 x( C  {

    # `: X4 X# g/ C0 g0 sExample: Factorial Calculation
    # o7 F* J! I4 D. G" b
    6 @  ]. B6 o4 `) }& Y1 ?& _* fThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % w8 }9 @$ X. I( q% w6 L
    & ]5 I6 o& Y' w    Base case: 0! = 1
    + a4 O8 l6 S* x: C4 G, E* }0 {4 n: N" y. f0 L7 E0 w( m* c
        Recursive case: n! = n * (n-1)!$ E0 t: i5 Y0 j# o

    0 a/ r+ P# Z7 I& b; xHere’s how it looks in code (Python):
    , E8 n; a* m% v1 b. rpython6 t2 g4 W: j1 F* A

    # v: a, B! c+ s- u1 e! y( T
    - ?# H3 F2 ]/ n4 u& bdef factorial(n):
    : y  A) \$ _! [    # Base case, }0 Z' @2 I8 O+ j
        if n == 0:
    7 C0 J& n- B& c; _2 B        return 1$ H9 N" h5 |2 T4 }$ f" B3 J
        # Recursive case
    8 |6 {* ]" G: k- k( Y' M    else:0 J+ {. s& @: u
            return n * factorial(n - 1); q4 c: U0 q7 b: x: u
    ! P: |1 }. Y( Q! M4 T
    # Example usage& v5 \6 j  A# I5 }* w
    print(factorial(5))  # Output: 120
    - q8 `/ I4 i9 c5 p$ I2 B2 q: J; Y
    9 t9 ~, Z/ u9 U4 GHow Recursion Works
    6 H# j+ V/ Q9 ^' c4 D# G" Z* Y# U' P
    3 @8 x* v" z; R$ a! z    The function keeps calling itself with smaller inputs until it reaches the base case.  J/ c. J3 O0 @( r/ |) S0 X; ]

    ) Q2 d- W- h7 W    Once the base case is reached, the function starts returning values back up the call stack." @8 ?6 h  x+ N( B  X: E" G
    5 o. u0 i' Y4 n9 z' e
        These returned values are combined to produce the final result.1 p* s8 p. m% J! P& i2 c

    , }* T. b. b# r: `$ p7 YFor factorial(5):! A+ m: V5 }( {/ z

    6 Y5 q) u$ p' v+ y# e/ a; o3 P- j& n& h1 ?8 j+ [
    factorial(5) = 5 * factorial(4)1 J5 N+ x* |/ W- o1 m
    factorial(4) = 4 * factorial(3)% F! r/ {" q5 c9 @
    factorial(3) = 3 * factorial(2)  e  L% |: E* l# a
    factorial(2) = 2 * factorial(1)
    6 ~7 ?0 h* a: Ffactorial(1) = 1 * factorial(0)
    # `$ A& r/ c5 `9 Lfactorial(0) = 1  # Base case
    9 M& ]1 _( k7 Q' h1 F+ W8 {2 ~
    ) l6 `  H7 h  A/ FThen, the results are combined:0 e, o# D6 U$ }' s4 `5 }2 ^

    7 D+ M6 G! s" A' y* P
    ' K" I+ J, z' X, f5 m/ ]& f; N/ Q$ yfactorial(1) = 1 * 1 = 1
    . `! L4 D) f4 C1 s& X6 V* e: yfactorial(2) = 2 * 1 = 29 Q/ [+ Z7 r1 B* s; w0 ]5 l; }& E
    factorial(3) = 3 * 2 = 6
    2 o8 _' |, B- H  g8 l& pfactorial(4) = 4 * 6 = 243 f9 i* A  J; `1 @, ^% J+ m
    factorial(5) = 5 * 24 = 120
    ! e; |; z* g2 t2 j0 n  V- E5 i% t3 e! [! V, p& N( Q
    Advantages of Recursion, U9 O  c( f7 ?' ~- ^1 r

    9 O, g$ u% Z4 r6 r7 I* B; y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 ?' |' H; b, ?

    ( D# Q8 u/ V5 C1 r    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 H5 N) f6 ]2 B
    5 {0 N; B5 J/ q. ?  yDisadvantages of Recursion
    2 p+ n8 R4 N- h! H* }
    " x7 I) Q% e! P" K" Q6 C! ^* v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.% h4 w# J$ v5 U, k
    , c3 v& q( p7 d- y, Y, c: T
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    8 }9 S* y( d/ E2 j9 X( F0 n9 U; y' ]9 n
    When to Use Recursion: C, v5 \9 ]8 f4 H; o' T9 D
    ' U3 p, p" M& ]' b* D8 p
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 Y: U: C* T+ n
    ! |  k) e6 O, C! t% |    Problems with a clear base case and recursive case.8 g% d" W" I4 b4 O4 @% f, X% z7 p

    ' \  p. n  B; \8 R: LExample: Fibonacci Sequence
    & @( c" I3 t. d4 E! u/ v' Z4 [) ^! ^+ p* K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 U* m4 U6 O: M
    6 V! R9 t/ A8 A- i
        Base case: fib(0) = 0, fib(1) = 1# s! u( y1 g" ?
    ' S& I! Z- x6 S& h
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    5 I' g- r) k" K
      \0 @/ t, Y) E1 ~1 }python1 s2 F( O2 G9 j% M9 t3 M: h
    - x) k0 n3 z+ N. A7 [
    ! C% a; O0 \0 [1 G, S# Z3 T
    def fibonacci(n):/ R2 T) x4 F! t3 P5 Y1 V7 C, }
        # Base cases9 n" ]$ j+ a0 S, d2 K
        if n == 0:( {* g( `2 o- D4 N- j
            return 07 Y1 U! T8 F# n/ A
        elif n == 1:
    + Z3 i; Z( }' F5 J        return 1
    2 y4 [3 x; g: b; H) Z5 {+ L, r! g    # Recursive case
    3 K  e6 i1 m6 W3 D$ S  p9 D    else:! O, E* i% B7 ~& ~+ g0 T
            return fibonacci(n - 1) + fibonacci(n - 2)# u; r  y7 g! r! t) _$ L& P" C
    ! U7 e: T% ?+ M. i; _/ F" Z
    # Example usage" Y9 c5 S/ ^2 A2 ]3 S+ N  P9 S0 s
    print(fibonacci(6))  # Output: 81 x- A& `5 }$ N

    0 L, u. U0 s' D" I6 tTail Recursion
    + Z, \* c+ f* \; ~/ c
    $ E" m. A  h! z: @Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    5 q$ b7 T% g" D5 t9 f
    ! P5 F% N$ b, d. b$ aIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 07:45 , Processed in 0.045923 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表