设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1359|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ' g5 R! \) L' Z! L( f. U

    2 G0 m! p1 c9 _2 G" I解释的不错7 }& \6 z' q5 G* A2 w2 j% W( A

    - w6 l- b% _1 f. `# A* m递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。$ w) V4 z3 [7 Y1 d* f
    8 B/ C& Z2 C: U( `2 O- S
    关键要素# `5 Z6 P; F6 ^+ s' U# ?, ]
    1. **基线条件(Base Case)**
    5 [" X% B' k& B0 q) Q6 L/ m  T   - 递归终止的条件,防止无限循环! Z, l" F9 F# y& u- Q0 z! |" `
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    : T% ?/ {1 E! H/ V, ^2 a, O- p" u: W1 [4 w! a# C* L& z
    2. **递归条件(Recursive Case)**% }: A1 r( P1 f7 b4 U- U
       - 将原问题分解为更小的子问题
    : \+ \7 }! i5 ?9 {1 B   - 例如:n! = n × (n-1)!* G9 W/ B" c. a
    4 I1 E2 s8 p7 p+ ]# W
    经典示例:计算阶乘4 C# C/ o. N9 }
    python
    + M5 C% p0 A% D  z& O) I* vdef factorial(n):) Q! [+ A0 V, W8 S1 Y$ K$ l
        if n == 0:        # 基线条件( _' S% N1 d+ e9 J- j, @5 U2 D0 u
            return 1+ r$ Y/ g8 O; B: r7 ]  S
        else:             # 递归条件
    3 E8 W7 U7 g4 b        return n * factorial(n-1)9 Y, K5 P$ c7 W- Y9 i
    执行过程(以计算 3! 为例):5 z7 i% _( S: w) J
    factorial(3): b% M: w4 `; O6 V1 r; z2 Z
    3 * factorial(2)
    : F* N' z; J( x, |+ M3 * (2 * factorial(1))! k. ~; O0 u  W7 z- I4 g; E
    3 * (2 * (1 * factorial(0)))7 d4 C( J* E( O" G" k$ A
    3 * (2 * (1 * 1)) = 6
    9 u8 u! O7 B2 P& u
    + ~( X& w9 T" E  O8 ]0 z: \ 递归思维要点
    0 ]2 g4 c' e  d) e- v1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    9 a- t4 B) c+ g7 y* y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 |! o: Q) Y; D9 f& o6 a+ p
    3. **递推过程**:不断向下分解问题(递)
    ; s7 P) T$ \& p! v  M4. **回溯过程**:组合子问题结果返回(归), ?+ |# V0 \& h& z
    ! |# ~6 m; M; w4 T0 o
    注意事项& @! \4 t  `4 \( e$ m2 P
    必须要有终止条件& ^9 A7 V! Q' [' K
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 }6 }4 {/ B+ v2 B: H
    某些问题用递归更直观(如树遍历),但效率可能不如迭代! C! H+ |5 Y$ a8 r* s
    尾递归优化可以提升效率(但Python不支持)
    ! c& C9 a3 ~- D: o8 g0 ~' g
    # x: @/ N4 n/ ~' U* V! k$ X' ? 递归 vs 迭代8 m8 W8 ?3 t9 V5 E9 h
    |          | 递归                          | 迭代               |* g1 A' \& ?! U/ J! P9 Q" T1 l
    |----------|-----------------------------|------------------|# d5 i9 ^) ]% n& d1 c4 O
    | 实现方式    | 函数自调用                        | 循环结构            |
    , l6 G, l: |5 s( m. G| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 L" m+ p' g7 z' z| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    5 W6 E+ B' [8 X2 R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    # V$ s( \0 K- y3 o; y7 J/ Y! B! _, M+ m  M5 h
    经典递归应用场景! @8 f, f4 ]4 n1 ^6 R
    1. 文件系统遍历(目录树结构)5 ~8 z' y5 `+ x& |1 {) O
    2. 快速排序/归并排序算法5 Q1 O7 F1 x9 R) \, B
    3. 汉诺塔问题
    ) S; F3 Y( K) v4. 二叉树遍历(前序/中序/后序)
    4 i4 w5 r8 V# j% m) Z4 s5. 生成所有可能的组合(回溯算法): F) e1 y8 R8 B. x+ o- p

    : Z' x, }8 R7 }. ^: |) M( ^试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    昨天 08:50
  • 签到天数: 3109 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 e. A9 I$ {2 d  x7 H! v
    我推理机的核心算法应该是二叉树遍历的变种。
    . y* R  H& B5 ^( b) R另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    " w5 g, O- W# i+ F: M5 @, ^  C& kKey Idea of Recursion6 t/ F& N" S; S+ Z& j7 B5 {
    + p" U! T0 s6 Z  R
    A recursive function solves a problem by:
    ; n4 q& [) y& e9 N
    1 d$ q  J8 y: H! Q    Breaking the problem into smaller instances of the same problem.
    ' z% a: o4 s6 l. |- q
    * x2 s  |" Q4 {3 G    Solving the smallest instance directly (base case).
    # p6 @$ k" B* F  c9 R: J6 Q" c- x/ @, ]+ f) w$ E( c0 W1 U
        Combining the results of smaller instances to solve the larger problem.' N/ Z, E* d, \+ }& ~2 J" _
    $ j- K8 C0 g1 e8 r
    Components of a Recursive Function8 U# i  S& @$ N" {3 L/ w% K* ^0 m

    ; U+ _) m! i& s! u    Base Case:
    3 I4 Q7 Z8 C9 {' M
    ! b2 r: o8 _& @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    " \' `: Q% O% ]/ ^  m6 M" N) y5 T- D. J/ J; r2 @5 T
            It acts as the stopping condition to prevent infinite recursion.
    : }( j; a- v0 R1 ^" p# e. P# T0 g- K7 p2 w2 g
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ) S6 y' J0 C- G1 u  P* b4 H) y7 r  E6 p3 f1 y
        Recursive Case:
    9 V0 \" g: u" b' t4 }& r$ j: \  H1 ]" R! P- t/ g! K# w
            This is where the function calls itself with a smaller or simpler version of the problem.7 e5 a* v% w. u2 A
    ( q$ B9 h/ l  R) t( D' Y% d3 p
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).  o6 E/ E6 }0 B" A' ^9 S- F

    1 g3 r, d2 }( D$ y; i1 y! xExample: Factorial Calculation* a2 a7 F' F) |2 e# E" ~2 D7 k% @0 T

    3 L! f. T3 t" KThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 q9 K) t. l9 j7 C9 L& [4 D9 A* g4 y; y7 i# \' O" D
        Base case: 0! = 1
    ) _; b8 F5 j; j% G) r+ \8 m1 f) Z
    2 E2 k* e& C+ I8 k7 O' @& ?7 Y    Recursive case: n! = n * (n-1)!& `" c. C0 B$ j& ]7 P9 A( H

    ; E. l3 o7 J+ k5 rHere’s how it looks in code (Python):. u5 f9 s- ]0 |& h! u
    python
    ! t. t+ B6 P! O, U+ }" s5 y5 c1 q0 j* }8 c! M/ P
    ( _( V& N- A2 r) p8 n
    def factorial(n):/ P) g$ ?6 m% Q" ]/ ^
        # Base case) J  d" n8 m, U" Y) H/ j7 V5 K% {! m
        if n == 0:
    1 U; j, S3 \. x+ G. Y3 x+ V        return 1- ?4 \% H0 ~) P" a
        # Recursive case
    ! R* ?: V7 J$ z: g& s% T    else:, O% b: e" d. n7 R; X
            return n * factorial(n - 1)( ~* N8 I, p# e! }
    + B3 r9 O$ K3 s  Y" P/ f3 }# j+ e
    # Example usage
    ! ?4 F- R6 r" H- @/ u6 sprint(factorial(5))  # Output: 1206 A9 D: G. @' R" @; K/ ~

    5 \  b% A1 o5 s# T7 L* Y; J8 x- l' dHow Recursion Works
    ) v& K" V6 K$ t: H- L6 |* A: F% d0 ?0 @" C# `+ k9 F/ ]
        The function keeps calling itself with smaller inputs until it reaches the base case." O8 J. R: e( Q
    1 T" A/ U% S6 l  f: E7 b
        Once the base case is reached, the function starts returning values back up the call stack.
    8 |+ O1 X; f6 c) c4 D7 }/ l' t& d, w) @5 v8 |# a
        These returned values are combined to produce the final result.
    " [" ?3 z7 j, [- _- N2 b4 _* n7 q5 B" `2 w9 P
    For factorial(5):$ d) L3 d1 m  i' W( N+ V

    . X; j1 l3 B  H
    1 L# X2 D& M+ |  F7 X9 Yfactorial(5) = 5 * factorial(4); i2 S* q4 p" W: Y( ^
    factorial(4) = 4 * factorial(3)
    $ G3 v( K" b: Y9 f5 \8 Mfactorial(3) = 3 * factorial(2)+ q- I. `  x) h/ |2 Y
    factorial(2) = 2 * factorial(1)
    . R( E1 {& w0 ]: Efactorial(1) = 1 * factorial(0)
    1 g' W" P3 ^9 u" |$ v! U# Z3 N; efactorial(0) = 1  # Base case
    # W$ |0 K0 p; P+ @5 R9 }# m, I  p' z& r3 V! G
    Then, the results are combined:
    ; h; w$ A6 L* z
    + m. S0 ]( Z" I; P2 B5 `
    8 o$ [% b5 m, c. q0 cfactorial(1) = 1 * 1 = 1
      c9 f+ l, {& C7 m5 Yfactorial(2) = 2 * 1 = 2
    ) j  `7 M3 T1 N4 @) h* Y7 X  {. O$ gfactorial(3) = 3 * 2 = 6
    * k1 s- g5 J3 r+ ~5 F7 afactorial(4) = 4 * 6 = 24$ Y2 T$ P& T3 y$ `
    factorial(5) = 5 * 24 = 1203 q/ ^" o, h) s. w) T+ B' s

    0 ?; n4 a+ d9 t3 @5 H5 w5 uAdvantages of Recursion
    . s4 ~. X7 ^# H) O) |+ e7 R! Y5 ~( D
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ k; l$ s7 d* i4 V. {
    3 M; W2 B4 [) U5 G& c! c" R
        Readability: Recursive code can be more readable and concise compared to iterative solutions.: l1 j4 L0 R$ B

    3 O9 b+ Y2 V5 g, L( GDisadvantages of Recursion$ l3 E' @2 S$ t) n& P3 K
    1 V# _, T6 h6 ]+ z: I- C6 o2 d
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    # c7 P( Z& k1 f/ b
    * Y. X! z/ X& x4 z5 z. C    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  F5 q7 c1 }8 L8 Y7 N
    : F% E: }2 l8 p* ~) l( \- O
    When to Use Recursion
    * p  X9 Y; B. V) C% ~3 q: M4 E( I3 i6 ]0 J* s
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. \% S# C- W8 s1 z6 z; z+ q
    ( c0 I$ V" U5 ]) e+ E% _
        Problems with a clear base case and recursive case.6 t- o3 l4 E# X( `& f. E0 {) L0 u6 e

    4 P. f2 Q* _3 X# O, ]7 s, RExample: Fibonacci Sequence
    3 M( G% T4 h: f$ C! c
    8 m% U) U! X! FThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:9 ]/ P6 H$ v  K

    2 G9 I, e9 W' d" z/ w( }8 ]$ t) [    Base case: fib(0) = 0, fib(1) = 1
    : }  m& |9 ^/ [: x5 I3 X2 }  I8 H. L: T+ u2 B% u4 I8 t
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    ) \4 P! U, f# N) J
    7 I( E) _* T6 T& q/ l! |3 ipython
    : U8 Y% |* ]) r& A, h3 c" s1 _% f* K4 j$ M9 O* E4 C
    9 w7 }( z4 ~8 `
    def fibonacci(n):# b+ A  @3 j; g7 n4 n+ R; N
        # Base cases
      e! ?- @7 u  O9 V; @8 k    if n == 0:
    " J5 j. y. m1 A* ~4 q4 Z* _        return 06 u1 q& W7 F  u9 N7 C
        elif n == 1:
    1 {, l- v, v! }9 Q        return 1) Q7 M9 {. i. e* p) d+ j! P
        # Recursive case) _* C" m( D5 X8 f
        else:
    . C# z; ?' E! f8 e/ J        return fibonacci(n - 1) + fibonacci(n - 2)
    ! s) K2 _' K* m' J& ~! H+ Z! @% [3 P7 Z' s! [3 E/ @1 j
    # Example usage6 u& ~9 ?$ ^4 `3 L
    print(fibonacci(6))  # Output: 8
    ( X0 ~1 E  X4 n! [. o+ k
    4 y$ `; B3 T8 }; uTail Recursion" u$ F( r! N1 e
    / C; A" m$ J/ \3 x6 ^, v6 ]- k
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    0 {8 @/ L% b9 |: u# w
    3 Q4 |) k$ M" M' j& wIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-6 06:04 , Processed in 0.033528 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表