设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1458|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 : A( r# _; s+ D% V2 x; }

    1 q, Y2 s4 e2 v, ^# C3 @' G9 Z解释的不错
    , M6 }- i1 ^5 O8 K
    ( I; q7 ^7 L( Z) f% ~* B7 g% b递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。5 W9 x5 ~* ~/ u) v

    , _$ Q" w- r& X9 ]; @5 w& Q5 C 关键要素
    8 _$ y8 O; B  |3 O) `" {% m1. **基线条件(Base Case)**& b1 X8 `- n$ T& I8 y3 E
       - 递归终止的条件,防止无限循环, l$ C" a5 r) d5 ]+ ~
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1! |/ q" F( N% [$ r) ]9 g  _6 A0 z) w

    * i1 E9 o. G( Q  Q* D2. **递归条件(Recursive Case)**
    / K+ ]: W6 {6 W* P8 A9 T4 X   - 将原问题分解为更小的子问题2 a' t# k' e3 B9 R& y7 C) J
       - 例如:n! = n × (n-1)!  a  u1 X9 E( e4 t) g$ i
    . Z- i$ ^0 O9 u* |1 S* p. j7 x, z  |
    经典示例:计算阶乘
    1 \9 y! w4 ~0 a+ [; T+ N8 k$ Xpython
    , t0 {8 v2 v# u( r' n3 F% R. Hdef factorial(n):- M/ d  x( E$ M1 m% ?" }7 X* F' G
        if n == 0:        # 基线条件1 ~3 q4 z- \1 S! j% q
            return 1* @# x8 S6 O0 E5 V  d& ]2 h+ M& y
        else:             # 递归条件# K7 V7 Z  b1 ~* x# j( R7 u1 W
            return n * factorial(n-1)
    $ o7 Q$ Z! \6 \执行过程(以计算 3! 为例):( ?! V! S* d2 e+ B" T9 S
    factorial(3)
    % F( q+ ~1 _6 C' @7 ?7 ]$ d3 * factorial(2)8 F6 s) J% X2 Y. x) @
    3 * (2 * factorial(1))# a9 K- x# r3 `' O  p, k7 L' m
    3 * (2 * (1 * factorial(0)))! o% `  J) q. l
    3 * (2 * (1 * 1)) = 6" c+ }: E& M: N& E( {! k% i- j
    + G* V/ c) \' j2 ^
    递归思维要点* b/ ]1 s8 s% ]
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑  w6 B8 t/ ]0 `
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' [! a- r: O2 M( ?2 q- k8 f3. **递推过程**:不断向下分解问题(递); A" B! \1 {6 @# }
    4. **回溯过程**:组合子问题结果返回(归)
    - t$ z( M7 f' l2 q+ i4 X5 ]4 t- }. |2 h! Z
    注意事项! P4 t/ L! N- ~) g  f
    必须要有终止条件
    ) u: c7 U) _; h1 U" D7 Y& a8 v  w递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    4 X  ~( o0 h( f5 ?某些问题用递归更直观(如树遍历),但效率可能不如迭代( f+ i+ Z% Q+ T
    尾递归优化可以提升效率(但Python不支持): c* `, ^) Q( C* }; i

    2 z5 B+ ~7 Q5 C# ?$ W 递归 vs 迭代' x- c! L6 u1 R. J6 j/ Q
    |          | 递归                          | 迭代               |
    8 N& ^. N  N- x8 \) D( Z|----------|-----------------------------|------------------|
    % ], j: {+ R- k0 r: }| 实现方式    | 函数自调用                        | 循环结构            |
    ' o% O3 m. P  L! p/ f4 V/ {| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    7 r2 T; J* Y9 h* i9 D& \| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* u# t: G0 @/ O1 I. d0 x
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |, c& q+ R, {) h. A
    2 r" Q' ~# }" J; u# J
    经典递归应用场景2 R" R2 }( o& Z( w: O  f- T
    1. 文件系统遍历(目录树结构)3 S( X! F8 Y! {$ n; T+ G' H
    2. 快速排序/归并排序算法' K1 O: {8 Z  ^0 o3 j# h
    3. 汉诺塔问题  }. j  v. n& K8 x1 l
    4. 二叉树遍历(前序/中序/后序)
    9 ^! ?* K# N  n% G% j5. 生成所有可能的组合(回溯算法)
    & F( y) G' ?; z! o/ Z/ H# `/ F* A1 ]  |
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    开心
    2 小时前
  • 签到天数: 3115 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,% s" `. [7 X% |) `
    我推理机的核心算法应该是二叉树遍历的变种。
    $ t2 K1 L5 M$ Q& G& a1 ^- e! @6 ]另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:: s/ t' K# k. u; c1 ~
    Key Idea of Recursion
    ) U. w# B- B4 I: t/ F/ C2 Q. D5 p9 U8 Z( t( S1 X! H
    A recursive function solves a problem by:' m# d, W& O; J$ s

    " C" a# ?6 u- L" k9 i2 ?    Breaking the problem into smaller instances of the same problem.; |8 Z# E0 R7 i+ N
    4 P0 S0 f* q2 \+ ^9 P6 `! ~
        Solving the smallest instance directly (base case).
      |4 ?1 h- t8 _0 h6 y6 |8 J# ?  [; H: e2 f8 A2 F1 H
        Combining the results of smaller instances to solve the larger problem.$ D" ^. J6 v- f: g. S9 F
    1 X; C) T- D# y7 T
    Components of a Recursive Function% W$ L6 p" f3 X8 Y

    + O1 b3 e/ @3 q6 Z9 H: K    Base Case:7 T& O3 ?0 F  g" t- j4 T* X+ g2 j
    ) H8 T2 L; m3 B! f* M: z3 \
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 u/ G: g4 B/ }5 r" [# h
    5 M% S  Y3 [/ H* D
            It acts as the stopping condition to prevent infinite recursion.
    : g& t; e; |1 O- C; k( M, ]. Q4 ]3 k7 L6 r+ P0 Z% j" F- W% _
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    , u3 k& I/ Y/ N' }
    & j2 c$ ^8 |+ N8 |( F& ~+ Q  K) F% q    Recursive Case:
    5 S& t( U( G+ K4 S
    , W9 c4 b' O. t# j3 C3 Q8 h        This is where the function calls itself with a smaller or simpler version of the problem.& _( d& X* x  Y" B2 I% s
    & m; |& G3 t# t" Y
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    * c' Z& I3 @' a8 C: `9 D8 J
    5 b; K% N$ R% kExample: Factorial Calculation  W$ @" ]- e7 U2 B: J. N9 I1 n
    . w2 L8 ~+ B: p
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ( u6 u& o& n/ F* D1 |" f, V. @
    6 b1 P, e! |6 j5 ?+ S$ i. P; \  g  Q    Base case: 0! = 18 }8 G: j2 d' \& b6 O2 e
    $ R3 O* \$ G/ O, z6 j: o
        Recursive case: n! = n * (n-1)!: a- F6 C4 d4 Q: G6 ~
    $ l- r! k( G7 ?% k; o$ u8 l! h+ m
    Here’s how it looks in code (Python):# E0 p" a! K- a* w, s
    python
    - Q) D) C5 z" X. N" H
    6 `' A5 O, S5 d# |: P( v4 y0 S& @- ~6 l+ j1 m
    def factorial(n):
    5 Y' F- w& u0 F    # Base case+ z2 w. S) Y" z- n% }
        if n == 0:7 t' q5 h1 h% b0 v, S; R4 _' h& R/ ~
            return 1( L  E% b2 u& S7 ~: a
        # Recursive case, }3 K0 r4 H& x8 B1 [. v& d' c
        else:% e# w* }: {5 ~3 t3 Y4 [: P
            return n * factorial(n - 1)
    0 R6 ~) j3 u  T" t* i
    1 N1 O) `( B& ~5 S( Z, r# Example usage; m$ K- l- }; {9 J- u
    print(factorial(5))  # Output: 120/ C1 J& @/ W* r  I# ?& i
    : E, i5 X5 E& a7 Y
    How Recursion Works
    6 [4 x5 A2 K. R0 u5 V* _7 ]6 V! E6 d+ y$ t; `+ h8 @6 n' @* H
        The function keeps calling itself with smaller inputs until it reaches the base case.% F% a% b! G  @7 a

    ) B" F0 ]& ?. O% ~" v- r$ P    Once the base case is reached, the function starts returning values back up the call stack.1 a! E7 ]; x6 v  d( }
    3 ~: |" s+ [) T1 B0 B6 X1 E9 P* T
        These returned values are combined to produce the final result., `: D1 N4 }+ }8 U( M5 E3 w3 R
    / G7 W! e. Z7 x7 m, m* ?% p) Q6 B
    For factorial(5):* q2 x& j( Q$ [6 K* h

    ; ]6 q# F* P! S  R, P$ J$ X, ^! @/ I3 C* c  b7 c! G
    factorial(5) = 5 * factorial(4): O5 L8 C( `; \) o7 u  K
    factorial(4) = 4 * factorial(3)- ^8 l/ J1 X% y. N# L; G. ^+ Q
    factorial(3) = 3 * factorial(2)- G# a/ v9 E- [  w! y5 Q
    factorial(2) = 2 * factorial(1)
    / F2 p4 z4 g6 {factorial(1) = 1 * factorial(0)
    5 Z2 V' L+ f+ y; Ufactorial(0) = 1  # Base case
    . F6 x* j& e9 i. l1 q0 ^0 K
    ; i) |: Y9 d" t- e" S( aThen, the results are combined:
    7 a) H1 b$ U( F# d, v; H; v) O
    : q* E# k8 ^* D* S- m% n1 o0 V
    ; @$ f# |% v0 Y, _2 b" c1 y1 R$ pfactorial(1) = 1 * 1 = 1
    / G) p( `1 `$ n; P; Y2 C3 b( p7 zfactorial(2) = 2 * 1 = 28 [% X7 t0 z5 Q7 j; w3 }1 ?; X
    factorial(3) = 3 * 2 = 6
    ( |8 J  C; Z8 W* t. k( Xfactorial(4) = 4 * 6 = 24
    + H7 X9 ?2 ^, L! H* d0 |% P1 |factorial(5) = 5 * 24 = 120
    8 F6 A! v1 n: Y6 ^% h" g: H1 J5 B7 U0 l
    Advantages of Recursion
    8 `  A4 _; |1 {; G- o' r) R' u) R8 y
    & T. D5 o4 F. f* q- @    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    + D" O. D: C" ~; z* \8 c9 K; v; D8 e. ~! Y3 X6 R8 D$ b
        Readability: Recursive code can be more readable and concise compared to iterative solutions.6 u( r4 I4 q: R$ g) k7 M
    ! X  H) A6 L( a: d7 Z5 j" X2 N
    Disadvantages of Recursion
    : o- b( x8 f1 {. q: G6 J! M! c- K" Q
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ! J6 v# U6 k& L2 F- \$ `  D! g: f+ ?- a! o! l
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) A4 n8 r6 A8 k* D3 m$ o% S

    + d2 F' {' m# j7 h, h6 tWhen to Use Recursion
    6 u0 H# |9 K3 l( R
    * N: b; X" J4 M. h( x    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    . C9 K2 \) [/ E' ]% P' _% Z! v3 G: k& ~4 ?. n* d
        Problems with a clear base case and recursive case.. z! Z, @/ Q) C
      h6 C. c( t2 c/ t
    Example: Fibonacci Sequence
    . g9 E2 o% Y- l7 c- ]  O* Y6 R5 }$ Z' B7 @2 K
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    . x8 g0 p! X. R0 Q7 U$ ]: Z" o
    3 u# h9 Q( x& }' o( q    Base case: fib(0) = 0, fib(1) = 1  h! B4 D$ e% @. T! v
    ) ?4 |4 b6 m- i6 {9 b
        Recursive case: fib(n) = fib(n-1) + fib(n-2)9 [) G8 H. @, [3 q  E- P
    : M- [7 W2 L) q7 _) m/ P
    python
    ! G! X+ o6 e2 N$ x) K" f) a! a; E2 |- u' ]7 j" A% \
    % @( H- N1 C7 @* s& N- i7 r
    def fibonacci(n):9 \1 A9 j+ p7 E1 w% V8 j8 i/ T
        # Base cases/ P& Q6 |  z1 @5 ~- X
        if n == 0:5 l; h5 E6 z0 m3 r1 ]
            return 0
    , Q8 u# N8 ?% a3 K' f5 E# }3 J& Y    elif n == 1:
    - C* |' B2 F# v' n! o# n- p& H        return 19 @* Z5 ^* V; m! u* S; ~7 b8 p
        # Recursive case) s& p- R( l+ C/ \& E7 J6 m
        else:5 r9 M0 E. }: ^( I: ^4 B
            return fibonacci(n - 1) + fibonacci(n - 2)( f- E: x6 I: H4 v( g
    : a( }! G( m. J' H7 a& Q; M
    # Example usage
    ' F8 f: |9 ~$ Bprint(fibonacci(6))  # Output: 8
    ; D$ Q: F& F& G$ n- S
    4 J8 A  d# ?2 f  ^" }. XTail Recursion
    ' T' P* ^" J4 V: L6 r+ C+ g  |9 g
    ) V; T4 _; F+ v& aTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., _3 r* u- W0 B

    3 _* l" `" D/ |: E1 D* y& xIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-11 04:08 , Processed in 0.084514 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表