设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1173|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 ! {! s+ F, H2 ^- _
    ' B' v+ d3 _, U( i7 E7 ?; w
    解释的不错# z1 F4 e' U6 X' Y7 X" w
    9 m- c6 U/ ^/ L9 l( d
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    ; x& ?" t: O, t* q# {! I! b# V4 d% y" Y" _" g( S
    关键要素4 t0 n0 ?5 _0 D) ^2 N: W6 p
    1. **基线条件(Base Case)**
    5 W: u3 `6 r( y- M   - 递归终止的条件,防止无限循环# N* m0 e$ @5 M+ Y$ ?
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    $ Z0 Q/ {3 B: L- o  j5 `  s! `
    ' c9 R$ j! H; ]9 B( g  w2. **递归条件(Recursive Case)**
    ( V3 O- \4 p- v, \2 `   - 将原问题分解为更小的子问题: {0 V+ v2 ?$ F# C
       - 例如:n! = n × (n-1)!
    4 K. y2 d4 K  m2 S; x# R' t
    % ~  y* s+ A5 N! v7 ~ 经典示例:计算阶乘( ]4 `1 p! t! L' P
    python& F# b  l* ]4 ]7 i* ?% ~* b7 d
    def factorial(n):& ~6 E' W+ O& \1 b1 P: S
        if n == 0:        # 基线条件
    : }& `$ o* i/ R$ D        return 14 h( I% |  f4 @* I
        else:             # 递归条件
    : t, Q$ h* ~1 F* c" @        return n * factorial(n-1)' o3 w0 J" q5 y" W1 ]1 I) M
    执行过程(以计算 3! 为例):9 t& N, M$ H5 M2 ?
    factorial(3)& J3 [3 i$ Z" P& a; w; O8 `5 O
    3 * factorial(2)- k: f" k  p7 I2 P: ?9 v/ w
    3 * (2 * factorial(1))
    , l2 S# i' ]0 c0 v' x. Z3 * (2 * (1 * factorial(0)))5 D8 N# k. C. C
    3 * (2 * (1 * 1)) = 6# X3 Y; Y' y! |! y

    $ [2 U6 v' |( S" D! Q4 v8 ~8 N 递归思维要点1 k& Q, e3 A) u* ]6 H6 ]: X/ G2 x
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 ~$ }5 W3 A  c, B* E
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间); @; Z. o  U2 e1 X7 V
    3. **递推过程**:不断向下分解问题(递)
    8 D, I* I8 c8 u- z2 v4. **回溯过程**:组合子问题结果返回(归)  s: @' Y4 O7 u& P7 }1 C

    ) y5 @1 x5 X; H- q3 I8 O5 i 注意事项
    # z3 \% _/ a* t7 v7 S0 M9 i* {; K必须要有终止条件- b$ s/ U* x( m3 P* B
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)6 g' K" |# p2 m' ?" T
    某些问题用递归更直观(如树遍历),但效率可能不如迭代( k1 B1 @( I2 i( w! L5 Z
    尾递归优化可以提升效率(但Python不支持)
    + h7 V8 [! O5 V5 ]% B
    ! q8 d0 ?+ t0 s; { 递归 vs 迭代
      U$ w+ C5 k$ m- ?$ B|          | 递归                          | 迭代               |
    ) M' R$ R* o7 F|----------|-----------------------------|------------------|
    7 W4 e+ a  ]: t4 N/ e: S| 实现方式    | 函数自调用                        | 循环结构            |
    3 J+ v& U5 q% P  n3 ~7 R- a| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    1 ?- J8 ^9 r  {$ F0 w, K' \4 S| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    7 F" p5 q( N" r. X7 |/ c4 W| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    2 l" _  {& Z. v- H8 e
    , l- }% A, i" T9 X2 | 经典递归应用场景
    $ r- I+ r( r# `0 U1. 文件系统遍历(目录树结构)" v0 R6 s& o4 @+ @
    2. 快速排序/归并排序算法
      F/ s4 {( w( L9 w6 N! m3. 汉诺塔问题, V5 W7 g1 e7 S! Z8 i
    4. 二叉树遍历(前序/中序/后序)0 D& n% D$ {$ R; O, t3 }5 M8 Z
    5. 生成所有可能的组合(回溯算法)
    9 u( Q5 U0 O% k5 K5 d
    % z$ U$ d" z0 i3 q, w4 r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    擦汗
    3 小时前
  • 签到天数: 3102 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    # @4 J. a: O5 Q. k: G* ^我推理机的核心算法应该是二叉树遍历的变种。
    " N, ~: |) s5 J* z- e另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    0 k  H' s% r# D) V/ @6 YKey Idea of Recursion: D9 h" q3 u$ p* o

    ; u; ~: t! A, \8 g/ mA recursive function solves a problem by:
    ( Y- U0 U" v1 e% q" H* K: P0 r# ~& `- s- S& F5 p0 p
        Breaking the problem into smaller instances of the same problem.
    ; @6 H0 T6 c. G" K- h6 f& u; B
    8 t! r8 g" ?) \7 e0 i    Solving the smallest instance directly (base case).
    9 g. D- F7 }7 h+ [9 v# Q% O
    ' q! M! ?5 p. G1 e/ C4 S    Combining the results of smaller instances to solve the larger problem.' [( [; |! T5 t9 M

    . e0 w* z' t: v7 w/ ^) |2 pComponents of a Recursive Function' C6 @1 {, b$ e' H6 p
    1 T; n+ C  [& }0 h1 h' h* d1 E( S2 t% \
        Base Case:
    # V, I4 ^& Y& P  f$ W4 g% Y$ c7 R2 h! z6 W; j, D, N  @
            This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    ; B/ T6 J: l# U& s% Z  q8 m9 v! U: c. l0 d7 z1 a8 e
            It acts as the stopping condition to prevent infinite recursion.
    - g; j8 P. d/ B" t+ g% O# G. Q+ d! ^: s' `. }
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) c+ ~. p( P  K# G2 B, q
    9 Q# ^. {: [  X9 G$ r! W4 V
        Recursive Case:9 t* T+ Q4 v  k$ H
    ( W0 ]$ L) D8 {0 A( Q4 L
            This is where the function calls itself with a smaller or simpler version of the problem.
    / P+ k; |( w0 q8 m  A' U7 }. \7 }/ m3 N5 R8 i+ Z0 |
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    % @2 e. t4 B, B
    4 l2 N! v+ }1 O: q9 _( WExample: Factorial Calculation
    6 V4 c9 Z, a# |/ N& M" r6 j- b7 o0 v! ?
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:3 j/ M# f: a# k7 e

    4 i0 A$ A+ _' v, ?$ p9 s" }" m    Base case: 0! = 1
    ! d) u8 i3 u1 J  W! ?2 `, A, e( f! U
        Recursive case: n! = n * (n-1)!
    ; K+ f! }& F# l; d* ~+ ^- H; W- o8 ?$ N- K% c7 {6 {# J+ @& e
    Here’s how it looks in code (Python):1 E: V* @" F7 ?8 o) H
    python4 [+ K! o( Q8 n- }

    1 W& M) t" O: J% S2 D# }/ r# z% J$ n% ^, ~
    def factorial(n):/ b' A1 a. H6 T
        # Base case
    , Y# ^1 h1 }, e+ F    if n == 0:. D( [, _) W" q& W3 Y; R
            return 1* r6 [7 U3 s6 b8 C7 N2 b( J2 l7 t
        # Recursive case
    7 ?( |5 ^$ h8 A- S; V. t    else:$ W3 B6 t2 O$ q  C  @: y
            return n * factorial(n - 1)
    6 v# q9 ?: X3 U* E
    1 P& u5 M7 i% T3 \) l0 R# Example usage% a$ z1 Z# ]% C! y$ D
    print(factorial(5))  # Output: 120
    $ X/ r; G0 R& f! S
    8 v' C$ [) V$ u3 ^2 [How Recursion Works
      f4 p0 V" |( Q0 t! U& J' f7 V4 {
    % S7 k) `) N: F3 c- `' X    The function keeps calling itself with smaller inputs until it reaches the base case.
    5 L8 r" I% m+ }  x7 H2 T" ]4 _- d- h2 R4 G- }! B
        Once the base case is reached, the function starts returning values back up the call stack.- b& p: R  C  V8 S& s

    ( b% x& H9 c$ O8 V    These returned values are combined to produce the final result.% J. l$ C: P3 E6 U

    2 v, z5 [" U4 ?$ o4 s# @7 y9 lFor factorial(5):
    & a% Q* G6 C4 O; V+ F# P& `! b
    $ ~1 _) V, U1 K% P% @  o9 R& n" N  [0 V$ r0 ~; f6 }5 o
    factorial(5) = 5 * factorial(4)6 A* q2 N( x( W
    factorial(4) = 4 * factorial(3)) s+ L/ l3 P- H3 `* z
    factorial(3) = 3 * factorial(2)# ~$ k( r% V. {3 W; @+ J; Y) C
    factorial(2) = 2 * factorial(1)
    2 e. X# ]) k4 W0 v5 v& e# A. r  K& Yfactorial(1) = 1 * factorial(0)
    2 X  d' B+ a9 ufactorial(0) = 1  # Base case# }) O. ~' `! c; r+ x

    ' g$ V! D5 ^: V2 L) n: ^Then, the results are combined:/ N3 O% b. D4 F) X( p$ I, R

    2 x0 A5 G3 I1 e' ~; `! @/ L; T
    , L! R0 _  Q' u  H  e3 |9 J9 ofactorial(1) = 1 * 1 = 1
    " u9 G# x4 Z' i; p0 u+ N5 Afactorial(2) = 2 * 1 = 2
    5 Z6 v4 L1 Y" O: d7 Qfactorial(3) = 3 * 2 = 6
      V. K8 l4 ]4 D3 i. dfactorial(4) = 4 * 6 = 243 C4 S: h: W0 B) p" r6 a
    factorial(5) = 5 * 24 = 120
    / n  Q4 h" |* X. n5 `5 I" N1 n2 k
    Advantages of Recursion
    % o4 R8 f0 H9 o# v- t
    + S7 ^$ m8 ^, k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 Y+ [) {; O0 N- b: e- h. x2 V
    6 w* b; ~, N4 y+ W/ _
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    * Q9 C0 j: U. t3 q' C4 p  o4 w8 A5 X3 m: W6 p
    Disadvantages of Recursion( s2 ~  _2 v+ E% I

    & K. d, k2 s9 W) a    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    " ]2 v. ~& @* ~7 g
    $ W' e0 t/ y% G    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    5 r/ s4 C; w. ~, ^7 z% ?. w; G: T0 l- \, U& \
    When to Use Recursion& k; P4 i& L% ]

    ; J( F3 [/ u% a# A* b    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ( d- ]% N# O% Z& ?. ]# O
    ) E# m& q2 J1 ^    Problems with a clear base case and recursive case.
    2 h  ]4 N) p4 B9 T( E. I
    , k8 @3 m& X  n9 ~; f3 I( {! YExample: Fibonacci Sequence7 E* E; G5 Q3 ~
    & I7 o4 k; D: t/ H4 B3 e3 p
    The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    , R$ }; }: R' W* ?% o3 b1 D  w
    5 F7 O  T  V& M8 I. f    Base case: fib(0) = 0, fib(1) = 1" U+ V+ H9 z6 a' Z
    + P# O# z1 ~& M6 E+ y
        Recursive case: fib(n) = fib(n-1) + fib(n-2)5 ?3 B1 b- x- ~7 t5 y- s
    # r& n- T# H& h
    python+ u& c& L" w: x; J) w/ f) m: c
    + ]8 S) b; u3 Q! p, ?
    - p1 |* q! y# b
    def fibonacci(n):; t; W4 H* |) d
        # Base cases
    7 B4 F- H2 {, m- n    if n == 0:6 ^3 \2 D$ y/ o9 T! i$ }1 k4 s
            return 07 d; b+ z, M6 c, Y9 H
        elif n == 1:
    $ p6 U9 z! A2 y" I$ Q/ }        return 1/ h# B! F% A0 r" g: j/ k4 V
        # Recursive case
    3 `8 _/ w* R2 C( r; P" y! Z    else:
    7 o- Q4 A: f8 F  ?/ T& \6 z        return fibonacci(n - 1) + fibonacci(n - 2)
    & k2 L; w( Q: [+ R* `
    ! ]$ j3 Y& G; H+ z2 n0 b, M# Example usage; l# a- d- a6 N: v
    print(fibonacci(6))  # Output: 8, Y; A( X2 A6 g( j6 Y5 f
    ; m+ E9 g7 D; p4 W5 ?7 S
    Tail Recursion
    ! Z5 n. u  P0 ^1 R
    : c6 b- `+ _! [4 H) l) j+ sTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; f! W8 x! H5 k6 k  ^3 n" S

    * P5 S* X9 \( I4 c  L7 Q- _- oIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-26 10:03 , Processed in 0.031595 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表