设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 945|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 * c/ @4 ]: h* p. q$ n

    # B1 `# G- |2 G8 s8 ~% r( ]) Z( S' M解释的不错  `5 Z+ G& s% i2 O0 o

    ! Q: Z) x* t; U1 i( b% K3 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    - Z4 J9 F6 N. ]. S1 R2 N. w- V: R+ w# o
    关键要素! o9 R  F; K/ P$ }$ Y! F
    1. **基线条件(Base Case)**9 c+ c. s0 N( j! v% V6 k
       - 递归终止的条件,防止无限循环
    $ e, l: E/ N0 m' @. L" i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    - S, l7 p1 ~( x& G' g/ z. z) C4 X: ]3 n
    2. **递归条件(Recursive Case)**
    * K& h% {) Z! @' ~   - 将原问题分解为更小的子问题
    & W. M+ Y4 ~2 V/ P1 k# m! l" e  A   - 例如:n! = n × (n-1)!
    & w: _& S  t4 Z" I( O$ c, c# w9 F3 q( A$ K& R& K% {; N, v
    经典示例:计算阶乘
    4 k- \( o8 v4 X" m1 ypython# ]! p  B2 m% S
    def factorial(n):
    ) o* n( y9 W* V9 \# Y2 G    if n == 0:        # 基线条件4 Z5 `& O7 k. [4 a+ t
            return 13 C& O6 Y) [2 S+ R/ W: n9 q/ w/ z
        else:             # 递归条件) W) h% t( D" d
            return n * factorial(n-1)
    6 Q3 ?5 {1 Z5 N# l! b! h执行过程(以计算 3! 为例):
    / Y# F$ D/ K9 ifactorial(3)$ L" U+ B% \" Y4 |% q0 S7 J- j. g
    3 * factorial(2)
    ! v' ^4 n1 w& k5 C' Z# \8 Q% L3 * (2 * factorial(1))6 }# R" l1 @; R5 y: E% Z; D- ?0 G9 F) O
    3 * (2 * (1 * factorial(0)))
    ! R/ Y/ l* E) F3 * (2 * (1 * 1)) = 6
    6 g2 w7 U9 s/ p0 _' F3 S* C# X
    & j4 u$ @' U* s1 A/ B0 E% l 递归思维要点
    5 F6 J, i- H0 E' m1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    8 p: X8 a) B: e1 R2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    , w' [4 C9 v& E6 B* O' X) a3. **递推过程**:不断向下分解问题(递)+ p2 O( X2 b% x& c( Q
    4. **回溯过程**:组合子问题结果返回(归)
    9 C0 P1 y* \; k# |5 a& j( O) g" L7 N+ M" j2 d
    注意事项) o3 q! ^( ~  {6 f+ P- u" q' ]& c
    必须要有终止条件
    3 G% b; N. T6 s0 k0 T+ M' ^递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# u1 M' ?6 q0 v3 W. ~
    某些问题用递归更直观(如树遍历),但效率可能不如迭代. r; s+ c& j2 S
    尾递归优化可以提升效率(但Python不支持)
    7 p$ @9 r& |+ `% h* a& C: i: ?3 n5 ?2 k+ H, I" ?, t4 Z5 }$ I
    递归 vs 迭代% k6 e) [& d0 t7 d" n- r
    |          | 递归                          | 迭代               |
    ; M5 l9 X% N+ J- B+ U$ P|----------|-----------------------------|------------------|' y& [* V# m% G0 W! R( C0 C
    | 实现方式    | 函数自调用                        | 循环结构            |6 d% n) R# z& P9 S5 i2 z* K
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ! N0 \8 q, r- I4 p$ u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 K% _6 q8 N) r( u8 R' v| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 i( t% y' X: {* F
    " q0 m$ v" X7 t! |2 p! I
    经典递归应用场景4 j, @; C% J* {/ u. i2 m# e
    1. 文件系统遍历(目录树结构)1 x1 b+ h0 _: O! O, R
    2. 快速排序/归并排序算法! V& u' j6 b3 ?+ v; P! {) O
    3. 汉诺塔问题- _- }* P* z3 a) g
    4. 二叉树遍历(前序/中序/后序)1 x9 k& C& m9 k  {/ O) {9 g
    5. 生成所有可能的组合(回溯算法)
    - N/ a4 R+ o0 O# R
    / N/ |2 b( z% \试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:06
  • 签到天数: 3042 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    6 z7 G  [3 d8 o2 m: y我推理机的核心算法应该是二叉树遍历的变种。
      v4 f6 Z9 I6 x2 t  {+ k1 i另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 p  Z. x- Z# ]/ S. h7 `: ^
    Key Idea of Recursion; x# m! `/ o' N. d$ V( r6 Z8 C
    / W4 E5 y9 d1 H: x
    A recursive function solves a problem by:' N; j% E- G% |* Z7 Q( y& Y( W. X

    ! N$ \6 c$ f% v3 ^    Breaking the problem into smaller instances of the same problem.
    0 y( r0 F% y6 N5 Y3 E
    . w1 d4 ~% O: v0 O5 M+ [4 V    Solving the smallest instance directly (base case).. Y& |5 x4 z; q3 [6 w5 q
    : G- K3 E# o% L: E
        Combining the results of smaller instances to solve the larger problem.
    / `. z3 h. L/ E" P  v4 ?
    * n- m' q$ q; `0 G' K7 fComponents of a Recursive Function
    6 y; F4 Y! t8 b7 u& ~' S
    ) `% P3 y, I2 E    Base Case:
    # x  G; e- _& f5 B& f$ \
    , y6 t' }" H4 J! S        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 ~5 _8 B" D6 D" k6 ?! W5 Y* F
    ; [$ b9 k% O. j  ?# |& d
            It acts as the stopping condition to prevent infinite recursion.# q7 i8 }: A5 S8 M  T. n

    4 L) U/ f9 c, D# U; p+ `7 Q, F        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- i& N8 E) U# i+ a6 [' h
    & w# o9 w) v% y+ q/ {% f
        Recursive Case:. Q# H1 d( P5 U# C/ Z; \) P

    0 }9 F9 D/ {1 k1 g1 L8 f        This is where the function calls itself with a smaller or simpler version of the problem.
    % R. h$ u7 Z: W: x1 P( M. }$ D, ?" \% g- T" H; u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ X2 E, w: O& s6 J$ N

    1 |" m& g0 k/ a% {; u" sExample: Factorial Calculation( O% Y7 F- o: q" d

      ^) x3 y- {. G& }2 _8 A5 ]The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    1 R$ b* E* u! |: f
    - i$ ^4 X+ B. K( E) _  i" J    Base case: 0! = 1
    ( f1 p: m; d/ B' _. J; F* p- w9 E! _" M% B  i$ V, i
        Recursive case: n! = n * (n-1)!
    : @' X# }: B0 E1 H7 j
    ( R/ b# p+ W$ a+ }' j" }/ ?  z) MHere’s how it looks in code (Python):' b$ H( t& |! Z) \% `0 e; Y' t
    python- y/ W3 @+ m/ @' Z1 O; x) |) W
      u" ?  Z! K, I( E
    8 ^  C; X8 N2 A7 d
    def factorial(n):
    ; c) d/ r: I3 b    # Base case/ E' Z' @# H  g4 O1 [6 A! j
        if n == 0:
    8 t* N0 [% d# [: p        return 1+ p+ w& c. _9 U5 B" H4 C8 \+ s$ Z# s* [
        # Recursive case3 B/ X2 b6 u+ G* ?- d4 d
        else:/ Z* t' D; `) f9 w; t
            return n * factorial(n - 1)
    2 n- L0 a* j1 o. ^1 T+ h
    6 R/ b: _  ]) U$ ~# Example usage) y& T# n- R# o. W$ I0 i
    print(factorial(5))  # Output: 1205 z. c6 I* o# n+ U1 {- K8 T

    : f- V( |$ |! T$ u- Z& h) `& SHow Recursion Works
    - \5 Z2 A$ B3 R: p, Y/ R
    * l- p3 D+ r' s$ @; x  a5 U4 [, t    The function keeps calling itself with smaller inputs until it reaches the base case.
    4 Z  Q" v. b* K* ]% K- W5 ?5 B* G$ d* E
        Once the base case is reached, the function starts returning values back up the call stack.
    " W3 s* H1 [3 }* _# r! }" T. c/ i" Y0 C) {, F
        These returned values are combined to produce the final result.
    # N; H' ~' Y3 M# h9 `8 S1 S, y; v, l7 J6 ?( S
    For factorial(5):8 s0 l9 r- x7 H9 D4 R! `

    . E2 T1 @" H- r4 g' B& a  g
    / V) H. P* z3 E8 D& `factorial(5) = 5 * factorial(4)
    , }$ U5 x' \4 d9 Y6 `- u. T0 o- }4 Xfactorial(4) = 4 * factorial(3)
    ; E& W( q/ d7 {7 A& Ofactorial(3) = 3 * factorial(2)
    6 x* P4 R  c8 u7 Vfactorial(2) = 2 * factorial(1)
    9 H6 r# y: X/ M5 C& k# e' {factorial(1) = 1 * factorial(0)
    & Y5 e' f6 c- s4 G8 P# lfactorial(0) = 1  # Base case
    7 e7 V( A+ C7 I6 [% r
    1 U8 a' h3 E1 m, X. q" s# hThen, the results are combined:1 Q) t: u3 o1 \
    8 C7 Y& }# K  `9 \; N) S

    / l* k. n+ |2 q9 k5 V+ }; ~factorial(1) = 1 * 1 = 14 y7 z5 ]; n8 M! I5 K! Z
    factorial(2) = 2 * 1 = 2: |$ f3 L" ]: k' G# U- }0 T1 {$ ~
    factorial(3) = 3 * 2 = 6
    " ]2 q: B) E5 U5 Ifactorial(4) = 4 * 6 = 24
    & Q7 W' f) W- {) n9 i- Sfactorial(5) = 5 * 24 = 120
    6 V& ?: Y, b* Y/ X8 j9 _
    " N2 i: O3 Z6 e0 f) k' Z' F: CAdvantages of Recursion
    $ }( ]% G$ M# D/ j6 i4 x2 z& H- ~& ~
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# C! q0 r' b( v/ [8 W6 j

    4 {0 Q, ?$ S& t* t+ V+ E' h    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 d9 A1 \# r3 C, ?5 z$ d2 `! y
    8 v# W9 V7 K6 _( R( {4 KDisadvantages of Recursion9 b, g4 V2 M3 U

    8 d4 r. I2 \8 G* B; _% r6 P% g    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.' l# M/ c. E( s
    * u( r7 s  `/ o) S# H0 j
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) N0 M2 j; g; E- ]$ r9 o& H7 D
    ) x4 }& ^' ~+ b' q. v9 v5 e2 e* J1 O
    When to Use Recursion# V1 J7 i1 X8 C1 k$ }! _, F
    / \  f4 M* l! u. s- @
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    & k! F# R, @8 v+ t1 m' G4 g/ E: N2 q' w7 {0 d
        Problems with a clear base case and recursive case.
    8 p! V8 A, ^1 u6 t5 t8 f  z9 F6 ~* f; w  H5 E$ M
    Example: Fibonacci Sequence
    ' \# H1 {% K9 [; Y0 ^8 y% g# o
    / i; O. ?1 H  v; W" l) `The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ) m0 A$ v/ _9 b8 X" {
    1 o1 N0 k! |  X; `  u: O  S    Base case: fib(0) = 0, fib(1) = 1
      `1 l  d, V( [* n- @
    7 T, T9 S; l! M% c    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    0 ]- x8 J# Y7 |9 K7 A- d9 g) f; G7 U# m& {) X# m7 `
    python( l- M9 v7 t9 D& P. j
    . j1 j$ ^# ?. R
    ; m% P3 X, j+ P5 D  ~1 x' l: [
    def fibonacci(n):/ Y- w, q' z- M# o3 |
        # Base cases1 H) |0 y) S3 V- |  D2 Q8 Q& r1 C7 m
        if n == 0:3 A2 D# O$ r6 }+ b/ _& L
            return 01 x9 N! c0 y5 G7 g- T
        elif n == 1:3 G6 j0 `8 E$ |: {( e3 @: z( T
            return 1
    6 L: X% }1 P" X1 G    # Recursive case
    * y/ g/ K9 w& b  s; v& Q    else:& Y( g# c3 f7 L) y! X
            return fibonacci(n - 1) + fibonacci(n - 2)& Q+ U- c* F- K
    ; r' d* G1 i, c- K" H
    # Example usage* S& b% B4 H2 ~
    print(fibonacci(6))  # Output: 82 K% D% p5 _0 d) \0 D5 T
    ( A( ^1 |7 p7 e8 b8 S3 d
    Tail Recursion
    $ _' K: A+ a% V  A3 K# s- ~9 n2 Z0 `- Z4 m+ B' z; ]9 G
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).% q% b1 N) m4 _0 q2 ]. q

      I) @; k1 a; f2 n4 tIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-9-17 03:37 , Processed in 0.038510 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表