设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1706|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 8 I& j) k9 J+ S2 c! Q
    $ d: m8 k) H0 ?: s; M
    解释的不错
    ) O* e$ i  g* h
    9 K& e% d: C; ]" _递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ' J- N1 G, `; h9 d) K: Q
    1 w! s7 m# F" V: K 关键要素& M/ e* k3 }6 [, j2 q1 Y
    1. **基线条件(Base Case)**3 @! d' }3 o% K
       - 递归终止的条件,防止无限循环  q1 _7 \0 S4 }$ _) \- S
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    ( [. F: L! z# M7 f9 s( m9 t$ O
    5 D( _7 t  w9 ?2. **递归条件(Recursive Case)**
    7 ^# u" l2 X, V. j   - 将原问题分解为更小的子问题, O4 Q$ O- N5 V( ^8 o
       - 例如:n! = n × (n-1)!
    6 l: k4 e, R9 g6 B& Q  e4 o% f6 o* M+ u" g, _3 u
    经典示例:计算阶乘
    ( T$ c1 w0 {( |% ^" ?9 ^python
    - w% ]6 U- a+ Z: w( N' ?def factorial(n):( R3 F& N$ n$ u+ B
        if n == 0:        # 基线条件
    . X  q# E( _. K/ v        return 1: U/ p1 S7 T& S) e, J
        else:             # 递归条件/ @5 r: O# _; ^: e! l
            return n * factorial(n-1)) V$ t7 j( x& @/ N) ]4 a+ ~8 j
    执行过程(以计算 3! 为例):- E/ M9 D5 ?1 L0 J% G2 o
    factorial(3)5 a" G9 C4 Z/ |% h+ T* k& }
    3 * factorial(2)
    9 A7 ]+ ?) S, r) D" J3 * (2 * factorial(1))
    * g8 i# n* J* z3 * (2 * (1 * factorial(0)))& L: j# Z) ?! W+ {3 \) h
    3 * (2 * (1 * 1)) = 61 W! G& x4 f) Q# X& e4 C. q
    # Q, c# N$ R3 W1 w5 _* t9 s. T+ O
    递归思维要点4 \% p" s% @; `9 v- T
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑# e: _/ ~* u$ T8 ?4 u. S# b% [
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    % Z1 g9 P( n7 i( ]* F5 J3. **递推过程**:不断向下分解问题(递)
    5 `- W4 H, e+ D: M. K2 I) J3 a, z6 I4. **回溯过程**:组合子问题结果返回(归)
    ' C) g7 |2 {3 E5 d6 H+ H7 f' p" R+ [( u% e
    注意事项8 g! H5 R/ y, j
    必须要有终止条件
    * z' K9 h) m9 F( ?/ E递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    3 C) k4 A( B! z; V. k$ c某些问题用递归更直观(如树遍历),但效率可能不如迭代% s+ ^/ ~! A, R1 E8 b$ u
    尾递归优化可以提升效率(但Python不支持)  w) n0 A( t3 P% p! n2 \" [1 ~2 M5 v

    " e0 i* [0 ?: s4 c& P 递归 vs 迭代
    " i/ n4 U3 }$ k|          | 递归                          | 迭代               |4 y9 a" \5 m9 L# ]
    |----------|-----------------------------|------------------|) J! o+ l- C2 ^3 @8 L: p
    | 实现方式    | 函数自调用                        | 循环结构            |+ z  u: e; e3 e! \$ O2 [
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    , \; Y6 [# a; S6 w! h  O4 y' C/ k# E2 Z. r- `| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    4 k1 ~2 W) f2 @: ]; K; g| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |: y  U5 U3 s: {' j. t

    & @8 A9 |$ b# d* a* N( M. X( a 经典递归应用场景4 u# S/ e- T. ^# j& p4 Z; |" s
    1. 文件系统遍历(目录树结构)5 I* L' b! _: k* h( J
    2. 快速排序/归并排序算法
    ' o3 E3 D: T! o: X3. 汉诺塔问题
    : A9 b/ H! R' k% B; ]9 }4. 二叉树遍历(前序/中序/后序)' D5 W6 S& x' Z. I
    5. 生成所有可能的组合(回溯算法)3 x9 a# N0 X+ {% S4 T

    9 x2 g- w) q0 d" [, k试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 14:35
  • 签到天数: 3132 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( I8 ~4 w6 J  ^9 l! u+ H5 u
    我推理机的核心算法应该是二叉树遍历的变种。
    / ~+ W) H5 g$ f0 }7 W8 }3 E另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    " h' ^- @4 _$ ]; S0 D% |, UKey Idea of Recursion
    6 p3 T( Z' s: l  i& X4 y. s
    3 B* \3 l& C: ?& zA recursive function solves a problem by:2 Q: Z- L# S, Z" A! I( I4 i
    # T: _* c' X1 u% x% i" m
        Breaking the problem into smaller instances of the same problem.
    : p* V) J% L2 ]& z# ?5 t1 H( s+ D4 V+ _  f2 E  X% C, K; u% q
        Solving the smallest instance directly (base case).
    & ^. ~1 H8 [3 `; B- i- v, C8 X9 F, {% @3 ]
        Combining the results of smaller instances to solve the larger problem.
    ' p" x( w9 h- A# x5 I5 |
    + C0 X; N9 q+ w7 L# S& x$ F2 W' tComponents of a Recursive Function
    ' ]/ d9 |; l, o7 ?2 w6 q
    ! f3 ^  t  X$ D- S* t8 M    Base Case:/ ^* R! u: H# i6 i. [/ i* d2 R% j
    * u: m; ?$ z- L1 J" V0 I% e
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. ~2 u  C' ]7 {( \4 h9 h

    9 n" ]1 v& {9 Z! y9 W        It acts as the stopping condition to prevent infinite recursion.
    6 t  Z/ l; j$ |) h( I" O3 f
    ' H" F- R1 c5 ]7 l: I' W" F        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 X. e7 {2 b1 ^- @
    * J' M7 m6 @, Z" l: s4 V
        Recursive Case:0 Q2 c; R0 ~% r+ O1 g, o) x
    " q6 R% j( ?, ], v0 B6 }( A; x2 F
            This is where the function calls itself with a smaller or simpler version of the problem.6 Z0 b2 i% b. z4 E# C! k, j: h

    7 i8 B, L; F6 W% k9 f1 J6 N        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).* U% D# ~" D# S: j1 Y
    # i2 u7 |; \6 g( _8 w5 d
    Example: Factorial Calculation" ]" B4 f. S1 L" M/ q/ n
    1 ?" G; O) R: E& v
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:1 k& n0 `, m5 E/ k) h9 o3 J) p

    ! e3 r% y! N; S4 C5 i    Base case: 0! = 1; |' x! N8 P, B8 f7 e0 p

    ( m# c' U0 `6 c- h  Q    Recursive case: n! = n * (n-1)!3 _8 n4 r2 ]/ i1 U" F9 w7 \- Q
    ( V0 j& K$ {4 [- @8 W8 E7 c$ m
    Here’s how it looks in code (Python):# ^6 f% t( _% n) a- Y8 U6 s4 g
    python
    0 N# n% C7 V) o' f0 Y1 J4 E( z6 `% x; ]

    : u2 `$ A7 A2 k: a, v+ x3 zdef factorial(n):1 r- X/ E$ n8 G
        # Base case+ g- r3 o* T/ {5 U; x6 e
        if n == 0:- o- ?1 S$ U0 q3 ^$ q
            return 10 a6 N$ C, a# Q3 o6 J. P7 X
        # Recursive case4 g  ]7 `  R: e
        else:6 M$ h. y" f( q$ a; K% a
            return n * factorial(n - 1)$ U4 \4 {- c, \( T0 ~+ C) o
    ) h1 l- v: D+ T1 ^0 D% ?- \5 Y
    # Example usage
      {) v& {1 e! L, |+ ]print(factorial(5))  # Output: 120
    9 p) G# Z- c9 g" Q& {* C: \9 Z3 v+ q, P/ a
    How Recursion Works
    " j7 A* H( S1 T" t% B
    # {' c8 ?. w0 u0 n" k    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 f$ B+ H, \, C6 x  |# Y# Z: _- A) E! j
        Once the base case is reached, the function starts returning values back up the call stack.- t% U, h; G) g0 r' q3 }  G
    0 q; n* N4 o/ \2 u8 k6 v
        These returned values are combined to produce the final result.
    + M6 o( K( f  k5 a6 \# y, E9 F+ k  U5 J5 H  C- U8 y* e6 a
    For factorial(5):- F0 e4 K( f  @* f0 I
    4 @0 u& B  @# Z. C; {3 X. ?9 V

    8 P* v" J/ ^4 K' i. gfactorial(5) = 5 * factorial(4)9 I0 P5 c' f& P2 s. ~
    factorial(4) = 4 * factorial(3)
    / e- Z) T& ~' y" U( W  lfactorial(3) = 3 * factorial(2)
    2 Z4 I, o* }) G$ Y" x" W, N, z9 Ofactorial(2) = 2 * factorial(1)
    . b: z0 Q' |2 r9 bfactorial(1) = 1 * factorial(0)4 W( N, S/ ^' e/ B& \1 Z" K( q
    factorial(0) = 1  # Base case
    2 ]/ c' Q/ L* o1 S# l3 b
    * C/ H/ h; U4 W, WThen, the results are combined:
    / F/ D1 Q$ i. j, ~5 S/ h5 }- m: [/ g7 d! O9 B! ?
    / F; t4 q# `5 K# U5 J2 X8 W
    factorial(1) = 1 * 1 = 1
    , w/ K4 E6 X- z2 efactorial(2) = 2 * 1 = 28 J& q1 p% t  M7 @! E% X9 p
    factorial(3) = 3 * 2 = 6' ^) }' G" z2 _" _0 u: V
    factorial(4) = 4 * 6 = 24) ^# U1 ~' D- W( a
    factorial(5) = 5 * 24 = 120* G$ E+ {, H3 `( M1 {% g7 ?5 g* l
    $ h" [5 ]$ @- E8 x( |/ U0 o1 R  X
    Advantages of Recursion8 w) ~- q) r: I9 p" n# G) K( t. l

    / A8 G$ W: g" z0 Z    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    " N5 N) Z* F" Z2 @
    5 w) d, A  E7 {3 T    Readability: Recursive code can be more readable and concise compared to iterative solutions.: G( J* O+ C5 u/ p2 N
    ! j; {2 Z3 L! B3 ?" [
    Disadvantages of Recursion
      {" U" w, Q# b6 u, Y- _& X8 l, ^. F7 G  ]0 }0 I# c
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    2 `* k1 Y7 V/ P- Y0 w7 [. C% k1 v
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 x0 j1 i; d  M. P: f" h4 j

    6 W, Y# }6 W7 a: T) LWhen to Use Recursion
    + f- r$ r- v* s6 V% T, a, F2 u% d% I- Z; A" }) ]
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    * N' y- g/ [3 j
    6 q# z/ F: ?2 p6 J3 Y4 M: @    Problems with a clear base case and recursive case.
    + d1 l, ]2 U1 l& F* c- H/ D, _1 n! K- F+ s3 _# [$ D
    Example: Fibonacci Sequence6 F" T" }8 S; }1 ?2 T* T/ L4 i0 G. j
    5 A  J# h. [- G
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    " z* P& n$ x+ M" g6 p& P9 v+ r) e- z% l# C+ N( q" h# G8 h) |4 c
        Base case: fib(0) = 0, fib(1) = 1
    0 H- ?, e; q2 R6 j& S5 R$ |. |! I7 Q9 z9 n! k5 Z
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    2 {- D5 H' k7 `/ `. R, ]: g( c, k
    , h! x1 X; ?1 ?8 A4 V$ o" a7 Bpython0 d. y6 w0 e8 `" b1 F- |
    6 e$ q! v$ ~; R9 Y* l/ m& _

    . y3 M$ @6 {% }' _  ]5 ^def fibonacci(n):4 |$ l) j  z  E  U: Z0 U
        # Base cases
    : A2 X$ O9 ?1 R" V9 j+ x4 J' z    if n == 0:- q& Q2 e7 l/ q2 U/ d0 M
            return 01 S2 d# N: Z. E, b- b& ^- B
        elif n == 1:
      ~% U# ^6 r: m( E* m( j* p3 @9 b- d        return 1  x3 C4 q, U" K5 i9 A4 r! j# Y! c
        # Recursive case& y6 N$ I! o' w9 }$ t. d, q
        else:: B0 ?- q9 P# J, m$ |" }2 b9 w9 H& e
            return fibonacci(n - 1) + fibonacci(n - 2)
    * u* N  d+ Z. k
    2 k* |! A! e9 e  u0 h# Example usage9 i; M1 ?8 C+ D3 o' u: k' o& f5 Q
    print(fibonacci(6))  # Output: 8
    9 q% A  M& w% O. U  t$ b" Q7 y) r
    Tail Recursion
    1 A+ p! H+ w! g8 {$ K1 q6 H5 F( ]& Z  m9 @) E
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ; @- w+ ^: {. ]' N
    ; A- D1 F  d" Z4 p9 j" n' MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2026-1-1 02:55 , Processed in 0.031140 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表