设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1767|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 6 U- b% ~4 F' F- F5 e. T1 h

    ( p) ^4 Y; V# Q: \; a解释的不错
    & V& Q# }2 T" h
    * F# K/ [; v" ?3 ]递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 S7 R9 a+ j6 E, u' r* z7 z7 }: Q  t; l$ C" P9 O  y
    关键要素
    & x' X6 c* I* G1. **基线条件(Base Case)**& o' e3 T+ d+ t: i* R+ E3 A
       - 递归终止的条件,防止无限循环
    $ @: Y% L6 S/ P+ |7 {8 h  [   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    # x6 Q+ h2 K1 J, j" t
    $ h+ ^0 U9 _! O1 G: o& f# ]& L2. **递归条件(Recursive Case)**4 t: m) J) e" C# M, W
       - 将原问题分解为更小的子问题
    : {% h3 d7 G6 w/ u6 @   - 例如:n! = n × (n-1)!- M; q8 A% x2 k, ]

    # {; ^! {2 ~2 a# O 经典示例:计算阶乘/ O0 c9 t9 y* i9 Y/ k0 u+ |
    python
    9 j/ ^4 s+ Q& j2 mdef factorial(n):
    3 t0 x! r6 q9 d    if n == 0:        # 基线条件2 |" h1 i* i' U' r3 f0 j9 P3 N
            return 13 F  {% w+ A* }' Y
        else:             # 递归条件/ U: B  N0 P" c/ r" R
            return n * factorial(n-1)
    0 D: r% u) w+ x9 }% h" h执行过程(以计算 3! 为例):
    2 m8 y# c) c4 Efactorial(3)- W! X% f$ [' _8 ^1 L
    3 * factorial(2)
    . \' f0 s7 @  L! M5 M3 * (2 * factorial(1))* v- N) k( |; M* Y6 J! D6 n
    3 * (2 * (1 * factorial(0)))% l- X6 f0 h% M3 _" w8 \7 g0 J
    3 * (2 * (1 * 1)) = 6
    * U' ?: W) Y; p8 _& C- P4 }7 V0 e# V+ \, y4 u7 _# I
    递归思维要点* h) r" h) G9 I" k  A
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " l5 q" R, _5 ^9 Z$ W+ _' _7 G2. **栈结构**:每次调用都会创建新的栈帧(内存空间)# N; m2 A* q0 N
    3. **递推过程**:不断向下分解问题(递)3 F# Y" p" ~  o" c
    4. **回溯过程**:组合子问题结果返回(归)
    4 H' g: J$ N2 x3 @
    # b! I/ k' C3 ^3 H 注意事项
    / S: K3 K6 z5 }1 F# _1 J! y% O0 ^必须要有终止条件/ w5 [  s1 X  \8 e% W
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    , Q8 K( R7 D& G/ W, G$ `某些问题用递归更直观(如树遍历),但效率可能不如迭代( ?! N' n* H% U* x* t
    尾递归优化可以提升效率(但Python不支持). L, h. k: ^2 q* `4 j4 m! s
    8 G/ E$ C5 O5 |" p6 n/ |) ^* m: L8 V0 j% Z4 j
    递归 vs 迭代9 m. M+ i8 E) `
    |          | 递归                          | 迭代               |; D# d! k% K) b  h4 I  T
    |----------|-----------------------------|------------------|1 B) e+ F$ C; m' |. ]
    | 实现方式    | 函数自调用                        | 循环结构            |
    - @3 q- U1 m# ~6 H5 F  B& s| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ( V6 D6 F1 H) _6 y5 J2 J| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& Q  T) w$ x! z7 r! O6 P1 I. p
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    3 Q1 X3 I3 K9 W$ X" f5 ^0 |$ j3 K( ~5 H) B
    经典递归应用场景
    7 ~* R! T8 t- }$ d% G: ~5 n9 [8 U9 p1. 文件系统遍历(目录树结构)$ P4 n6 L# Y9 j, S4 a; A
    2. 快速排序/归并排序算法
    9 s2 \1 u: J0 F0 ]3. 汉诺塔问题" I) Q6 E" t4 C
    4. 二叉树遍历(前序/中序/后序)# r' S6 F1 s) |  L
    5. 生成所有可能的组合(回溯算法)
    . X: i! M7 u% e. c3 Q  t, c3 j7 M3 D- m3 n$ u8 n! Y
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 06:08
  • 签到天数: 3141 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 J( q) t- D/ d. L我推理机的核心算法应该是二叉树遍历的变种。1 b6 E4 `0 \- v' O
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. Z. I8 `6 ~3 G  q
    Key Idea of Recursion5 S( O  Z1 E- m* e% {) v
    " \0 F% r$ ~& m, c7 K
    A recursive function solves a problem by:
    % U6 T9 m3 R, h8 N
    1 d1 I/ c, B& ?/ Y    Breaking the problem into smaller instances of the same problem.+ w( ]5 z* X) ^, w; ?8 F- p

    : H) ~+ S* Z# o* b    Solving the smallest instance directly (base case).
    ! s, x! z6 U. i6 y1 |9 j
    ( m( K$ z5 M) n$ f    Combining the results of smaller instances to solve the larger problem.: x) A' s3 L1 s/ s7 L6 X

    7 z% E$ U- J$ k( HComponents of a Recursive Function
    3 r; y3 ^* c4 U9 i6 b# H3 h% `: Y# U% f7 P6 J/ \
        Base Case:8 [) g' M, [+ Q3 ~5 e1 x

    ' {  \7 I4 A" M- p0 \; T5 d* f. C' G        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: ?% W8 n1 p- s( b3 ~; I

    * G4 Y. V0 i3 t+ t9 V8 s        It acts as the stopping condition to prevent infinite recursion.
    2 O/ M' w# |/ I$ c7 V3 D8 k
    + Y/ b& E3 p2 R" T. C7 A# R$ ?        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.& u! @. L+ [& O9 C# k. i
    $ g+ H: A) {2 M( q, W
        Recursive Case:' x6 w5 D/ |# s+ r% z/ W

    7 O; w$ n: o7 ]        This is where the function calls itself with a smaller or simpler version of the problem.4 n8 q# n1 @) y

    8 L; H/ r7 b& _) K        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 h+ W+ T1 T4 i0 u8 S$ T; [( A1 g' Y( o9 d% b) y
    Example: Factorial Calculation9 O% b2 ^5 }8 u' V9 [( h

    ' \; p& Q( x1 E  xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ V/ X" D9 A! R. r. N, ~

    1 N( ^1 B8 b  K4 I: [    Base case: 0! = 1" O1 {; e' |. o
    2 |9 g1 p. Q' Y- G+ i; Z8 V  v( B
        Recursive case: n! = n * (n-1)!
    ' b# U4 N4 ^' b7 z4 ~
    ) l9 |0 D& @1 w- {Here’s how it looks in code (Python):
    - X; c  b2 V" W+ Z* \- x; Rpython' c0 z5 u* G+ p- {1 a: I* S
    5 x- I- c6 j7 d2 m( \
    * X- W6 C6 Y/ Q9 b* P
    def factorial(n):4 @* C( `& V* u* z/ U  g5 T  `: z7 C, M: q
        # Base case* G* @! d( U/ e* G1 I
        if n == 0:
    ' l/ f8 E1 ]+ w( `1 P. x        return 1
    1 _) B& p/ [2 \' x) C    # Recursive case
    & O7 l- x# {# o8 y    else:; a' [" X2 I, v! ~1 b7 c. D
            return n * factorial(n - 1)
    3 o4 _2 x/ e- S" q! w" N: L. j3 j% J1 F
    # Example usage
    ( K' M& G/ |& ?" r! rprint(factorial(5))  # Output: 120
    ) ^5 R+ f" f% }& g6 N. S( k! G; i
    : j. o6 e6 ?6 X6 l+ p9 G" WHow Recursion Works
    4 B4 f& G" ]6 ]7 z9 ?9 ?% b
    6 D+ l# K0 D; A) ~. P0 {( P3 A8 r    The function keeps calling itself with smaller inputs until it reaches the base case.
    + N+ m# v$ g- @+ N) A- p- F2 @! k* W" C/ s
        Once the base case is reached, the function starts returning values back up the call stack.
    . A$ ?  ]4 h7 [1 X1 R$ o
    ! J: v3 P9 H. |% ]    These returned values are combined to produce the final result.
    : q8 v4 X# N9 D, d" J# }* h
    & g# A5 w4 y: v/ R0 p; I$ _For factorial(5):% y  Z- Y. C' ^+ n

    # k  f% j+ }8 f, @4 G: y. K/ b1 y( P) a6 j
    factorial(5) = 5 * factorial(4)
    & T$ }' |; B/ Jfactorial(4) = 4 * factorial(3)) Y- Z4 c4 N0 Z
    factorial(3) = 3 * factorial(2)
    $ E( q' e0 |" M. c6 u3 q" d6 Lfactorial(2) = 2 * factorial(1); w0 Q: e6 j7 u" z% G
    factorial(1) = 1 * factorial(0)0 \6 E4 c" f, A0 n! s3 x, r
    factorial(0) = 1  # Base case4 S! F  F- q- x: g
    6 c( u! V# n' K+ S( u& J
    Then, the results are combined:
    6 J" L4 P) f! ?0 `" [/ [) D8 n% `
    * R2 r3 f" I$ b4 d4 c3 ^9 J2 g! N) |% Q- T9 [; m; e- K
    factorial(1) = 1 * 1 = 1
    ; s& X& L8 s  f& x  w9 C; xfactorial(2) = 2 * 1 = 2
    0 g# V8 [) f. z% [4 Hfactorial(3) = 3 * 2 = 6
    $ |+ }3 S3 D/ e) e8 Cfactorial(4) = 4 * 6 = 24
    & i7 O/ i. x& P, ^2 Rfactorial(5) = 5 * 24 = 120
    & X+ J5 ?: g7 h* j9 @$ j& _' u1 R2 W# {  s" v/ s, a  k
    Advantages of Recursion# @) k8 K7 e9 |, b+ g" G3 r+ W
    $ a3 u' ?. U2 X; g- ?$ L
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    3 R9 V6 W' V' f% ^3 B: J: j/ ]6 c4 H
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    % j, c1 _( k( R5 d" b9 L' q/ S: K! ~+ L  N7 Q
    Disadvantages of Recursion! b3 M  b) V4 r. @8 @

    5 I2 B: N+ {" f    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' `+ ^6 N8 d0 R3 J% V: `3 {' R9 p# }
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    $ r! f. l; ~8 d4 y- d. Q. n) R1 R: M: s% p1 P) N: t
    When to Use Recursion
    ( |) V+ h& {! j* B) J, L! X! M6 U+ V( U$ v9 K* Z+ |# W
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    3 O) Z6 G7 n5 X
    + a+ r1 J& S% K5 H# p/ E. [% H) _% ]/ O    Problems with a clear base case and recursive case.
      h, C# m+ w# F+ `! P" c4 l
    3 z( `0 a1 e* FExample: Fibonacci Sequence! M4 r+ M& E& T: R

    % ^" P3 E/ I& tThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    : S  V( S9 O+ G* s2 G8 {$ G  I' Y
        Base case: fib(0) = 0, fib(1) = 19 z! \8 N: O" Z% }
    ) A; `1 P, ^/ c1 q
        Recursive case: fib(n) = fib(n-1) + fib(n-2)8 |+ ?% E9 H. j" s( H* P; C
    7 q7 ]0 m4 Q( T) v
    python
    , d5 y' n# E/ {' y
    " ?* m/ U0 B( X" b' P
    : b5 i& G- n7 f1 O" Fdef fibonacci(n):9 R5 e" y6 P1 K+ d
        # Base cases3 a0 p- X- H4 R3 V6 }
        if n == 0:& y; y4 u/ D3 r
            return 0$ H) D6 y6 `: T/ i. H+ s9 `
        elif n == 1:
    5 Q7 F% D0 d) B, }) L$ o        return 1
    7 A* U3 z: }4 e* x3 v8 B2 \    # Recursive case
    ( M7 Q# c+ g0 |5 y4 e: P+ ?& |    else:
    . o- v" T4 f" i        return fibonacci(n - 1) + fibonacci(n - 2)
    1 K- L4 d7 T* c2 x; u5 h2 k
    2 N! p' \" ]* B5 [) n3 c, O# Example usage5 t; a. w2 ?( P  {/ N0 G
    print(fibonacci(6))  # Output: 8
    6 [, o; n/ R4 ~
    5 L; c; b; `2 ~9 H7 x8 eTail Recursion
    5 s' Q; r! P1 J# F: r
    ' l6 p6 F7 O8 \) r$ \4 ]) yTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).' R. t0 d( T( f, }7 H$ j+ l. g8 B. s
    % }! }6 m: Q1 k6 m& j. a
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-10 01:02 , Processed in 0.030628 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表