设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1466|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ! i$ P2 I3 r- d: v+ P- M# l: f  p, v7 K
    解释的不错
    4 i, |; u5 y* S2 @  }' a
      c( Z0 L  C0 V( \5 s递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。% F0 s* M8 w4 Z, |2 K9 a$ V

    : [/ k0 E" D6 `) K' H% g 关键要素
    0 k9 i1 b2 [8 A. b1. **基线条件(Base Case)**- }/ Q/ J- O7 F- u( M  u. _
       - 递归终止的条件,防止无限循环! t  s2 G* n8 o
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% l  o6 L7 O- S  E1 d& k3 m1 d# D
    / T! K/ X, U3 w3 h6 U
    2. **递归条件(Recursive Case)**
    ! Z3 _2 o: `# A: Y! s   - 将原问题分解为更小的子问题
      D; y4 ?4 L4 V& M3 @5 f5 `* n   - 例如:n! = n × (n-1)!
    , R5 w! Z/ R4 A) n
    2 h0 `% r$ T6 x" t" u* C5 g 经典示例:计算阶乘" J/ w3 x* T) g1 ~' ^& q- r
    python% r! I1 z0 R% ~
    def factorial(n):% A" |; J3 f* n3 B
        if n == 0:        # 基线条件
    % P5 Z/ u, D0 Y/ k5 s+ C5 {5 M9 C        return 1
    : k) [  t$ _( h" {) v. @  I    else:             # 递归条件( d, n: I$ s& z" l; g, v
            return n * factorial(n-1)
    ; [0 S. g, t% K5 ~) U执行过程(以计算 3! 为例):
    - n& o" ^, s' T) {3 Xfactorial(3)
    ! _- F6 p/ A: M+ p; W& d, l3 * factorial(2)5 B! a& D; s( ?3 W
    3 * (2 * factorial(1))+ k5 X3 u: u, d. v; V4 a
    3 * (2 * (1 * factorial(0)))( \! m. [5 F( u1 I2 }8 k& Z& g
    3 * (2 * (1 * 1)) = 6( h% t8 {5 Y( m( k

      A! @9 O8 v8 x  U9 d9 y2 U9 V 递归思维要点7 L) A4 ?! X2 F+ }2 r2 ^. W
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑* A+ k& K* X9 @/ a& S/ p& p3 g6 J
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    7 f9 p# g! v$ B& g1 Z3. **递推过程**:不断向下分解问题(递)- k& `  |& j: t* d
    4. **回溯过程**:组合子问题结果返回(归)
    . s8 S  V0 B2 H3 w. \6 n1 w0 ]
    注意事项8 n1 z2 f1 a5 K+ E% i5 u5 @: x" F
    必须要有终止条件
    " @! _- J' [; K递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 g: b) c& r8 Y0 T. d+ N
    某些问题用递归更直观(如树遍历),但效率可能不如迭代
    : Z/ r2 \2 i4 w3 U: L尾递归优化可以提升效率(但Python不支持)
    ) n( @8 x  d$ l5 K' g, i& X5 d  i4 j/ f: b; n
    递归 vs 迭代
    9 T, P' s1 S/ B|          | 递归                          | 迭代               |
    5 R* s# R( J2 A0 c5 f  B|----------|-----------------------------|------------------|& y% ~# b2 ^: Z$ E0 n
    | 实现方式    | 函数自调用                        | 循环结构            |: b( o6 }% J! w+ V& R
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    3 [' i! B7 T+ L; M1 R7 ~( e| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    , J1 E0 [$ G; Y, @6 d| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    7 V& a* j" ~4 k0 m- J( E
    ' }: m" A# Q& o3 w) w4 ]( q 经典递归应用场景/ s" P- f0 l8 Y9 l  L
    1. 文件系统遍历(目录树结构), U+ p( @7 d8 L2 N9 V
    2. 快速排序/归并排序算法
    9 f/ G$ O: ~' w# g. k3. 汉诺塔问题! C0 m. A" T7 o$ \
    4. 二叉树遍历(前序/中序/后序)* ^/ T, }5 {* g
    5. 生成所有可能的组合(回溯算法)
    $ y9 _) \8 [- L$ B! \% X; b0 i: e
      v/ o4 Y: J5 l: U% Y: I$ {试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    10 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& s- u0 Y5 O  f8 D' ]1 J, v. k! Z
    我推理机的核心算法应该是二叉树遍历的变种。
    " C9 z$ ?& U( ^& I6 w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' Y7 ]* z  ?  c1 `4 W- a
    Key Idea of Recursion7 }% k- W% I" B4 K3 p$ D
    6 H3 [$ T$ k6 x
    A recursive function solves a problem by:
    0 F; P0 u5 Z- S3 c1 i  [) n8 D  s8 Z+ v2 X9 Y2 o7 z# f
        Breaking the problem into smaller instances of the same problem.* V! x# k/ Y6 T
    . O$ J8 C5 q' |0 N5 Q2 D" W
        Solving the smallest instance directly (base case).
    . }7 w5 E8 n* C$ N' Q2 C( K) }( b7 E/ z; _. b* H
        Combining the results of smaller instances to solve the larger problem.
    0 i* F- {5 `/ j; z6 R& Z2 o+ |' f6 \3 \' x8 _
    Components of a Recursive Function
    " X4 J. }9 E. @* A7 `
    , m- m( b  e, O5 N2 B7 r    Base Case:: O% q' r& Y  t: v' l

    7 V! {: M4 ]: W6 E2 s        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; O) q$ s4 `4 c: H1 l& K. j  g
    % P3 O- r6 X+ a  ~7 a
            It acts as the stopping condition to prevent infinite recursion.
    $ _, y0 V: ^8 t2 K! \, \2 q3 e) j. A" Z# P. @% z1 t. `7 R9 f, Z- u
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    + @7 C6 k9 T3 }
    # ?- Y8 T1 K* f7 C. d0 W    Recursive Case:
    # V3 t& S8 U+ g% \
    , ~# T) c' `& x0 t9 }        This is where the function calls itself with a smaller or simpler version of the problem.
    8 U; U6 c- Z0 \9 D  a5 x5 h
    ' \# x! s$ ~) T) Y. ~        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ( c1 ?: }0 r* X. M# r9 t
    0 @8 {9 v9 U8 L$ ?Example: Factorial Calculation2 f( Z% [; Q, l1 d2 V5 t

    " x  B. `* Q5 E: i$ w8 @# P/ HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    6 ^; X* W; ~6 E1 B4 U
    1 }, b2 q/ B* E& s1 ~! ]' ?    Base case: 0! = 1# n  L! D9 ^3 o2 y3 f. L  a

    , _& j, `; Q4 _* N3 L0 M: |, u    Recursive case: n! = n * (n-1)!! e+ D$ m* o/ y: z2 H8 A
    7 ^' {( F& C% u! R' v" x
    Here’s how it looks in code (Python):; c0 J: q! V9 ^, ]  T9 y5 B, n6 n
    python
    0 g* U) H  H% H5 S9 h  x( l4 q; W& @/ n
    & M/ Q) B- P* F
    def factorial(n):& m! K, }6 S# E( ?- b
        # Base case6 J2 b: p' P7 V' }5 S8 W. {0 X
        if n == 0:/ Z& R% _3 q) k) X0 |* r8 h1 H7 z
            return 1. M; J! z- |0 [. X- [& r% q* r
        # Recursive case; ]! ^. j9 N) B/ u8 g' j
        else:
    7 Z9 L( D5 Q) p9 \3 ?        return n * factorial(n - 1): e# T# C* K+ T" V( h2 `% p0 v

    2 j7 m3 d4 O6 v; o1 L# Example usage
    : M* |/ B2 J, e* W- T/ W* z, t2 [print(factorial(5))  # Output: 120
    . S/ Y9 a; ?) K4 M, g: a, g5 I! Y- ?& S3 S& N& H8 |
    How Recursion Works. c% i& d( }  M6 A& x4 R
    : b: L  Q% N1 I, i
        The function keeps calling itself with smaller inputs until it reaches the base case.1 r7 g. k3 Y7 ?( V
    0 h9 L6 i0 V4 B2 S7 J- `
        Once the base case is reached, the function starts returning values back up the call stack.
    1 A2 ~, K# H- i/ q
    3 D* R0 l9 _* w* M    These returned values are combined to produce the final result.
    7 Y+ q$ L; ~2 ?9 p! f
    9 k* }8 c; N7 E% w3 l4 P; gFor factorial(5):3 h* x, {+ ]! U8 M/ S" {+ Y5 ]

    & M6 j5 S4 Y" N3 ]
    + W& f: k7 q' r: \! y; Tfactorial(5) = 5 * factorial(4)9 a9 P* C( w$ {4 z, }% I7 m  M
    factorial(4) = 4 * factorial(3)% X9 Z% m8 n  M! z3 i" T
    factorial(3) = 3 * factorial(2)
    ' G+ |, ]1 ?1 P6 R, s7 \- wfactorial(2) = 2 * factorial(1), U$ r4 O6 x" p8 u  Z$ I% ^; Y! M& s
    factorial(1) = 1 * factorial(0)
    8 h3 \: o) \8 t0 w& z* ?0 u/ b1 nfactorial(0) = 1  # Base case
    + j2 l$ _3 `( c' y8 N: g' z
    * F% t2 ^$ g8 Q& v- ]" |Then, the results are combined:- x6 q/ Q: B- b) v
    / a4 `# J  M# ]- d1 v

    4 G( f* T% z; ], I  a! c) |factorial(1) = 1 * 1 = 16 d* [( M0 T- t2 P1 D+ ?/ O
    factorial(2) = 2 * 1 = 2/ v' C0 i: d5 L6 O: q8 G; ^+ X* k
    factorial(3) = 3 * 2 = 6
    4 X+ t2 \8 b3 I6 }: X, @factorial(4) = 4 * 6 = 24
    ' c! l. y+ k1 q+ ]2 B7 Q# S9 D7 `" mfactorial(5) = 5 * 24 = 120
    : ?# f; c5 z2 F$ Y( E  s
    4 M$ l9 W! `0 F# PAdvantages of Recursion
    2 P4 V! r" v6 w2 ~; j
    ( x! Y6 {3 c3 U1 T( b% C    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    % @5 r* _* r' Z, h+ l" h5 H' k" R" o* T4 I$ t7 C
        Readability: Recursive code can be more readable and concise compared to iterative solutions.8 f- R1 [. }6 d+ Y

    2 L* @( N& }1 O: q4 S3 O  [Disadvantages of Recursion/ A0 `6 ?* d# e
    3 Y2 F7 D$ b% f/ S3 ]
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.: O  |% y8 @# V, }, `; m& R$ y2 [

    , P9 }" `7 z4 j. v. e    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    , S- I0 t4 j( Z% c) I* C+ s8 t
    / s: `$ ~7 t" b6 K5 [8 A% _When to Use Recursion- A% W' O& c* X" h' I8 c) u; F

    ' R. d& f7 P' B/ _; I& D9 c    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)., z$ Q2 V% B& j' K" F" _
    3 H0 L8 P* q" N9 B6 M3 l; j4 `) R! [
        Problems with a clear base case and recursive case.$ S/ i& m2 j7 k9 ?
    " \( W; g! q: k6 Z
    Example: Fibonacci Sequence8 L# p; A" f5 l# W

    + I' {5 Q4 o  M+ H$ O' V5 |" ]The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ! w( x5 M9 k, Y( y7 G! d6 A
    ) Z6 H" C& X) q    Base case: fib(0) = 0, fib(1) = 1/ H$ \( Q4 x, j& {0 F

    , N# B+ `4 e8 C" Z    Recursive case: fib(n) = fib(n-1) + fib(n-2)$ B. w0 [  H' Z

    1 [7 u: `" V# Y: C4 Hpython$ g+ x& ^& |9 Y3 H! W! ~
    * m7 N: N. b+ K8 T4 g

    2 N7 O0 c( {* `( h5 ydef fibonacci(n):
    * }1 E+ u, J7 C8 O    # Base cases
    ; N$ v6 S% f6 o0 }4 g6 E    if n == 0:
    ; v  z$ W# J7 v1 m* _        return 0
    * N  P7 b0 D3 C  N3 ?2 g$ z    elif n == 1:
    - ?" m, u" Z6 w# Q0 b        return 15 g& q  H9 `( \0 P, k: [
        # Recursive case6 S/ ^: G; f1 c5 z, @
        else:
    6 w2 p2 ?1 x" V0 R; W" P  L- g        return fibonacci(n - 1) + fibonacci(n - 2)
    ' c% L2 U, Q# Y6 t" N- K8 O' V  G) f% g$ ^2 U" t
    # Example usage7 u: G( l% C+ A( Y$ G6 p. e9 ]
    print(fibonacci(6))  # Output: 8
    9 Y) J4 n, T5 ~- S& d
    / t) @" @6 g" ?& d* tTail Recursion+ P, S& Q* Y( s: p

    9 s" j& K" B2 R; A  _Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).9 A3 L" U* o  p! E" q

    5 ^4 V0 Q+ ?4 c) f8 _0 Q1 HIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 12:13 , Processed in 0.049063 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表