爱吱声

标题: 如果用deepseek 训练自己的模型-by deepsek [打印本页]

作者: 马鹿    时间: 2025-2-14 00:03
标题: 如果用deepseek 训练自己的模型-by deepsek
To use DeepSeek for training your project, follow these steps based on whether you're leveraging their API or self-hosted models:
1. Choose Your DeepSeek Model
DeepSeek offers models like DeepSeek-R1, DeepSeek-MoE, or chat-optimized models. Decide if you need:

API Access: For quick integration without hosting (ideal for inference or limited fine-tuning).

Open-Source Models: For full control, fine-tuning, or customization (e.g., via Hugging Face).
2. Access the Model
Option A: Use DeepSeek API
Sign Up: Get an API key from DeepSeek’s platform.

API Documentation: Review their API docs for endpoints, parameters, and rate limits.

Example API Call (Python):
import requests

api_key = "YOUR_API_KEY"
url = "https://api.deepseek.com/v1/chat/completions"

headers = {
    "Authorization": f"Bearer {api_key}",
    "Content-Type": "application/json"
}

data = {
    "model": "deepseek-chat",
    "messages": [
        {"role": "user", "content": "Explain how AI works."}
    ]
}

response = requests.post(url, json=data, headers=headers)
print(response.json()['choices'][0]['message']['content'])

Option B: Self-Hosted Models
Download Models:

Get open-source models from Hugging Face Hub (e.g., deepseek-ai/deepseek-r1).

Use git-lfs to clone large files.

Install Dependencies:
pip install transformers torch

3. Fine-Tune the Model (Self-Hosted)
If using open-source models, fine-tune them on your dataset:

Load the Model and Tokenizer:

python

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-r1")
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1")
Prepare Dataset:
Format your data into prompts and completions. For chat models, structure with system, user, and assistant roles.

Training Setup:
Use Hugging Face’s Trainer:

python

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./results",
    per_device_train_batch_size=4,
    num_train_epochs=3,
    logging_dir="./logs",
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,  # Your preprocessed dataset
)

trainer.train()

4. Deploy the Model
API: Directly use the API endpoint in your application.

Self-Hosted: Deploy via cloud services (AWS, GCP) or frameworks like FastAPI:

python

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Query(BaseModel):
    prompt: str

@app.post("/predict")
def predict(query: Query):
    inputs = tokenizer(query.prompt, return_tensors="pt")
    outputs = model.generate(**inputs)
    return {"response": tokenizer.decode(outputs[0])}

5. Resources & Considerations
Documentation: DeepSeek Official Docs for API details.

Hugging Face Integration: Use their transformers library for model loading.

Compute Requirements: Fine-tuning large models may require GPUs (e.g., A100s).

Data Privacy: For sensitive data, prefer self-hosted models over API.
作者: 马鹿    时间: 2025-2-14 00:06
在执行调用api时候发现, 不交钱不行。。。在纠结要不要自己花钱。。。首先我就是有兴趣,但是抠门的人不想花太多钱, 不知道图书馆会不会有免费的使用
作者: 马鹿    时间: 2025-2-14 02:22
据国内的人说不贵, 但是目前官网不能直接付款




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2