设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1310|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ! A' v0 [6 @' n; ^" ~; z; C, b

    ; r" ?6 J7 R& ~! c4 M解释的不错
    8 y9 V* a) m8 Q3 J+ _" j4 j
    4 d3 V: O1 f' p: I, G' s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    + ~6 {' b3 y$ ~- p' q" l4 l
    $ W6 C. W5 [/ @" H! \9 V 关键要素  b+ w# d. J. B6 J( Y/ Z$ D& x
    1. **基线条件(Base Case)**
    * Z3 v) ~1 k  O6 o$ R   - 递归终止的条件,防止无限循环
    # @, {/ h' s6 |( r& y0 l   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    # q1 i7 x$ B% i
    & P& ]+ L4 z4 ]  o( K2. **递归条件(Recursive Case)**
    ! }; \- G) F7 A4 o* r# c   - 将原问题分解为更小的子问题
    3 u! Q2 f: p6 z" y) F' u9 X0 _   - 例如:n! = n × (n-1)!
    * f( I4 M* e2 G8 j/ u
    , n% L% A& a" ?# l& ^- @ 经典示例:计算阶乘
    7 p% f) I5 M# T! ~5 e: jpython
    6 n- r9 @, X$ T) Qdef factorial(n):
    - T, a5 k, i. H( H& h# q    if n == 0:        # 基线条件( Q6 o6 d& C  J) f. O
            return 1
    & z+ t1 ]7 H  r- i    else:             # 递归条件
    $ @* J0 K  H7 Y% q+ b# |        return n * factorial(n-1)3 O( B7 t+ h/ B, A
    执行过程(以计算 3! 为例):* z4 `8 D* a( t
    factorial(3)4 L, [+ d- ^1 w2 Y6 g
    3 * factorial(2)9 v- w3 m9 P  }0 P
    3 * (2 * factorial(1))
    + K  d% A. k& ]8 X3 * (2 * (1 * factorial(0)))
    5 }) k: p* w5 e  J- B) d/ p3 * (2 * (1 * 1)) = 6
    % i/ p6 y' y$ \+ x8 }4 a7 t
    7 J& X: A: \8 O 递归思维要点
    7 z$ ~& d/ O0 V1 }5 V1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ; q9 O! ]- K9 J# c2 o; J2. **栈结构**:每次调用都会创建新的栈帧(内存空间)+ _3 S% k* G$ I) I0 Y$ e
    3. **递推过程**:不断向下分解问题(递)* k( b" ~: W' C( x! G" {- L
    4. **回溯过程**:组合子问题结果返回(归)
    ) I: N. S' E) {( X$ ~0 c, C& w  N5 n& v9 [9 F4 C! Q) F' ~
    注意事项
    ' k6 b/ y$ Q* U* ?3 j必须要有终止条件
    * z- N7 f& K6 h& ?& c& w递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # E# W* r, h. C) J1 |" x# H3 P某些问题用递归更直观(如树遍历),但效率可能不如迭代/ q5 S$ u7 O3 G6 k! r$ p; g1 E) M
    尾递归优化可以提升效率(但Python不支持)$ Y4 S; p" l' g, w
    ) |% z) I+ V' v( _, f- l4 w
    递归 vs 迭代
    ' Q- a3 l$ w" `4 v+ z|          | 递归                          | 迭代               |
    9 E. ]( L; o# |# v. r4 o# I8 s) ||----------|-----------------------------|------------------|
    $ Z- S4 F- p% S8 B| 实现方式    | 函数自调用                        | 循环结构            |
    ' f! U. `4 A0 G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# P. H3 F, v  g. _7 P
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    $ b5 B6 p. P" b  z2 v  v| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    , P3 p' V4 C! \1 |% ^/ W7 b& f, n# n7 T* ^6 f, h; y$ `) @
    经典递归应用场景
    & X1 D0 F5 Z' l1. 文件系统遍历(目录树结构)
    ; u2 z. K+ q/ A9 b' o& ?2. 快速排序/归并排序算法, [; r  a7 ?# ^  E# Z
    3. 汉诺塔问题
    $ J3 u" T1 n+ v- l+ e7 r5 \3 [4. 二叉树遍历(前序/中序/后序)& n) S9 Q' z. Q( z3 |7 `
    5. 生成所有可能的组合(回溯算法)# b% L& `0 j5 i* ~& o2 p

    # Y, z8 j1 E; Q- I试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    3 小时前
  • 签到天数: 3107 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ k/ L0 g, _0 a# ^- N
    我推理机的核心算法应该是二叉树遍历的变种。
    : y! {1 D3 @4 v1 T' F8 H另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 C% |& F5 p1 e0 J7 x! }0 w9 w. Y
    Key Idea of Recursion+ R3 _" X- `( _3 }9 {

    - Q5 c  }) z- ]A recursive function solves a problem by:
    : \4 k' `# v7 F5 Z2 D6 u& I1 M8 f
    + R3 O& @8 J4 B3 |# X    Breaking the problem into smaller instances of the same problem.
    ( q( \3 d4 h0 o% q7 B2 c" ^! A3 L/ y. N5 w' }
        Solving the smallest instance directly (base case).6 \; G/ @' i% y( O/ F* l

    0 ]+ @9 J/ }7 w2 n; o0 Z+ ?6 m    Combining the results of smaller instances to solve the larger problem.
      Q+ d6 l2 ~1 i$ f$ u1 f- a( q* {$ s4 q
    Components of a Recursive Function6 n- Y* U% L$ n# S& j
    ; g+ Y2 y" h- t. S$ e8 X. G% P
        Base Case:4 J. q4 E6 k( k+ B7 D* m" p- y
    $ u$ @3 o/ u6 ~8 O, E
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. p9 b* E( q, h) A
    4 m6 E+ Q7 X0 ~/ i8 Y! H
            It acts as the stopping condition to prevent infinite recursion.
    ; N3 B% Q: D4 z+ d4 z; L2 f! w
    , i# n- H* k! @4 A' S# y+ L        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    3 B9 x- S) y) f1 z: O2 ~& d
    3 ]# ]9 H/ u2 d  U* I% l+ ]+ m    Recursive Case:. {5 E& n& M6 {0 @1 K( B' [1 X& V

    ; r' t$ C. \' b) s4 }1 y        This is where the function calls itself with a smaller or simpler version of the problem.1 v4 F% e2 F/ ?9 a  C, U, @% D7 g! H
    + k! q% {$ Z9 m3 ^8 M7 C! ~9 X
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    & n) J7 l2 Y# x$ D' R# }0 ~0 U6 S* H% r8 i
    Example: Factorial Calculation; B2 O3 T+ R, h  x- f' K7 @8 |
    / K$ P3 P, `+ \! q, d
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    7 C" a/ n2 l' s6 _$ x& A# T) f9 \  @  G" g6 ]  N2 a
        Base case: 0! = 17 s% o3 m2 U! M8 P# t

    7 i/ P8 k. Z8 I# t8 H( [' x    Recursive case: n! = n * (n-1)!* ?) x: K5 C  g+ m5 G  S3 O
    : T4 E. _, T2 R9 g  g" B
    Here’s how it looks in code (Python):
    ! x3 K9 q. C" L4 @python2 l3 U6 _2 n  q

    2 w- |7 G4 x! |, m: W8 R
    / z" P4 C+ |4 {4 E- l2 q- ddef factorial(n):7 M8 B* h3 Y3 f0 h: J$ j5 p
        # Base case
    . ?' u/ T' U' S    if n == 0:
    8 j# y/ C% H+ T; f' @        return 1
    8 m5 B0 @& P, T. c8 [; b, _* a    # Recursive case/ n0 ^. l1 b. q( N; m
        else:6 U# d" V& Y+ X7 U1 D
            return n * factorial(n - 1)
    0 z- ^4 Q5 J$ N- ?: J1 l- Z% D: P8 u1 \# P2 c" v: a
    # Example usage
    ; ]! O7 a, V4 S9 M% Dprint(factorial(5))  # Output: 120
    & \/ x& G* v% R( E* f) S' O/ {" H4 ^  O1 T* D: ]4 X2 a& V2 V
    How Recursion Works
    ' w5 B5 O' o. I' @& v+ {: [
    6 Z& y' a9 b6 }1 o' b" p0 `4 w    The function keeps calling itself with smaller inputs until it reaches the base case.
    2 \- R  z0 S8 v" F' Q
    3 W; j1 b2 ]) d8 F, B" I9 {    Once the base case is reached, the function starts returning values back up the call stack.5 O3 a( Y( o. H7 i- J5 y
    " w9 S" p0 K- m8 v7 r0 W3 l/ N
        These returned values are combined to produce the final result., A  I* L. y+ m% B

    # O( u3 P9 ?! L3 GFor factorial(5):
    4 [; f% }% b0 {+ {
    , O8 W+ K9 `# S& J' z& }# X- f5 L1 L
    factorial(5) = 5 * factorial(4)
    % O9 y& `9 ?% O, C3 n- u- T( P' Pfactorial(4) = 4 * factorial(3)7 W8 x, N2 j0 x: o
    factorial(3) = 3 * factorial(2)" w( A* j$ r0 ^2 ~$ Z
    factorial(2) = 2 * factorial(1): S* ^) A$ ^9 S0 p6 a5 I/ x
    factorial(1) = 1 * factorial(0)$ d- m" H/ O" Z4 I; j- K
    factorial(0) = 1  # Base case
    # s; H3 {( d! W6 h* M8 L; ~  a; R! G/ j
    Then, the results are combined:. _. C  R3 J) |, C) n# E3 k& [2 |

    + v7 o0 S/ O3 m$ Z. O% k
    # D0 y0 X* b, b3 g8 l0 _. Lfactorial(1) = 1 * 1 = 1# P; Z' m6 g% W" h1 o
    factorial(2) = 2 * 1 = 2
    9 w1 @1 X* ^" l3 i" Bfactorial(3) = 3 * 2 = 6
      f. j$ A8 J; }! Cfactorial(4) = 4 * 6 = 24
    0 C/ M2 }. x; _factorial(5) = 5 * 24 = 120
    " B$ Y: @, S5 s5 m. P- v+ d3 {1 W6 p% G. S$ b
    Advantages of Recursion+ O( i( a8 G! K2 V5 H% I
    5 q- y5 i/ x# d: f2 {
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    7 J6 O% s  j( {3 \% f( ^3 \& E' L
    ; M* p4 d* R6 `; M4 ~* L( k7 u    Readability: Recursive code can be more readable and concise compared to iterative solutions.# {/ `$ J8 J4 K: J1 ~* `+ w
    % K% W! w6 j/ Q( D, r' f
    Disadvantages of Recursion$ _( I+ h4 ]5 ^) t8 K
    ( D5 q3 t7 p& t" }
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 P& |, V7 r+ N1 U; m7 q
    9 a3 y3 R) w+ z% v% I- A
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    # I4 G- q1 v* q3 y5 t
    : L+ @2 d" n. Q/ T+ T- kWhen to Use Recursion) n) Y9 Y. N9 L, _$ O$ `# ?7 X3 J! s
    6 g5 R. g, W& d% h  T
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    # e& Z% h6 F  E+ b* C9 u4 g) q. o& `, e: |6 c9 L
        Problems with a clear base case and recursive case.
    * _* d% o* b$ U' u. d0 T/ \# b5 s0 j. s1 F* L& \" l
    Example: Fibonacci Sequence. R$ f) f' }* u( [4 U9 A4 |
    # a; B0 _% b5 Y9 y( a/ n5 G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 O# w1 H  J5 u# r9 O1 G! j

    " X: @; i0 C8 M- p' F- N; P! x    Base case: fib(0) = 0, fib(1) = 16 }0 U1 ~  ^" O* y6 N" n. M

    4 p; D3 d& K- K. W    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    7 N6 ~; g( _* o! k3 ^$ }! B8 U3 x( I: @4 j' s5 g  E5 s
    python+ T. j9 M& j. A$ y! ?) ]
    + N  M$ c$ l9 o3 a& _# W. D

    " S2 i7 E2 J* L& udef fibonacci(n):: {8 i* d. G7 Z4 p1 A; d
        # Base cases
    ; P. s0 H6 p( {$ i- g) C    if n == 0:
    3 [9 H6 _" `# Q/ g/ \; j5 W        return 0
    0 Q6 h  U1 c( k& B' x    elif n == 1:
    4 v& w' b* N9 S) q% `9 i) M        return 1
    $ F- R: h' Z9 r0 m    # Recursive case
    * o( G, f7 T6 b, @: E    else:
    & Q: W- Y% `8 R4 z  y1 _- Q        return fibonacci(n - 1) + fibonacci(n - 2)/ s0 u4 z9 ], D1 Q" G  Z) j

    ( l4 o- A9 ]: P1 o  e# Example usage) q% v! N$ [: j, N5 @
    print(fibonacci(6))  # Output: 8
      W; }  `. |" f& E1 t- B0 ]  x/ V! h8 Z' Y, A; u0 B
    Tail Recursion
    - v! ~4 k/ n0 b& S9 n% I; k8 ~! U" k+ }8 O
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 {* z* |  F1 B9 y: {5 v
    3 W2 h* {3 }, Z+ m0 y$ {* ^3 H
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 16:12 , Processed in 0.032318 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表