设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1188|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    5 c6 a3 @- m1 ?7 M( I9 l9 F. E4 N6 g0 ^0 f
    解释的不错
    , I/ t5 C: R) I3 O
    % I+ ?0 G# c. ]- s  J7 V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。! a4 G2 |# u: j! E$ ]) ]2 J1 @
      K; ]" f% `8 }, P/ a6 R
    关键要素3 b/ `$ A: k$ K. I
    1. **基线条件(Base Case)**
    6 [# `" G; I' p7 h   - 递归终止的条件,防止无限循环
    3 \& ^5 Y3 O4 D* X9 g   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * L9 _& v# b8 W5 C; i  \8 G+ ?& ~( m4 Z! K  B7 I, W$ J
    2. **递归条件(Recursive Case)**; X+ k5 l' r  ]
       - 将原问题分解为更小的子问题
    0 ^1 K. w0 J6 a" D7 z& f' V   - 例如:n! = n × (n-1)!
    4 z. J: {) W! h  H) V1 ^8 E( @, ]) }- @8 G
    经典示例:计算阶乘
    9 u& |. N; T. V$ K5 Tpython, s+ l$ g6 e: \9 `; P: ~, |6 U2 [
    def factorial(n):
    8 X  B1 W+ A; s    if n == 0:        # 基线条件
    * ?. z! q( }1 @( ]        return 1
    - o& A7 S0 q: N1 h6 j% Y    else:             # 递归条件
    8 z) u2 X; C. G3 |0 b, b: }/ _        return n * factorial(n-1)' o0 @# f% X9 W) d% Z% B
    执行过程(以计算 3! 为例):
    * R4 V$ \  U! \2 ~7 F" Dfactorial(3)8 z: u* w% f4 Y
    3 * factorial(2)6 ~$ a& Z  F4 W# i' q: M
    3 * (2 * factorial(1))1 F7 n2 `. |7 j, x$ Y  g* S
    3 * (2 * (1 * factorial(0)))
    $ i9 c: ~" e% y. C" `: V4 t3 * (2 * (1 * 1)) = 6
    4 r  B7 `- ^' X5 R9 [/ l7 s$ T
    ) F$ ?5 V& q/ d2 n$ B 递归思维要点
    ' G! g: a* I+ h5 ^1. **信任递归**:假设子问题已经解决,专注当前层逻辑* l0 N" F# t  l5 C4 b
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    2 V. T) |* D' R# J# [5 v3. **递推过程**:不断向下分解问题(递)% t1 a6 t. g$ v
    4. **回溯过程**:组合子问题结果返回(归)
    9 \0 c6 E( h6 n8 t0 ^" ^
    6 G6 Q5 t  I4 T9 Z5 C0 ? 注意事项
    6 ?- t1 r( f4 F: ~3 x必须要有终止条件4 q6 h5 W& c* j
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    # J1 W* C; K1 p某些问题用递归更直观(如树遍历),但效率可能不如迭代" J- e1 F. K4 A8 [2 q. \
    尾递归优化可以提升效率(但Python不支持)
      _' l7 I$ `" f$ k5 g6 [: G! @# x# t" ^
    递归 vs 迭代
    ( e) `  x0 b" w: ~% j|          | 递归                          | 迭代               |
    ( E2 j3 H5 m. c+ y9 H|----------|-----------------------------|------------------|1 c1 W5 o% A3 j9 ~2 s" u
    | 实现方式    | 函数自调用                        | 循环结构            |
    # M% A7 [# m  t5 || 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" G  z* m% h' |* ]7 c5 N
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ' N5 {# \7 B- y- N, D" N. L| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |7 H, m3 B* J/ L- k& `! E( h
    5 y$ ?# E) H3 F. y0 }+ Y; H: L
    经典递归应用场景
    & I! {4 p; R, h6 _0 V1. 文件系统遍历(目录树结构)
    8 [& t. ~2 ~, P5 B/ k, V2 l$ y2. 快速排序/归并排序算法
    8 v  B% a  n# c% X% l2 s! g3. 汉诺塔问题' M. l3 P3 }6 [- Y5 j8 J
    4. 二叉树遍历(前序/中序/后序)# ?/ X7 S6 l9 U0 X# W9 f2 B
    5. 生成所有可能的组合(回溯算法)
    & E$ k% c! \: Y- h4 n* W3 E, y6 S# d3 c% R1 k
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    昨天 06:41
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    5 I! O/ ]6 z7 K0 f2 o5 i我推理机的核心算法应该是二叉树遍历的变种。
    / R" N) m; Y- B- ~0 Z另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:! S3 P$ j4 }- j  @  K7 v6 N% h
    Key Idea of Recursion% A6 H/ O0 d' l. y
      x+ `0 B" v- b% T2 M
    A recursive function solves a problem by:
    3 O  h( [3 I& b8 c) r
    - N5 O6 b* F5 |2 z# S. f! [' ]/ B    Breaking the problem into smaller instances of the same problem.6 n+ f( Z  t' C' i

    0 W& Y$ Z9 V4 |& n7 W    Solving the smallest instance directly (base case).1 D+ b$ z7 T# M

    . L8 v$ z8 }1 ]; j/ q- u    Combining the results of smaller instances to solve the larger problem.
    % j8 h' V3 m" n* L1 Q# P
    / Q% v7 W, \, \( BComponents of a Recursive Function
    1 `) I: K3 {, o1 d5 C6 |9 r$ D
    2 u/ B4 g8 c$ ?8 W7 w; d    Base Case:2 Q6 i9 z  E& U( x
    5 i, H: M: l: }. m& s
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. n, ^" F- U% t4 f1 l
    9 L1 E8 O& J3 H4 }
            It acts as the stopping condition to prevent infinite recursion.
    3 e# K5 \7 Y3 w: E( {, `" D1 [
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.( y2 S# f. e: ^' b2 U- j
    & t! V5 ]/ Q$ E' B
        Recursive Case:; N1 ?4 ?( U7 P% B

    ; f* v9 D8 I$ R; k        This is where the function calls itself with a smaller or simpler version of the problem.: m7 r( ?: B1 B$ J) i
    ! E! ]& m" O8 w
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    6 I7 H3 J9 b; _0 M' {
    , f7 I& @- e8 G! h: z( ^. YExample: Factorial Calculation
    9 w+ h, [" I9 j  ~  k
      I; H" E* V5 Y! f1 c- t# `- TThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    & U2 h7 S' O3 R3 ?5 B
    : q% Q# z5 V0 @: Q8 w6 K1 p; ^    Base case: 0! = 1
    8 G- B7 p) L* L4 R! o: E+ ?7 M  q' i( D+ O( A
        Recursive case: n! = n * (n-1)!
    5 a( I5 [8 ?5 r6 M- Z2 g! X( ^' f
    Here’s how it looks in code (Python):/ d& a: P2 `4 B2 h- L
    python
    % m# e, o$ c7 \
    1 Q7 e' S1 \1 U* P# g4 _
    * g7 A! S# A8 m! sdef factorial(n):
    / G$ |2 R( }3 V    # Base case  w( U! U' ~' Z6 O  U, t# H4 P' t
        if n == 0:
    . {9 e. ~. E4 |+ a! P  P6 M        return 1
    + E  q+ g/ X: Y    # Recursive case! c! L& h: U4 D! s. }+ k: A
        else:
    6 T# B# M9 r. `1 j8 Y) K9 D! t6 l        return n * factorial(n - 1)0 C- [% ^+ @# y, A

    6 ]6 |7 F$ D( S# Example usage' @% V8 N' S) Z0 t& H: A
    print(factorial(5))  # Output: 120& ?$ x' M7 e$ _3 s4 X

    ' M& ^' \) t$ `( D; q: }; NHow Recursion Works
    3 H; a3 s! `) o7 w3 d7 O2 ?/ S
        The function keeps calling itself with smaller inputs until it reaches the base case.. W' P0 {0 X( }3 ~3 c
    4 M7 Z  U+ o# ?. D/ ~3 n5 f( G2 Z% P. o
        Once the base case is reached, the function starts returning values back up the call stack.
      z/ W  Q5 `9 C
    4 d/ v* a$ D! u* B4 K    These returned values are combined to produce the final result.; P3 D) s' I; }  g9 n: ?/ o

    % L3 ~6 G9 L+ {" ~" |8 `7 zFor factorial(5):
    ' a: A: d8 N% V* o
    + B3 x  [" Q8 \* H, s& W3 C+ ]1 L
    , o/ X3 X5 k! ~* S, pfactorial(5) = 5 * factorial(4), z: U3 E# K2 _: F# o  Q) N
    factorial(4) = 4 * factorial(3)
    5 U7 E/ I& Y3 Efactorial(3) = 3 * factorial(2)8 |( x- S7 I: t0 U' I) C
    factorial(2) = 2 * factorial(1)
    ' X8 t' \3 [- L% D) ^+ Jfactorial(1) = 1 * factorial(0)
    - f$ [9 {; o5 `: w, L& Dfactorial(0) = 1  # Base case
    . V' j6 [1 ~+ g' w- a7 T' q
    % v4 b* t8 t+ v1 zThen, the results are combined:+ l6 r$ W8 b6 Q6 ~6 E

    : _) S- g, d. u
    ' S; V" H5 v# _$ S( h5 {+ S# Q; Ifactorial(1) = 1 * 1 = 1
    0 K. X) T6 |' h9 w9 Wfactorial(2) = 2 * 1 = 2
    3 |' c$ z" ?# z6 w+ Tfactorial(3) = 3 * 2 = 6
    / g3 n0 J3 n6 D3 J/ wfactorial(4) = 4 * 6 = 24
    1 h! B) w  r* W9 ?9 \8 p  @factorial(5) = 5 * 24 = 120
    * D# o* N' }. h3 \( y7 I1 f) y- D1 z, `1 H5 Q8 C
    Advantages of Recursion1 f$ M' {# R; a, u" S
    % {) K6 R4 p" Q; a& x8 i/ _
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    ; E) d) P8 ~  A; h4 x9 f8 |3 `" ^3 E, b" B
        Readability: Recursive code can be more readable and concise compared to iterative solutions.* i% m( @9 \) m

    ) d9 ^* {" [* ADisadvantages of Recursion. p0 V8 ~  U+ C. I
    2 }! h+ C+ P0 j# i, v- w
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) G+ O4 R" z* |0 q

    ) n) }8 L% R2 O( @( W9 x    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ' N5 H, k, n! r* a' Q7 A1 Y; ^  m- b& {( j9 K, X
    When to Use Recursion" Q' V9 f' ~6 `7 H

    9 b7 u" s" K* W3 o: m) l% K6 o& D    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).1 Y' Q5 K0 v4 g/ k# F- ]4 H
    # h' a+ S+ P; l9 G: U
        Problems with a clear base case and recursive case.
    ! k% p! W) }7 Z. j0 u8 b/ ~6 P. ?
    9 c/ Z: o+ \* p. IExample: Fibonacci Sequence7 P: {5 `0 E$ t" }8 l; G# O
    ( Z3 B" n* c' n; f
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:' `( B' \# r; f  Y- Y7 `/ U: `

    5 P) I# [( s& |    Base case: fib(0) = 0, fib(1) = 1% {" C( C- j" V( l1 L% ~3 S8 |

    ) \' [0 \; x% r* I    Recursive case: fib(n) = fib(n-1) + fib(n-2)' u) A* O7 m6 |

    4 l1 b# D% e- G8 g3 }1 Npython
    ' [7 l9 L, N0 Y' u6 m1 ]/ S
    : T: X" F/ E+ J7 W6 v
    ' y9 Z5 u+ d/ ddef fibonacci(n):
    3 ^4 b& c# F  b2 s1 H    # Base cases
    * _$ B! Z$ y2 J! M) g. E; n/ k1 c0 e. K    if n == 0:
    - t1 Q9 b& j/ X) z. q4 \; U        return 03 n- z7 [: B3 D& H; P' U( f
        elif n == 1:
    - |2 L: |4 f% G/ g. v( C- w) f        return 1
    7 b* O! @; i8 ^) f& w$ z3 N9 d( j    # Recursive case
    3 X* o+ d, N1 j! e9 A7 T; v1 t    else:# g/ C3 H/ g1 C+ a4 [3 Y
            return fibonacci(n - 1) + fibonacci(n - 2)5 G3 C$ Y. m& `7 M9 u

    7 O. G1 T8 [* v# w# Example usage& `7 V, j9 U' I8 }
    print(fibonacci(6))  # Output: 8# z) {# P- Z7 |0 B: J+ [, k
    % x6 l- l* Q  R/ E3 L, s9 |0 o7 q
    Tail Recursion
    $ E* Y; ]5 g( f! B" E& Y3 N2 W7 `% ~. e$ ~
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 Q  g* B* s6 H

    $ y+ U$ Z8 ^$ ]" ~! X* C  c& VIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-27 01:16 , Processed in 0.031462 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表