设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1674|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 h0 z3 }1 U, ]! \( ]/ U, I* a
    , u! m  @& G% m$ z解释的不错* h. a6 N9 E1 r0 V4 }/ n

    # d- }2 y. q0 b1 b递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    # I8 k( Q( }! K8 f* O6 d5 v2 a  |' t! t* ?
    关键要素
    3 P7 B, s$ x+ s2 D' f1 M9 r# |1. **基线条件(Base Case)**0 v8 [/ N! C5 D/ @
       - 递归终止的条件,防止无限循环
    $ s9 D  s* u" A0 ?0 f# Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    % H. k7 l1 S- b* z1 B; p+ n
    4 F1 o4 O1 q  y2 Q8 M2. **递归条件(Recursive Case)**
    8 b) w5 P; |1 F   - 将原问题分解为更小的子问题
    + Q1 x8 G3 t: |. j. r: _& w   - 例如:n! = n × (n-1)!
      ~" e) Q& S( f; ?( K
    ) t8 m* y# t9 g% l% c6 k. N9 \ 经典示例:计算阶乘7 @; n0 z$ U6 l0 f1 u
    python# R5 y. C' f, z4 T! O
    def factorial(n):% w' l7 i* J/ }* w: J8 J$ Y6 j! E
        if n == 0:        # 基线条件
    4 W7 X4 Y3 o) o0 ^        return 1+ l0 Q" W) l, F0 _- S: [6 U
        else:             # 递归条件
    ! T3 U7 h3 K! z  d" a        return n * factorial(n-1)5 B2 k  x* F" z2 S
    执行过程(以计算 3! 为例):
    ( h) h- W" b" B6 W! M1 A. efactorial(3)
    5 S" [0 S- n9 t: p+ j$ ~4 X3 * factorial(2)
    2 y  r4 J* p. P. Q) a+ L* q* y, Z' M  G, I3 * (2 * factorial(1))
    5 `% w8 b  y4 _. X3 * (2 * (1 * factorial(0)))8 b0 Z& t# Q# f9 q7 J2 d% d
    3 * (2 * (1 * 1)) = 6  T% s- L; M1 e9 P* ^; [) K
    1 H$ h: E: g( P1 }/ }
    递归思维要点$ b& k. M4 T8 R2 U
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑1 n2 C  k& k  Y, P
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    : `/ ?: I$ @* p/ \! n3. **递推过程**:不断向下分解问题(递)
    . C+ c& O) M& X4 Y: U/ o1 ~2 R4. **回溯过程**:组合子问题结果返回(归)! C/ l! ~) N) l
    3 t% K" t" f4 ~/ Y$ g
    注意事项
    . {7 ], s' C3 C: k% l2 w2 A  U, ?必须要有终止条件! {5 m+ f+ m( ^* j
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    1 H: O; w* z7 ?某些问题用递归更直观(如树遍历),但效率可能不如迭代
    - u; ]" H0 U, a; Z1 q" K尾递归优化可以提升效率(但Python不支持)( N' e) k* f/ {: }/ I
    4 E# P5 ]( M( ]3 X5 b
    递归 vs 迭代
    1 Y7 c# Y9 N& p9 I+ f5 z; i) A|          | 递归                          | 迭代               |
    ' _6 z: W# o5 H3 ]5 O6 j|----------|-----------------------------|------------------|5 {* b5 A3 W- T/ W
    | 实现方式    | 函数自调用                        | 循环结构            |9 y1 `8 ~" n0 e' X( S' q
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |5 M0 I+ i% n1 Y# R* _- I, i; a
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ y$ q4 R# G/ Y* W! ^0 u
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    4 y" d' q0 x. t1 `5 r$ s1 O/ c$ i5 M" o
    经典递归应用场景
    8 }5 W$ u4 V, Y( X& d) M1. 文件系统遍历(目录树结构), P! m: O* ?$ O$ h( [0 S
    2. 快速排序/归并排序算法
    - E. B% R! h/ H* M: N3. 汉诺塔问题7 C( {  f. ^' z. a6 u5 @5 i1 k+ R5 D8 C
    4. 二叉树遍历(前序/中序/后序)2 r) G+ W" {; {7 X( n  R
    5. 生成所有可能的组合(回溯算法)
    $ ^/ i% \1 @( Q, C( ]. T0 a/ n2 m
    ; ~/ Q( y. ~; X% q2 Z试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    慵懒
    昨天 10:05
  • 签到天数: 3130 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    * J  E- s) Z% ~0 a4 t" }+ d我推理机的核心算法应该是二叉树遍历的变种。
    . S' V7 l! f+ a2 `0 U( B* j# j, U另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ! X5 Q2 v9 I7 C/ HKey Idea of Recursion0 v2 _. B* s6 a1 G' K' N5 b% x0 x
    ; j% Z. H9 M) J/ c3 o/ L3 {
    A recursive function solves a problem by:
    0 G7 V8 ]4 Z/ B, p0 [. E
    % Y5 a: D* @$ r: C$ r% a    Breaking the problem into smaller instances of the same problem.1 r5 x6 j7 H7 l) N8 f7 P% F- B
    9 U* X5 f1 ^. P
        Solving the smallest instance directly (base case).( J8 O' O5 C+ c& ^, `  {8 {

    . N, I9 L  m' p    Combining the results of smaller instances to solve the larger problem.) l# I1 B* t1 z9 M

    1 d! B- J. _" B$ P) C$ m. OComponents of a Recursive Function# W! U3 u  l& g1 q/ r+ K

    8 c0 Z4 J. ^5 r# @6 F) C    Base Case:
    , g/ g  L  M, ^2 ^, K5 |! z& w
    ! l2 `/ c$ r# D* ^; P        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.3 W# s5 O( A- \% E4 j  n8 |
    ) Q% d. Y' f1 f; c7 b
            It acts as the stopping condition to prevent infinite recursion.
    5 h+ ?& W- q$ y! l' Y
    & p+ i- X/ F5 }9 B, J8 h) V        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    ( Y3 j. K" P" A3 G2 s& n
    # |2 V0 L0 X% U3 S# u6 n1 c    Recursive Case:
    5 G. x3 V, j0 i- ?3 M+ G; E, p5 M" m+ ?+ j
            This is where the function calls itself with a smaller or simpler version of the problem.
    2 d! ~: d. R' [2 J  e+ z" s: ?$ s; q2 s- p5 s
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 S0 I6 X; l- c1 X1 I$ Q/ j( N8 M9 l7 K& t1 M3 W
    Example: Factorial Calculation7 n. w. b8 r. T7 H4 \& L4 s
    # u4 E! h  I& m6 U' h
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, C! A% w. p. v+ }
    ; }( u% g) M3 j7 c2 Q! p! T/ l1 |
        Base case: 0! = 1
    7 t* \. ~1 D8 Z7 C3 K$ m0 K# x; ]6 r+ U, P4 h$ }/ [! K4 H1 ?* o
        Recursive case: n! = n * (n-1)!
    2 |7 {- g0 a. \5 J. ~
    2 |4 @6 H: J! YHere’s how it looks in code (Python):
    ( R. w# ~6 c5 W/ hpython0 w! ~( c( E! ]9 z* I
    & O2 [- Y$ j8 `8 b$ m0 P

    * q. r' \. U% A! X" O+ q4 Kdef factorial(n):; m: {6 M1 T. w) s
        # Base case- q* q4 d5 a. _: s
        if n == 0:5 G: x, `2 P; Y" z+ V, E
            return 1, ~& y9 J/ q. q1 Y8 T+ b
        # Recursive case. `9 E0 c) N4 U- c4 D# }
        else:" J' z8 w+ R/ I: c. E, z$ E2 s
            return n * factorial(n - 1), c7 C" G( l' {# I9 h

    # O- o  o# l3 R' N) Z# Example usage/ G/ j3 ]4 e2 Y) |4 }* Z! k2 o+ i3 i
    print(factorial(5))  # Output: 120
    ( G! @5 G1 I. g( ~; X% I% J6 p
    - Q9 ]0 ~8 U( f+ |* oHow Recursion Works7 K5 J8 Z% q1 Y0 E5 [4 D
    * Z+ T' ~1 A  [' X
        The function keeps calling itself with smaller inputs until it reaches the base case.
    ! k2 g$ Z% ]* J1 ?9 J) A  b/ q9 p& P6 [' M$ k
        Once the base case is reached, the function starts returning values back up the call stack.: n2 L2 X- C% Y( e1 ~* G1 @* z+ V
    1 E/ f8 d8 ~; _1 f
        These returned values are combined to produce the final result.
    + B6 k# Y4 e/ L
    0 l% @/ G5 A/ F" Y6 b! h& HFor factorial(5):
    6 J8 P; ~& B5 {9 O' [; W0 l1 x' W9 Q* o3 r2 x! D& j6 e" c( V6 }& I
    ( ~# l+ Z; P$ n2 ^4 W
    factorial(5) = 5 * factorial(4)
    " a  m+ K3 ]! c* C/ m9 o! Rfactorial(4) = 4 * factorial(3)* W: d# u7 S( }; X6 D: P1 |9 M. N) h4 T
    factorial(3) = 3 * factorial(2)
    , o" D0 @" B; w# C) z' Lfactorial(2) = 2 * factorial(1)
    4 ^( b2 K3 \: Ufactorial(1) = 1 * factorial(0)4 |5 R9 m. N* B* L) }; {
    factorial(0) = 1  # Base case
    & N, _! ]+ A8 K: o: B  i
    3 ?5 e# t# n: y4 f. O5 ~Then, the results are combined:/ S$ a# s8 C9 p: ~- l1 C
    ' v: O  V1 C  W! ^5 ]7 d
    # U( q) a7 p  J
    factorial(1) = 1 * 1 = 10 l3 d/ h9 ]) p* j% C
    factorial(2) = 2 * 1 = 2
    % x; v) j% m3 Z, O3 `% Nfactorial(3) = 3 * 2 = 6
    " |) E, _6 v5 z. p; `* Rfactorial(4) = 4 * 6 = 24
    + i- _& I+ c3 f) J2 w9 Jfactorial(5) = 5 * 24 = 120
    ) p+ }6 q* O  m5 w( _2 A) U2 |  I7 E  t% e- f
    Advantages of Recursion
    ( W2 S5 I$ E- w# `2 F: l" Z& \" A7 n5 m. _
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + A# w; L" m/ K9 N7 D
    4 k1 ]7 q4 g. Q9 ?    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    8 b- b* b! L# W! f" q" b6 g, o: U1 a  ^$ q1 e7 F. r
    Disadvantages of Recursion5 }6 |: g6 H. R! L2 M
    ! E1 P$ Y3 Y( E5 F- y
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.; d9 X$ f' e! S2 g+ q, C$ V
    $ a3 s/ b5 z" c) l. n/ c
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 P+ M. z) Y3 Z" g

    ! V! a& J6 ^2 E! ^+ D4 dWhen to Use Recursion3 `# |; g+ g0 k3 o
    # w: ^  K# v' @5 G$ H; S
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    1 G+ u" T5 Y! K  G0 i# c  z2 ^% W
    . W9 G* H4 u; m8 H% n9 w! b    Problems with a clear base case and recursive case.& R3 Z- c+ Y3 F& b7 ]7 w- b8 J

    , m! J2 p6 e+ ?) N: d5 }& s# e# uExample: Fibonacci Sequence+ e+ x. r7 B3 e/ P  {( @
    ; e7 H2 V/ A3 D0 M! T: h; q1 V0 q
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    & z) g6 ~' p1 W6 V$ n- N8 n1 |; [2 r
    , \* o* q1 [2 i' S- ^    Base case: fib(0) = 0, fib(1) = 1( c4 A- r8 d) B( J
    9 @  B$ v" C/ |7 F% z& M
        Recursive case: fib(n) = fib(n-1) + fib(n-2)1 A$ L$ K/ x% m5 Y8 _( h

    8 k1 m4 J& A. L; t8 |" fpython% J0 N- Q, _% H& H' S2 {

    . V! s: s* }9 m6 |% j; |; e# f. W. C0 F) S
    def fibonacci(n):0 C( F; `2 [" [- z! f) Z5 q8 i
        # Base cases
    $ |$ i- e- ?7 M" g, k, f    if n == 0:+ a! R. y7 M. |# t& `) V; h
            return 0
    ( K' C, }4 q0 e/ F    elif n == 1:
    9 }7 \9 J4 m5 w; h% M3 b        return 1; F# J0 k4 l, T% z! [: G: |
        # Recursive case
    + ?% r* D/ {( B3 s# B) W    else:
    # n7 ]1 M4 f3 w2 a        return fibonacci(n - 1) + fibonacci(n - 2)1 o- W5 }# a" z
    / T: x" X3 j" f6 I/ J' D  F
    # Example usage
    # Q" J  y5 s2 r6 o- U) Hprint(fibonacci(6))  # Output: 8/ w# A) R. q/ y  @8 S# Y

    9 l/ m7 e% B! ]8 cTail Recursion1 e# h. W- N1 U: J/ ~

    2 h1 H! E; v0 r; Q  w* G' u" iTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    4 |# q; D( l, T: J& u! b" D" e. m$ J% p' [2 Y: m5 U' I( c, P
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-29 23:29 , Processed in 0.029788 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表