设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1163|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 3 d" h1 U' E. K8 I% l& O
    $ n) u# ?* A: V) a, ?0 b
    解释的不错! O. p6 E1 w& u  r7 X2 A
    0 w8 N) T! H0 C, D( c
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。- C3 `# E) @. V' h4 l
    ! ?2 n5 I8 E) w0 k+ D& b& W
    关键要素: E; X2 _6 y' P! _' P
    1. **基线条件(Base Case)**/ P; Z" y1 b  C" [( m# Z
       - 递归终止的条件,防止无限循环
    ) X0 [9 P  v; c$ R   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1  t( P. u& s/ i) I' t" a

    6 K" [& e; Q4 o, g2. **递归条件(Recursive Case)**9 Y* G! t6 s0 T1 Y( k5 j) y
       - 将原问题分解为更小的子问题
    ; m8 v" J1 E: e   - 例如:n! = n × (n-1)!" D! v" ~0 q4 z

    & V0 K$ G! t9 W2 Z& z, Y( K 经典示例:计算阶乘1 e7 h/ J" O' R5 V2 e
    python
    1 E, S/ T! s! o7 Gdef factorial(n):
    ! E2 D6 R. A8 H6 L& P    if n == 0:        # 基线条件8 l" Q; \6 J# V2 P" |! H$ \
            return 1# D2 k# I6 A% n8 ^
        else:             # 递归条件
    / g* f+ k" `5 a9 i2 \: e- {) |        return n * factorial(n-1), Z2 F! h/ s9 v# J
    执行过程(以计算 3! 为例):  j% @* c$ l1 o# |+ x1 {; Q7 ~
    factorial(3)9 p7 v0 g6 |( [* _" u
    3 * factorial(2)4 _4 }% O% B6 V4 f4 ]
    3 * (2 * factorial(1))- d3 {% [& t, P, T6 @
    3 * (2 * (1 * factorial(0)))9 ]1 p; U# ]. Y2 }( g+ m8 j
    3 * (2 * (1 * 1)) = 65 C. s9 o- k) `# {! P
    % @: _- ~; Q9 ?, N- g
    递归思维要点& c6 E0 d6 k- n4 _. M. p
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑
    ) t* d1 {2 E' z" O- N- O1 Y0 e/ _2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
    ' Q4 x; F7 j4 t4 X% d6 q' L! @3. **递推过程**:不断向下分解问题(递)- F% p' @* x/ E
    4. **回溯过程**:组合子问题结果返回(归)$ H. l6 r0 K2 z) [# I' X; i
    . S, N' C! S  A$ P* X1 W2 S  \/ ]6 y
    注意事项
    3 Y3 G% P* O9 Z必须要有终止条件
    + |# l; S, _" H" D递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    : x3 f8 q3 @8 ^0 j( f% Y某些问题用递归更直观(如树遍历),但效率可能不如迭代
    : D, {9 e# W/ P: f尾递归优化可以提升效率(但Python不支持)7 o" Z1 x+ d; @; P

    - V, w6 f0 Z3 x% ?: X6 B, t$ U 递归 vs 迭代6 g* _7 i! E) ~- v4 q2 r$ G
    |          | 递归                          | 迭代               |
    * o* V- u2 Y$ m; T0 n|----------|-----------------------------|------------------|7 e3 \4 A! g& d4 q. r4 c7 M( v
    | 实现方式    | 函数自调用                        | 循环结构            |
    ) T4 ~- I  ?" ^. r- c| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
    ) ]1 t# h4 o( d2 M2 b3 H) q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
    1 V! w3 A3 Q2 ^8 U% ]| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
    ) |) |2 h9 C: `6 q: p# I9 b$ L% o; S1 ]& h2 a/ @4 ]4 ?
    经典递归应用场景6 s! U" j# c: u
    1. 文件系统遍历(目录树结构)
    9 s5 ^! m8 i% E, g% e2. 快速排序/归并排序算法' _/ Q: ^% D9 l+ Y
    3. 汉诺塔问题. I, ~) D- S' b4 g
    4. 二叉树遍历(前序/中序/后序)( @% s7 S: N3 w$ ~  P- Y5 C
    5. 生成所有可能的组合(回溯算法)
    * \5 S  t+ T$ ~3 {3 y0 A0 c4 C# P% f
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    无聊
    昨天 06:43
  • 签到天数: 3101 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
      t1 d8 k2 W# J我推理机的核心算法应该是二叉树遍历的变种。& K. t0 P; W; i4 F: x9 L! f5 l
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
    7 F, r* l: V, v4 c  Q. |Key Idea of Recursion
    2 n; h) V+ j+ F
    2 t; {8 f. V8 X" L# B/ d. qA recursive function solves a problem by:: ~( t' H9 r% r+ a
    ; u0 N  W, ^( W, g/ l
        Breaking the problem into smaller instances of the same problem.
    2 C1 O1 ^4 d- T: u( z3 x) @9 \5 {# P
        Solving the smallest instance directly (base case).
    & I0 n- Z! I% D' X8 ]' P* T8 L" b! s* A! j
        Combining the results of smaller instances to solve the larger problem.
    * ^; I8 i9 ~' y1 F' O) \
    : ~* c6 B8 T: h% k  t! lComponents of a Recursive Function
    0 Q. p; }% C0 X8 G  _/ a! a3 e4 {
        Base Case:! E# m; [1 J" O: N- p

    - m1 Y" Y  b8 \2 k0 ^8 X6 R4 t/ o* ^        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    0 e, ^1 e4 J2 P$ v8 q# H9 S& A# V0 k( s! r
            It acts as the stopping condition to prevent infinite recursion.
    5 I% Z$ C+ ^6 w$ d# H5 z4 G/ O, X+ ~; V; O
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
    8 s* ]& H5 K& t: b$ M# U0 [! c# C% i4 H  ?, P1 o( c( ^
        Recursive Case:
      V% Y4 Y$ X' N' K. X. \% i' w
    7 o/ D! N/ _+ m3 f0 m# g        This is where the function calls itself with a smaller or simpler version of the problem.
    & a  k; J: t+ T' @+ _( g. `3 }8 k/ O$ Y& o
            Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
    9 @- g* T1 X1 l/ p
    5 ]8 a$ |% j1 ~8 f$ I6 {' [0 d4 [Example: Factorial Calculation3 S" M7 S  z" m7 ?& e
    5 q- K; V' |5 N" X+ T5 D$ S* K
    The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    ) i& b0 `* r8 B* D* i" ^1 ?8 S# N  W8 }: ~3 D
        Base case: 0! = 1
    9 ^! {8 w* T8 ~* V  l5 x, h* y5 T6 e0 h  p/ ~2 Z
        Recursive case: n! = n * (n-1)!
    ' M9 j. o( ?3 r0 B0 ^% R. c" c4 p/ M
    ) A: N, F9 y2 oHere’s how it looks in code (Python):- Y; X$ n  c: j0 }. y/ I
    python
    1 C+ S; A& h% b( T' u( W! |5 _& I) l6 T7 D
    ! v# A& {% d$ q2 e% @; I
    def factorial(n):
    . s) |4 ?+ P9 N7 O5 N/ b    # Base case
    ( |. [- f+ t! G! h0 C, U- Y    if n == 0:
    7 e6 ^3 Y4 y1 h; s        return 1
    8 q  u# A2 _) r# T    # Recursive case
    % p* t* y4 y$ V$ h    else:
    # I$ F8 F* l9 ]( w8 k        return n * factorial(n - 1)0 z; S* H. ^" I2 J
    4 ?  e0 ?% e) `: h
    # Example usage
    1 I3 W- T& A) ?4 Kprint(factorial(5))  # Output: 120# H1 ^3 G# @3 z% l' f3 C
    - N3 f, _9 P4 k' s8 n4 j, v
    How Recursion Works& Z$ k! F, J# k
    . c# ^; e' T* o6 K" j
        The function keeps calling itself with smaller inputs until it reaches the base case.
    * Z3 z( m- W* ?. H. R: q6 E) m0 C: l  P8 t) ]; T
        Once the base case is reached, the function starts returning values back up the call stack.0 W6 H" a6 N4 R' V( J; V- @
    7 _6 d- ~8 k* y. J$ X0 _0 A# W
        These returned values are combined to produce the final result.
    3 F1 i' Y& v9 }( y* J/ K% A3 F9 t; a+ P% J) L: o" B, @
    For factorial(5):
    4 i  v: e. q+ N/ u9 c2 }, T7 b  v) ^  T
    . d/ G4 \0 m) j8 G* u+ L6 @
    factorial(5) = 5 * factorial(4)
    2 d3 a9 U6 Q/ T5 e5 [! [1 ifactorial(4) = 4 * factorial(3)
    ! A3 W1 o$ Y2 @factorial(3) = 3 * factorial(2)4 x/ j+ t# p& k+ E8 z1 O
    factorial(2) = 2 * factorial(1)+ L$ i$ l* @% \; ~7 O2 M
    factorial(1) = 1 * factorial(0)/ W- D8 H! V* s5 p  d8 j
    factorial(0) = 1  # Base case1 l/ k1 W8 J$ \  T2 R$ G9 Y
    0 u2 v# p3 {2 _7 d5 a# l! v
    Then, the results are combined:
    3 W  q) {6 J6 d7 `. \
    1 M8 j  E' p$ p# M4 s( A  m
    4 s: E) [0 l2 _' wfactorial(1) = 1 * 1 = 1
    : P' ^  ?; j: E9 Hfactorial(2) = 2 * 1 = 2( I, m0 l# N" d
    factorial(3) = 3 * 2 = 6
    ; ]3 X: B  Q* L( r; {- s2 f7 Vfactorial(4) = 4 * 6 = 24
    " f6 u' c6 T( R( z9 Ofactorial(5) = 5 * 24 = 120: _3 d) Z: y7 }9 a( G
    6 k; ], z: \2 A3 f& @
    Advantages of Recursion
    ) v2 g6 T' Q% O
    7 C1 w" L. g1 |# X    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 \" t: f# u" \5 _6 g# N
    / [& i1 W$ d: _6 M  w! L% ?$ ]
        Readability: Recursive code can be more readable and concise compared to iterative solutions.
    ' m# o5 U3 e; o- t, p& v8 d# _( r$ y, _# u
    Disadvantages of Recursion3 K1 o1 \' V1 J% p( j
    1 K9 r  w  f8 W0 J& s
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
    ' M8 C3 l1 r- b/ f  }, M
    ( ]% W/ J1 f9 ]$ Y9 H) v3 r! C9 U    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 W' }4 j9 @+ \) G5 L7 e, ]! m

    " Q& C$ L* B" C: [. h( X6 I  QWhen to Use Recursion! j! d$ V) Z  c

    7 t/ ^0 ~9 E8 N  M- Y& g    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    2 s$ j. z" s+ ?; S$ m9 I% ^: J: V
    0 A: S: c! w3 X6 r$ |) B    Problems with a clear base case and recursive case.0 Z! ?0 w2 ^) b1 U* |

    ; a1 J. Y0 L9 v* q0 D- p0 rExample: Fibonacci Sequence
    5 U+ f& w; v) D- r
    + f  a1 M: L9 Y# W4 kThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
    $ o% z. E4 d; H  o* F! h- u9 `6 e% i& J* Z
        Base case: fib(0) = 0, fib(1) = 1$ C5 G8 a! A, @. R" _

    . [9 O, h9 r1 o+ U7 k/ |2 @    Recursive case: fib(n) = fib(n-1) + fib(n-2)
    * s0 N6 J3 }+ ^  o1 I; ^6 ?
    4 y! G2 \# N' [' s' j& Y1 W9 Ipython
    & h6 C8 k! Y1 a% c( |. [8 v# K
    ' P8 [* k$ [$ P0 O' Z1 D4 S# s1 `/ R  T, K! P) a) w+ M6 k
    def fibonacci(n):. j( c: u3 s/ n- N2 d, n) _
        # Base cases
    , M$ k2 O- I( n& |0 L* v: X8 L    if n == 0:, e3 n: G2 `  D. [' H0 ^% F0 U
            return 0+ m6 I7 C7 d8 K0 {* V1 ^
        elif n == 1:
    ! t' F" t! |% p        return 1* z& \9 _/ Q: {3 Y  V" }8 e& u' q
        # Recursive case: h: ]1 a- d0 L/ `1 r
        else:
    7 g2 f; Q1 m8 }5 ^- {2 \/ r        return fibonacci(n - 1) + fibonacci(n - 2)
    + ?& q* Z2 [5 [2 ]2 ~. [" j* ~  k) N
    # Example usage, {0 `' E0 `3 i2 d7 ~
    print(fibonacci(6))  # Output: 8
    8 v/ V$ ~' a8 U0 ?
    ) g& E  z6 k: M6 u$ Y- M3 L) |' ?Tail Recursion
    0 u+ f$ q7 Q1 M% r1 _
    + V+ {3 t7 J' H* v5 l8 b4 BTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    2 o% L2 h. A  \; J5 O# S3 J0 o+ {1 L+ K$ q1 u3 X
    In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-11-25 10:31 , Processed in 0.030618 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表