爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 7 c# I5 |& ~- U  Y. X/ j. M
; y+ x: j3 k+ I: _
解释的不错/ }7 {/ H- T: D# R2 H9 f% h
7 M$ T+ u+ i& l' s
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# G- O' e, D' _: a6 |
7 ^& O% d: N5 j$ ^
关键要素
9 U" n+ S' t9 Y# ~6 |4 q1. **基线条件(Base Case)**, }; r6 s# |3 A4 k+ l
   - 递归终止的条件,防止无限循环/ u7 w8 H! k; A0 L+ p# d
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1' ^' J* U9 E8 A
0 S6 l, i- c3 {% h+ l0 X
2. **递归条件(Recursive Case)**
7 T3 L3 b2 ]" O   - 将原问题分解为更小的子问题5 z5 {8 _- H, X3 A# x* p
   - 例如:n! = n × (n-1)!9 Y% Z, T- d9 |

- K0 R& F0 A2 E0 d2 {+ f9 i 经典示例:计算阶乘
  N2 \) K* f- f3 |. {1 a: k3 Zpython
! B) L9 W- l7 u7 g. @def factorial(n):
1 j1 N" B' v7 G6 {    if n == 0:        # 基线条件. _  e% V1 V  s0 {; O7 R0 D
        return 12 r* W% C& b+ Y1 U
    else:             # 递归条件. e7 a9 M% Y) i0 a" W% o
        return n * factorial(n-1)
2 U; R/ k3 \0 m& _执行过程(以计算 3! 为例):! J6 {- y5 e9 O$ G7 P0 I
factorial(3)
' L) W. M+ B5 a3 * factorial(2)6 y4 o4 q0 I3 R% q0 W5 I" Q% n1 W
3 * (2 * factorial(1))
9 w: a+ m, ?: X3 * (2 * (1 * factorial(0)))
; ?2 d4 F+ [7 {/ e3 * (2 * (1 * 1)) = 62 [  \) ?0 @( U7 J6 K
% j) q. P, h: X
递归思维要点
$ d  Z: ^3 x8 S' W3 m) C1. **信任递归**:假设子问题已经解决,专注当前层逻辑
- F% B$ P* ]2 C2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
, \9 k7 L) S. }2 P) J3. **递推过程**:不断向下分解问题(递)6 X6 r. Y. X$ z4 j0 T& _
4. **回溯过程**:组合子问题结果返回(归)
! B' ~4 o) L  F( }7 m( N& O: T2 p
$ c# @- W: n2 m6 Y3 m/ k. y 注意事项( w% V" o4 [8 _+ A& M% o
必须要有终止条件2 R1 R. i3 ]5 y
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( Q" e; F8 j. F, N3 G# q
某些问题用递归更直观(如树遍历),但效率可能不如迭代
4 E+ B: w4 X' _尾递归优化可以提升效率(但Python不支持)
- z$ X$ z0 k) s2 {: l
3 U0 y$ r/ r. w% p 递归 vs 迭代
* Z2 j. c1 @6 {|          | 递归                          | 迭代               |( j: ~1 j& _0 B5 U6 r" q: ~
|----------|-----------------------------|------------------|3 X' }  R, \" d, |7 T
| 实现方式    | 函数自调用                        | 循环结构            |2 g' W; C, r1 e$ r( X) z$ D
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
0 ~& s: [0 H% q  P! }8 \4 P$ h| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
! n3 k7 ?/ |) G9 [$ q( I- E$ n+ A| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 j* \) c1 G$ ]- B" M: v

: {+ J* I, H  G# _& I 经典递归应用场景( p- _/ o1 c0 d: B' |$ r
1. 文件系统遍历(目录树结构)! W3 ?% S) A# {" [
2. 快速排序/归并排序算法
2 P! M9 B8 N+ |. e: l5 w3. 汉诺塔问题
+ f! Y4 q5 ?0 J* Q" V9 N4. 二叉树遍历(前序/中序/后序)
- M  K, R$ n/ B( z' t% O( Y5. 生成所有可能的组合(回溯算法)
; Y: W4 u- n, ~# v5 e- O3 [( ]; c- R" T5 N8 q2 C% R
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
, W: X: g5 l3 n# o* ~我推理机的核心算法应该是二叉树遍历的变种。
6 u9 L4 P$ r  W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) o# F* Y( K) B3 v3 {8 H
Key Idea of Recursion1 u6 b* [2 k1 e: u& L4 }: ~1 @
* q0 G& j4 y! T6 Z* E" R, Z
A recursive function solves a problem by:
; N9 v- x) r& `7 K: o+ P* B! t  s& n6 M& h# P, c! w
    Breaking the problem into smaller instances of the same problem.
+ `4 f- g  u! ]5 T4 r8 [0 O; b1 K, u: k9 s( b8 @: @+ Q
    Solving the smallest instance directly (base case).* _. j: {5 n. U7 t) K+ x' f' z
" F/ b1 A' K( _- p8 g
    Combining the results of smaller instances to solve the larger problem." N( Q7 E) {; t9 r

+ d& Z, n2 j) g$ X+ J& O% T- l  TComponents of a Recursive Function4 W# G3 Q- ~( r. W$ `, w; A

7 M. f2 O* ]6 o) E* S' r8 f' A% I    Base Case:, x4 k2 h! Y3 `! A. {' a; y

# |+ r" z& F) H( b: X        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
. G  r4 H! y3 w1 M  ~# ~" c4 H4 v9 R
        It acts as the stopping condition to prevent infinite recursion.
. v) a$ C7 ^! ?' d* w, [
2 p9 o; o7 E" I9 Q$ C/ w: Q        Example: In calculating the factorial of a number, the base case is factorial(0) = 1., @3 z4 i  F* V3 o2 {, H

" o6 U& w3 C( g6 g* A  _& J    Recursive Case:) b9 t' }, c* `2 Q+ N/ v6 n: r
$ J9 e! `, P' Z9 L& m& q' P
        This is where the function calls itself with a smaller or simpler version of the problem.
5 N3 }9 J. y1 _* M3 K% T  S3 N: z& k  e3 `% t1 E* @2 E' {
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." U( b; x: D  x5 u8 \" B5 d" q
- @9 Y% {3 L* |& \; E, ~6 x
Example: Factorial Calculation0 ?. ~% k% q+ L" Q, d/ ^

* E: d- w: J6 U8 y& B5 [* ]. dThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
9 k8 }; x! z: g
1 O* I1 m* G5 @$ |2 b. G- m    Base case: 0! = 1
* {2 ~/ f( m( f- m4 T% Q# Q1 L3 K8 d4 e7 N  ?8 [
    Recursive case: n! = n * (n-1)!- G% J" Q' O% ^9 f1 \" F
# Q* Q. P# R8 c: L. X+ D; }+ A. l0 L
Here’s how it looks in code (Python):( P2 Q3 h$ \# P* X* f
python8 M, ]1 c6 Z9 x5 T  u" l
$ z% V! Y4 r& V+ x
( Q$ J0 B$ U% L6 |) g. p# n" V0 s. h" @
def factorial(n):0 f( r8 l- t. Z; _5 b3 ~" X
    # Base case' c6 t  w& T7 Z( A. l$ H/ N+ q
    if n == 0:
9 D. p: M% G! q4 S( m1 |        return 1
8 h; a4 F. i  C" }7 V* l' ], m    # Recursive case
! _: n' R# e9 U' A6 e# j    else:
- G8 o% T; b; u* U* T2 r2 q/ z& G  H        return n * factorial(n - 1)
, J9 G$ q+ M6 ^2 J
7 k, Y4 j6 i2 U1 A( J( Q# Example usage: \2 u! Y+ D; y7 I8 N. W. v
print(factorial(5))  # Output: 120$ j. s! O' H* e! p: K% O
4 L7 h6 E0 ?8 @/ u9 G6 [
How Recursion Works
2 t" P$ y% ^4 ?1 o. _& C  m5 C( ?1 k* j) \* j. g! d
    The function keeps calling itself with smaller inputs until it reaches the base case.
) a9 K4 c! E+ z3 I6 T& l( E! ~$ L
    Once the base case is reached, the function starts returning values back up the call stack.
+ A& W" `5 \! E! k3 {8 v
+ U& ^( B. C( m4 y, ]/ g    These returned values are combined to produce the final result.+ @! S( K& Z0 {4 H) x* X
$ X5 j" X/ X  X; U1 k7 U' s9 T0 \
For factorial(5):8 y. ]/ A# }9 r0 y  O

( L0 R  @( F5 O# G5 _# l: r7 _& W1 b( x+ B
factorial(5) = 5 * factorial(4)
/ t/ ]$ [; @0 d: Mfactorial(4) = 4 * factorial(3)+ T( `$ s. z; t# ^& _* U8 H0 J
factorial(3) = 3 * factorial(2)
* E/ D$ ^+ X' C/ Vfactorial(2) = 2 * factorial(1)
' q9 Z. u0 ~7 M( k! Q' G. Ofactorial(1) = 1 * factorial(0)
. I! g, G6 J& C# l+ D3 E1 |" v2 yfactorial(0) = 1  # Base case
2 u+ x0 X  X& N( C" y
. W* a9 }1 c8 p* y; lThen, the results are combined:( ^6 y6 `- `. m/ I( i+ R
$ \- j4 t7 ^# C! [  N4 |

& m: ]3 K5 g' T% t/ efactorial(1) = 1 * 1 = 1
% ]: r, q5 R' ~7 R: F$ {factorial(2) = 2 * 1 = 2
7 M% p2 j+ Q7 @3 nfactorial(3) = 3 * 2 = 6( r: @, R4 i' ?1 U
factorial(4) = 4 * 6 = 249 g& h: [; P( a# ?6 f
factorial(5) = 5 * 24 = 120) J1 H" P9 l5 A+ M; S3 [( Q3 o: _
1 j2 u) t+ j( ?1 w% [- w
Advantages of Recursion  a' I% Y7 ?0 `4 d) c3 ^

% X3 f3 a' x4 c3 G    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
. U% V% m1 C; J7 r# l: H) N5 k. ^) A# B7 T4 _) t% d+ H
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
( K" K& G. ~4 h7 q. x9 {3 R: p" k2 _% p3 Q
Disadvantages of Recursion
7 e7 L0 z( u6 g
; w; s1 D% l# i) S/ q    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
1 V: ^: m% S! \+ t5 v: i
9 k$ b  p4 p( b/ w# ]1 o. @    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
4 o" i. s- V8 d% R0 K: V  E; ~& V& w: e2 J
When to Use Recursion
' ^% v# K% o8 `/ M: Q# s
3 t0 z- B( f+ f3 ]- K+ t+ b1 j    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ @; B8 Y: w, P9 c6 _# g) d9 q% e

; ^2 y* h5 {5 O' d    Problems with a clear base case and recursive case.
# k2 A1 W2 {# O, c; |8 d/ r2 C
Example: Fibonacci Sequence) {) x" E, l4 w! d. P+ i: u/ D) T

/ C8 A( K' M7 a+ x( c" ?The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
6 B; R4 @5 G, N9 W9 t1 y9 b
# Z6 Q! F4 I5 S$ P4 s    Base case: fib(0) = 0, fib(1) = 18 k/ R0 d% f# e9 p  l4 |) i7 k: B
. C: N8 G& s' m8 d- R; Z
    Recursive case: fib(n) = fib(n-1) + fib(n-2)6 K' q  G( @" I1 d
* z  j; f/ P! @6 f( e9 ~. d3 H5 n
python
6 v5 v$ w' S) ?* E. k! K0 w: t7 b' X* E6 W/ P) N
, h# }- x( i8 N% Y& I) E- o# D7 t
def fibonacci(n):8 Q8 d+ N: N4 a* }4 }4 u* C
    # Base cases
: l4 K1 K2 J- q! \& n, c5 e  g    if n == 0:
5 \5 S2 {( z; J! N5 B  W) G        return 0# e# F$ g5 U3 K3 z( {, O$ O
    elif n == 1:
6 z: C+ X9 U  e/ c; c0 Y        return 1
/ `0 w" n7 m$ D1 ?  t; c0 w    # Recursive case# r' w% A' S; u0 g8 a" N! }) N4 d
    else:
6 P$ p4 p# ~' i% E3 J( K& |5 \) K# i        return fibonacci(n - 1) + fibonacci(n - 2)
+ }! B& K1 ^' `! H4 w! m& d: ]* A4 n! `0 b7 p
# Example usage
) p* E  m) |0 N2 V; `print(fibonacci(6))  # Output: 8
3 u, ~+ E6 l. w2 ^: V8 p9 X1 w0 F5 _$ V( _/ C% ]
Tail Recursion/ `1 w9 {5 Y, }7 Z5 q% G: y, u
6 h2 q- P8 U- G7 O- {+ a
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
/ S) l( ^( {+ [' q# |" N) O9 X! [; L/ l4 j/ i- [! r; h" F$ S: ?, ]
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2