|
6月13日《南华早报》报导,《上海航天》4月25日刊发西北工业大学和上海航天工程研究所联合团队的论文,描述用人工智能实现反卫星对抗的研究,研究表明,经过大量深度学习计算后,被追踪的大卫星学会识别敌对反卫星的意图,自主躲避,但3颗小型的反卫星最终在人工智能的指引下,用回马枪“抓住”了目标卫星,并在不到10米远的距离用捕获装置“俘虏”了目标卫星。
1 x: A( o A% h6 J: n9 L( n) H1 u
这个研究有意思的地方在于攻防双方都使用人工智能,追踪和捕获不是靠速度、机动性等硬性能,而是靠诱骗、迂回等战术。这是攻击武器的新高度,也是设防目标智能化和硬性能差别缩小化后的必然要求。
: s4 v) x3 B' p2 ], p: r" g. v# M0 f
反卫星作战以大型卫星为主要目标,一般假定是大型卫星目标大、机动性差,所以反卫星是捕获目标、跟踪和追击的问题,也就是说,是动力学问题。这是防空导弹、空空导弹制导原理的基础,只是延申到地球轨道上去了。; P8 `. h2 C/ c( {+ S5 [$ h
d# Z4 }$ x) w! p/ G" m
当然,这不是一句“只是延申到地球轨道上去了”那么轻飘飘,上了轨道,导弹相对于飞机常见的动力学优势(速度、加速度、机动性)没有了,小卫星根本没有多少变轨机动能力,几下就燃料耗尽了,速度差也没有多大。
5 _# p# ?9 u7 m0 l1 \- K) Y
/ v/ K- ]; t1 K/ I$ x6 d: u0 |更大的问题是,主要大国都有完备的空间监控系统,图谋不轨的反卫星刚发射,就能猜个八九不离十,在反卫星还在上升到足够轨道高度之前,可能就命令目标卫星变轨机动,躲开攻击。反卫星还没有开始追击,已经要为了追上新的轨道而消耗大量燃料。
) [( ]3 g2 X& z, b4 G5 [' v' Y$ X. C4 o5 K! D
这和在反潜中用远程鱼雷攻击一样的问题。鱼雷一下水,目标潜艇就知道了。假定理论上鱼雷射程为30公里,最高航速50节,潜艇为30节,鱼雷在10公里距离上发射,似乎击中十拿九稳。假定潜艇朝背离鱼雷的方向全速疯跑,两者的速度差为20节,忽略所有转弯、加速因素,也忽略鱼雷捕获目标需要的时间和可维持最高速度的时间限制。在最简化的情况下,鱼雷需要16.2分钟才能消除这10公里,而在这段时间里,鱼雷需要航行35公里,也就是说,超出射程了,没有追上就没劲追了。, ~' q" c2 |+ _# f% m
" |& ^) D! ~4 \7 m; {% C' t
鱼雷减速可以大大增加射程,追击时间延长,但反而追得上了。假定鱼雷速度降低到40节,能把射程延长到60公里,追击时间要延长到32.4分钟,但刚好能追上目标潜艇,理论上可以实现有效攻击。/ V8 x2 {" u2 R; _0 M& b7 e# N
9 n2 f T1 K: T
这当然是简单化的场景,带来的问题是,速度差减小,动能差就减小,即使追上了,目标潜艇不再靠疯跑甩掉追击鱼雷,还是有可能靠机动甩掉,这就回到“智能追击”的问题了。& L) p8 n& w- x9 [7 y
; G; v" V" \/ k' X* \7 h对于高超音速拦截,问题类似。高超音速飞行本来就是极限飞行,高超音速拦截弹难以保持足够低的成本前提下,做到速度、机动性全面高于高超音速目标,否则拦截作战的成本是不可承受之重。) L1 a6 I5 o% y3 p. z
1 H" E! n; x p3 p, n( p1 j! C即使对于常规防空导弹、空空导弹,降低动力学性能要求,可以大大降低成本、延长射程,只要发射就迫使对方开始机动躲避,就在功能上破坏了对方完成任务,前提是智能拦截能确保“迟到但亲密的接触”。
3 P& R( r4 T+ R5 E6 B6 M2 j, _/ O! r7 \8 W
也就是说,西工大的“智能拦截”具有远比反卫星更加广泛的应用前景。但智能拦截并不容易做到,尤其在目标也有智能规避功能的时候,或者目标是有人操纵的。
! y/ G7 ~0 j; j& P& \; l- ]4 s. [; l
/ |0 O: f' m' s5 Q" v从人工智能角度来看,反卫星与下围棋没有本质区别,都是对抗。深度学习通过大量“棋局”训练,提高“棋艺”。阿尔法狗从人机互博开始,用3000局精选人类棋局作为初始“经验”,以后过渡到人工智能自己“左右互搏”,最终“训练”出人类难以战胜的围棋大师。西工大一步到位,用人工智能“左右互搏”,“训练”出反卫星智能拦截大师。不光要“赢”,还不能花时间太长,不能反卫星之间互相撞到一起或者互相挡路,不能浪费星载燃料。. x9 n# Y& p/ `! q. G* m
+ V3 i3 Q1 J! [# r7 x$ }
这是需要超强算力的研究。最初10000个回合里,攻防双方都打得很糟糕,双方都是失分远远超过得分,不及格。3 `% _ L& w9 S7 b1 S- `
0 `2 ~/ ]3 C; T4 n: }. {& a
可能由于反卫星“人多势众”,深度学习的进展更快,到20000个回合时,反卫星开始占上风。但目标卫星也琢磨出道道来了,开始“看透”反卫星的简单战术,规避机动更加有效。 j1 h: _7 N, n2 W. @1 A+ _2 c4 x+ [
, W; i/ |1 _9 }( }4 I反卫星在失败增加后,通过深度学习改进战术,不再傻追,成功率再次提高。到22万个回合后,反卫星战术和技术接近完美,从假装漫不经心地渡步到目标卫星周围再突然发难,到目标卫星机动规避后假装放弃再反戈一击,各种花招确保目标卫星基本上“死路一条”了。
9 W6 V5 w1 n( W$ ]6 N8 y. Y. a% J& f( H6 B
这样的超级算力装上每一枚反导弹、反卫星是不可能的,但深度学习需要超级算力,学习完成后的控制算法实施并不需要超级算力,这就是人工智能武器化可怕的地方。当然,西工大的算法只是针对卫星和反卫星的特定动力学特性设定,扩大到更广泛的应用需要重新进行深度学习,但基本方法是相似的,可以举一反三。
! n$ S# V$ A' p. V3 c; P: M4 V* m8 q0 r
美国在呼吁中国参加军控会谈,不仅包括导弹核武器,也包括为人工智能武器化设立护栏,但中国并未积极响应。在很大程度上,这是很难限制发展的地方,也有大量民用应用,不宜控制发展。参加军控会谈,与其说能建立可靠的护栏,不如说双方以透明化为名互相摸底。在严重缺乏互信的情况下,很难说这样的透明化有多大意义。$ i5 a$ }. {: M$ Y6 j
' g+ R; t" o; D) }
另一方面,中国走到前面,或者至少并跑,才谈得上有意义的人工智能军控,但这是另外一个话题了。' q D4 a ^, D* X! ^2 x$ \: L2 g. T
|
评分
-
查看全部评分
|