TA的每日心情 | 衰 2019-4-22 06:37 |
---|
签到天数: 488 天 [LV.9]渡劫
|
6#

楼主 |
发表于 2017-5-22 16:32:37
|
只看该作者
3 N% n1 R9 w! E! l
突防难题
0 |+ C+ r/ H- t. L* o
3 O+ B [9 V& h8 ^# e8 b- Y如果隐身手段失效,反舰导弹便只能依靠速度和末端机动来突防。而这两方面,恰恰是LRASM-A的“阿喀琉斯之踵”。
4 B! C/ g, p: W/ S* L5 ~
# O+ Z; P# }0 ]* d
% [0 D7 k# T1 Y4 h/ |
“宙斯盾”防空舰兼具 VHF 波段反隐形雷达与高功率孔径 S 波段 AESA 雷达,LRASM-A的所谓隐身能力是要大打折扣的。
! n# U, c$ U& m# w# E6 z
% s4 R: B2 c( z8 U' b L前面已经说过,从LRASM-A弹形和弹翼看,能达300米∕秒的速度已经是高估它了。即便是按这个速度计算,LRASM-A要突破航母战斗群的拦截区,至少也要飞行400秒以上。有如此宽阔的拦截窗口,防御方足够从容组织好几次拦截了。按照美军自己的模拟计算,假设舰空导弹的单枚拦截成功率为70%,电子对抗系统成功率为40%,那么1艘“宙斯盾”舰在2分钟内可抗击近40枚亚音速反舰导弹的饱合攻击。目前,美军假想敌的航母战斗群里编有4-5艘“宙斯盾”舰,还有数艘拥有区域防空能力的通用型护卫舰可以用于“补漏”。另外,抗饱合攻击能力更强的万吨级“宙斯盾”舰,离服役也为时不远。在这种情况下,4架B1B集中发射96枚LRASM-A,也并不是多么势不可挡的力量。也许有人认为,96枚如果不够的话,就120枚、144枚……可是别忘了,数量越多,战场火力组织、协调、控制的难度将成几何基数增加。即便是号称“发射后不管”的导弹,也一样有接战轨迹管理的需求,否则的话,战场乱成一团,不仅存在彼此自相干扰的问题,而且也无法评估火力突击效果,无法制订火力计划。4 ?( Q7 _3 h. H( A
7 A: ~8 |0 T" x) c$ c/ J! M
) I; [ B! S1 T4 S4 q+ v$ t* |' c被称为“巧克力”舰载通用垂直发射系统
) F+ E1 S* O# ^% G: n W4 q ~7 G" }& U: a
7 r$ v) J% z$ i6 S1 j0 @- Q被称为“左轮”的舰载垂直发射系统! a! Z+ z+ p0 J- S
1 l8 ~) h& ~. e( X
就算在饱合攻击的情况下,有少数漏网的LRASM-A突进到航母的附近,但别忘了,航母平台上还有雷达干扰系统、无源/光电干扰系统这样的软杀伤手段,以及类似于“拉姆”的近防导弹和“万发”速射炮这样的硬杀伤手段在等着它呢。: `! {* V( ~2 e9 s+ y3 V0 q S; G
' _# Z+ b1 y6 Z5 G" L: m据公开资料,美军假想敌航母上配置的雷达干扰系统,能同时对不同方位来袭的10多批反舰导弹,实施噪声干扰、扫频干扰、噪声调制干扰、速度欺骗、距离波门拖引、假目标以及组合式干扰。并能与舰载无源干扰系统进行组合,实施复合式干扰。舰载无源/光电干扰系统能发射红外波段干扰弹、烟幕波段干扰弹、厘米波段干扰弹、毫米波段干扰弹等,实施质心、冲淡、遮蔽及转移等各种干扰方式。烟幕干扰弹一次可形成自海平面起几十米高、纵向数百米长的烟幕墙,对可见光和红外制导的反舰导弹进行消光干扰。# h2 }1 @4 f* N3 _2 {5 m3 ?
. {+ E' \* o1 k2 Q$ j; q, W
受体积和重量制约,LRASM-A的抗干涉、抗欺骗能力能强到哪去?航母平台上空间相对充裕得多,干扰系统的功率可以做得相当大。LRASM-A不依赖体系支持,单靠自身的“智能”,“过关”的概率很低。而且“过关”后,就面临着末端突防的难题。
! f6 l7 [7 v: {3 E9 [/ T! U1 @% h' K4 u& f7 D! h# A
% h! {0 m( L1 a c( L
! w, o3 [0 P- W5 i/ j“万发”速射炮开火
3 K. ]- ]) E) S, N+ ^" _2 N8 d% l$ s
2 b" J* e* r, @* O0 M& f W美军假想敌的航母上,配置了类似于“拉姆”的近防导弹,有效延伸了航母自卫拦截距离,并拥有抗饱合攻击能力。其与“万发”速射炮结合,形成的梯次拦截火力,极大提高了拦截效率。据公开资料,“万发”速射炮的上一代产品,在距已舰500至1500米处,拦截截面积为0.1平方米,飞行高度5米,飞行速度300米∕秒的反舰导弹,全航路至少命中1发的概率为不少于80%。全航路累计毁伤概率为不小于68%。显而易见的事实是,“万发”速射炮的末端反导能力又在此基础上得到了明显提升。6 B+ h/ f; S* |/ M8 a
: h/ }3 E& y4 G% b1 {- p面对这样末端反导组合,导弹唯一的希望是靠末端机动突防。不过,高机动性意味着高升力,高升力意味着高阻力。除非LRASM-A的发动机具备足够的剩余功率,否则一机动就将急剧损失速度,速度一低,不但降低了防御方拦截难度,延伸了有效拦截距离,而且导弹自身也有可能因为速度低而掉高度,一不留神就容易坠海。以目前的科技水平看,拥有足够剩余功率的发动机,巡航状态时耗油率很难低得下来,反过来会极大影响导弹航程。LRASM-A在拼命追求隐身性能时,已经在飞行阻力方面付出了代价,如果发动机的耗油率降不下来,它就不可能达到远射程。因此,LRASM-A的发动机不可能拥有足够的剩余功率,其弹道末端只能进行温合的航向调整。这样的导弹,就是防御方的活靶子而已,何谈“航母杀手“?
( [9 y4 \+ t0 x
' b$ b6 {8 l% Q5 G- `结语- p! q _6 `/ \/ l" N4 s& @4 V
0 L" g$ t, p# M, p5 c( [ q( {
综上所述,LRASM-A所取得的技术进步不容否认,但却根本不足以成为“航母杀手”。事实上,美方青睐的其实是高机动的高超音速武器。只是由于在当前的科技水平制约下,这样的武器无法在体积、重量上达到美军的要求,美军这才退而求其次,选择发展LRASM-A。
4 l; g+ ~9 k' w' ?7 s. N5 R2 K; h2 `0 u# V) T7 G' {, o4 j
, _% Z7 Y @6 r6 e' L5 L+ W8 F3 T3 W |
评分
-
查看全部评分
|