设为首页收藏本站

爱吱声

 找回密码
 注册
搜索
查看: 1445|回复: 3
打印 上一主题 下一主题

[科技前沿] 突然想到让deepseek来解释一下递归

[复制链接]
  • TA的每日心情
    开心
    2025-9-8 05:08
  • 签到天数: 3 天

    [LV.2]筑基

    跳转到指定楼层
    楼主
     楼主| 发表于 2025-1-29 14:16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
    本帖最后由 密银 于 2025-1-29 14:19 编辑 % Y6 `( e9 K- R

      ]( {& p. P9 ]: }1 S解释的不错
    + j1 c6 u5 T  |& z) R+ x7 p$ P# e( |  }
    递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。3 B" D6 k! ?& @# ]

    ; ~% l" t* m$ ?: S/ `# E 关键要素
    . C/ q6 l( `* E- S# U8 S1. **基线条件(Base Case)**/ t$ C% D( W- F3 [3 s
       - 递归终止的条件,防止无限循环0 Y* t4 x. S3 _5 r7 Z" `0 ^
       - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
    6 Z5 `& [( A% ]- Y9 D+ P$ @4 d" {! F" [* [5 f; S" o$ m
    2. **递归条件(Recursive Case)**" D' _3 |/ S, F# H
       - 将原问题分解为更小的子问题1 b! p2 a6 i% ?( r0 d) |) ^2 R
       - 例如:n! = n × (n-1)!
    : D' |) ^# l& P: T3 {
    3 Q1 \, A& G2 q 经典示例:计算阶乘
    # P9 `  m* K- ^4 Epython
    $ m. ?& n/ m: J- B: }& ldef factorial(n):
    2 K* w! F* G# q" C    if n == 0:        # 基线条件
    . x& H8 ~7 L6 z! D+ b8 m        return 1- |; `6 w1 V% t$ ^& \# d! Q0 w: i
        else:             # 递归条件
    ( G) B! Y4 h! p9 ]        return n * factorial(n-1)
    : V5 j' ]" G2 h执行过程(以计算 3! 为例):! H9 N% p. Y2 b/ d- G& \. }# |
    factorial(3)
    5 c+ i  i0 O/ V# d3 * factorial(2)
    - z. R0 H) Y5 J( l8 _3 * (2 * factorial(1))1 z9 ]6 \5 L8 B+ H  a. C
    3 * (2 * (1 * factorial(0)))
    " `( l6 m$ s# a& Z: ^/ u3 * (2 * (1 * 1)) = 6
    / y* o. M& x8 @6 t- C
    7 e* o- j' ^9 o5 X  d% } 递归思维要点; R$ z# |+ M- V8 C+ r0 t6 f# M2 q
    1. **信任递归**:假设子问题已经解决,专注当前层逻辑( Q* s& V5 J( E# q/ e4 m7 C
    2. **栈结构**:每次调用都会创建新的栈帧(内存空间)+ J& o9 O: e# q% l$ h" h0 |6 w# A. S
    3. **递推过程**:不断向下分解问题(递)0 B+ h/ x- y+ h! ~
    4. **回溯过程**:组合子问题结果返回(归)
    % q* A7 C3 Q4 }8 V
    : e- e9 ]+ H4 U8 c6 N" d; Y 注意事项6 m! ]# F% g; o
    必须要有终止条件+ D; l+ J; ?% E/ `- t1 F
    递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
    ! ]% G0 U" Z' A3 Q: z- v某些问题用递归更直观(如树遍历),但效率可能不如迭代
    ; h' ^. B4 F2 {) i尾递归优化可以提升效率(但Python不支持)
    - J5 c% t8 E& g/ u/ B6 S& C3 t) O/ N
    递归 vs 迭代
    ' }' U, s, E) h7 c9 ^0 ~6 f|          | 递归                          | 迭代               |$ j  {  b  \, k' }
    |----------|-----------------------------|------------------|
    & ]6 F; M! e0 W9 u1 A6 d| 实现方式    | 函数自调用                        | 循环结构            |
    + g0 v8 q0 ~6 B* i0 c# F) h7 d| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |6 ^4 n0 Z( r- L5 p& x; Z" t( n
    | 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" R- Q# P. e& E  ^6 S
    | 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  |' X; o. x. ~) B% {) I  @
    - N6 v4 E( e4 @8 J) N
    经典递归应用场景+ I# m  u1 C, a( [  q# l) f
    1. 文件系统遍历(目录树结构)
    # T5 u8 e2 C. F  f8 [2. 快速排序/归并排序算法
    6 V  d  c% O8 u5 {% P3. 汉诺塔问题
    1 a0 O" K- i7 l' P0 _4. 二叉树遍历(前序/中序/后序)( r; b, n9 }0 H  S  k( B
    5. 生成所有可能的组合(回溯算法)
    . |  V- a& V3 r  R+ u. k- y9 C: G  s; m3 J# J9 \
    试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。

    评分

    参与人数 3爱元 +26 收起 理由
    pcb + 4
    老票 + 16 涨姿势
    住在乡下 + 6 给力

    查看全部评分

  • TA的每日心情
    奋斗
    6 小时前
  • 签到天数: 3114 天

    [LV.Master]无

    沙发
    发表于 2025-1-30 00:07:50 | 只看该作者
    挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
    ; W7 l! G% M2 Z! K我推理机的核心算法应该是二叉树遍历的变种。! U1 h, _, w6 I: I
    另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    板凳
    发表于 2025-2-2 00:45:59 | 只看该作者
    Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:* W  A! x5 P& x5 s. V" w
    Key Idea of Recursion
    4 m9 J' X, [, f7 f
    " x( \$ C6 H, i5 \( N; u- kA recursive function solves a problem by:* c1 U3 _+ H" F6 t3 D

    , I2 H4 }0 J  _    Breaking the problem into smaller instances of the same problem.( M3 S( T6 ]3 y$ M, y9 @! M+ a

    ' k1 ~/ B( o9 R0 l& k3 S    Solving the smallest instance directly (base case).
    * ^. T# R9 Z. @$ u( Y
    + A5 U/ z3 ^$ V/ V    Combining the results of smaller instances to solve the larger problem.
    8 r$ R$ L- i' Q6 _: l  Q4 J
    $ c. Q4 P! e- O5 E& OComponents of a Recursive Function1 P* J9 |! }- [
    + C  c! o% D$ ^$ _/ V7 P& ^, M
        Base Case:
    * l0 ~1 a5 {- ]( |
    0 r1 S- ~+ A9 O: D% t        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
    3 ?! p! V% T+ M; ^7 x' q9 d3 ^+ t& K% Q8 s8 ^+ }4 D
            It acts as the stopping condition to prevent infinite recursion.. b% P* P# l9 x0 `+ r
    3 ~$ N8 c* v1 V* b
            Example: In calculating the factorial of a number, the base case is factorial(0) = 1.# @7 h; r& U: ~( K9 E
    9 T" _& \3 Z; l& ^
        Recursive Case:
    1 e  c; i: p: [5 N/ J: g3 j7 M; m* v, z+ ^9 U9 S1 c9 K3 e3 G( d
            This is where the function calls itself with a smaller or simpler version of the problem.+ G2 T- w0 Q1 Q5 @; ^2 @" d

    % j) g) B  S5 s" a        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).0 T4 m2 g" u' F) V! w( g  n

    4 [0 b- `; w/ H6 ~8 rExample: Factorial Calculation
    9 [, ~2 `9 g& m' g* g+ G
    6 s" I5 Z' J: M& MThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
    9 s9 b: J7 U  H7 X
    & {: M! \0 Y: v! b& R$ W) t    Base case: 0! = 1
    # m0 R* k4 y3 E. j) W0 W5 ^1 [' w& D  i7 ^7 l7 l
        Recursive case: n! = n * (n-1)!7 i3 J, R9 J: k% o7 P
    , V- {! m0 v8 d! u2 P
    Here’s how it looks in code (Python):
    * ^, {$ C2 Y& L3 L% }% q9 F5 Lpython
    & Y- t/ v& Y0 ?8 e! e1 x% c  V- }" c/ E5 K2 L
    2 y$ o+ V2 k: T* p: z* O
    def factorial(n):
    7 F1 T' W& K- G0 \    # Base case  O" u, `3 Y4 I" i1 F; g, _0 ]; l0 C
        if n == 0:
    1 V5 a+ x7 e8 p2 `6 a        return 1
    : Y/ l6 z: h: o    # Recursive case. {) B7 U$ A1 J
        else:/ @9 J7 k: L6 }, Q; \- s
            return n * factorial(n - 1)( ~1 U* }- t# l- \5 T
    4 j& _5 Q) [9 L
    # Example usage- t* z1 V- Y& H6 a, p8 k, s% c
    print(factorial(5))  # Output: 120
    - r  l3 E# u  P# B3 [1 J" N5 ?4 j4 }, A
    How Recursion Works
    - U9 `. _; V7 I+ V
    & A1 e8 Q; s' `- j  N( s. s& t+ {    The function keeps calling itself with smaller inputs until it reaches the base case.
    , Z7 T8 a  _' q4 u& C! {; }- `1 r' ^; u7 I5 s: J: d3 X
        Once the base case is reached, the function starts returning values back up the call stack.' K" t0 g' n( X0 R2 |) c

    ! H/ B  @' D" b& t! Y    These returned values are combined to produce the final result.
    0 u3 g, P3 g; Y2 m% b; @/ N( E  B3 i- T/ }6 n% r4 X- I
    For factorial(5):
    + b( v- g, M" \- N" O- M, k' v; j5 k& a2 \% a2 u' p
    1 t# n, h; s0 w2 k8 Z0 T4 N5 }
    factorial(5) = 5 * factorial(4)
    3 a# F; u2 {$ \2 z; {4 nfactorial(4) = 4 * factorial(3)6 u, x/ b3 Y7 J* T) q( d/ M
    factorial(3) = 3 * factorial(2)
    % S: B1 v2 o; wfactorial(2) = 2 * factorial(1)
    ( S# |, P4 F3 S, x5 n$ Z% Tfactorial(1) = 1 * factorial(0)/ |7 ^$ i- q' @# I  B5 L' n
    factorial(0) = 1  # Base case! i* R" W6 X+ O) H9 Q
    & d# n/ P5 y; X1 M
    Then, the results are combined:
    $ F$ u' E! T2 Y$ F3 U+ R$ t. c: i# s/ H4 b  ~. f" W( V, u
    3 f* x2 ~% N  B1 {# M1 f" v
    factorial(1) = 1 * 1 = 1
    1 b* ^* L; v- z  @factorial(2) = 2 * 1 = 2
    ! B& d( d' }4 efactorial(3) = 3 * 2 = 6
    : g! e/ E; y' Z# f( F( t6 |factorial(4) = 4 * 6 = 24
    2 {3 ]4 B$ V/ j, \! Rfactorial(5) = 5 * 24 = 120
    & n% _4 a; [/ }1 u6 i- g# z# p# R- _/ l  V% V: M/ `$ z- ]: @
    Advantages of Recursion
    * c$ t" y5 P) u8 s3 _. W/ k, h& O, Y4 V) U# ?
        Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 u- v8 k/ G. @$ K; @
    . @4 \. N% b: ?" N3 Q- M+ j5 W' ?7 C
        Readability: Recursive code can be more readable and concise compared to iterative solutions.' S& E+ F- I+ \+ ?  r: |: M
    ) I# V' Y. A% E
    Disadvantages of Recursion: N0 y% S; m- D& l) p, k. m) b
    0 y) D7 y) j$ d- B8 j
        Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 Y" T1 V3 Y& [0 f# `& ^

    / p! r5 x1 L8 r0 O# M  C- o    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).( _& k  k! l" t2 ^# z* y9 O

    - M1 |9 N% }6 o2 o/ Z( ?: @# rWhen to Use Recursion# D2 r7 p; u/ Y4 b7 l9 ~
    / W6 y* o% h' I7 V
        Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
    ! N) D6 |! b8 p" w/ P$ z7 _' h) R! u4 ]0 U9 N$ t4 y
        Problems with a clear base case and recursive case.
    , j+ \/ N0 l) B! w* K  s  R% ^7 B' n: V: P: n
    Example: Fibonacci Sequence/ x; N$ k- Q5 O2 T# u

    # n, d" V, ]$ e* V6 t& zThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& K8 L& o6 [! [% _% w" f, S; F
    - {, f. V7 {) L8 q( _0 h
        Base case: fib(0) = 0, fib(1) = 15 f, O7 C, S( D- o6 {6 A
    ) P) \/ E- N9 F) |
        Recursive case: fib(n) = fib(n-1) + fib(n-2)* M/ V4 h$ G  j2 _. F+ b) e% E/ A
    ; C( m7 R- }* t$ n& H9 u7 @4 m6 o
    python  S# k; H1 `9 k+ b, Z, R

    4 m6 |' A* S; X7 b; R$ B
    ( |. @4 y5 M. y) n1 {5 odef fibonacci(n):
      k- ~; l1 Z' @# Z. D    # Base cases
    . x1 [7 \) r2 G$ o    if n == 0:' {7 q3 b2 B) Y
            return 0
    3 L/ D. h/ ^+ j* R    elif n == 1:5 T* n& h- J( c$ E) T8 O3 y2 y8 N1 A
            return 1
    5 L) a: V  ^! t, {1 ]    # Recursive case
    : v( o. Z, I( o. k- e1 O( D    else:
    4 z+ Y8 p  O3 i7 f) n0 O) _# R        return fibonacci(n - 1) + fibonacci(n - 2)
    : i; W1 v; k8 Z" v9 o3 f
    ' Q6 |" Q5 b: j' s" |# Example usage+ j4 g# s& \! d+ M" j! b
    print(fibonacci(6))  # Output: 8
    " w6 W5 G& X: t) j  n# T- E" B2 p! f& C' ^& F# f3 x/ V( y  [0 @
    Tail Recursion
    ! m1 b9 Y/ G& T/ x. G. \
    ! f) l- `, n0 u4 d# W' F3 PTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
    ; L: z* m5 V# [
    3 q! c8 \! x/ z& U) lIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    地板
    发表于 2025-2-2 00:47:27 | 只看该作者
    我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。
    回复 支持 反对

    使用道具 举报

    手机版|小黑屋|Archiver|网站错误报告|爱吱声   

    GMT+8, 2025-12-10 13:46 , Processed in 0.030794 second(s), 19 queries , Gzip On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表