设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1429|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 & c8 R, s$ Y  r$ K. ?

    3 f5 d% L/ g# v& Y8 D解释的不错; Z$ A. H' N8 z/ \. M. ]
    " h- ~. j9 n/ P/ `; g" |3 \6 W$ O9 {
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    9 h- O6 C8 v  F- x/ M' m. z: N' U- w" y; Z% H
    关键要素
    & @+ ]4 l3 r& }1 N$ A0 u" s/ M1. **基线条件(Base Case)**
    8 K$ [! C" N% H$ h" o. j; a7 J   - 递归终止的条件,防止无限循环9 f8 y6 n3 j2 }0 Y7 h+ O
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ I% ]* X6 M/ Z4 q8 Z0 `. q) A# q
    2. **递归条件(Recursive Case)**  K$ R' |- S( ]" s$ J. W2 I3 T- [
       - 将原问题分解为更小的子问题% Z) e% ?7 _; W
       - 例如:n! = n × (n-1)!
    - D0 h) I6 S1 q! C' v
    ' |9 U2 G8 T! x3 j* v 经典示例:计算阶乘7 a; ]- w* t7 t) r3 I/ C& V
    python- U  g' D; c- @9 n# x- Z
    def factorial(n):
    , K5 R7 l) b, @. _5 g6 b0 c' B( n, X    if n == 0:        # 基线条件8 D4 I5 [, F% V& M: t. G
            return 1# y% W- v, M* B% p( P% N
        else:             # 递归条件
    , Z- h9 A/ F8 T  k: e4 ^3 `        return n * factorial(n-1)' h% k( ?$ [4 ^3 p$ U- [; E
    执行过程(以计算 3! 为例):- O/ y; o5 |0 M: d1 N( O. l
    factorial(3)3 j0 X0 ^& E% z1 H
    3 * factorial(2); e2 w4 v# l4 h- U
    3 * (2 * factorial(1))
    ; S5 i0 P& T5 w3 r3 {; j6 {* K3 * (2 * (1 * factorial(0)))
    ) D/ Q5 n( c4 d( p  ~9 U5 f6 C: q: }" v3 * (2 * (1 * 1)) = 6) u6 z0 y. E7 M5 e

    ' o/ \2 ~) q; m, h8 o 递归思维要点
    / n) a9 g( l- u5 Z1. **信任递归**:假设子问题已经解决,专注当前层逻辑' o0 V. U1 t% o& C9 E; b
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % ]- w7 q. H6 q8 T% {9 u3. **递推过程**:不断向下分解问题(递)- V% B' e7 D) R  g/ u: G
    4. **回溯过程**:组合子问题结果返回(归)
    1 i5 m- Q, {( ?. w, a8 F8 d
    * w2 Y2 b8 B5 Q 注意事项
    % j$ ^" k+ T/ b必须要有终止条件
    & T/ `: x! q1 {3 ]$ S递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& F7 w6 I( `: j5 }. e  O
    某些问题用递归更直观(如树遍历),但效率可能不如迭代" N1 p) ^  E+ H9 v5 i: O
    尾递归优化可以提升效率(但Python不支持)
    7 y& g- i+ A$ O* K( \4 U/ L* Z; M
    2 B6 A: ^( N1 { 递归 vs 迭代
    * H; `. g" x) y" j) d|          | 递归                          | 迭代               |
    5 b) v/ C8 F3 }1 M: U|----------|-----------------------------|------------------|
    # _7 ]; V$ {$ a" W5 Q" j| 实现方式    | 函数自调用                        | 循环结构            |( Z+ I0 A- s# q8 v; ~" o2 J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    $ P5 E; E& @/ K: u3 }# ^| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |# U  g. R7 f1 Q4 f1 X2 J7 G
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ( E  Q! a; b! w; }  b& X+ g
    ' g5 L. O5 c! a8 m0 Z! _5 p 经典递归应用场景6 E7 Y6 j  B/ [& h  L
    1. 文件系统遍历(目录树结构): {7 y% ]0 z7 k$ w( R0 W, F
    2. 快速排序/归并排序算法0 A5 \* \' R" [$ y9 `# A
    3. 汉诺塔问题
    ( _0 k- j9 D0 |& ^4. 二叉树遍历(前序/中序/后序)( a1 \6 M) M) V! t5 j  {
    5. 生成所有可能的组合(回溯算法)
    / V3 }% b; j# q& E! Z3 a
    ! B- [( N& V0 I& P6 T+ T: E试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    9 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,3 z9 B0 D! k' q" o- r% l
    我推理机的核心算法应该是二叉树遍历的变种。
    / N( n8 Z) P  G; n另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' a$ {- ], C0 v% c9 `$ n' u
    Key Idea of Recursion
    ; A+ _9 `1 V$ T( F/ e2 D8 D7 l. Y2 X  C
    A recursive function solves a problem by:. U0 f0 l9 w3 ?* |* }. L8 P  N$ o
    $ _& k5 j( G) ~
        Breaking the problem into smaller instances of the same problem.
    : R& E3 \  }) c8 L
    4 E- T" l7 i. K" E; O    Solving the smallest instance directly (base case).
    # `4 [9 r% J5 ?* {  |6 `3 e
    % d; G1 k3 S* Z8 G    Combining the results of smaller instances to solve the larger problem.9 S- N* j3 q& v3 j1 F$ y/ I
    8 n/ u5 S) r9 Q8 o  k* _
    Components of a Recursive Function/ t/ X. q8 d# n9 Q' o5 \
    0 j6 \. z; I) N8 C6 v
        Base Case:
    ( A: o& f% \9 b7 D2 P2 X* Z/ w
    5 B/ P3 Q2 n; _6 B% K2 Z7 H" E$ ?- D        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ u2 ?" X# q& @9 g. I7 y$ L8 c9 {

    * ^; p, N# s( e) G$ `3 k        It acts as the stopping condition to prevent infinite recursion.4 \- A, K# t  F! y
    2 A$ i! A9 w* `+ m" o
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.! [" Z7 f( `; \8 _/ `, x

    ; \* Z0 k9 O7 d$ j( F2 `$ j0 Z8 `4 l    Recursive Case:
    7 h$ y7 f3 J) N' _1 U
    0 M( |; v6 s( `$ q3 \9 B        This is where the function calls itself with a smaller or simpler version of the problem.
    * D1 {3 D  x! P" o5 d7 `3 k, T5 \
      J+ J/ I+ W) }        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    5 a3 D/ k+ P/ t9 L& Z, a; O: V2 q& A8 i" g7 d1 o$ o- X
    Example: Factorial Calculation
    $ `# B2 t! G% f" g
    & X4 A# h& C: z( m/ uThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    5 U/ A- S# F4 N7 g6 b2 `0 }( ~5 t) j# m+ c/ u9 M* Z
        Base case: 0! = 1# C! y4 c5 N5 H( j3 c* P6 o4 e
    2 f/ A7 G0 _2 Q
        Recursive case: n! = n * (n-1)!
    ( G' q9 p3 X* F$ M% U
    $ W) D2 E4 M/ g9 vHere’s how it looks in code (Python):
    / F7 t/ M: O4 R, Mpython1 V  F6 L! @, T
    ' g$ |2 L+ h+ {/ S

    , `( B4 u  U* b$ X6 @) h' v# h3 Mdef factorial(n):
    5 E: M6 u7 x( r& s" G* \1 U* N, f6 |    # Base case
    + O+ g8 }: C+ Q0 s+ k    if n == 0:
    9 d. `/ a) v2 M, y& C3 T7 Y1 R        return 1- N0 K' u9 {* t2 p9 }
        # Recursive case
    7 x9 `+ @, T# L1 e! j    else:
    4 P, C& r0 ]) A0 t  u, t& p! i+ e2 [        return n * factorial(n - 1)/ I$ f% |! |  \1 N: y. c2 E. G

    8 A% [; Z& f4 f2 f7 K' R( D2 R# Example usage
    9 }8 n& ^' A# T& A! I; ]: C2 fprint(factorial(5))  # Output: 1201 u. _9 ^/ n% ^; E2 K' n7 T+ T
    % X1 c7 b1 U( u+ C5 X" K
    How Recursion Works9 Y0 a' s0 f) G  U& z" B1 D

      T; g3 B$ X0 P. i, g    The function keeps calling itself with smaller inputs until it reaches the base case.
    % _; j" c5 p+ w0 u3 o$ c' m1 {7 r. S/ m% n0 a2 v9 J
        Once the base case is reached, the function starts returning values back up the call stack./ }6 ?( O3 c& y. Y+ q

    + q. b% r) L/ \+ H- ?% Q, V    These returned values are combined to produce the final result.
    * v/ f4 V2 f2 y3 M& T7 j
    & n2 p5 V$ Q& p" o& gFor factorial(5):
    : O+ v4 v0 K! }+ g. ?& j5 @1 S1 V5 _2 K, y5 j

    & R' ^. g1 B0 T/ R! J/ `factorial(5) = 5 * factorial(4)
    4 i7 L8 S& L+ bfactorial(4) = 4 * factorial(3)9 e+ H2 i% r# M) T
    factorial(3) = 3 * factorial(2)
    4 B0 E9 m" V5 T% L/ bfactorial(2) = 2 * factorial(1)
    5 _8 N/ S- \! @7 I4 T& Lfactorial(1) = 1 * factorial(0)
    ; o. Z' U/ F1 S- gfactorial(0) = 1  # Base case
    ) o# D; x: I0 r# A
    ( k# j+ N, Z! e! w5 D$ GThen, the results are combined:, w; w  ]+ W. e1 n+ w' H% }& {

    9 s5 p: c6 Y7 ?6 {" N4 j' U+ x  V4 }. Z8 _
    factorial(1) = 1 * 1 = 1  x3 X& R/ g' T7 ~: K, ~8 w  w
    factorial(2) = 2 * 1 = 2' P4 `* s! ~! `! ?$ \- _9 X
    factorial(3) = 3 * 2 = 6
    ( g& Z3 }1 G8 o8 Jfactorial(4) = 4 * 6 = 242 h8 u9 j, d7 y& t. ]1 r
    factorial(5) = 5 * 24 = 1205 k8 m0 O5 i% S; x' ^8 c2 Q

    1 d) {! G8 x1 v- ?Advantages of Recursion
    * w; I: r# T4 f  O8 `, ?( i! B) ^; q; I0 C9 r% f" L
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    % p% e/ }- Q  q3 S; E# }2 J2 V) b: T
        Readability: Recursive code can be more readable and concise compared to iterative solutions.0 s& S1 s& M; X( i- u. t" X
    9 j+ z" E2 q8 S3 R" a$ k- W2 `# G* a
    Disadvantages of Recursion# _: e) e2 {1 m) f7 o3 v
    . K: |3 H! O. w" w  b5 w
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    3 |. ]- H0 c+ v* q/ c% P- [' Q4 q1 m5 @/ H6 \$ F
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( g9 n) O9 V# S2 @# h3 M5 S( B* ~3 a1 s3 \; ~
    When to Use Recursion- I& ~  h! [7 f: ~/ j

    . h/ `# a7 g3 e7 ?; z$ }    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    8 y. p) n/ Y, i" x0 ?# O# W/ h1 r
    9 ^& `) J. T+ J    Problems with a clear base case and recursive case.
    5 s  o/ v( T, _, A" m6 m+ D, u- D. X, l' {  w
    Example: Fibonacci Sequence
    ; f6 x% R7 \8 O4 D% Q
    3 j" c" s1 c% N" wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 q8 B% J( m8 w8 |8 X5 l

    . y. P# B4 e/ l! `    Base case: fib(0) = 0, fib(1) = 1
    : X1 W# s# {, `( |0 u+ P4 d+ E
    ' x, V$ a" l' @! ^    Recursive case: fib(n) = fib(n-1) + fib(n-2)9 C2 [) ^7 u3 h
    ) j. \2 M7 e1 ?0 e# J$ d
    python2 B) p# M2 r; D# Y. `0 Q$ b2 A
    ! E- j6 ?# N, U  O  {5 j; {
    9 G+ x- ]/ |, O: k: U
    def fibonacci(n):+ f- b! Y- d1 J. {( D- \" V) p
        # Base cases
    + T6 b; [# k6 m    if n == 0:- D, i; m- d. u* N9 m- Z
            return 0
    $ M( h: q4 @2 t" E( p/ B    elif n == 1:3 @' G( c& v- x8 ~2 R
            return 1" i" z8 L% L. z
        # Recursive case4 ~5 H7 i6 ~9 Z: d6 k9 Q  b
        else:
    2 V4 F4 M  C/ X7 u: \6 O; _        return fibonacci(n - 1) + fibonacci(n - 2)
    " _( S* Q0 z: j  i, P5 B
    ; g. n  f+ ~6 B# Example usage+ h4 q! ~& x1 _/ z9 V, W- U8 n
    print(fibonacci(6))  # Output: 8
    $ P; s0 E8 D* w6 R
    ! H6 H$ e. U; j; Y) xTail Recursion
    - u, O, h* M6 R2 E8 t! b* a7 J
    4 v0 h+ W% u  |6 ^6 Y9 K* }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    1 V1 J' B  l7 I: c
    " J; {4 F, B2 x+ k8 @* w3 g: X: @- v6 qIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 16:54 , Processed in 0.034514 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表