设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1210|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 - H! e4 j% R% }# p( j: N) _
    1 b, A5 z' P- |2 i4 H
    解释的不错
    * s3 y+ _' r4 }  ?' S) m6 I& v" U, f+ N3 h% d0 c- s
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& A/ X5 q) i& `* W2 Z5 b

    / A2 c9 C7 T* i5 ~8 w 关键要素
    7 f5 w% S3 Q# X" C( H! k+ _1. **基线条件(Base Case)**  g1 v$ d$ N$ l/ S( E" O, T
       - 递归终止的条件,防止无限循环
    5 H7 M8 d4 _: u   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1! f; c/ s& x8 B7 o' ^8 R' a9 \

    $ ?" z# \6 n( g; Z2. **递归条件(Recursive Case)**3 u: N& Y- V! `# R& {4 J% b
       - 将原问题分解为更小的子问题3 y& k6 L  J: ~4 E2 O/ V
       - 例如:n! = n × (n-1)!6 x7 p' I+ l& K8 d6 p
    ! p6 M- m9 w+ |: x) M, k& f% I
    经典示例:计算阶乘
    " M* e; p( K. z8 F; g/ opython" j2 ~4 e, t: H- m  l
    def factorial(n):
    3 @* N8 d* I! d  w/ {4 d% N    if n == 0:        # 基线条件4 \- }4 U4 I4 S9 ^: I
            return 11 n/ k2 p- ~! @; E  H+ I
        else:             # 递归条件& \% }* s! k( V$ f; {. Y
            return n * factorial(n-1)
    . s9 l# y; Z( a4 y. F/ z" T0 n! J执行过程(以计算 3! 为例):
    ! q$ V" O& Z' o. O; H/ f% o0 N# rfactorial(3). r* b0 ?1 _+ y5 `
    3 * factorial(2)  E% H1 J, a/ u1 c" V% }) a
    3 * (2 * factorial(1))" h8 L& t8 H- n7 d) W3 w9 E
    3 * (2 * (1 * factorial(0)))
    8 o) S. f$ d6 v" K) K) F! @! k4 u' {3 * (2 * (1 * 1)) = 6, M0 Y& }% W2 m1 h' x
    6 S* o6 C# E9 P$ S7 g
    递归思维要点+ O4 a1 p0 r/ l/ `: M8 d
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑+ s. ?3 \5 H+ r
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . p9 M3 X. a8 ?  A) \% c3. **递推过程**:不断向下分解问题(递)
    : Y* ^- f% S9 D- O. G4. **回溯过程**:组合子问题结果返回(归)% S$ v. Q; [% A$ [
    $ ~3 A7 g& G6 N3 g  i, g7 I$ L9 m8 @
    注意事项
    8 [: d1 e, n* e$ g6 t$ B必须要有终止条件
    4 d5 ?" `# j  ^) x6 P  c* [递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 e# ]% x6 B" E  ?8 X7 r/ C' F
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    5 l# |- k0 U  U5 z  h0 l尾递归优化可以提升效率(但Python不支持)8 b0 H% M  d( V- [9 j' n, P/ T
    2 s( m8 H! c/ T
    递归 vs 迭代5 [& D( o& x* O# E4 e3 h! F
    |          | 递归                          | 迭代               |
    1 B1 n8 C( {- M) D  ~+ ]& @. L|----------|-----------------------------|------------------|
    8 A. V2 c$ p9 B! Y5 G| 实现方式    | 函数自调用                        | 循环结构            |$ R5 [9 j8 c  ]2 ?
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % ]2 C7 f- l3 I8 y' [| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    . t/ g0 H) e0 o. W| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- c" U- Z: l7 t* Y4 ]8 Y/ s

    9 b& S1 I/ L  v: M1 z 经典递归应用场景; b! i7 `2 o# A8 \% b
    1. 文件系统遍历(目录树结构)/ t( M* B8 R: ~4 c
    2. 快速排序/归并排序算法2 I% H2 k* {' M! [' k
    3. 汉诺塔问题
    * `, b" P# @  X- z' O4. 二叉树遍历(前序/中序/后序)
    8 a8 N" P5 u$ |% {1 K' a% S5. 生成所有可能的组合(回溯算法)
    3 R. v) ~1 w6 b" m5 f6 q! @9 b: h" Y6 @# m) A; V+ Z0 O
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    29 分钟前
  • 签到天数: 3103 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,. _4 n  t3 C, M6 a! q# x) q9 j
    我推理机的核心算法应该是二叉树遍历的变种。% G! [! u  X  H( k; p# F( ?8 w
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: n7 o. B7 e8 U. G% i; u! U
    Key Idea of Recursion. b) y% E* h+ S* y8 Z" L' g

    : _* {3 w+ B' u. c/ ^: ^A recursive function solves a problem by:, n8 x% e8 X) w/ h# E

    : H5 e. J& `) Y/ z5 M    Breaking the problem into smaller instances of the same problem.9 K; X: U7 w  l) w4 F; b; U
    $ ]" `& K- r+ ~
        Solving the smallest instance directly (base case).# }, Z3 W# P$ e  D6 D& U
    . g1 Y4 ~6 [7 Y5 S$ j5 z- u. Y4 M* J
        Combining the results of smaller instances to solve the larger problem.+ a- w& [. N# `: }" @4 @2 {$ d

    6 O% X/ T& m( H" X! N9 ?' OComponents of a Recursive Function
    7 h5 J- f0 v1 \& n; O8 w' O! }/ W0 U& d, ?4 j. m
        Base Case:
    " T9 ?' k: B2 H# C; K" L2 z& r
    # t- I" r' d) e) d5 j7 ]" w( g5 E        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( G: K7 [1 t! Q2 N" K6 {/ i8 h$ c7 T% c
    ; \6 y# s! T) k  N
            It acts as the stopping condition to prevent infinite recursion.
    * x( ?- R' p  w  A& ~; |; _- V9 A
    8 H6 G2 r) t, P1 H# v. K        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 e$ K' L) e. x9 V- J
    1 y6 K( k- b& z- ?! N( {7 v: e; r    Recursive Case:  T) ~, u4 w0 }, \1 W
    7 a1 a5 ~4 M4 a8 O9 e
            This is where the function calls itself with a smaller or simpler version of the problem.
    9 ]* M0 x9 R# l  I6 d# _. N8 v' T& Z- N
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." {3 L7 y& A0 q0 S& u) V6 G/ k  H& |
    ! |* J; M0 m4 j, M
    Example: Factorial Calculation
    8 U& K7 s9 c! [3 s: n
    # O: ^! w& M& Y; i5 S4 K3 W) qThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    $ l" L' j' i5 P, _, C+ u/ o  A2 t4 G# E! S4 t# }$ Q
        Base case: 0! = 1
      |! o- u- f5 j9 R+ U8 Z6 n# X
    & z' w3 ^8 u. U/ Z    Recursive case: n! = n * (n-1)!
    ' x4 ?8 W& {$ }; l  s9 l( t; X* R" C6 o/ ~# r0 y2 p* J
    Here’s how it looks in code (Python):
    + E+ {& [) J& V  Npython3 o9 C, r2 r/ H' W$ w8 I! R

    5 k8 ]6 I1 [* V/ C9 D& k. @+ A9 d5 `# j7 S& ?0 O4 c7 X7 s3 j
    def factorial(n):+ C! d/ b- M- I- J9 U6 n, g) G
        # Base case
    $ D; s$ c* N( L8 k; {( G    if n == 0:3 N' s5 X0 x9 v  f) u' v
            return 13 R. @3 r9 w7 K9 _5 I" ^4 |5 _
        # Recursive case5 R7 m% D! |  @. A& o
        else:
    & ], A5 l/ P& s' ]1 M+ _! ~* U" g/ O        return n * factorial(n - 1)9 t( d1 P6 p$ u% j' B- L" b7 L: m

    . y7 [0 M& I  }+ A6 `# Example usage7 U1 l5 T$ `5 }7 h: o, g* e1 U$ Q
    print(factorial(5))  # Output: 120
    + l) O' z: Y% M7 }! X/ k9 }# s) `- H9 S3 J9 Y
    How Recursion Works# R* _& I& n$ q2 d: ?( Z

    * W; F6 z1 n9 z7 @. k5 q    The function keeps calling itself with smaller inputs until it reaches the base case.* K  x2 v3 e  t: c5 S5 Z9 ~6 I9 z
    ; \4 C: |" K6 K- t0 D7 N
        Once the base case is reached, the function starts returning values back up the call stack.5 h# V* m' q8 x
    6 |* Y* S& Y$ O. O- l( G
        These returned values are combined to produce the final result.5 d8 H9 a- z' z

    ( E5 e9 |3 W/ k4 |& NFor factorial(5):, [: a/ D. l3 `( R9 o

    , e# f+ z+ \1 a! d. ?( Z
    % t  g- U; u. N: ~: nfactorial(5) = 5 * factorial(4)
    5 J7 D' ?- w" k2 T; a6 e& B, |factorial(4) = 4 * factorial(3)7 q. ~- E" |: I9 a4 C+ A
    factorial(3) = 3 * factorial(2). _5 J6 J) M0 o7 ?2 v  c
    factorial(2) = 2 * factorial(1)8 V3 T9 P* b& B  Z
    factorial(1) = 1 * factorial(0)
    1 d  M: F; m. d) Kfactorial(0) = 1  # Base case
    - q2 d- s( j, y) k8 e2 m! X" N4 J2 ?( l! z
    Then, the results are combined:
    * Y) o7 M# f! r/ |, k( J/ Z" Y* X3 a2 g" W, [
    - u; U$ ?+ m0 l, B1 E6 U
    factorial(1) = 1 * 1 = 1' H% _' _6 C4 i0 o& u3 @
    factorial(2) = 2 * 1 = 2# I. j" A7 a- g) n) H
    factorial(3) = 3 * 2 = 6
    0 c: W: p" y; f0 T9 [factorial(4) = 4 * 6 = 24$ N. N* f: P8 {* [' U6 B
    factorial(5) = 5 * 24 = 120" ~0 s( B0 c, T( H( O4 u/ o

    2 ?! v$ E0 E  Y2 k! ^Advantages of Recursion
    1 d8 }9 }# n) x" D/ S6 m7 ~. b# M9 X  I2 A6 d8 c
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    . f" j+ T% ~" W1 p% J' ~1 g* |
    6 D5 r+ d0 \; Y+ W    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) }$ U. q5 Q- p8 s( K
    ' Q- ?+ c! @: c: Z+ XDisadvantages of Recursion
    * X1 I! F- j0 s0 m+ F2 u9 Z  v
    % E) X; P& x4 E6 R) h    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    & C2 V! u; g; Y1 u, ]
      z; s7 R1 C' a, J( x9 f. E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ g, G: R  Q! v2 J: q9 C) f* \( i7 g+ U2 ]! E9 K
    When to Use Recursion
    ; P: A: J8 n6 F$ I
    , V* m# ^- P% o. W3 }0 F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    0 O3 ?, {8 l* H; g
    / }* {5 l/ d5 c; z7 q6 Q% R  O- `- I    Problems with a clear base case and recursive case.1 c, u, }/ j8 L( v
    ! ?2 }% K% v' i* q+ e0 q
    Example: Fibonacci Sequence
    6 S* Q( M  j/ |, g: g, k& g4 J
    ) E' f) ~; w! ]; c' l% w& xThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    7 V8 J3 S+ I  L) b1 a0 ]8 A  i! ]+ `5 c1 D; a  _/ r, u
        Base case: fib(0) = 0, fib(1) = 1
    # V; j# F0 k+ z& A1 s3 x( c# l9 m1 F1 `
        Recursive case: fib(n) = fib(n-1) + fib(n-2)+ @0 y0 G7 Z% `0 ]8 e
    9 g; r4 f" c! H2 X6 L* J
    python- V  V6 c' Q% }: }- t( K; Q

    * x( l" H7 S. s5 R: F: M: c) b
    3 ~. U- v  p5 @/ O- j8 s9 n& \def fibonacci(n):1 L; @: A0 q8 Z" l0 f( I7 ^
        # Base cases
    # X/ y. m8 f) `8 G4 ?    if n == 0:- P& L, m/ W4 I( p9 U/ q/ U- J
            return 05 `, q; X+ _. P' v  |: S
        elif n == 1:
    : o+ D2 O# h9 N+ a- `1 {( O        return 12 a9 D1 {2 Q3 C
        # Recursive case
    . ~) x4 G5 d5 K0 C  q9 C    else:
    ' m4 X0 {7 h% Q) e" J, ?9 d6 M$ {+ m        return fibonacci(n - 1) + fibonacci(n - 2)& n! f6 B7 x( g& M1 N
    ; _+ v+ [9 K, D3 n$ }8 s0 O
    # Example usage
    " {9 ~' {2 U: z8 M0 g; s  i! Mprint(fibonacci(6))  # Output: 8; q9 f; V$ c0 p  K$ _# u  @
    ' b5 s  O; n: o- i
    Tail Recursion
    ) K" }4 Y8 d3 y9 X' N6 ~; Q1 p* I
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    # K, G$ g4 _" f( N2 o( h& P' f. j# P3 w
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-28 08:17 , Processed in 0.032825 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表