设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1804|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    2 _2 \8 ~" w# Y. U' ~2 X$ D% }8 [. B4 Q( p! {" P1 q3 ^" ]7 I# |
    解释的不错
    0 d: R) p  S8 B2 w# p. S& C# C0 e
    ! `) Q( o  z* r& A' }递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + O  T" s2 }6 Q+ ~( n
    0 ^3 _0 O! H4 ]% s% W 关键要素
    ! S! y+ R3 Z* J- Q1. **基线条件(Base Case)**
    - g( A& @8 n: j$ f3 x2 r  Z) Z3 E   - 递归终止的条件,防止无限循环
      e  e6 j* S' B% t* c: b( D   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1" W! L. H6 |7 \% ~, V/ x/ q
    3 U: U3 u- I( \! \' E
    2. **递归条件(Recursive Case)**5 `, ]( M# f8 t, l, i; K+ Y% e
       - 将原问题分解为更小的子问题2 B' m8 a. }7 i7 z& F: F/ q- k
       - 例如:n! = n × (n-1)!% u5 e! u8 V# p. _$ Q
    ' V7 n5 F) j+ n2 g
    经典示例:计算阶乘& d6 x# {* Z8 ~9 r5 a7 T0 b
    python- X. {* V' V; j9 U
    def factorial(n):: H& `4 B* [. I
        if n == 0:        # 基线条件
      a) l. X0 x5 F: w        return 1
    $ J- @1 A, O) V4 n3 [' a5 e    else:             # 递归条件  F5 N# y* E9 g
            return n * factorial(n-1)
    0 Z7 J9 W6 _$ [% I8 _执行过程(以计算 3! 为例):
    + A4 p# B8 m# I' w. p3 g8 D# m& Nfactorial(3)
    ( M! U" [0 ~3 U+ s; U6 }* Y0 N3 * factorial(2)
    / L( r5 y: _2 h3 * (2 * factorial(1))
    " c, M6 Q0 Q" t! A3 * (2 * (1 * factorial(0)))
    6 B2 O0 Z& |9 H3 * (2 * (1 * 1)) = 6
    / g; H8 v# C5 j5 {5 D  i5 W7 j
    ' T$ X* A9 S9 L( B/ V9 U 递归思维要点
    / w& W2 W: f% b  _5 @  S: \2 |1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    7 A$ ?3 k5 j, R$ @( N; w2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : m: A! u+ I4 h; C( d& {1 E3. **递推过程**:不断向下分解问题(递)+ w! v1 `$ n9 l% C1 M( R
    4. **回溯过程**:组合子问题结果返回(归)0 b9 Z* ]* X+ P: H2 ~* G& ~4 b

    $ Z6 x# Q/ D1 }% } 注意事项
    : r: H( B2 r: N+ |; }必须要有终止条件
    5 A" n) X( F  {递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 F4 t/ F, w& S5 y
    某些问题用递归更直观(如树遍历),但效率可能不如迭代+ B$ V' H8 c! T5 c9 S4 o
    尾递归优化可以提升效率(但Python不支持)4 |4 n5 z- x, U. g2 @+ I
    * W2 N9 `3 P1 `9 E  b9 D8 V8 {
    递归 vs 迭代
    & n" |+ F  l" h2 c' ?6 R|          | 递归                          | 迭代               |% k/ q0 i7 t% X* ^
    |----------|-----------------------------|------------------|
    5 S$ ^- g! D) a1 x2 p7 e| 实现方式    | 函数自调用                        | 循环结构            |9 g* h$ o. x8 d1 X# o
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    + o) Q7 u/ w. ^& `| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    / ~9 g2 v: X' ^# _! A# J| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
      H- o' ~2 a, L% `( I: A$ f9 u( n; ]" U# F/ |7 I
    经典递归应用场景
    ! ]5 S( \6 l2 O8 ]5 _1. 文件系统遍历(目录树结构)
    1 Z6 x* D3 U+ _6 m" @1 m& |7 o% z2. 快速排序/归并排序算法
    ' N( T4 `$ O. u3 s+ E7 g3. 汉诺塔问题, f3 E- F! O  _: _: ~" U! A4 s
    4. 二叉树遍历(前序/中序/后序)
    - c$ X0 S. Q* |' t8 [5. 生成所有可能的组合(回溯算法)
    1 b* N3 s. K* u, C+ c0 C
    & S" i8 {. Z  `' \' Q9 E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    难过
    昨天 07:20
  • 签到天数: 3144 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    4 \' h. Q* U5 Q9 }0 C5 q0 J9 _0 j! S我推理机的核心算法应该是二叉树遍历的变种。
    9 ?  y- s7 l0 Y6 ^% Z" x4 O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    1 E8 [8 z3 t3 nKey Idea of Recursion. t  y2 @( I- B( |& W: M

    7 X! B3 f  I; x1 S# YA recursive function solves a problem by:: A% p% d  N# P+ y
    ' X; }+ n# x5 A; ~
        Breaking the problem into smaller instances of the same problem./ E- V( U1 t1 r5 j' x
    8 k" H! A8 F! |! P1 G7 l( B, h
        Solving the smallest instance directly (base case).. w9 @+ Y7 d9 \
    4 C3 x- h! u  e
        Combining the results of smaller instances to solve the larger problem.
    & E2 x$ z' U- p6 O3 D9 X! q! b! Q. o* t1 H2 L. d4 V
    Components of a Recursive Function! p+ v( A- F- H6 T# |
    " V; R% z/ d; r5 |8 m  Q: V( g
        Base Case:; b* l) W/ g6 d4 y! n  z

    ' w( C- t- F+ L9 }8 P3 j        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    & T: y* c( W) t( e0 `: c! o2 H$ N. V0 t' y
            It acts as the stopping condition to prevent infinite recursion.
    , t! \' C% Z# F- P" _( i7 e
    # h7 d8 u- X' O9 a        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    / R9 T2 [! T3 `7 B% x( Z9 [" R- b9 D: U
        Recursive Case:' E% r/ s+ t; T, S# D' d% K0 x. Z6 e

    4 p" Y. i: ^3 }        This is where the function calls itself with a smaller or simpler version of the problem.
    ' p) @) v, Q; m: f  G5 e( T% Z: Z  F: o! R, M, v7 y: X! D
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 r( G" p+ S, ]! K' ]

    ' v+ o  D) T2 R# F1 S+ x" EExample: Factorial Calculation# p1 m, y# `1 n& A

    + p  f' J" f7 XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:8 p5 K2 @; K' l# I; ^

    6 Y7 C3 R( ~* z3 v6 g) e  j3 }    Base case: 0! = 17 Y1 T- }/ a9 p) `- P5 Q
    6 ~; w; R3 e7 m
        Recursive case: n! = n * (n-1)!. T  G8 \) H" p5 K
    ! X7 ^/ l. s1 _7 ^4 a/ V, B' b
    Here’s how it looks in code (Python):, w2 l- X8 B0 P# [! W; L( j
    python
    * Z6 L. {2 T7 w6 K, i, q, q6 [/ K0 P
    ( x0 k9 o  i. F: j0 [* F
    def factorial(n):  B- F* W" a  S7 [
        # Base case. ~( X! \9 i) ?6 _) a$ x
        if n == 0:7 \6 K9 H& X$ w5 W
            return 1! t# F0 ^: Q( d: R% i& |% R
        # Recursive case
    / d, h# |& q# k) x9 r    else:
    9 Y# q1 ~: d% }, N, F: z; L        return n * factorial(n - 1)
    6 c5 c0 Q' J" ^1 x6 t9 V' \2 C8 J6 f. [) P1 u
    # Example usage
      P% a) w) T2 g+ \/ ?print(factorial(5))  # Output: 120  O! F! c" J  a0 o. d+ ^" ?
    7 |$ E3 [* T' `# E
    How Recursion Works7 {* z2 [* e' a

    ; V/ Y; U: _1 ~0 \! m8 b! a    The function keeps calling itself with smaller inputs until it reaches the base case.
    7 M4 K4 `0 w8 {3 f2 o) N/ k9 x, {
    3 L% G3 H0 _- A6 b    Once the base case is reached, the function starts returning values back up the call stack.
    % c& ?1 u6 [; _% h. t1 d0 p7 H9 `: s8 U
        These returned values are combined to produce the final result.3 k" K& Y8 B) Y

    : y8 Y  g/ ~: SFor factorial(5):
    7 [+ X  X7 V% N! _. L/ ?  n8 U! _* s
    ! \) E4 T* n0 T- [& E; {6 S( ?# R( b
    factorial(5) = 5 * factorial(4)
    ( {% L! p. Q8 U2 T- _factorial(4) = 4 * factorial(3)
    : |& M- ?4 d. F0 ]( Q% \  U& ?factorial(3) = 3 * factorial(2)
    . Z; c+ J. `: Q# s3 Mfactorial(2) = 2 * factorial(1)' M5 P4 @$ k& d# b. g
    factorial(1) = 1 * factorial(0)* g6 a+ t& V, V. y
    factorial(0) = 1  # Base case
      q( n1 m6 l# [6 x4 m/ b9 g6 P5 r8 o% a
    Then, the results are combined:
    ) r' w+ O+ f$ k/ i6 j1 ?$ a2 h
    3 _* f' p2 w5 x3 M+ V7 F) d
    * f+ ^+ r0 k2 b% h( _factorial(1) = 1 * 1 = 1
    ) |# T; R' `% P7 X6 B7 t  bfactorial(2) = 2 * 1 = 28 s' l* N/ V; E) y. R, G1 ~
    factorial(3) = 3 * 2 = 6, [. R1 Q* c. o  e5 ~8 s
    factorial(4) = 4 * 6 = 24  k8 R4 V$ I# C% y9 v5 ]' j
    factorial(5) = 5 * 24 = 120# C& h. u! J* [. I4 n6 E
    % q. C7 u  v& A- }
    Advantages of Recursion
    7 i$ m3 y! N, t3 I( X  @# ~
    1 B6 a" Y4 S- v2 B! x1 Q0 Y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).: ~, q7 j& |; p+ b; S

    2 l; Y' Z2 ]. s& k    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 p8 H. i4 f6 L+ ?+ _$ ^8 p6 E; ?3 Z. Y4 v' Z* I8 l
    Disadvantages of Recursion. ~' ~2 j4 A8 y9 g* f% V
    # J, |0 \8 y) y/ N/ R
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    - H' [; |0 R8 a3 G! Y
    % ~, W4 S' F- Y* ^3 `) `" q    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 r, H( V& d0 x% H/ ?" P5 R" H
    , W  m+ X4 N( r" {6 J- }. u0 o( g$ G
    When to Use Recursion
    ) q; k% j$ X0 H5 P3 q) F; O$ G
    # B& a9 }. k& ~2 Y( Q1 P    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ L: O2 V. G0 k( h- Y
    9 k# D: F) B8 h- b; u1 N
        Problems with a clear base case and recursive case.
    ; m4 m: x* c; X- P' E4 f" n: Q' Y$ [
    Example: Fibonacci Sequence
    2 K+ T/ |8 o! ?. o: G+ |& _8 @3 \7 q! O1 \1 b) g; I& a
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " {* j9 h7 w" L  E* A% ]) X- U5 y" w! C/ o& M0 R# n, ?
        Base case: fib(0) = 0, fib(1) = 1) r( a- z% S9 W

      o, M. n5 [/ W& k! g    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * G' I% Y* ?, z
    ) B' x" c: L4 x/ W" W9 g6 L+ l0 zpython0 E# g; F' @. ]- |: o  q

    0 }5 x" _  ?8 h8 x* ?: c) d( P1 Z; |. a
    def fibonacci(n):8 Q" E, N3 T( m  _
        # Base cases8 c5 ]& S& m% j/ a
        if n == 0:
    % ~; P' U: n7 Z& e# B( T$ W0 O* k        return 05 c# S& o& j8 T5 s1 g2 h$ F
        elif n == 1:
    3 Y4 p6 f, r& ~; _4 y        return 1
    2 J/ r8 E, F- H/ q5 z    # Recursive case& Y( |' h$ [# [1 F+ g  K
        else:* m4 Y3 H8 U. T+ L: p
            return fibonacci(n - 1) + fibonacci(n - 2)
    9 Y/ I5 L/ F! G/ J
    . w' n: {9 [- J7 ^/ g# Example usage
    + J. E1 I' N+ I* n. @3 \5 kprint(fibonacci(6))  # Output: 8
    & O/ T2 P6 z; x& F& H/ Y
      i4 D8 D+ f7 K* g2 DTail Recursion
      O1 k) _' C( E+ q2 T  ]  u# K. k1 z- [& M; w8 f
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    " }4 \; ]/ p) T1 |* O* Q" R" x: |" c% I' J$ g" R, S
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-13 00:08 , Processed in 0.030126 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表