设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1290|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / j; ?! b0 [% ]4 k
    - \+ G7 F* N5 g6 ~6 }$ b解释的不错
    8 p0 ~! l! g+ c6 w. B) w
    7 T$ b0 v2 ]* Y! \递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" S# Q. V2 B. O8 H; P' v

    # j6 _0 I* _* Q/ j; B7 j& R% H& @ 关键要素
    2 [1 d  g8 L7 P1 _1 W( l, g1. **基线条件(Base Case)**
    : K% E1 a* E* f. f3 B# L9 i   - 递归终止的条件,防止无限循环1 S* f+ e3 C- C
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1/ D: t3 e9 B& g, l

    * [1 W) S. I9 v$ R" R, l2. **递归条件(Recursive Case)**
    / x& i" G; b2 _1 w3 n4 t7 P6 ?& d1 N   - 将原问题分解为更小的子问题
    9 d: ~: \( ^) X( N  W   - 例如:n! = n × (n-1)!
    9 Z8 s6 e! U7 y, D1 [, v( n! n$ D  W: ?* m
    经典示例:计算阶乘
    0 P9 ]( H! u$ t; g: }* a9 I, [! Zpython' P) c. ~% d7 ^* v; @
    def factorial(n):) @/ A* X! H" \# E' ^
        if n == 0:        # 基线条件
      _4 a- n/ N. y! t+ q        return 15 Q. b% ^% _$ e5 h
        else:             # 递归条件
    / G3 @8 B# E) l: e6 W( N        return n * factorial(n-1)
    6 z. {) k1 \2 ~执行过程(以计算 3! 为例):* q# \1 C: w3 t: R
    factorial(3)5 d  _0 O% d4 ~  C2 m" J
    3 * factorial(2)& i% ^! Z7 e+ c
    3 * (2 * factorial(1))- M" |7 ]: I8 }( p
    3 * (2 * (1 * factorial(0))), d+ X& l2 E6 ?+ L
    3 * (2 * (1 * 1)) = 6" ~- w# o1 T) o+ K
    8 Z8 C7 j0 \8 D0 }
    递归思维要点/ H' l* `( |. }5 [
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    6 L5 m+ o' t. y/ [0 z. P# j$ J2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ! M1 S: p! |; t! I' @3. **递推过程**:不断向下分解问题(递)
    ( C, Z# {$ f5 O5 T- c6 I4. **回溯过程**:组合子问题结果返回(归)
    # G# z6 x# B' u$ g' {( L& t; g% u) {# Y8 |0 Q) l
    注意事项
    9 r: H7 E$ u8 h! a) n必须要有终止条件
    ' j$ r# J: |. o. t; _7 e+ m递归深度过大可能导致栈溢出(Python默认递归深度约1000层)  E2 P& |' `0 e/ }; ]
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ( v( |3 z7 |6 X. R尾递归优化可以提升效率(但Python不支持)( l+ ~1 K7 F) @5 }

    9 v( A! L3 }' j' W# [ 递归 vs 迭代  S! I( ^: M! g& b  X
    |          | 递归                          | 迭代               |8 d/ q* |7 l: c" ^- z
    |----------|-----------------------------|------------------|
    # c( d- P  q# h/ @2 ^% I! i| 实现方式    | 函数自调用                        | 循环结构            |3 t1 a! I7 i: Z" W' o9 E! W
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! l9 E5 h' j$ J# B1 @
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |. x- d5 H& ^% m' s$ p
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    . l' Y9 G* L# q  I; T
    , X7 O! l0 p/ `+ a% P6 G. t 经典递归应用场景
    - X6 {8 a. \: t) ~& K) }1. 文件系统遍历(目录树结构)
      y9 V3 [* R# E6 ^$ `$ m2. 快速排序/归并排序算法
    2 K9 j$ b% x! R- {3. 汉诺塔问题  g! o' D' a0 b3 ]8 v& |
    4. 二叉树遍历(前序/中序/后序). z( m  N0 C2 H  A6 }
    5. 生成所有可能的组合(回溯算法)2 W/ }4 g3 b7 Q6 h5 T3 C+ z
    ' v: {% g  J6 N; o
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    10 小时前
  • 签到天数: 3106 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; b6 d% m& P& V9 P! u" ~6 o
    我推理机的核心算法应该是二叉树遍历的变种。: F. q3 }- c. Y9 X
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    2 h: n8 a4 h# o( i1 V: m( [& K8 T" {Key Idea of Recursion9 ~0 W6 i( `' T$ ?
    9 o- b" I3 b% n9 |
    A recursive function solves a problem by:
    & |. v1 _' u' U( D0 m& `0 R
    3 Z" S2 B- ?2 Z: r: q9 X) P    Breaking the problem into smaller instances of the same problem.
    0 ]; I! f% T+ {  l6 o# b
    8 H9 c+ z% H( Z    Solving the smallest instance directly (base case).
    8 W+ m6 e: {) {9 O
    0 m3 |- c& w& h: [! F    Combining the results of smaller instances to solve the larger problem.
    6 ?/ a  v, \" L2 e9 e. Z% J
    . x4 m6 o, {9 f. NComponents of a Recursive Function
    . c7 r0 D& O) G9 h8 l, u5 g. w* d& L3 r" \+ T  g# @6 N
        Base Case:6 T# H6 _+ x  C) B5 O" j

    4 E4 v/ ?( w9 U. Q9 K        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    # p/ T3 C+ q3 {2 s# u# B. j  H( C1 _+ e
            It acts as the stopping condition to prevent infinite recursion.* t6 m9 r+ u: ^3 |; T
    5 q, U7 n! d+ |. _- G8 }
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 {7 ^+ J) M4 E% B( W; O
    , o/ _2 ~, _! S/ ?6 a  o
        Recursive Case:
    & H- E( H- U! t5 ^! K+ X
    + g: ~( U  c! t, I9 z- k2 ]        This is where the function calls itself with a smaller or simpler version of the problem.
    5 r8 L: w3 R+ _7 }8 v" `  h0 Z0 b; E$ m! }. O& Y5 `
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    / b  m( g. {: b, l1 l" I0 d3 N) D0 s) o
    Example: Factorial Calculation3 [* N. M; K+ s% e! p" i# K1 x5 [

    ! z' \( n: a" n6 P; HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    % U; F' i# O0 `/ P
    5 T) y. u& |% }" p# l: b    Base case: 0! = 1
    " f, O0 J" K8 M6 C, Z/ x, C8 |0 `
        Recursive case: n! = n * (n-1)!) ^3 ?5 q6 Y  z3 c0 s

    - @, A& x4 k# k! @Here’s how it looks in code (Python):
    . [% g1 B6 \5 ^  \- w5 Kpython% X7 s. ]% m; z4 @+ s1 [5 Z4 L. y, d
    # e! w4 A! L& V* t9 r7 k

    6 D7 p) U$ q# `! Vdef factorial(n):: Z" ~( }5 h6 `3 j/ Q/ f" F
        # Base case' T4 s- F5 i9 `5 H# w
        if n == 0:* l7 x' a$ f2 y; _" F) `3 f! q% J; `2 |
            return 1
    9 b& r, J9 x3 o) M" g' {4 J4 `    # Recursive case% l  W( [% ?; u
        else:: q" q7 o4 R$ ^- V4 N
            return n * factorial(n - 1)
    - Y. y0 G. u3 L4 l; z$ v! a& {1 n! _0 N' _$ x
    # Example usage
    6 N3 z+ q) Q  p; k7 I) B9 C  kprint(factorial(5))  # Output: 120* F/ g- m$ e6 |2 m

    ) p% [2 w% d) j! IHow Recursion Works
    % Q* W# S* ^5 U
    3 A* D3 w, A; l9 i# ?    The function keeps calling itself with smaller inputs until it reaches the base case.
    3 f9 D3 ^0 V3 Q5 x+ |8 F* [* g: y/ s3 r  R; H! H6 q
        Once the base case is reached, the function starts returning values back up the call stack.5 h, K( h% C/ y) q$ D9 I
    0 `5 L6 x& c# Q: f( S
        These returned values are combined to produce the final result.  D, f8 _: P- R7 w/ a

    / x& I" O, |. lFor factorial(5):
    3 o/ ~) b% y. K! ?
    / T* _) n. L. ]
    + F) b6 c, Z% o/ wfactorial(5) = 5 * factorial(4)" T( i1 ?$ k5 A5 [% s
    factorial(4) = 4 * factorial(3)
    * @3 H; S2 B- l8 b- N- Z) {factorial(3) = 3 * factorial(2)
    * G4 u9 _& J! ?" M5 |factorial(2) = 2 * factorial(1)/ g' ]4 H. K- N$ v+ H3 [7 c% s
    factorial(1) = 1 * factorial(0)
    / _2 P( P5 ?. S& w- P6 R. Ufactorial(0) = 1  # Base case2 ^$ [" W/ v' n) C! {# ~2 A4 `

    ; H9 W6 k# }( U- hThen, the results are combined:6 s5 ^; s- z( H( o) F& P
    , V( {6 O# j8 O8 F& c, a; H

    5 d% |/ G# u- s# f" zfactorial(1) = 1 * 1 = 1
    3 K1 m+ n8 ^. _/ `factorial(2) = 2 * 1 = 2
    1 i2 e. G( E2 K. ~, Vfactorial(3) = 3 * 2 = 6& A% E8 y- N+ B' x, [7 K. G
    factorial(4) = 4 * 6 = 24
    + \4 w$ {! y& ]$ P5 H% h7 m: ~3 ]) Q7 ~factorial(5) = 5 * 24 = 120
    6 k1 g1 r+ C, X1 }- W1 h
    * K9 F$ j2 ^. D! ~) yAdvantages of Recursion
    - d9 w/ ?5 B4 Z/ i# ^
    + u2 l( j9 x9 B2 F) p9 W    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 z- J, ~6 b" }+ q+ p- @1 _
    9 y4 E$ k- I5 t6 O; a- W    Readability: Recursive code can be more readable and concise compared to iterative solutions.
      z! y8 n3 o8 m) H$ o5 U4 H
    5 w+ A$ W; z# ?, k# ?/ P# {1 HDisadvantages of Recursion
    ( c3 {" ]9 f/ h, w- ]: p8 @: k" {
    8 g0 k$ |* |, w# z0 U0 V& W    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! ~/ S' W" V% @* J
    # i) ?4 e9 L/ }) K3 V  e    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( H" a9 ?. L+ x0 w6 e  a6 ~2 @
    ( j5 k0 j# d' u) a1 r& @# bWhen to Use Recursion
    7 }$ w  c9 u- y7 q0 |  R7 [0 Z6 T
    ( U, U9 r7 P% N6 h" e" s    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).% c6 _0 K  A2 A* q" W' B: S
    8 X* \! o+ n% }
        Problems with a clear base case and recursive case.
    2 ^0 D- u9 P9 c& L4 D8 E, `& T) w! E/ e
    Example: Fibonacci Sequence
    + n8 l0 A! S  c2 \8 z4 j# n# x- |' J
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    + O: S2 k) p" ?+ n/ d3 Z9 i" p
    * o" A' C3 d8 J- Y3 n# t2 k    Base case: fib(0) = 0, fib(1) = 1
    0 H1 b& `: u! l7 ]3 H/ H6 t
    . M. L/ a. }, A1 y# ^    Recursive case: fib(n) = fib(n-1) + fib(n-2)5 `$ ~% c1 ^1 B" @0 w% m  H

    $ U4 c- A2 Q' E; a& spython
    1 H. |0 t- H7 `' S) J. ^, E+ z4 s- J# y6 D$ I$ ^% {& L

    8 H& \  `& ^/ }4 n+ Q9 o) V+ tdef fibonacci(n):
    , _) c' P6 K( f3 a    # Base cases
    6 ]1 D2 _: R, m1 s# p    if n == 0:$ c3 B1 o9 h% q" p# [0 G
            return 0& Z8 C, O: d3 r/ W
        elif n == 1:! X1 D% E9 u1 {/ T9 [
            return 1
    & n2 r7 @7 d6 [1 L9 e( b/ M    # Recursive case- `  D, O! s# O/ }- N# b
        else:
      m7 s$ F2 [" K( g6 c( X) e- x3 V        return fibonacci(n - 1) + fibonacci(n - 2)# f% i: m: f( s5 S3 o# p6 \* E0 I

    - P& d+ S  \- O; g) d: h# Example usage' x2 O1 `- q. E# s. g
    print(fibonacci(6))  # Output: 8' |; V6 e3 l% x7 r7 l  E- z
    & g% T7 D: p1 f8 ~; N& `
    Tail Recursion
    ) e( R$ J3 O  ^6 d
    % R, Q/ W6 D2 h) rTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ! [  t0 p" ]$ z- V
    7 \- j, V5 B+ _6 ~' a7 L6 P- s. ]) @In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-2 17:29 , Processed in 0.029136 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表