设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1315|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    8 R1 `. w9 D+ g( U: K5 M; ~* Q3 ^+ t  q! G) j
    解释的不错
    ! P' y: L) p9 s1 A% v* Y  O$ f# u
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    7 r' S. R: R0 d$ P2 s4 w% G0 a1 [1 J# @
    关键要素! a) p# X5 {, Y+ B* W+ C
    1. **基线条件(Base Case)**+ i+ o  y, u. K; R+ m
       - 递归终止的条件,防止无限循环
    + u8 T, y* b, C; a   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    8 p( j3 E' e/ W' ~9 W1 C/ p
    0 _) J  w% p. W) h1 W7 I: [2. **递归条件(Recursive Case)**" _& u* J% e; J! D  q
       - 将原问题分解为更小的子问题
    ; c0 p2 _5 S/ v+ e+ z& G. C2 ~   - 例如:n! = n × (n-1)!
    1 [0 x( r0 R+ Y+ e$ C
    9 A' x# k8 L: s  r5 \/ d0 G 经典示例:计算阶乘
    ' J' J; [/ u& s) ^8 @/ ?5 R3 U* Xpython
    & w2 K; L. M! L# Jdef factorial(n):$ d/ j6 v( N0 Q* k
        if n == 0:        # 基线条件
    ) ~+ P( |% M  \4 k. H        return 1) U& F; ^8 K9 _7 M5 i& t
        else:             # 递归条件0 T" C7 V6 L/ D
            return n * factorial(n-1)8 J0 s; r) O6 G; w8 J5 `
    执行过程(以计算 3! 为例):% {/ `5 h- @" ]
    factorial(3)
      g8 S; i1 c0 j3 * factorial(2)$ |/ ?/ u4 M1 A3 c) O; G
    3 * (2 * factorial(1))
    . F9 {6 P: M& C2 z4 ?9 \; J1 |3 * (2 * (1 * factorial(0)))& T8 U9 Y7 o1 m
    3 * (2 * (1 * 1)) = 6: V) a4 o0 F4 G4 H+ a, _
    ; k5 G) m  ~$ E+ @1 O+ l) Y8 p
    递归思维要点4 ]( K- ]0 K( c" P/ ~+ w+ p
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    & q& a: t: G3 g$ N- q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) J& \& I: w' e  T$ |
    3. **递推过程**:不断向下分解问题(递)
      [/ I3 j+ ~) |4. **回溯过程**:组合子问题结果返回(归)
    ; J# o0 V% V4 p; X: O4 f- V1 I9 v  {2 ~+ e5 `8 ~
    注意事项
    % m) r( S2 y# H: N( l: f: ^9 H必须要有终止条件# R5 p5 ~! x4 H0 P7 l: e& z6 u
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    / }# Z- ]. j# }0 y( g  \9 g某些问题用递归更直观(如树遍历),但效率可能不如迭代
    " Q& A% b/ I7 j$ M4 K尾递归优化可以提升效率(但Python不支持)  ]+ L, t, j; L

    ! _" t: ]% M; h" F2 `2 D 递归 vs 迭代
    1 K7 A0 y* M" P* ?! g|          | 递归                          | 迭代               |
    & U, M: b! R! z* s, ]: i|----------|-----------------------------|------------------|
    ) M# Y! z  `/ l" @% v( Y( @2 R| 实现方式    | 函数自调用                        | 循环结构            |" J5 i2 A5 g+ Z+ x. O
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    % y6 [( u+ I# M6 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |- O7 T; c3 j' d) K9 T: Z
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    6 h5 q! {! E( P
    8 ^: L+ V, R! X 经典递归应用场景8 z" U/ y. z9 m4 X# \$ E6 a
    1. 文件系统遍历(目录树结构)7 [5 T, U$ c, [6 N; x  ]$ i
    2. 快速排序/归并排序算法+ {0 D) s2 A  g& G% P4 P% ]
    3. 汉诺塔问题! u6 D3 w- h3 s7 E/ D8 q
    4. 二叉树遍历(前序/中序/后序)
    ( _- e0 l8 J/ M' @% v6 w; y5. 生成所有可能的组合(回溯算法)
    ) `( e# i* m( m% G: B7 W
    $ B0 ?6 c8 Q! x1 e  p试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    10 小时前
  • 签到天数: 3107 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,) A6 q1 h" j1 M5 |8 @- k" Z! u& Q, s
    我推理机的核心算法应该是二叉树遍历的变种。
    5 M8 t+ ?1 g7 U- w/ o9 ~3 |另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    . n! H4 ]" q- l" x: A: ]9 HKey Idea of Recursion
    2 E7 W# ?" i9 Y
    5 H5 T: J1 e$ i5 h, k: NA recursive function solves a problem by:
    5 k) w2 H, f2 R# h! c5 q+ J: w7 x, P, V
        Breaking the problem into smaller instances of the same problem.4 p  m6 _3 j2 N0 W& v9 G4 Q8 `

    0 L7 x6 S7 K! Z- D! A1 o" H5 r1 U    Solving the smallest instance directly (base case).; @2 z! l4 _- t6 p7 q9 H
    6 G+ m2 e% ^7 o( Z2 }5 M" O
        Combining the results of smaller instances to solve the larger problem.
      w2 |4 b) C0 V& [, _6 ^  j7 R# e& \
    Components of a Recursive Function; J% f! A1 v/ w' R8 \% E$ }

    3 O! f  Y) z7 R' R% P+ n, C    Base Case:# S( v0 P, {9 I6 \' {) J" A1 t/ q

    7 G- ]4 i0 s( m  Q        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( h! k4 z2 e# k7 T' A# E

    ( `" h8 G: b5 ?, O6 y. s8 [; Y        It acts as the stopping condition to prevent infinite recursion.! E3 q& @3 ^( H* b" Y

    6 I& K6 L/ g2 {$ a1 c* W        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 V" m1 o2 F9 e( E' e
    2 ]; G3 m2 @- @# e2 x: j) c
        Recursive Case:
    6 I- ?( D* _4 s6 o9 |9 z" f9 S/ j' n- O: d6 b0 Q: m
            This is where the function calls itself with a smaller or simpler version of the problem.
    ! Z( x! K1 p8 i$ X
    : ^' P$ e) g1 X) A        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    : e1 a$ Z2 l0 P$ k! T# U: t6 G/ |& \. y+ u  G4 J9 K1 T6 a
    Example: Factorial Calculation
    4 i+ f3 Q# X1 E7 X+ U
    0 p: f: A0 |9 L7 AThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ! T1 x* b  ]1 v2 V1 q+ L1 s2 q- n) g% J& H! Z" {8 G
        Base case: 0! = 1/ D, o" r0 y6 @) X

    0 x. U5 V, l( j9 J    Recursive case: n! = n * (n-1)!
    ; G; T8 T3 C, b$ F4 \1 J$ s, P/ E0 _
    Here’s how it looks in code (Python):% f! D$ V( s8 K2 m. t6 B
    python
    ' ?7 a- i6 u7 H* ]  @1 U: m7 e5 \  U  M/ F5 B4 Y6 U" f4 C/ Z
    * \. ?  B6 R" [) p
    def factorial(n):4 c# x* }5 l& v
        # Base case% m! ?3 g4 U3 }; \4 M/ r0 A  o
        if n == 0:% r  c1 J+ {- E8 m" j: T6 `3 [# a
            return 1
    " \; Z/ L# d$ [: `  D) l0 ]3 q2 }* j    # Recursive case
    . f" C' @+ N4 ^    else:2 z3 i- f. [8 O! C
            return n * factorial(n - 1)
    , K7 F9 i0 |4 ^# X+ H' A! t' }" r; ?4 v# {- s
    # Example usage
    $ H4 A: t) Y5 Y; I/ \# O- Cprint(factorial(5))  # Output: 120
    & ?- t. a4 D6 e' [" Y
    / g) Z6 K3 p/ f* ]' y4 z( lHow Recursion Works3 v; a- l4 t6 s  S
    2 E6 x% P4 q4 ?2 V$ V3 h
        The function keeps calling itself with smaller inputs until it reaches the base case.
    * h8 A$ I$ |: v- l; c9 D, H! ]; E, W- S
    - g$ E$ `) z9 o' U; A1 W# |- S    Once the base case is reached, the function starts returning values back up the call stack.
    , \* ?1 @, Q+ f  E! A9 O* K. W
    . {' n0 i0 H) Z4 v% x2 {* Q    These returned values are combined to produce the final result.
    " p+ m( g$ d, r$ G' j- U" O0 |) c) _; Z, \, J- R
    For factorial(5):0 Q6 h& q+ g6 a2 H3 _; R/ D/ K
    8 O, ?0 q5 l/ c* z; P

    # |2 x. p1 ]+ u' T. K' R+ nfactorial(5) = 5 * factorial(4)
    . f, H9 Z; T8 h3 i8 M8 Ufactorial(4) = 4 * factorial(3)
    7 @& X+ G& @: h$ ~. ~. d- y7 }factorial(3) = 3 * factorial(2), U8 o) ~0 n  w) b5 ~7 \6 F
    factorial(2) = 2 * factorial(1). L) W1 E: @+ _7 {8 t5 q2 |, H% r) i
    factorial(1) = 1 * factorial(0)
    8 j" E3 O9 R; Y4 _& p( Zfactorial(0) = 1  # Base case/ B4 s  q7 j1 I5 j
    , k+ @* Y8 S5 n8 h& B$ K: Z& [
    Then, the results are combined:
    3 r+ t3 N& s0 l$ [( p3 p8 V
    % @2 O3 H3 q% n6 f  H
    - L1 @; J& M' q$ x4 w. Y0 sfactorial(1) = 1 * 1 = 19 v: s' V7 R1 E# w. M
    factorial(2) = 2 * 1 = 2
    , F  |  M: q- C( Zfactorial(3) = 3 * 2 = 64 j- |6 H5 h* Q& I# m4 [
    factorial(4) = 4 * 6 = 24
    7 Y  m, ?  r( E5 s3 Jfactorial(5) = 5 * 24 = 120
    / N2 G9 x2 Q2 {9 s' H' m1 H+ e7 ^8 N2 T& c6 U& q
    Advantages of Recursion; v7 d( t! Q% A$ X4 a" X
    + W! }' y: ]" f! z
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 E, y# R5 \3 S, P" J. b5 j

    * m  f! R2 }8 h7 h; P5 n    Readability: Recursive code can be more readable and concise compared to iterative solutions.  H9 i6 u2 o. d% {

      h, Y: @9 y1 d$ W8 d- VDisadvantages of Recursion
    ! J8 W- n5 X6 i6 T! \1 D( R, P8 S+ ^
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    5 c: O3 U4 e8 y/ p) _4 }/ B0 D- A0 Y7 W+ j4 ~
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 W/ z- \" T) o+ n; t0 u* Q4 R  e- A" C7 G8 G  t6 L) y' K% u: @; B
    When to Use Recursion" |5 F9 F& K" p/ ^8 W" U: t

    8 I5 _* F7 L4 i( O& |    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)." Q" [4 U0 h" C
    8 c1 ~2 A# I- e0 e8 N
        Problems with a clear base case and recursive case.
    6 b- u0 W$ i( |; {
    9 l1 P% R0 F4 \: ^- lExample: Fibonacci Sequence, b3 r9 ]: V3 w
    * M3 y/ p  ?6 T5 r* w
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    ' o+ i& ?, E9 ?' q6 [$ K" n3 R4 R  x7 H2 N* j3 }
        Base case: fib(0) = 0, fib(1) = 1$ D! ~& Y/ |! a, `

    ' u! w( g5 `/ d# X/ v: d, u: w3 E# k    Recursive case: fib(n) = fib(n-1) + fib(n-2)0 o9 f' e: P: m

    * g0 U  o- Y. e7 G# Ypython
    # G8 E+ v5 y$ B! R  z  q
    " O: `3 w( a, m4 c1 `; h" @  x
    7 s3 Z$ b, ^  v/ G, Idef fibonacci(n):; `5 V: F9 r7 n& j, W( N6 V: U
        # Base cases
    6 n! u2 c  d8 b; e" m" h' r9 r& M    if n == 0:
    2 t8 o: R4 V$ Y$ E3 j6 a! @0 ]6 S        return 0
    0 V+ v  [. I0 m# q: o3 V    elif n == 1:
    - }& [& Z3 U# L- l* J8 o! [; s        return 16 \$ v5 ~; U* W! F6 l' C' R
        # Recursive case
    6 P' F) L3 G! l  p4 D    else:
    ! k6 u9 W& R4 w9 `        return fibonacci(n - 1) + fibonacci(n - 2)8 ^. ^' m4 f- k& R9 i+ |

    : o, d" b. Q4 x) R- V# Example usage
    5 f  n6 w/ Y0 U6 B5 J& K* fprint(fibonacci(6))  # Output: 88 r: E/ x; F& e- e3 M

    $ v7 h" j% E9 lTail Recursion
    , I7 B: s" i: R2 F$ R; n+ ?) ~' ]# \5 i5 p* {' O' n0 J
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    - B$ t: w) [: Q  M& P+ S/ [4 P) J" r) r
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-3 22:23 , Processed in 0.034345 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表