设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1682|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    * U4 N5 k/ r3 x: m1 u3 j7 D3 P4 ~! \
    解释的不错  m* w$ V: s/ b6 q- _: F  `
    ; L5 L( a- Q+ v9 r4 ]
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' w$ ?  K- W1 N; Z% |
    + [5 z' m* I, S2 o2 Z9 n0 l, X" S
    关键要素
    3 [( ^% [2 A' N/ j8 u3 {1. **基线条件(Base Case)**
    : k  N4 t* h! m( @7 L   - 递归终止的条件,防止无限循环- R1 t; n+ K; F( V4 F
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, N' P/ Y0 [* ?9 R

    $ c3 R9 w3 V' B4 t2 G2. **递归条件(Recursive Case)**
    5 A* D1 _8 }! W7 R+ ^& w   - 将原问题分解为更小的子问题
    3 F/ ?1 k, b9 `   - 例如:n! = n × (n-1)!
    # Z$ x9 E. }# y& N' a6 d/ }: s. B% b( c
    & |+ z9 T; `0 D6 A0 w 经典示例:计算阶乘2 N; l6 P& u  l* c
    python+ {: p3 |% m, J
    def factorial(n):
    5 Y2 U( H! ~6 S4 L# g    if n == 0:        # 基线条件
    / E  j& J! W1 q" q5 Y$ t        return 18 R8 B4 i. P% S4 b+ X/ m. u
        else:             # 递归条件
    # T1 J' g2 y; I/ W6 I        return n * factorial(n-1)
    : J* Z3 l- t0 U1 s; W执行过程(以计算 3! 为例):
    0 [% }. x0 F# b6 a1 u1 w2 [factorial(3). T) o, M2 `# K+ ~/ i
    3 * factorial(2)/ e' K: C: z1 [8 m+ N) F
    3 * (2 * factorial(1))
    $ u( p. T7 r1 ^2 u. `' e5 N  I% _3 * (2 * (1 * factorial(0)))
    * x" @. ]3 \4 j. M- W5 X! F% a5 v3 * (2 * (1 * 1)) = 65 p: W1 @; g5 k$ ?) t+ E8 o
    & Z1 t6 g, z; P2 F0 L& s
    递归思维要点
    : E  q4 S" Q6 ~" X. T1. **信任递归**:假设子问题已经解决,专注当前层逻辑0 N, O$ L0 M9 d. a7 N& m
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 N( Z5 W* P3 ^3. **递推过程**:不断向下分解问题(递)3 j$ o9 C0 R( F: U
    4. **回溯过程**:组合子问题结果返回(归)
    ) S: V8 n1 M5 d* ]7 ~4 a
    # `& v: M+ h5 s$ Z7 F$ ]9 y 注意事项
    8 j. f2 R- m% U2 W$ U必须要有终止条件
    4 W3 N4 F3 D& c. [: n递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
      |/ o* N  E# V& r& _) l某些问题用递归更直观(如树遍历),但效率可能不如迭代# e% [8 c' `! i; ~, }
    尾递归优化可以提升效率(但Python不支持)
    9 p& @7 E" z9 F) r3 S$ c
    % }. \' z) y8 |9 x 递归 vs 迭代3 h9 E! T1 ?; A. J
    |          | 递归                          | 迭代               |
    9 V, J) n( S1 ]5 f|----------|-----------------------------|------------------|
    / [) |9 J' c# [3 Z) p' J| 实现方式    | 函数自调用                        | 循环结构            |3 ]( T; o% q4 g$ y; \
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |( W3 ^5 Q7 G- n8 _3 z
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    0 h& h. O5 w7 Q9 O* B. C! p| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |+ s" e4 @" T. N- k- s$ I+ C9 t
    5 w& O% t; t# ]2 {! M6 F( \
    经典递归应用场景
    9 }# J! ^4 J6 @5 [; L% D. r1. 文件系统遍历(目录树结构)% ~- I3 y, t( Y( a
    2. 快速排序/归并排序算法& H. t' j; s& U( B4 H5 Q
    3. 汉诺塔问题
    ; c2 b; [- G7 {! x7 J4. 二叉树遍历(前序/中序/后序)* ]8 t/ ^: n; d! G: y
    5. 生成所有可能的组合(回溯算法)2 c4 O0 X, E! z

    " K  C, ]; z4 G" p, |- M+ P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    12 小时前
  • 签到天数: 3131 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,3 q4 [" j* J& Q5 k7 R7 {2 [: T
    我推理机的核心算法应该是二叉树遍历的变种。7 o  }! A. V: \# r1 y
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 D6 H; ]" Y; _  v! ?) X% hKey Idea of Recursion
    ( x3 ?# ~  r6 O8 _7 ]! ^% {4 x  ~4 E( `; g5 q' \* \
    A recursive function solves a problem by:
    # \( b1 j. _. h% v7 w* H$ ^& G7 e6 n: |4 R7 R+ z
        Breaking the problem into smaller instances of the same problem.
    3 u2 c+ @* J8 N% x
    & y) b3 _+ a3 y6 D5 W9 b2 X. x    Solving the smallest instance directly (base case).: l' V( i: g) \- r' N0 T9 N
    + Y: Z+ _& I) u4 h
        Combining the results of smaller instances to solve the larger problem.
    7 s9 d* Z$ l4 l" A$ O, h* p) t9 p7 }5 a
    " |8 V% e* b4 LComponents of a Recursive Function
    / t0 h# N, e3 h* w7 z2 X# j2 X# v6 F- h* I+ o" P/ u; X
        Base Case:+ j) ]9 R% W  n

    ! p8 c* F! v. K2 Z5 |( ~' c; E1 q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ( O4 u# o! B& y" \6 G; T
    / x. R6 w* ^; f3 r        It acts as the stopping condition to prevent infinite recursion." A8 Z( B4 Z$ X
    , O$ L5 C5 h6 q
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    % q5 k6 j6 j, i/ `! J' s' O  Y" X; ~% Z. M' f5 |% m0 n: r
        Recursive Case:8 |" D, D" t9 D3 T: z5 u

      \3 Z; n3 f' k/ C* n' L( G. \- s        This is where the function calls itself with a smaller or simpler version of the problem.( ~$ O( x8 v' Q

    - i, U7 G: p- y. H4 Z) K        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    $ P+ ^- d. ~( x6 P* X) v, s9 K7 {* S) o! S) x$ A, s2 w' D* g# t
    Example: Factorial Calculation
    ' N3 A# O) i$ l# S9 {/ M! b9 Q- N$ i# `# h  B
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:" y1 w5 X# X; @- U( \# b
    : @. m3 a) u! [* w( P
        Base case: 0! = 1
    1 T8 j2 G9 l& e$ l1 u
    - v" g& u) t0 @+ t  _- p4 |    Recursive case: n! = n * (n-1)!1 x8 ?" }; W9 A5 }  [- b
    8 C4 I8 C: m5 w- {( U+ R
    Here’s how it looks in code (Python):
    ) U+ X! S' G$ K) q) [0 }python: L# _& L1 f! D1 R, v+ F  q, C* C
    6 x6 a6 `/ T1 H. \) F
    0 U4 E! z- \* U7 l& C( R8 w
    def factorial(n):
    . ^. ^, N# a/ t3 x    # Base case
    / c' i) G7 ]. ^( N! L3 ^6 x    if n == 0:5 \* G$ N$ ]. f
            return 1: N) D, o& F8 J9 k+ o6 m9 [9 J7 Z
        # Recursive case
    & L  I$ \* I3 R" H4 ~" K" P    else:% C& ]* c( i" R
            return n * factorial(n - 1), u6 J3 P+ |/ a* l& P! @) R

    ' Y4 y, s# U1 V/ v. w9 W3 u# Example usage0 i9 i% e, j: _" W) T6 e6 w
    print(factorial(5))  # Output: 120
      l% {2 D' L+ w# A
    5 h. Y5 {& R5 B& ^; LHow Recursion Works
    " q: T0 k! N# ]. ]. w, @5 s3 M  r' i3 c
    7 X8 w+ L* e& |6 j    The function keeps calling itself with smaller inputs until it reaches the base case.# T1 w, c, W! E: d- ~) R( A7 d
    $ X- o) j) b) I
        Once the base case is reached, the function starts returning values back up the call stack.
    1 ]8 X5 j3 s4 L1 A1 b, \: _+ g1 Z" @2 ^1 d/ q9 E! \; _" \$ @/ B2 z  B$ U
        These returned values are combined to produce the final result.
    % y, w) B" f9 [3 ?' Y
      _; {) |- B/ U' J4 p5 D, d: s+ pFor factorial(5):1 j( E& R4 ]+ ^. {/ b( s# {
    / C! V9 E" B! P5 C7 D7 ]& b
    ) P2 c8 ]! l; ?( Y
    factorial(5) = 5 * factorial(4)
    5 S7 W- F( b& ?7 y  L) Q. Ufactorial(4) = 4 * factorial(3)9 e* e. w9 C% ~' C
    factorial(3) = 3 * factorial(2)# Z: H* N8 b1 O( p( R( U
    factorial(2) = 2 * factorial(1)) c) d; m/ w( ^! a# g
    factorial(1) = 1 * factorial(0)3 b4 U3 j  W( f4 `
    factorial(0) = 1  # Base case" ^+ o/ K2 F4 @/ H* {2 \/ T
    $ [7 h) c5 H3 p. }5 [
    Then, the results are combined:
    + T6 |  H* h  x1 e; c& i8 v( P- Y& T" a- F( W) D. N
    6 `* A2 ~# k7 S0 O! R
    factorial(1) = 1 * 1 = 1
    , b5 o0 g$ ]( xfactorial(2) = 2 * 1 = 2. I, T! [3 @: u9 n% H
    factorial(3) = 3 * 2 = 6: r* Z. a1 I( G" ]: _
    factorial(4) = 4 * 6 = 24
    + W- B- B! }  D+ Y' P5 T$ t3 bfactorial(5) = 5 * 24 = 120: P, r; R; R4 Z  e' l7 z

    7 J1 U, Z' a3 P% p# l9 iAdvantages of Recursion% i5 m5 D; D6 `* `" Y

    1 z5 C3 l, N2 M1 U* Q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# Z7 G$ J8 K9 o+ \. _9 |

    6 _! k, P$ [0 _$ e' A' m    Readability: Recursive code can be more readable and concise compared to iterative solutions.
    , K, |1 u; V6 j. S% O: s; {; u9 J2 p" m6 _( W* v4 w
    Disadvantages of Recursion" r+ U; ^) O* K& T9 N' J2 ^

    % \& \# w5 F7 N3 L    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    / k: d  K9 B1 Z! j+ A  [1 E: Z
    ' v9 W7 \- W  y$ V6 G+ L+ F1 s    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ! C9 t3 m% z5 ~$ v; x, X2 d1 O
    7 l& r6 B- g+ qWhen to Use Recursion
    9 }8 |3 ]% M- ]9 T+ t: C$ o2 e# {  V
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 I9 ]4 F5 Z& P& g/ M* f( m; p0 h, i% g( V. c' S
        Problems with a clear base case and recursive case.
    ! S! Z9 ^! N( e+ f) d% H( g6 B6 J% T0 W- Y( V6 t7 k
    Example: Fibonacci Sequence
    6 @% _2 n  X2 e" j4 [  R" K
    " s! R, U- |: S* T/ MThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " x* t2 g, _6 L0 g8 a  z# L9 J, ]5 U3 g- E% ~* o
        Base case: fib(0) = 0, fib(1) = 1, t  I) Y/ V1 h0 |9 n2 F1 F. ~

    0 P3 u% N1 w0 q6 V! W! U6 o1 e; e    Recursive case: fib(n) = fib(n-1) + fib(n-2). V8 O5 V  ]6 a; l" V7 p

    0 p! U0 A) x" l. n9 lpython, [8 m+ i3 _% Y0 Y$ g7 \3 q

    2 }. V" R, d* C& e3 H/ {
    ' \' t' J7 H4 F( n% ndef fibonacci(n):
    5 j5 b7 g5 E$ W( o* [7 `    # Base cases
    / [- e3 g% M2 Y! E9 E8 h5 w    if n == 0:. Z! ]3 T; `7 P/ \6 W* U* ^
            return 0$ O+ p( v7 s9 a  _6 ]
        elif n == 1:+ ^/ N3 n9 `, I5 J/ L  ]
            return 1  h: j' l5 \* z$ F5 `8 O) ^
        # Recursive case$ z8 [7 [1 M0 b
        else:' X  l" _" C, C
            return fibonacci(n - 1) + fibonacci(n - 2)  U( t: t5 O+ [/ F) g- t4 }9 a4 q
    8 ^$ M6 p& A: G+ O
    # Example usage- ]* q) X/ ?4 ]& o; W+ U
    print(fibonacci(6))  # Output: 8
    % E, Z+ k$ Y' k- X! G6 Y; P% N0 T: h6 k" t- {3 H
    Tail Recursion! [; n' e0 i& A- i5 T9 X

    3 _  o$ y3 q$ b1 vTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 z: S& d( L# X  m5 U% p0 @
    / ~6 u$ ?. d* ]; j0 Q- _
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-30 20:36 , Processed in 0.033402 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表