设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1434|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑
    / e" w7 W2 P. r$ Z; o, |: g8 ], |8 E3 |% r5 r$ _# \
    解释的不错
    , o$ z7 p# f! T+ ~. p) K1 W- R* }' B. G$ A
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
    6 k  d- m- {" F* O1 D5 ?- r$ s8 A! h) U3 |, N# q
    关键要素
    - d$ Z8 L6 _6 A, d/ b1. **基线条件(Base Case)**' t# J, E2 {8 U4 b" }1 _
       - 递归终止的条件,防止无限循环
    3 y8 `$ ?' w1 y1 @: o   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 15 l& U: N' R7 A3 A* t
    ( o( P, g+ [/ E
    2. **递归条件(Recursive Case)**; X# B+ x$ C+ x5 V6 U5 v
       - 将原问题分解为更小的子问题
    & [7 k0 t$ P( A! {- w4 S& Q0 A2 F   - 例如:n! = n × (n-1)!+ x8 [( [, u1 }) z# M7 r3 V! E
    * g2 E) }) [* c  T- U4 _
    经典示例:计算阶乘
    . I; ^3 k! k& gpython
    $ `! J4 d- f3 U# n- ?9 T8 idef factorial(n):# ~/ Q* C+ I# L( S+ E9 |1 \
        if n == 0:        # 基线条件; E/ [0 i* U. R2 Z% i6 Z: v
            return 1
    $ K3 b6 M. v6 X$ ?7 I: n0 J2 a    else:             # 递归条件, z; A! _8 Z/ l
            return n * factorial(n-1). u, {- n1 R  X6 Q* R
    执行过程(以计算 3! 为例):! a; E- s  z" u7 w7 i4 u
    factorial(3)
    7 N/ a( A5 R4 z0 L2 [1 p3 * factorial(2)
    8 j3 C8 Z) }' X/ `$ h3 * (2 * factorial(1))5 o3 v/ J1 A& l+ D! n& }8 U
    3 * (2 * (1 * factorial(0)))5 q# {6 f+ P- u7 r6 M  P# Q4 y- f
    3 * (2 * (1 * 1)) = 6  `( `0 Z! E' a# S4 `5 i7 E
    8 j6 e( n) D9 j0 e4 [' W, C
    递归思维要点
    " q+ m; R+ p/ Z, _1. **信任递归**:假设子问题已经解决,专注当前层逻辑! q# b6 g1 }; W( x: P% m
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)! ?( P. X: Y1 c* M
    3. **递推过程**:不断向下分解问题(递)
    2 f6 v0 f1 d4 ~. r- O, P4. **回溯过程**:组合子问题结果返回(归)$ `+ I# V5 m$ n' j
    7 }' a2 ^, o3 H' X' l) a: u
    注意事项
    " \' Y, A5 W7 I必须要有终止条件
    & S& U2 ~# v4 b$ L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 O; f* \8 [: }9 m
    某些问题用递归更直观(如树遍历),但效率可能不如迭代. a3 V4 }9 Y; P7 ^$ b5 K- V
    尾递归优化可以提升效率(但Python不支持)
    * ]% Z+ n6 a+ Z  @" Y9 O- d3 a0 k8 P. S! j' Y! D( ]# a& i
    递归 vs 迭代
    7 d6 m) W$ ~8 |5 g, A& ?/ [/ V6 ^0 F|          | 递归                          | 迭代               |
    9 u3 ]$ ]& L, Z. {( `7 a3 q|----------|-----------------------------|------------------|8 k/ c7 e9 U0 s$ i. r3 s6 l
    | 实现方式    | 函数自调用                        | 循环结构            |* X7 \/ `3 E1 T2 R" Q8 v" a# {7 A
    | 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    & c6 s- [" V4 V6 L( c| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |5 M! N% J, p0 R( y
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  V* k0 H  {% [. t

    ) S: H1 A9 x; r4 z( n" x* U" S1 ` 经典递归应用场景) g1 b2 P: ]. j4 `  R
    1. 文件系统遍历(目录树结构)
    - t( w: S7 V9 l3 l( H' U  i1 ?" Y2. 快速排序/归并排序算法
    ! D. l% k) e1 Z, P' k3. 汉诺塔问题
    6 m) g6 W3 E' U4 i4. 二叉树遍历(前序/中序/后序)
    1 r% S& D5 Y# M4 C) f) N* Y7 b5. 生成所有可能的组合(回溯算法)4 V% S: j  [' k( e, }
      ~; n+ y' B( h8 W) s; x  @
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情

    15 小时前
  • 签到天数: 3113 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ @/ G; n' c' o& f
    我推理机的核心算法应该是二叉树遍历的变种。9 ^% z; Q0 J1 T8 d
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    ) V# X, ~4 n- O, f* T* f) H  F" D0 @Key Idea of Recursion
    ; u1 q- Q# T7 t4 _5 i+ P8 d6 y( c" F* X, n
    A recursive function solves a problem by:
    : A1 F  |) Y8 [8 E2 f5 e
    7 S. \; P% _/ [. `# j' u    Breaking the problem into smaller instances of the same problem.
    ; S/ z4 h  d& v1 X* T  P' A8 j" S
    / J3 k1 ]( g3 ^) s    Solving the smallest instance directly (base case).  C+ M; \  N. L' S
    ; [7 |# Z) c9 K0 `4 `$ l. W
        Combining the results of smaller instances to solve the larger problem.0 T; i7 b# @3 D7 r
    - H" o. }) f  r( k/ f' K& F& E
    Components of a Recursive Function
    3 @3 \" x3 g: S- Y8 v) J, D3 q: B
    / \* C, N3 |$ B- s    Base Case:1 w9 s8 {4 N$ e+ f# d  v0 v

    0 G4 ?$ @5 {" }' ]: C( z        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    % b/ r$ `  @% s, e( v1 x  I) ]2 U: N
            It acts as the stopping condition to prevent infinite recursion.
    , m0 H  C- S% v) v  n; R; n. o3 u' @  L+ Z6 b1 s
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    : L' ]/ q, ]# M9 _; v9 _' ?' r/ |! e; S7 B% H* W
        Recursive Case:
    9 T$ `6 w7 t4 M' {
    9 s1 K4 T5 F- U        This is where the function calls itself with a smaller or simpler version of the problem.
    ( I1 l. \" x) F& A$ ~7 B0 ^, ]5 I
    3 q( w( r: ?) Y  G# b- w        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    ; n8 ?- d* U; j" a8 }1 J3 D% s" `  l3 L; T# P! {4 A! n
    Example: Factorial Calculation
    3 G% ?* M# S% E# i8 n+ _% T/ c$ I3 M2 T: x
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:9 i- |( e0 F+ l9 C- [: V& ^& u* p
    ; a# f, c) F1 H; x' d- c5 v0 Q
        Base case: 0! = 1
      N' M& }9 Q# N, g: J5 U  v0 u$ I/ W! e* A+ }
        Recursive case: n! = n * (n-1)!
    + p! @0 d! b8 T
    & e- [4 i! ~0 K1 m4 yHere’s how it looks in code (Python):# G' T8 K6 |0 t( j. [& i
    python
    5 ]' y+ M) L6 b; o' O
    . X8 _! v* g/ I/ M5 [
    ' ]: h! K, b' R2 Mdef factorial(n):
    . e0 |' C! X8 W4 {! `" p/ v- {0 i; e    # Base case1 R3 a: u. P1 m+ ?1 ^9 U
        if n == 0:
    8 }1 d& q2 g, ~! l2 L! K        return 1
    ' Z! x1 x4 M. L" d& x) h# {) l# d    # Recursive case
    8 F3 j5 ?7 n( U- D; `    else:
    ' j) ]! l! ^5 U        return n * factorial(n - 1)
    , N6 h; z$ B+ H1 }, d* m! N8 a* K. w, K
    & p! I. a  W6 l0 ^& W9 u4 K3 ?$ v# Example usage
    - M" A4 C0 X7 g7 k" R0 M4 s: dprint(factorial(5))  # Output: 1204 u" g/ N0 N+ E7 e0 Q
    " d5 w4 U" ]* a: V3 q
    How Recursion Works% d* Z% R  O5 `/ S+ P4 K, U
    . _7 p' g7 o) `4 f8 \
        The function keeps calling itself with smaller inputs until it reaches the base case." g9 s% e/ `; l& v, s+ m

    . x) e+ h9 [' Q, J    Once the base case is reached, the function starts returning values back up the call stack.
    % t7 J& Y" M% l3 C+ Q$ M* v# y' g5 z' y- Z" N7 o" `$ v
        These returned values are combined to produce the final result.
    6 c$ I: P( G  f9 c
    7 _2 S% D  l9 K6 `( F1 x: K* XFor factorial(5):1 J  @  b9 J6 s* T

    4 J$ S7 `6 L3 D$ ]' q1 \" j
    ( w7 O5 I$ K) k4 |  zfactorial(5) = 5 * factorial(4)
    4 C8 Q* `% w9 @5 P4 d2 }factorial(4) = 4 * factorial(3): A, r# `% c8 ^
    factorial(3) = 3 * factorial(2): R; e$ T& s4 \
    factorial(2) = 2 * factorial(1)
    , R2 W" d& G4 ?3 Cfactorial(1) = 1 * factorial(0)  ~* K  P& p8 F) t
    factorial(0) = 1  # Base case) W* P1 h- Q' N) M7 f8 T4 K

    6 Z" w3 H4 o2 D5 j1 WThen, the results are combined:
    ( e& A, a$ m: U9 b' P) e# o$ I  ^* k( a: p

    * P9 C! t# y. D( G# ~3 S( l0 ]factorial(1) = 1 * 1 = 1
    : R3 @3 L2 l* c8 }  w+ L8 hfactorial(2) = 2 * 1 = 24 W( ^8 ^; e2 D7 _! k# m
    factorial(3) = 3 * 2 = 6
    2 h# j0 z$ a% hfactorial(4) = 4 * 6 = 24
    & K9 q% r! ^5 O0 d9 Bfactorial(5) = 5 * 24 = 120
    : i  ]# a) z- j1 G: \6 r1 r1 |9 j: P( ]. y# M) [
    Advantages of Recursion6 g; r! k9 M3 ]+ y2 b; x: a! b2 l
    + h% O1 F% h9 h
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).; v3 k1 p; k0 B3 n& D0 n) l! J5 X$ \
    % p# _, s6 H% V8 x1 l% B
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    0 ~3 T) ]# |. P' U. q) o. X* U& i/ C6 l
    Disadvantages of Recursion) f6 U/ t9 b4 U* t

    2 N+ v* A0 B  g+ S- O* @    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.3 E* i  c+ x  Q* O4 V
    $ k. }9 {: A* M
        Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
    ( [; |* D4 ?; j' z. Y) g: a2 f5 \( v+ S9 O6 A  U7 s* V
    When to Use Recursion
    2 b4 [9 x# u; N3 P* ^# e2 A$ I# ~  V  b) A* E
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).( U) M. ?" C: k5 N- t# K* Z6 H# t

      O- o: F9 E9 q6 _; n' D0 U( I6 I    Problems with a clear base case and recursive case.: }4 p; Y- I  V" u
    * i3 C# b' T! v0 ?
    Example: Fibonacci Sequence& C" @2 u7 Q2 }# ^

    * C; L+ c: C: Y( ~6 k5 GThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    % M( Z! o& R8 a9 q; Y7 v2 x' @" {
        Base case: fib(0) = 0, fib(1) = 17 c, e0 q( u9 D. C, l' v6 }
    0 ~2 m# ?. }6 w2 p4 J
        Recursive case: fib(n) = fib(n-1) + fib(n-2)
    # E' m9 D4 f, L3 C' v* b# G" s3 ^( p6 R. q4 @3 I0 n6 C
    python
    $ @! h$ H$ X' l5 C" F; B) N( |# ^6 p; |5 O
    : _; p% @- u0 ?: R
    def fibonacci(n):
    + X7 O3 `2 @. w2 I( W. F8 K/ ?    # Base cases" O7 j/ L3 H" _* j, l
        if n == 0:, |9 m$ J5 \  ?5 v% ]9 }
            return 09 c0 p0 l/ P5 q- \8 R; t
        elif n == 1:! C4 r7 ^, ]) v
            return 1( ]$ n! X% }2 y% I9 R) B0 {7 E6 b
        # Recursive case' X2 m" {( T1 d6 }; P
        else:8 J. U5 l% t* \! k- R( Y
            return fibonacci(n - 1) + fibonacci(n - 2)
      V! r0 J% B: A$ N8 d  b  _+ V0 G9 N* V
    # Example usage$ z4 @* M% h. R' k- z( Q9 T
    print(fibonacci(6))  # Output: 8
    + ^3 F" j* F, Y
    ' C. t- T+ `  S! g8 L& WTail Recursion' i+ u  m4 @/ O

    9 k) ?; A# T' ^" H( CTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).7 L! D  |# S# V, \6 y. z6 j
    8 Y: S! o$ Q& P8 |8 H* R
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-9 23:09 , Processed in 0.033254 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表