设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1143|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    9 w6 U5 v6 S  _, \
    3 S/ l" v4 D/ }) k解释的不错* V) G( K" `) G& k9 J" H

    : w; f5 ?: q$ e/ P& }7 \递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  \2 ^& C& r/ U4 N
    ; w# I1 O8 e  {: X, ], [
    关键要素
    ; b2 Y7 [7 V# q3 t3 \4 x! R: Q1. **基线条件(Base Case)**
    / W3 ]8 U  }5 c; _- y3 r   - 递归终止的条件,防止无限循环
    ; I0 d/ r7 q% k- s2 U9 V   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ; ^* t! `( ]7 Z  A: I6 V* Q6 d9 P+ t, D/ u* U( s
    2. **递归条件(Recursive Case)**
    : r3 k6 A8 G- n! o) I; i0 ?6 z0 t+ h   - 将原问题分解为更小的子问题
      G) D2 s5 X) A, ?0 b0 d5 {1 c3 B   - 例如:n! = n × (n-1)!: O1 d2 }+ Y4 y$ Z) ^% x  \
    ' \* W7 @8 T& Z
    经典示例:计算阶乘
    / ^: l7 ?( d: }  }% L# ?. jpython
      i, [  Q9 W2 y# ldef factorial(n):+ m5 E! k& X- \! E! C+ E3 X# X
        if n == 0:        # 基线条件
    $ l% I( c$ Z8 ]# V- P        return 1
    # z5 D" D( ]! }+ z! }5 i    else:             # 递归条件
    2 i+ V! I. v: Q! z+ s/ `/ N- \5 i        return n * factorial(n-1)
      `/ O, f# V/ y6 c; p% `" O执行过程(以计算 3! 为例):. `3 n( m3 {& m$ ]
    factorial(3)
    ) }; U% P9 l7 A3 * factorial(2)
    : p7 ?) M7 u( H, R( O; [! A3 * (2 * factorial(1)): A& v3 m( s; E% ^; J
    3 * (2 * (1 * factorial(0)))
    $ K5 v$ \8 g9 Y9 A3 o* h6 D3 * (2 * (1 * 1)) = 6
    $ m# P' y2 r4 c* I8 n' f
    0 Y6 s4 K; A- X9 p! D 递归思维要点
    2 P$ l0 U. U7 n" z1. **信任递归**:假设子问题已经解决,专注当前层逻辑' ^! y8 P8 d1 P& n
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); v3 G" \( U/ J( n& ~  U6 T6 j/ c* r
    3. **递推过程**:不断向下分解问题(递)( p  h7 W% g* j; ]% W, P
    4. **回溯过程**:组合子问题结果返回(归)
      |* S, c" U2 \5 |
    $ b3 g  X# n7 w/ n( w 注意事项
      H2 e) @- `: Z3 ]3 @& H必须要有终止条件* ~# l5 e* q' h& X3 D1 G" A
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 v+ {3 ~% F6 ], b0 D某些问题用递归更直观(如树遍历),但效率可能不如迭代
    / L) W% h% m! Z% Z2 C: c: B0 B尾递归优化可以提升效率(但Python不支持)6 i/ w' h0 j& Z3 n) M

    ! O0 k& s' T/ ?7 o. x0 T" p& j 递归 vs 迭代
    - ]2 j$ A6 P  \& i+ `|          | 递归                          | 迭代               |
    / ?6 c0 t3 U7 |9 U- o. G8 D/ U  X|----------|-----------------------------|------------------|
    6 x) l! S' R' G$ R0 o0 j| 实现方式    | 函数自调用                        | 循环结构            |" g+ n7 V& t: |' x* ~# \. h" t" K9 V
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 p$ n. w) r& i# \. p| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |9 u. X' u: a  h( f$ {
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    9 P  }8 F6 X  V2 B' @+ W/ Q7 z
    8 q9 F% F6 M7 b- Q. E( y 经典递归应用场景7 `, z+ P0 y, q1 k  G
    1. 文件系统遍历(目录树结构)
    $ R) s$ o4 c1 F( e" S2. 快速排序/归并排序算法
    ( _5 q5 H8 H+ `7 B% q# }3 t3. 汉诺塔问题
    ) c) `3 s. {. I# c8 w/ n4. 二叉树遍历(前序/中序/后序). _- i$ j1 r5 ^  y# I. |
    5. 生成所有可能的组合(回溯算法)
    - J+ Z* a, p" [, c; \; ~- y" s9 S! \+ L/ O/ o' D' t( w
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    1 分钟前
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    : ?6 n2 `% r% b& b# L8 O0 d我推理机的核心算法应该是二叉树遍历的变种。4 m  U$ x. e1 L# B1 i( w$ z
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ i; m1 y$ w' y
    Key Idea of Recursion
    ) a* X9 n8 \3 \' A: {9 n2 T7 o5 ?7 D3 U% ]$ b( `* C
    A recursive function solves a problem by:
    5 _9 `" {; i3 a4 L. V
    ) N/ s* Q( P; t5 m" s4 X4 E% D2 p    Breaking the problem into smaller instances of the same problem.  j1 ?; C8 N; v# M& n1 ^' ^/ H
    % v" l- F# e5 i3 x' Z- {0 l9 A  Z
        Solving the smallest instance directly (base case).
    + n/ C& B: @4 `# P4 b1 T* ~
    / \1 A9 Q% z% e8 J  t3 q    Combining the results of smaller instances to solve the larger problem.
    ' }3 W" t* L3 A2 L; N' k, i! J- u/ T( U3 B
    Components of a Recursive Function0 p! T+ {/ D' i- L
    + `2 ]" J" n4 w5 _" n. k; ^
        Base Case:# \: c' A  e  M! D) U: m
    ; j/ a2 J% P: G$ K  B8 n
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 T" J/ f0 s5 r8 d3 i1 c
    6 A, \, T# |. k0 ~. V3 v( _
            It acts as the stopping condition to prevent infinite recursion.
    ! O5 a" ?# I: O5 x2 E! `# ^9 |* s7 W# p2 @, p' e
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , d& o9 F$ o  @/ O  i" d7 S2 T' P# H% P3 g
        Recursive Case:8 H5 J9 s- W5 b5 B  {+ `8 {# }

    ) h1 D2 x, F6 i! X: P. L0 z        This is where the function calls itself with a smaller or simpler version of the problem.
    1 d- u. r) w, g5 o. d3 \. c8 N  @% ]& {: u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    1 C8 h$ X8 A$ O' ^6 z! m) Z& p1 U2 ?  O! s
    Example: Factorial Calculation
    0 S, h7 K7 d2 w/ }* P, S  a2 u3 t2 G& L$ L) h2 A
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    . N4 q( u1 x, J: b
    9 h: n& B6 g( ~; M    Base case: 0! = 1
    6 ]( k8 e* ~4 x& Z+ L- q2 h- O# \: c% I' i
        Recursive case: n! = n * (n-1)!
    4 g1 B; Q8 ?9 |  B2 H: }3 p6 y; b3 b5 v( X5 F2 ?0 h
    Here’s how it looks in code (Python):& S, Q2 q4 u' g- e/ E
    python
    3 r! R9 N; U( q/ R8 i% ~7 n% `5 H8 S5 r( H: `
    / }) B9 ]% a; M) d; o: v
    def factorial(n):
    % |% D$ O) q( ]    # Base case3 [( f' V9 l  V# u  \8 _
        if n == 0:
    % ?4 K$ \. T2 Z0 i, o        return 11 @5 I1 y: K. ~
        # Recursive case4 T+ W. ^0 l5 H
        else:9 E- _: A: b' t( f! W; L. s
            return n * factorial(n - 1)$ i* A! l* @8 c' X4 j: P

    ) r7 `1 }* i- n2 P% a8 }9 z& d# Example usage2 r8 V3 z3 H/ D; ^
    print(factorial(5))  # Output: 1203 o% k- x0 V1 q2 b
    8 R5 I% {4 ]4 o0 _/ g8 k) ?
    How Recursion Works( S; Q  E' E* R- e) Y, w; A! z

    ! m9 ^8 w- I( N    The function keeps calling itself with smaller inputs until it reaches the base case.9 M$ }6 T& u+ K
    , p4 a7 T1 `8 j* B4 ]  h8 e
        Once the base case is reached, the function starts returning values back up the call stack.
    4 l" o$ m; B( A: x9 x* X( d( F! Z2 q7 u
        These returned values are combined to produce the final result.- i) e( Q: n1 }

    " X4 K0 p0 q, e  T& i1 |9 w9 yFor factorial(5):: R: o' @& a4 p- J

    * r3 E/ p* Z* l! f! _1 d# L2 W. c6 W7 i* g
    factorial(5) = 5 * factorial(4)
    5 u. m, Q1 {4 W+ Xfactorial(4) = 4 * factorial(3)% y8 [' j# ~& e7 R' H
    factorial(3) = 3 * factorial(2)
    ' x. [( u: J$ g4 J% d) N: Tfactorial(2) = 2 * factorial(1)
    * E( |5 B' k# L! u5 Yfactorial(1) = 1 * factorial(0)
    " E/ |8 v5 D$ J6 W- Tfactorial(0) = 1  # Base case( P6 z( m) i$ N2 ^* b

    + i; E0 h7 ], {/ E" S1 Y, MThen, the results are combined:
    # a+ ^8 z& m4 y% U7 i7 G& H: K3 g& D0 @; v) f  j+ W0 k2 S7 ?

    6 j+ L5 W0 q! c6 \* _/ D3 U( ^factorial(1) = 1 * 1 = 1
    ; g# W# w6 y' t, H+ bfactorial(2) = 2 * 1 = 2/ t; g& ~- W3 R$ l* n
    factorial(3) = 3 * 2 = 6  z" I6 H: S* H6 I7 R: ?1 P
    factorial(4) = 4 * 6 = 246 o5 w4 Q9 t3 p) z4 \1 i
    factorial(5) = 5 * 24 = 120* _9 f2 S$ g* O4 D7 f. Y
    " e  W  |4 K$ A+ r7 ?
    Advantages of Recursion6 T0 `& a6 c7 Z. m& X. a
      D4 z: t# K# i& q6 n. h% X
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).+ _; J- Y( d1 v; I  ^/ v" g
    & p5 `  U2 j/ T
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ) ^! K' B5 v! s# ]+ ^3 @0 V2 ^9 e9 c
    Disadvantages of Recursion: U* H. M9 c; O7 A& m( r& ~

    9 X0 y  B3 D6 s: L7 j- ^& D: W    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ( t9 s- R$ ^1 h, L
    , Q; |, v1 d6 j+ e  U  v$ j8 I    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 ~2 F$ f: k" Y3 F2 [! }1 b
    * l3 _+ b# d: e; U
    When to Use Recursion, S( i/ c% c! x2 g6 _, r, Q
    5 y: s! F' J( H1 y( L* g
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    0 o5 J) Y( E9 ?. k8 [
    . N' L) o1 X9 Z7 ~& Q    Problems with a clear base case and recursive case./ Y5 }6 M$ j) R5 a/ U3 q& H1 }
    & n: {2 V9 X1 ~# ^' }$ S
    Example: Fibonacci Sequence9 N  f$ c% y5 v7 M; L' `$ E

      @3 l! Y. E3 h* ~! d2 \$ XThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- Y* a/ f4 r/ @8 _

    ! l% z6 s4 I! {9 ~1 ~7 M0 h    Base case: fib(0) = 0, fib(1) = 18 B' w, m3 R9 z+ q" v& W

    . B3 P/ O, Y, R6 ~# e    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ' X3 h$ I, K2 [: t, ]& d5 T  U. ]5 |  V2 _" F6 B
    python& y+ o5 N, b2 {( K

    ' \1 I$ p, F, R+ Y7 u$ f" _( g5 C  r) }9 z- d# G# i
    def fibonacci(n):
    ) w! G1 ^0 \# W' k( c' r    # Base cases/ Y: W# B8 C. R% i& I2 V
        if n == 0:5 e: q/ ]+ q% Q+ Q' e5 `- X! r
            return 0
    & w' i2 D% S: U. Y: e' l/ r) }" n    elif n == 1:
    ) ~8 g6 w- E' F3 J1 k4 l        return 18 [* }" I& L/ D
        # Recursive case
    % b# D- y6 y* W$ C+ M    else:3 t( E! {  i8 |0 ~
            return fibonacci(n - 1) + fibonacci(n - 2)
    ) k) _, G2 m9 f9 Q, g# j; l# L
    ' t6 A& Y) ?$ G& n0 O! d# a8 s5 I/ t# Example usage
    ( x2 R$ G8 l0 wprint(fibonacci(6))  # Output: 8
    - P" Y; A5 Q- f, B( l! n7 {+ [: A& {. I
    Tail Recursion
    9 p% t* A# U/ w: h4 v! c
    ) u2 g, b4 Y$ F' dTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 i" d9 L, K6 A3 b
    / [; ?( ?2 N- i, C0 n: K% _* C8 `
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-24 06:45 , Processed in 0.031224 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表