设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1441|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 + I/ ?/ g# W0 c: o! D, t6 Z

    4 H& N* a; Z6 j, E解释的不错* q; a) |+ ]1 `

    ; z8 D8 n4 r. u- Q2 s9 |0 |递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。+ e/ h$ w' `$ L$ r+ ?: M

    " O' n, F5 r# c5 i 关键要素
    ; @+ X% b: g8 q& D& z% p# Y1. **基线条件(Base Case)**  u/ E* |1 @/ r9 K% u( W
       - 递归终止的条件,防止无限循环/ ?: L$ ?# e: B8 P- r1 g+ g. \. D
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 H& f0 }7 x7 n; q: Z( M0 a

    : e5 L* V) B5 A' Y' ?2. **递归条件(Recursive Case)**) n* \8 D/ U: @4 F2 H7 G& z
       - 将原问题分解为更小的子问题1 S, r( h" D* J; Y# s/ P
       - 例如:n! = n × (n-1)!; {/ K9 `# W4 `1 C

    : Y1 S' V% |; G 经典示例:计算阶乘$ S% w! t7 @& ~2 [! c( T6 y
    python
    2 H+ o. ~/ a3 E1 W  c* m8 Tdef factorial(n):' d3 U! l) E4 j3 N  F" w% O$ }1 g4 t
        if n == 0:        # 基线条件
    : H8 n) z# s+ s* K9 o5 @' Y        return 1: u1 G) m0 W8 g! h
        else:             # 递归条件$ ^4 B% ~6 G% O) |" M1 L  g
            return n * factorial(n-1)
    # X1 J( q* K' S8 h执行过程(以计算 3! 为例):
    " y% @0 d; E' dfactorial(3)! z7 B3 ]0 ]5 P( Q. I: o- |" s
    3 * factorial(2)
    $ q3 }1 w4 @) _& q3 * (2 * factorial(1))
    # N8 o8 q* v! T" b& K3 * (2 * (1 * factorial(0)))5 E& D+ Z% E3 d
    3 * (2 * (1 * 1)) = 6) B7 e, @4 a0 T' [

    ' i* B3 |5 j8 t4 N  w% M" } 递归思维要点+ h( r  x  x; k
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    % s( P/ J6 Z/ i0 T2 a; p2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    . J9 R$ f0 g- B* u# J6 a- @. T( d3. **递推过程**:不断向下分解问题(递)9 c; {" U: c2 Z( s- X
    4. **回溯过程**:组合子问题结果返回(归)/ s/ W' Y+ h: D& [+ |- `
    5 h! Z# `7 p) {% M/ A: X6 v
    注意事项  Z6 k" P" p9 M( G7 ^- A+ {
    必须要有终止条件
    9 C' T# v) R5 q递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    4 ?% v4 j- }6 V8 s某些问题用递归更直观(如树遍历),但效率可能不如迭代
    2 T! t3 M4 m, u  N尾递归优化可以提升效率(但Python不支持)5 E0 \2 A9 k" b' L' T# @- v

    9 V0 n# q7 B9 S) y+ c 递归 vs 迭代
    . p$ i  E4 n0 E# a|          | 递归                          | 迭代               |( j. b2 T9 r3 l4 C
    |----------|-----------------------------|------------------|
    ! S3 K. O+ i: J: ]3 l| 实现方式    | 函数自调用                        | 循环结构            |
    7 [( |* a) E# o/ I" @9 o4 z7 J: ]| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |6 B) a: j: a1 Y5 t  m" z0 ^
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |( t4 k/ v2 _# m3 L* t
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    / [& \' H; P5 r/ l$ G* d: c1 e9 ]0 R0 o" {0 G9 e5 T
    经典递归应用场景( p6 R5 S4 F+ r2 N" e
    1. 文件系统遍历(目录树结构): I. s3 Y5 J* p
    2. 快速排序/归并排序算法# T: X1 R. w/ h5 }) V
    3. 汉诺塔问题
    % s( e$ L: s4 _6 ^0 [4. 二叉树遍历(前序/中序/后序)0 a5 O( v& |: W0 }1 {8 d2 s
    5. 生成所有可能的组合(回溯算法)
    * N* E, u2 X$ m& P6 r. V& l
    , i. }* `- i0 F/ A, B试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 07:10
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# T1 I7 C. \7 @, s6 _, G) E
    我推理机的核心算法应该是二叉树遍历的变种。
    2 j( ^: H( ~2 i( n) B5 j另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 `8 b% |4 L) lKey Idea of Recursion
    0 \; z. y3 T7 C" a9 t
    # u: b6 n7 n$ w3 y* X4 j. ?A recursive function solves a problem by:
    $ h' t( @6 U! _* @' Y% E1 F7 S* Z" x* I9 X5 H' j5 y
        Breaking the problem into smaller instances of the same problem.
    ' E/ |: m; {1 j! M# |1 ]6 Y1 p+ S7 K' \
    1 j% ~7 o9 x- C. D. I7 U; I. X& F    Solving the smallest instance directly (base case).+ L, ^7 }/ v  r! x! v6 e6 F

    7 }' G( n, t7 B0 e    Combining the results of smaller instances to solve the larger problem.
      {9 j+ ?" e1 g% W3 n! {7 ^0 F- K/ G* ]6 s  k; V
    Components of a Recursive Function6 U# D: j/ ~, b% k% i
    9 X1 ?/ V& e5 j1 L
        Base Case:
    * a  s6 Q8 S7 D/ U! Q8 Z- p2 ], X( {1 E
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    6 A# `8 A" Q& [% n
    : Z2 |; u, h. w. p- c        It acts as the stopping condition to prevent infinite recursion.: P# }* w0 F& U7 R" `3 h4 f
    ; O* r) v: ~2 r- U# E  c
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.8 Y% d5 X; w/ r# N
    + W. ?9 ]' @2 @- U: N
        Recursive Case:
    6 z. L+ s' b; N5 U- @$ l$ H9 p8 ^  A/ R* C! g- A6 p
            This is where the function calls itself with a smaller or simpler version of the problem.
    3 @& [- ~  r( k& E+ y
    - u  Y8 P! u2 a: {9 ?" G9 D- o; a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).% o7 x9 U# @4 C1 f8 Q
    & `6 q& `, a* j6 R
    Example: Factorial Calculation% P. _% @3 Q0 ^+ u

    + M: w, `; f4 z4 x& zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& H! N4 ?% D- \0 q* i

    . n  z1 {* |) R0 G. S) g( ~( D    Base case: 0! = 1
    & p9 [1 n* m. M  I* O
    ; A0 M0 l) g( P# i6 m! W; C    Recursive case: n! = n * (n-1)!9 r% z3 q& b, }1 a

    ; c4 |+ Y' }4 I3 J! d: hHere’s how it looks in code (Python):, \( N/ G9 s; S
    python$ k0 b1 c" s) ^' Q: _

    # a) b" @: b2 D! L0 E6 C# g7 K1 ^( `0 B
    def factorial(n):: G5 K. N3 y% ~8 C- {
        # Base case
    - C2 g, {8 T4 F1 C4 Q2 |: ]    if n == 0:) g+ }# `5 G6 S0 ?, H7 J- o
            return 1$ e- Z0 s, c  ?& ]8 r1 R5 K
        # Recursive case0 E* e. w5 y8 E- X( w7 c# s! k
        else:
    ( C6 C: C; Z" W9 \# r) C        return n * factorial(n - 1)( H) r4 u6 Q/ k; J
    9 t  A: E9 I" v& x7 Y8 N8 Z- Q9 ?
    # Example usage9 h1 n$ o4 h7 k  S! M! n3 t
    print(factorial(5))  # Output: 120+ u/ m: l: d' C2 R9 [
    3 v5 X1 l' R3 x% H2 N( }: N
    How Recursion Works
    6 W- j5 x" p( U' i, T% @# Y( m5 W
        The function keeps calling itself with smaller inputs until it reaches the base case.
    + c; d# ]+ \# c- H  \" @  u( Q
    , H$ ?) z# P- B4 E0 x    Once the base case is reached, the function starts returning values back up the call stack.9 s# m1 |+ Z% ~

    " _/ w. B& k# h0 I( H0 g% a    These returned values are combined to produce the final result.7 |/ R' K; G! y4 W$ G
    , J( A0 r/ k9 Z5 {$ V
    For factorial(5):  J% q* ]: W$ f- ~
    ! ^5 [+ m" @# j# I0 k
    ) L5 r, C" X4 Z" t
    factorial(5) = 5 * factorial(4)1 r+ Z1 K# \1 Q& P6 X
    factorial(4) = 4 * factorial(3), x( E" g6 B, D3 K4 }2 v
    factorial(3) = 3 * factorial(2)" p' \& e$ c8 e& b( q; N7 X
    factorial(2) = 2 * factorial(1)9 |, [: m+ f5 v0 y3 k( p" H1 \
    factorial(1) = 1 * factorial(0); t- d2 p* ]2 Z# B
    factorial(0) = 1  # Base case4 O% s# _: W/ o/ ?7 H9 G
    7 |  m" k" d! r/ d9 g
    Then, the results are combined:( k; _: b. W- a; U4 I7 o) u9 B
    ; K0 b2 g% L  x0 C0 Z6 Z/ }
    ; `8 V3 Y( v& z( X9 C
    factorial(1) = 1 * 1 = 1
    / ]; t( x8 }( a8 G) w4 Zfactorial(2) = 2 * 1 = 22 n+ E  d# H: j! h- ]: z
    factorial(3) = 3 * 2 = 6
    # N- l/ t9 X8 C- j3 _factorial(4) = 4 * 6 = 24
    6 }" C/ g2 p; _3 |: H+ `' S2 ?factorial(5) = 5 * 24 = 120
    ! c( y6 J& |% W8 W6 E
    & Z& A4 u1 Z0 H/ D: oAdvantages of Recursion6 f2 k0 h$ d( Q5 L1 e8 X
    2 F+ i% m, L. U* K6 t
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) ^" `* v6 w* `4 W( I( q: `
    ! c& v' e* l6 o( @# k- A) O
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
      k, s# h8 Y6 k: A! E1 S+ ]5 f6 F5 ?
    Disadvantages of Recursion
    % E% y' }( b" X5 s' F
      U% L" X' v3 \0 L( h    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  |0 O  R% Z& D  _
    1 H( b* ]$ X3 O, J5 c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).! |1 _" t) c7 V, \: `" [

    # T) i3 i$ f3 q# }7 l  |When to Use Recursion& z2 o5 \) D. M7 p/ p0 E! J/ n/ o* p
    0 ~& O" N+ S) I! z1 q" s' S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 F# V" h& X8 Q/ O1 x% Z! `3 m  n
    . ?- ?' j/ ?1 B" x    Problems with a clear base case and recursive case.8 ]% R0 {2 O! ^! u  E

    $ B& |" Q: I2 c& D$ F3 m2 l  pExample: Fibonacci Sequence4 P+ [  d3 Y7 k

    5 V% ?2 I) x5 D# r6 PThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    : j! C* D+ Z2 k1 X+ b
    ) p! n7 _, J2 R    Base case: fib(0) = 0, fib(1) = 1  q- y! b3 {4 C+ U& f$ x# d: w
    ! n1 k5 f( w0 g& M: U
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    1 D/ ^8 Q  _- n" c. ?
    $ y; ^5 G1 F* j. m6 P2 Ypython( g; O, e9 K: i2 v7 _5 J0 K

    8 N# k; O) x" q. ]4 Y; m4 M7 @$ N& F/ M
    def fibonacci(n):
    $ f& f- h% U. L" R    # Base cases% o. l  R2 R' p; k( U" D" u
        if n == 0:" q; o) U6 @; V$ v+ Z& f- V7 d! y) Q" u
            return 0# p4 o8 T6 S' w6 H
        elif n == 1:
    9 y  \& i( ?; F. R/ Z( n        return 1! _1 c0 b- ]# f% X+ p
        # Recursive case
    1 e$ F! g7 U2 L: G- W& ^    else:
    ( v2 c  T: O- [* |7 k        return fibonacci(n - 1) + fibonacci(n - 2)5 j5 b+ M7 i- x% ~6 q
    : N0 T% ~6 O! o4 z& ?5 H" V5 b" E, l
    # Example usage! L4 _+ w6 y3 D$ U1 p
    print(fibonacci(6))  # Output: 8
    0 r" n  ^) Q- P$ g/ ?% A4 \5 W* C+ l) |8 N; C" W& Y- |
    Tail Recursion
    " H0 u& ]" _- T' T+ J% w, O
    5 W; n7 R7 O. m- b% OTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 ~+ M: E! G- p& d, M3 n# x1 l! p9 k

    : r2 E1 j' F& j2 M) B% W! DIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-10 06:33 , Processed in 0.028875 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表