设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1239|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    , S& s8 M* _* g; E3 D, d+ s/ G
    , G/ A, k' a" ?8 O7 A3 ^解释的不错
    * o' p  `! f2 o/ G; p
    3 j! x0 [9 |. @- C  d3 }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. V' B' \$ P4 h# U* n- {4 b9 ^

    % t% V* A8 E$ M9 g# J9 y2 H: r: z 关键要素) Q( A! R: `' q: R  |$ r% e
    1. **基线条件(Base Case)**8 m7 P- @( x: {7 `! R
       - 递归终止的条件,防止无限循环
    & M6 @3 c0 w: ]8 J# Q: D   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    5 Q! r* G! W/ z4 N7 W& \+ t; t9 d" T
    2. **递归条件(Recursive Case)**
    $ q- K' U# B% o+ \   - 将原问题分解为更小的子问题5 k# H1 t3 L8 m' n3 b$ N0 z5 v4 G
       - 例如:n! = n × (n-1)!( Y0 p1 H7 E5 n9 y
    3 _4 f- k: n0 m4 o4 P4 b3 P3 H$ S
    经典示例:计算阶乘
    4 U2 f. w3 m! y! epython# f0 Z* y5 m. H. q- S& H
    def factorial(n):% i/ ~) H. X0 }
        if n == 0:        # 基线条件; r' j, V3 v/ @8 a& A1 g
            return 1
    6 B& p6 _% M% B6 T0 Y# W    else:             # 递归条件3 \$ Z4 g- b5 `* Z3 H$ |
            return n * factorial(n-1)' c8 P- t6 Q" I" e' \
    执行过程(以计算 3! 为例):4 n; f% g$ K! F- F6 I
    factorial(3)/ r0 Y8 ^  q/ U5 G) @# @4 W% L3 Y
    3 * factorial(2)- o4 [+ ?$ x) x
    3 * (2 * factorial(1))
    7 k: U% V) Q) J3 * (2 * (1 * factorial(0)))
      P7 ^' e& H# T$ G# L) K! ]- ~3 * (2 * (1 * 1)) = 6
    . N1 ^% A& Q& G6 z* y  L/ m& c2 z& P, S8 b/ N+ B
    递归思维要点
    , @8 a$ K: C1 L) b8 d1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 P& l; v" c0 q/ M% a
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  f) }6 {+ z: T5 {: x5 |# X5 E  r
    3. **递推过程**:不断向下分解问题(递)
    + l7 F) a1 Z' s- B. e4. **回溯过程**:组合子问题结果返回(归)
    * {: n6 O" M4 m2 o8 k: x
    . J' W0 K. ?5 |' T* r 注意事项5 b3 g3 O' \2 B3 c
    必须要有终止条件' P! s' {0 l+ s3 a0 Q3 B# t
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    . T3 m6 n6 L0 N. f; Y1 {某些问题用递归更直观(如树遍历),但效率可能不如迭代* o, W1 i% i* \
    尾递归优化可以提升效率(但Python不支持)
    : L2 z2 l: \2 b; p& w: T2 O9 I9 a
    2 @! ], s6 ?2 l' S 递归 vs 迭代
    # _0 n! Z9 O* _+ {# P+ e: V|          | 递归                          | 迭代               |
    # C. k! ]# s* f- q/ j|----------|-----------------------------|------------------|
    5 w- ~: ~1 x1 p. l3 u9 l| 实现方式    | 函数自调用                        | 循环结构            |
    + s* g  l6 p! q" R+ T2 O8 U| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
      M5 T" K1 N7 i$ B) a+ x' y| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    + ^6 g- o5 C  y5 f: t: e| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 g8 p, S7 t* v! l* u8 ~2 z# ]6 B3 o2 {" E' ?, ~2 X! h# n
    经典递归应用场景
    " ~% B, ~2 U1 F, a' P& G1. 文件系统遍历(目录树结构)  T: O7 s0 E' D4 A; ~' n
    2. 快速排序/归并排序算法7 F- N, h, s% P9 {
    3. 汉诺塔问题# W5 l! y$ o+ H7 A% }
    4. 二叉树遍历(前序/中序/后序)3 Y3 _; D/ c( b/ e
    5. 生成所有可能的组合(回溯算法)
    % ?: X- T1 s4 A7 _' B9 o  X
    3 W6 D2 V6 i, F+ Y6 T试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:44
  • 签到天数: 3104 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    + E. ?) L  u2 }" C2 {我推理机的核心算法应该是二叉树遍历的变种。
    , r/ M# B: b3 j- n$ u. g+ [! L另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 `$ f- U7 g8 {# [9 d8 J% o$ f
    Key Idea of Recursion, I4 O; t8 U9 g6 X* C

    6 r  h4 p# w# J3 _& T; f# v& F6 Y6 MA recursive function solves a problem by:1 B) b0 g3 `& b' @
    $ \! v7 T8 n, h' F: \3 J
        Breaking the problem into smaller instances of the same problem.
    % L2 e7 J  A: {+ [
    3 I' B( V  F7 j  K+ N" @    Solving the smallest instance directly (base case).
    ) l$ T/ ]0 G; L* D: v/ R' N; `+ m
    1 v' ]' o$ L' `# G3 d    Combining the results of smaller instances to solve the larger problem.
    : l1 X/ n  M- Y  P9 w9 A3 F) S% L; s
    Components of a Recursive Function
    ) N" A2 V/ @1 {( N5 X# l) [
      g) i$ V' H1 s( ]+ T    Base Case:
    ! m& v! U: z' B) H, b. K1 m5 d- _' y( N
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# d2 ~8 x& v5 R4 V; w+ x

    6 D& @% w4 t0 ~. L6 V3 f        It acts as the stopping condition to prevent infinite recursion.
    9 f5 E( S# Q+ i1 E* ^6 i  `6 S0 T9 ~" |: k* [$ a5 J' R( \2 n- [
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' J% R8 g7 j/ B  c. y0 D

    ' u+ O3 W$ o& s0 k" l, _8 D1 s/ \5 l    Recursive Case:* n% E( ]; E8 @; B  O' \0 f$ W
    8 B5 ]5 d8 S+ i
            This is where the function calls itself with a smaller or simpler version of the problem.
    ! k( P8 I/ N, S3 j
    4 |/ {( ]. V0 n% o; Y0 W2 a% s; A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).8 ?" R# [9 {3 t7 X" V
    / U8 A0 y. M6 ~8 \
    Example: Factorial Calculation
    " L0 e+ X% X6 G. Q, c
    : {* M% |9 e: Y8 Q" sThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:/ _9 S, A; s! T$ y6 L7 l" I8 b
    5 N. Z2 q5 o- n3 X  a% F1 F
        Base case: 0! = 1% R4 q! v2 z' k' x1 r8 ]9 k2 T
    ; Y; t& R( m6 q: r9 D$ T* C
        Recursive case: n! = n * (n-1)!8 K' W( {6 ?$ A/ ]4 f- w8 n) w3 U) h! y

    # u# z6 S/ }" u9 G! O/ x5 ~Here’s how it looks in code (Python):
    7 D1 T6 o: G* W" l; K2 qpython
    ! |  D! O- r- h9 W, D! ~+ P% e2 t. O" I. M8 k
    3 ^5 m  a" w: h' G9 \
    def factorial(n):, a, f% k& q0 P: m! L0 T
        # Base case
    ! @5 k* |, r/ ?& Q: d    if n == 0:
    ' ~5 o8 j& ?# b        return 1' a1 {1 l' F, r5 D4 |
        # Recursive case- c' v) V. z, L8 T+ |
        else:" k2 f1 ~* n7 \! R6 P
            return n * factorial(n - 1)7 z1 B1 ?1 V4 n) ]4 o3 m
    ) X* w4 r2 C5 L# ^: |9 e2 Y; z6 \$ A
    # Example usage; e+ b6 E5 I" b
    print(factorial(5))  # Output: 1207 w* C8 C- `  Y, ^

    & @# H: X6 s3 y7 G; C/ O) |How Recursion Works& J+ U+ A' j' B. k7 n
    ! A! e1 p( M1 _1 G  X: b
        The function keeps calling itself with smaller inputs until it reaches the base case.! l: }, @3 z( ]
    9 U' Z; Y4 N6 d0 K% K
        Once the base case is reached, the function starts returning values back up the call stack.* O" K" Q5 `! h  J7 k: |+ F& @8 s

    : f, L. P  B; w( b- w3 F    These returned values are combined to produce the final result.
    - M+ p4 b, O9 x7 m* O' T' }2 P" v2 L" H! u/ _3 M8 n
    For factorial(5):+ b2 i3 I" ]0 f& C% G% L+ V1 v
    8 {1 d" H! Z$ D$ d! n; a: f$ O
    ( q8 n6 M2 B& x  _# R0 d( S
    factorial(5) = 5 * factorial(4)& v7 l" w" x) v  W/ v
    factorial(4) = 4 * factorial(3)" `; O& t! Z, ?* [: P, U
    factorial(3) = 3 * factorial(2)- a; z; d4 `' \2 Z" C6 d, |5 q
    factorial(2) = 2 * factorial(1)
    ; b! \4 O8 b( Zfactorial(1) = 1 * factorial(0)( o8 z$ j( y' L2 S
    factorial(0) = 1  # Base case( E9 o) }6 {; X0 |5 {
    " A" i/ [4 U- U0 |$ x; g+ B* _1 p
    Then, the results are combined:& Q7 o; l& P' N: }) Q

    7 m% |; u9 h+ h( `# S
      Y- b* }) y* Cfactorial(1) = 1 * 1 = 1' K  ~' i% X4 s: s
    factorial(2) = 2 * 1 = 2
    $ t5 [( W: A) ~9 N8 n7 ]factorial(3) = 3 * 2 = 6& F" n! O( o0 I
    factorial(4) = 4 * 6 = 24
    3 r8 n5 p6 I' F# Dfactorial(5) = 5 * 24 = 120
    9 J. U* s# y, @7 Y9 C" U7 M
    7 f: l! t& I# G4 f3 H  B9 YAdvantages of Recursion
    2 T9 F6 e" V3 w- T$ t1 R" n$ ?( z/ q" a
    8 B; `0 R9 e6 u% ~/ @    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
      [+ x+ t2 o9 |$ Y0 c
    . h" d; [2 v$ G. {* a5 |9 f9 x2 Q    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    & L( g8 q# w7 Y' Z; L9 x
    . G7 z$ D; N# h2 K2 `1 X' i' ^Disadvantages of Recursion1 I' I" i4 u4 A( D9 f' n/ W

    ( ?$ \$ ~( y) a9 t7 i% T& o    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# Q; {# m3 E' {4 U- j1 o- \
    9 {, A7 w! `9 E
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# ]  X( U  }: y7 M' ~/ t

    7 H1 N% U& b+ T4 |  o9 s8 O3 f- e  HWhen to Use Recursion
    ( }' y( h8 t) r7 S
    3 W$ U: f2 Z2 e* z9 c& e- J    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 B. B# _8 J0 b1 k  m$ n8 D0 j' ~+ m7 K& }2 x: B" f
        Problems with a clear base case and recursive case.
    & f0 t" U( ]3 u# |& d2 v' R4 O1 f0 [' \  A
    Example: Fibonacci Sequence
    ! H2 b( K4 f0 j" D4 H8 M
    ; t# A3 R- f2 `# N& Z) mThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:! V& n  m6 V6 ^$ ~! k
    6 Y# a0 m" d# ^
        Base case: fib(0) = 0, fib(1) = 1
    " H2 A* M8 b3 x: s# v
    ! y4 e6 K* G, b8 V* w2 N& ^0 I    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    # ]) q6 U! o- r! {" o
    / M) c( I: r- a" a$ d: kpython3 x! k( ]* W# B: D# U
    5 K: g0 d! L5 o5 s! v. n
    % o! `  u) w6 J$ q
    def fibonacci(n):
    : k% [% K0 m( L4 ]. @* }0 t    # Base cases- l- H( |% _6 N
        if n == 0:( \, A% O4 I) g7 }- K; f. Z& f4 R
            return 0
    + a: M: f, c7 E4 T! Z    elif n == 1:
    / W) P/ Q9 Z% t' P6 K1 I8 B        return 1
      Z. P/ V: s. f    # Recursive case0 s/ ?6 v3 P' m) P+ L! D: W  B1 W3 x! z
        else:
    ' Y1 P9 i1 [- I0 C4 O, i        return fibonacci(n - 1) + fibonacci(n - 2)
    + z8 \, t3 s" G9 L1 R
    3 R. `! T& I* e- ^# Example usage
    9 ^" H# N7 ]6 E$ bprint(fibonacci(6))  # Output: 8
    % n$ E- q! e4 F$ X
    & M' _/ W( b" u9 S$ R" w: VTail Recursion; u7 z' H% h5 }; |2 L: V  L2 y2 b) R
    ; F4 K$ \# }' a
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    , S' O3 F' {. l3 f  U1 k! o! M! C9 E$ @8 {* {) K/ i3 Y
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-30 03:59 , Processed in 0.036164 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表