设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1604|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ; p4 U9 ?& p: r0 Q3 x. x$ H( _& d2 X2 h: J. c" {* m
    解释的不错
    % L7 Q4 {  l% a
    4 [' P( {  U  G! s% d递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + S, A* I4 J; c6 n
    * u0 i. E5 A: r* n5 d 关键要素5 m0 c5 |0 v: Y0 e% {. d
    1. **基线条件(Base Case)**+ ^8 M) L( m! k2 I
       - 递归终止的条件,防止无限循环
    & ~& f) s$ X3 x% K   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * n6 f# f$ {" l: I4 B) C' m9 z  O9 P+ @$ w! U3 {( H
    2. **递归条件(Recursive Case)**1 ?3 s: \" P6 i& N- E
       - 将原问题分解为更小的子问题: ]# o2 f/ ~  t$ e
       - 例如:n! = n × (n-1)!
    5 s/ J) U5 N9 K1 f% q9 x! ~; i
    7 ]3 x& ?1 Z7 V; T: r3 y 经典示例:计算阶乘+ @) {% t! Y( G+ [7 k$ ~0 Y
    python2 |9 w) E/ j5 I3 Q2 C! r2 [
    def factorial(n):2 N& m# Z+ b1 t* |- i) {
        if n == 0:        # 基线条件1 T3 c$ T( }( d" x* X
            return 1
    , N- x- \7 \: I- E  @4 c    else:             # 递归条件1 e% n! n2 Y$ ~1 w7 U
            return n * factorial(n-1)
    & i3 r2 w2 P* K8 U' j; C% k$ a执行过程(以计算 3! 为例):2 w: N3 ~& m, A0 m0 [
    factorial(3)
    7 U% a' _, A# Y4 }3 T1 |8 t3 * factorial(2)7 _( F" i: p  j, M
    3 * (2 * factorial(1))! @8 l; P7 J, A7 s- x
    3 * (2 * (1 * factorial(0)))
    $ O8 j: r6 m' }4 d3 * (2 * (1 * 1)) = 69 E$ s. n7 O8 H# k8 v6 ?  c
    ; z, k8 {' ~+ R; Q9 g4 q
    递归思维要点6 V2 r2 n) ]" x7 }1 l
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 S" A1 Y- f& K3 J2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , E: o% H8 i! r* Q$ U1 `9 `* [/ o7 S3. **递推过程**:不断向下分解问题(递); N+ w& U: _% t
    4. **回溯过程**:组合子问题结果返回(归)$ ]  t, @6 @  U0 |) c  Z

    0 Z9 I6 [2 r/ h+ h( Q 注意事项# h- E" o! f& n
    必须要有终止条件
    : G: r0 ]3 K! a递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    + `2 u5 l' v. b. _某些问题用递归更直观(如树遍历),但效率可能不如迭代0 S) R" H2 I+ O+ p8 e' E3 d
    尾递归优化可以提升效率(但Python不支持)
    ( b0 f# y: a5 Q7 L$ C# y9 g* p& m/ @2 c
    ; r# i: R! E9 k 递归 vs 迭代
    ; I) l  A5 L% C0 n|          | 递归                          | 迭代               |
    + b& M/ X7 h# ^1 J|----------|-----------------------------|------------------|
    ) M: m: T9 F. s0 y/ R1 V| 实现方式    | 函数自调用                        | 循环结构            |
    ( U, @2 a8 ]& b0 C| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ X1 D1 t0 G; C' w, k% D
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    9 P7 Q5 Q' H% ^- t3 j* j0 t/ _, ?| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 O% B! o3 e: T" j0 W: B$ z
    ; n6 T8 Q9 H/ M 经典递归应用场景
    8 @4 j7 M1 L, l: O5 C1. 文件系统遍历(目录树结构)4 |  @- k% h- G6 M+ j" a
    2. 快速排序/归并排序算法  ~9 i; b7 [  G& y& `! ?
    3. 汉诺塔问题- b4 A* V9 R4 d0 A( _# R
    4. 二叉树遍历(前序/中序/后序)+ O. `* Q% Y6 X; a5 a8 @4 R4 y
    5. 生成所有可能的组合(回溯算法)
    9 I  ]6 H5 S. k# y2 Z* ^: C3 e! ~7 A; s7 R6 p) r& S2 o
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    14 小时前
  • 签到天数: 3124 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + o" J9 ?" C# z$ `  i0 p" H我推理机的核心算法应该是二叉树遍历的变种。/ j0 W9 g( M7 M1 G% E
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 c- Z0 v) U4 a7 B
    Key Idea of Recursion
    ( E0 S* p1 R: }( s% }
    2 G4 V9 t- W# L' nA recursive function solves a problem by:8 D0 T2 h  e+ V
    7 R7 y: C: d/ G6 |: Z# K" k& B2 [
        Breaking the problem into smaller instances of the same problem., B" ^8 _: Q/ L+ L

    - [7 K( Y* e4 P, E: {0 e6 ^$ c7 J) e    Solving the smallest instance directly (base case).
    " z4 s1 Y0 _) k5 {2 g9 U; B9 W# s8 [. b. H5 N( P
        Combining the results of smaller instances to solve the larger problem.
    * [& B- V& Y, u% q, z! ?2 n8 B* R# n3 ~2 J2 n4 |' z4 z- _
    Components of a Recursive Function
    : l& o7 Y4 k+ q; B' g# p0 S6 Z: ~! r2 T/ C7 Z. H
        Base Case:
    ' K9 T; d( C6 \* [" n3 N
    + J; l: A' ]9 u5 j        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. ^& W- J2 A3 h. y1 Y
    9 F' W9 s0 z. V
            It acts as the stopping condition to prevent infinite recursion.3 U3 b4 K9 z1 B: }3 M, \
    * D$ |4 P1 V- K/ l$ n1 F* s& \& m
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 C; h2 X' A+ P% T5 w1 q" T
    , M  O3 F: `, P% |  u8 _
        Recursive Case:
    , B) J+ m& d2 X5 q( W" b) c& q% M/ |6 a9 c
            This is where the function calls itself with a smaller or simpler version of the problem.$ q3 k0 u% ?0 E5 z5 T
    $ r# G; S$ l0 e: C& o
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ! J* D% S) I9 [. o. v% z$ `
    5 ~, B) C+ z# H1 SExample: Factorial Calculation
    1 `4 J2 w- w( B" S* ?3 a2 I3 t- w' Y9 u8 @7 N; U
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 ?& O, X5 f# t8 Y1 |; _/ m

    9 P$ z5 P( c, d  `+ ~" D9 E) _    Base case: 0! = 1
    5 F; y& a1 j* o. Y; J$ Z+ B' l, C9 O  l7 c
        Recursive case: n! = n * (n-1)!! X  {' R2 d1 e

    7 O* e) H3 u5 }# n1 kHere’s how it looks in code (Python):
    4 I3 G) x! d9 v9 Y( ]8 Opython& g1 I$ t$ }" Q

    . v# P; @6 t, U
    % u* a* s  l7 d  o  k- V2 bdef factorial(n):8 u" G4 G$ T/ {2 }6 g4 M/ p
        # Base case" w2 f0 h0 W1 l4 @) p5 c1 e% p
        if n == 0:
    3 T  c- q, r4 c- H/ x        return 10 M% c* D3 \* f4 D0 I4 {
        # Recursive case( P, K. l1 X- h, ^/ l0 [! t3 O
        else:
    1 i! q1 e, Q8 a) ~  {        return n * factorial(n - 1)3 B( w* C0 d/ i

    : s0 k+ {5 r9 ?% S# _3 l, w* z+ K# Example usage/ K' s7 K; R# \+ P0 C" j
    print(factorial(5))  # Output: 120
    1 _) Q) [4 A# T- z
    ; g& T0 `1 q" n) S) NHow Recursion Works3 t4 u6 A, x# p+ S, f, O
    * _3 a: w& w1 `4 A
        The function keeps calling itself with smaller inputs until it reaches the base case.7 c9 T- S- S0 ]1 O1 ^# H
    5 w3 m* k' F0 q3 W% j5 v
        Once the base case is reached, the function starts returning values back up the call stack.8 R9 g$ ]  m1 W/ e
    / f$ y% V; O+ l( V/ J. @
        These returned values are combined to produce the final result.
    ( D1 B( M* N5 F2 W. A3 j
    7 e. ]/ w! P& p  r4 uFor factorial(5):
    1 y' d- L! G1 r5 S. e/ m: q; M- x
    . s7 S2 A3 Y: X; D
    . Y- l1 ~7 b1 E- o9 N5 {factorial(5) = 5 * factorial(4)' Y* u$ t0 i& z4 v& Z" X! \) W  |
    factorial(4) = 4 * factorial(3)
    6 L! A1 F) R! Tfactorial(3) = 3 * factorial(2)
      I2 c" C% M! o8 }. l* y  H- {factorial(2) = 2 * factorial(1)' p+ \7 I: x7 M7 ^: Y
    factorial(1) = 1 * factorial(0)
    " D# m& j8 d3 B7 R/ V2 S. |factorial(0) = 1  # Base case
    . t, W' G9 d( u* i$ c1 L; g. n# q4 G, ~8 _8 U- I2 |; {
    Then, the results are combined:
    % s$ K+ q& z7 @. X* _  Z  W$ x8 j4 _2 G4 ?
    9 w: W9 U" G3 [* ^7 t& v7 g/ {
    factorial(1) = 1 * 1 = 1! F+ _( b# l: i* G( U2 f8 n6 B1 y: h
    factorial(2) = 2 * 1 = 24 g2 V$ m+ u! K3 f. v6 ?. ?- W
    factorial(3) = 3 * 2 = 6
    * H" j, g; K9 y4 V, s: C4 I$ Hfactorial(4) = 4 * 6 = 24
    ) ?) c; O; o- L3 X2 Kfactorial(5) = 5 * 24 = 120
    ; x! ?  {- P8 z6 {4 s
    - w! O+ H/ l6 S- R5 t' X! T6 dAdvantages of Recursion
    ; v* K) i/ ^" K3 s* n' Y5 s) B9 I# ]( j/ I* s6 v: ^
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).8 J/ W& K- D) O

    2 ~" H8 Y2 K; n  z    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    7 O9 [0 G0 d, Z: K4 m
    % t0 \/ y1 I" w& wDisadvantages of Recursion7 `3 L3 {8 M. W* S6 A6 G1 O

    , j! E( u1 h# {# v    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    9 ^4 t, p: K' e' T2 Q
    / B7 [8 M- x8 f6 b( }1 {% L    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 G+ F! d0 P: u; P/ W9 v/ t% A
    / Q. a% D. w+ x$ R' t3 m
    When to Use Recursion
    $ c* q( B+ _+ a8 @: x4 g8 y; ?% t; I5 K1 n
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    # Y, B% a; ^" d4 T8 m) I4 B4 j2 y% O" n
        Problems with a clear base case and recursive case.
    * D; f! w; j' h6 r" @: Z- O" i% X( d, [0 {" U1 |3 K' Z9 D
    Example: Fibonacci Sequence
    9 {! |) Q  \8 H# F2 ~4 [$ m
      x1 ^. F) x2 ^2 S' s+ d" s6 e) ^The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! b' I* b) S$ F  I1 S6 P3 j! M2 t8 p" m, l
        Base case: fib(0) = 0, fib(1) = 17 v0 ?' u" @4 V2 ]3 r- ^

    2 s* Z2 \- |  M  @$ t" B    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    . y  ]( g. d* }: T& f& s1 Q7 @, p# v" P: |2 A
    python
    4 z0 N& v' O* v0 `7 d5 b" T( s# I9 h1 y. G( F4 C& w

    5 v- @) S' c* c9 _0 [def fibonacci(n):
    , l5 n# B& o9 U    # Base cases
    ' G# S' w* ], b8 @7 P8 V( I4 ~8 n  _    if n == 0:2 p8 W6 r+ c0 ^& W( n' D1 U7 k
            return 0
    , j: I( Y, H8 d" w* u1 \# o    elif n == 1:- j# x. _6 J$ Q7 K4 l" O3 R
            return 1" `  C7 X3 W# ?( x$ H, X
        # Recursive case
    . S8 n2 h: G' e( N. Y- P$ d- Z) |' N+ |    else:; x2 U+ r/ t+ T- g# K8 ?) B
            return fibonacci(n - 1) + fibonacci(n - 2)4 u' f9 Q; o- e0 O+ G0 V

      M; j( ~# Q* b5 k6 h5 L$ |, F, e/ L# Example usage
    2 @$ B9 J( `4 j) O1 T, ?+ s% mprint(fibonacci(6))  # Output: 8
    9 P7 v3 ~0 O* _5 u$ @5 w' \4 |# \3 P& `
    Tail Recursion
      t4 Q4 c8 e6 l0 Z! p* L# l2 S9 B# x1 w, q/ b
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).* C/ [4 S4 R7 g  w

    - B$ o; r6 ^& d( y5 ~, O, q6 p( y& JIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-22 23:09 , Processed in 0.049659 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表