设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1501|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    ) ~1 q9 i; c& [6 q
    * o+ t5 n8 F& [解释的不错+ c2 ]$ R- K1 R" B  V
    & @8 s% J+ r: X/ A6 K
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    7 u8 G# g. J: f0 j  }0 z* Y( K. p, {! S$ b6 o$ s2 Q( }6 U& E
    关键要素
    ( K, A3 U  r& h/ T& n5 k, f+ f1. **基线条件(Base Case)**
    0 s0 [+ U  i2 t+ Z   - 递归终止的条件,防止无限循环5 z' k; R/ |. V) g* q
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    * e- b! ^3 }& E7 X# g8 D" F1 e; u# c; U1 ~9 @" [1 ~
    2. **递归条件(Recursive Case)**& B3 |2 @5 ~! T3 v# u* }
       - 将原问题分解为更小的子问题) F) Y7 i2 @4 N0 h% x
       - 例如:n! = n × (n-1)!, Z3 U; X" S2 c$ n8 n

    ( H; I1 y2 {8 v 经典示例:计算阶乘. v1 ?; g& t1 F1 C; ~6 F
    python
      K8 \3 Z3 A" E* y: Zdef factorial(n):" {# Y- w* w# t) d* r6 I7 @7 j
        if n == 0:        # 基线条件
    ( \" Z- X4 H/ o+ J0 n/ x% a% B        return 11 ^" w5 f/ L) z9 c
        else:             # 递归条件+ V: v4 f0 Z+ h+ d: v
            return n * factorial(n-1)
    * y) l, l+ a. v8 W执行过程(以计算 3! 为例):
    ) X7 A2 o  V3 J0 H* E% qfactorial(3)  M% a8 U; ], r! t  E* D, G) Z
    3 * factorial(2)( I0 X; |/ `7 l0 D2 d1 ^8 X
    3 * (2 * factorial(1))' l- f0 h& V1 F, z0 H8 o0 s
    3 * (2 * (1 * factorial(0)))
    6 {) d* o7 `7 F: i6 [3 * (2 * (1 * 1)) = 6
    / a' f+ c; |) S4 v+ r- M7 N3 M5 Y
    递归思维要点
    ( c- H& ~" G7 T& Z1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    " t" T. a+ k7 K! v1 ~- k" [- l2 I2. **栈结构**:每次调用都会创建新的栈帧(内存空间)* V$ }0 _+ t9 _* E4 O; K( K/ A2 H
    3. **递推过程**:不断向下分解问题(递)7 K( ]8 b, q1 }" N" {; y
    4. **回溯过程**:组合子问题结果返回(归)* p1 C  B& i2 m1 }! k
    " f% L; j( F; m/ m* J/ I) b
    注意事项5 N! P+ G2 Y  u
    必须要有终止条件! ^5 q6 P, `" Y7 k# Y
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    9 m. f5 A& q3 t某些问题用递归更直观(如树遍历),但效率可能不如迭代) Q& X  z2 ]8 G9 ?, Y3 r* n
    尾递归优化可以提升效率(但Python不支持)
    9 F$ I9 o+ Y6 O6 x9 q: g. M0 O) o4 i9 c+ ?
    递归 vs 迭代6 {: N0 t4 i- }
    |          | 递归                          | 迭代               |: s! o$ e  a3 n% Q/ F( R$ z: M
    |----------|-----------------------------|------------------|
    ' ~) g) T9 V2 e7 V| 实现方式    | 函数自调用                        | 循环结构            |* j/ i( _2 x3 A& J
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 L( }; n) c* `: Z* o| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    ( U1 F  a  w- k3 t" b5 V' b- j| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    + `8 F3 Z! Q$ U. ?
    ) M1 ?& E6 \/ x: ] 经典递归应用场景7 B5 n, i* `& _; g
    1. 文件系统遍历(目录树结构)# d( G- c1 |/ m' `/ }4 G! w/ L$ b
    2. 快速排序/归并排序算法! F' _8 S, k( g
    3. 汉诺塔问题
    - J* P  g4 p# B9 W* F" O# G2 j4. 二叉树遍历(前序/中序/后序)' ^4 T8 d9 F' g" [2 X4 W% ~) ]; D; W
    5. 生成所有可能的组合(回溯算法)8 |- E- E; i  ^( t; J; V' u
    ' P) L! v' S/ H; ]1 p! W* K; L
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    郁闷
    9 小时前
  • 签到天数: 3116 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ `' |" F# l( D
    我推理机的核心算法应该是二叉树遍历的变种。: g- l2 p& q% ?) _) g
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    - J' e  w$ F, {" g6 vKey Idea of Recursion' y- {- Y: s/ [  E
    % O6 c7 r9 d7 _  W  Z
    A recursive function solves a problem by:
    9 S. g+ ?* T3 H1 Q% h5 W
    2 R; b/ R2 S  d    Breaking the problem into smaller instances of the same problem.# b- ]- I. S' Y0 h( H) }

    0 C. x. W6 h4 z, {# j8 W3 _9 V    Solving the smallest instance directly (base case).
    0 ?% _8 e" T. c: V4 G, v! @+ m8 E4 f. A
        Combining the results of smaller instances to solve the larger problem.
    # s0 Z7 t4 z# G2 V1 G( u
    7 F$ P/ Q1 D$ e7 P- P$ k" cComponents of a Recursive Function
    ! C/ s# c& ]5 O$ ~% X& m1 n
      Q& Z7 x! t' d! K    Base Case:
    * B8 E/ Z  |# i+ x* H/ Y& V1 m$ F- B. r8 c2 ~* R
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.) Y6 n6 A6 V& U5 p! n, x
    3 n+ }- ]) U* f/ r) U; R, q+ M
            It acts as the stopping condition to prevent infinite recursion.
      O' O' k2 m+ e' ^1 `0 Z8 C2 S+ E+ Y- M$ R$ O8 v
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    $ z. E+ p. F4 d' R+ G- p2 g$ W: r4 e/ q  c' T
        Recursive Case:7 ~0 `6 E* E. ]8 q7 W

    9 P) q5 ~1 J, X+ t& s/ S        This is where the function calls itself with a smaller or simpler version of the problem.
    ; n0 S( ~" p: Z' z5 @5 {$ m! g5 Q" z, ]4 f( u
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    8 I& {9 f1 _" q, a: e! ^0 t
    ; Y, S9 z4 m+ P/ x9 tExample: Factorial Calculation
    2 E* H: `( p$ p) \5 e% y
    ; w( o6 M; P4 H, M1 yThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& M! a" j. W3 l! s: H, @

    9 w8 R4 n/ {2 T; G! f/ Q' Z! O% ]/ q% w    Base case: 0! = 1
    ( X/ L: a- ]- _) Z# X, e! a8 E( f( m  @1 V) h- F
        Recursive case: n! = n * (n-1)!
    ) y% z1 d: k4 r/ C( L0 {9 Z' H& P1 ^# Y- V# [
    Here’s how it looks in code (Python):0 R6 v9 s+ f6 Q" P" j
    python3 H8 [$ ?  P) v; J5 ~
    7 {) z7 t/ ]2 w! F' |

    8 u+ M  _0 _4 e/ ~& r' D0 bdef factorial(n):
    & |! h$ C2 I' \+ h* L9 z    # Base case* j5 Y* n$ M" t* ~. q
        if n == 0:, P( Z7 ^( r, q/ z# [# A7 R
            return 1+ B' `6 |, `. m" \& Q, ]
        # Recursive case/ A5 K( h: K( ]
        else:
    2 z- b& C# A8 \, n+ q" R# D        return n * factorial(n - 1)
    + q1 m2 A% ?; T/ j4 I( T; Q! v0 A$ M% p7 O8 h
    # Example usage* o" J9 P% b0 `; Q
    print(factorial(5))  # Output: 120
    . ?$ m3 h; O- ^) u  Q
    ) L5 r# C; Z* i$ e* ]( c& b6 \How Recursion Works
    0 a# e' A3 ?+ s: u+ X8 z: N2 |- r, n  f
        The function keeps calling itself with smaller inputs until it reaches the base case.( {. j/ `, [2 X
    & b, {, c( ?+ j( b
        Once the base case is reached, the function starts returning values back up the call stack.
    $ Z! ?& f& n; L1 W- p& k! ~9 W, Z& D* v
        These returned values are combined to produce the final result.
    - u2 E% \7 m3 `/ B/ Q( P
    0 \9 Y5 D8 X& p8 S1 q. @4 l/ A  GFor factorial(5):- n' M: y1 g9 e7 C. w# \# @

    " \1 [. J, v" }% g  ^7 i& X* C+ w) W( v4 n+ M9 I, A9 [
    factorial(5) = 5 * factorial(4)
    ) D9 D- B5 _5 v3 hfactorial(4) = 4 * factorial(3)+ i; a* y' R: r6 H, Y" `, s
    factorial(3) = 3 * factorial(2)4 n! h) W4 r3 {- r* q
    factorial(2) = 2 * factorial(1)
    ! P& Q& W( d8 s* _factorial(1) = 1 * factorial(0)
    , f- P, L2 m  R5 afactorial(0) = 1  # Base case
    $ w0 S8 o1 q# B) ?& y, |* b% F% }; z! R
    Then, the results are combined:  i+ N- {: P& F* }% N3 E8 z* P; F( J" _
    . o7 \/ S& q& D2 h( A

    # V% {; C/ o$ h1 jfactorial(1) = 1 * 1 = 1
      H" ~  u* L, C) C# R' F5 ?7 ~/ Ofactorial(2) = 2 * 1 = 2
    4 a- t) G: J  ffactorial(3) = 3 * 2 = 6; \7 o7 k7 w9 e2 R& f: k
    factorial(4) = 4 * 6 = 24
    " k# @! q' p$ D9 Vfactorial(5) = 5 * 24 = 120
    - [9 S4 F/ f& `" b0 i5 p
    7 q% E# F$ a& h" xAdvantages of Recursion% t/ K' q2 Z% d; r, G- B% v7 Q; V: R
    . o" G7 m; s9 h' n1 U  \
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
    0 p* ^7 y8 [: r: }) R5 \, K& X. k& D8 E5 L4 f% w( y
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    1 |- w7 N; w1 [: z9 T1 T4 {+ B+ y2 Y
    Disadvantages of Recursion
    ! e+ }7 u$ V: e! `  G7 P% v" i8 f, F4 Q( M! b& t2 `. t2 }  e
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    * R; k6 ?( p/ ~( e4 g1 z+ D( O
    1 F3 `% k, d' |    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    3 ?- P, w3 X1 i. r' M. S+ [" [% N. G2 q( j, |5 M
    When to Use Recursion  U* ~! u: N% |
    ; v5 x. u8 `$ ?4 q. G
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).. `& J, N! I2 F; d! u: O, z
    " [& V- y* K6 {" }
        Problems with a clear base case and recursive case.) q0 i# ]. T2 U

    1 y- T# W0 y: ]+ e. \7 ?Example: Fibonacci Sequence' `0 A" V; s8 ]9 G4 G; W' M
    2 G6 C( L" G- F* j5 O" ~, r
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    / x& ~! ^$ t% T" s; [5 j" H- P5 {; R& p% ?9 Q& G2 |3 i
        Base case: fib(0) = 0, fib(1) = 1. ~% ?, J' n1 z" K5 \0 o
    " f( `2 b& I% m  y) z5 x3 _# V
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    $ k4 Q( N# @: g8 ^6 i1 }" z% N7 o* X7 Q
    python+ L/ n  I( O. C; L, I
    % j" v5 w9 n! G' f7 K
    . K; x" _4 c* {0 N; w0 t
    def fibonacci(n):6 k+ w# W& f+ q
        # Base cases
    4 N3 ]0 }( ~* I3 J4 ~% R- d    if n == 0:/ d" n) W! b, h* m9 f4 P
            return 03 I( m# g* `; M$ M' A( T# \) d* |
        elif n == 1:* Z, J+ S  _* H9 ~& J) X
            return 1, h  x, O" V: @* ~2 m" O: \3 N7 k( R
        # Recursive case
    6 {- l. j9 e# L* C0 h6 C    else:
    3 X% Q- D( Y' R/ A3 j" I- F1 ?        return fibonacci(n - 1) + fibonacci(n - 2)& v8 ^8 p& v: `/ C* f  V3 A/ h
    , \. X. v$ A9 c5 T- X/ y$ ~
    # Example usage
    & F) o9 O" K7 V; B0 F3 s( H9 Wprint(fibonacci(6))  # Output: 83 @3 z7 h, i3 ]7 `1 a( x; l

    + D+ q# E- D" O) x* QTail Recursion
    ! @" D# [0 F: x+ ^/ P6 @8 R; P4 D+ {0 ?7 J  \- m
    Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." i8 a; R7 {, I; h9 b. f# N
    # G2 a9 r8 x1 r4 T/ L
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-13 23:05 , Processed in 0.034533 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表