标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 ' c$ m( I0 O$ @0 ~% n
2 c& e0 m) }5 n$ T! W
解释的不错1 O, `( t& P2 W" G' i1 I
" K' P2 N* |' C( I6 u递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。6 n+ H8 r( N& A& i- ~
8 [: ~7 [% D' g5 R
关键要素0 K3 |' s* F* e/ ], Y- n6 ^2 i
1. **基线条件(Base Case)**) {+ Z! B& ]& m1 N/ \2 X* K8 F; h
- 递归终止的条件,防止无限循环 ; m3 w1 B O: l9 U1 e, F - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 # L1 B2 Y8 Z/ O* t8 P! s' Z f# M' A" f5 m6 L! j8 j- _
2. **递归条件(Recursive Case)** ( f& F- J# Y7 {: \ - 将原问题分解为更小的子问题 3 q E9 _' J) D - 例如:n! = n × (n-1)!6 B* J0 {0 `+ c6 E9 B% n+ A
, u/ o5 K6 e( }& Y) K# `6 U' V
经典示例:计算阶乘) M: U" ~2 M4 h* t
python$ B# D- t7 v& C, S% t7 g
def factorial(n):# |4 Z' [/ v+ i6 a# g7 J
if n == 0: # 基线条件0 T& l2 G$ Z1 w: `8 |: Z" {
return 1" x: f% X+ y3 M# N, ?: D
else: # 递归条件# n- Z4 u' G, G& g K
return n * factorial(n-1)/ @. z. H! y b9 J; H
执行过程(以计算 3! 为例): 3 _: e0 E# s0 i: U) Z9 B4 ]factorial(3); }+ [0 @% ~! s6 {+ p
3 * factorial(2) # d/ V% L8 r( R! r& o3 * (2 * factorial(1)) ' [# z6 u/ ]2 N v$ j" h8 }3 * (2 * (1 * factorial(0))) . [8 I1 z y" `; S& \3 * (2 * (1 * 1)) = 6& P% ` g$ J0 j
+ O1 B8 Y( E* W c* X
递归思维要点7 S- F4 z$ \# |" B- G5 R
1. **信任递归**:假设子问题已经解决,专注当前层逻辑 . u( C# u; c; B2. **栈结构**:每次调用都会创建新的栈帧(内存空间) : m5 G7 @: q" ?: q, J0 R0 Z6 ?3. **递推过程**:不断向下分解问题(递) 1 K( E# @ ]4 ^& K: o/ O4. **回溯过程**:组合子问题结果返回(归) ( e- {# v. N/ }, @$ X# G, d# _- Q3 c, \7 Y. }1 k
注意事项' J0 i7 u1 k- I& G7 J
必须要有终止条件 ( U* W' y% b& n3 d' |8 w递归深度过大可能导致栈溢出(Python默认递归深度约1000层) ' J0 L h) k# J: q4 C+ g某些问题用递归更直观(如树遍历),但效率可能不如迭代/ N) y3 ?7 s5 `. ^$ c9 ~/ d/ R
尾递归优化可以提升效率(但Python不支持) 8 G0 d# I/ o& E6 F6 L3 f- Q* ?! t& S' K6 a& t* T# h* r3 @! I5 T
递归 vs 迭代 8 E6 h9 {8 ]+ k2 l5 p| | 递归 | 迭代 | , n3 r- H3 K! @; E. U, ~|----------|-----------------------------|------------------| + q$ p0 ]6 S+ u5 C2 n, J| 实现方式 | 函数自调用 | 循环结构 |, P& n3 M i6 \
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |; D6 w3 V0 x& E+ H! L
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | 5 z! a& r7 s* R, w1 g| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |3 o: \1 A* y5 b8 H' O$ l- {
7 O' U' q' X$ N" b6 G. L: F, { 经典递归应用场景 7 \* z; y! B5 x1. 文件系统遍历(目录树结构) ; n' F* }+ A3 W' F* e+ M2 v2. 快速排序/归并排序算法 - q. g4 F( Z; k9 P: |3. 汉诺塔问题1 U- g a0 P8 g1 h9 k' n, K
4. 二叉树遍历(前序/中序/后序) , p; g. @; A+ c8 {* w# i9 c8 x5. 生成所有可能的组合(回溯算法)1 w; r3 H# [* B4 M, I( A
, O \9 H% u, k
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- S# ?$ O ~+ i# Y1 Z" e
我推理机的核心算法应该是二叉树遍历的变种。 4 z0 ?( \0 _; I: G7 s9 g( Y/ r另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:& S/ U* c& j0 R' T* y
Key Idea of Recursion 6 t2 s5 Z% n* [" D* q t0 e+ @* C$ P* ~2 |% H* j6 M9 D! H
A recursive function solves a problem by: ! r; Q! q3 @) M( {+ K e. F7 a9 y% j( m
Breaking the problem into smaller instances of the same problem. $ Z. X# a0 v g. t5 q% ^# a9 u6 S g$ i9 ^& B! u9 [5 X/ ]# L Solving the smallest instance directly (base case). 8 U/ c& z: s2 E8 z; y" L) h! s& h" v: e/ A+ c. N6 r. T- @1 V
Combining the results of smaller instances to solve the larger problem.6 T j7 Z# g+ z
, N/ b3 l+ |8 I% j: ~
Components of a Recursive Function 8 S% I2 _( p2 F( X- Q. q9 g / S1 ]- J P: q1 l Base Case: - W6 S4 ]* e# N+ W% N% j4 b0 {: E# ^3 q! O+ w0 `7 o
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 5 W5 X# a7 T* F) |+ p: z- A) L4 D$ h( x; m! D6 D
It acts as the stopping condition to prevent infinite recursion.+ J# D2 l2 P+ y% \( t
5 J3 E, C, K" F Example: In calculating the factorial of a number, the base case is factorial(0) = 1. 4 K7 E2 H( S: H% w5 |6 O' A7 X: \4 ?2 N6 S+ G0 H! A
Recursive Case: - L5 Y$ F3 U9 D, q # V" q$ Q6 H( q" l: m This is where the function calls itself with a smaller or simpler version of the problem. * z Y3 E3 V/ Y8 |$ P$ M, l! @; f$ v! C: }' t5 X1 k# r$ `' F! o
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).. M# w) B% e7 V$ ?8 @4 V" N0 g
9 c! v2 ?& L. kExample: Factorial Calculation" e: {5 C2 K, l3 g
v% F0 M" ]+ O# l, U
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! k! L: N% B; j4 ]" X; ~
8 _. P2 I! O; b3 Y; r/ {* } Base case: 0! = 1 / X6 p9 j+ D3 t. P. J- T e# ?; g: A: c' f4 v ] Recursive case: n! = n * (n-1)! " {- _) b2 X1 u4 j6 s4 s7 K% d+ U) \& P
Here’s how it looks in code (Python): ( D" g! a! \% } E, spython : v, C2 o7 b: t, N3 ^( b3 ]* J& V' [ ) p0 ]. Z* z0 C. ?8 ] % v4 e1 k) b7 U7 j( Ddef factorial(n):2 P2 f: @+ D" k/ z
# Base case! n: F7 Z; W5 o, L
if n == 0:: }* [) g4 a, R9 h' X# A
return 1& Z6 W+ p& _6 y
# Recursive case3 e0 J; e. \* d3 |) h. E2 A
else: 5 `- a7 Y. f/ l% U4 c return n * factorial(n - 1)7 H, v1 M# i# z5 r) u( q
8 j, \/ }/ ]& v& n
# Example usage9 ~1 F8 B, N9 n
print(factorial(5)) # Output: 120 r! s; Z2 T6 ~
5 a# c5 m f* `" p' j* x4 {How Recursion Works4 x J! _' d- g/ c
1 z+ W0 u) b- Q# e& d
The function keeps calling itself with smaller inputs until it reaches the base case.: Q' Q3 q2 X1 H
$ N6 @" A1 B# e( Y
Once the base case is reached, the function starts returning values back up the call stack.7 `; V ?& c! }6 P Y8 |1 J- T
) Z3 r5 W8 p; u# p
These returned values are combined to produce the final result. , P( c& g+ N, f( j, S0 v8 q' @: m4 `2 G" y( f% O
For factorial(5):* R* \7 q0 |6 p) B9 D/ T/ a; o
' M8 z2 N* X2 T0 H( v$ r
7 V$ M2 y9 A/ e4 ~" I
factorial(5) = 5 * factorial(4)( T1 P- Z, }6 u: K
factorial(4) = 4 * factorial(3) % Q1 y; u- z* C) yfactorial(3) = 3 * factorial(2): y$ J. ?: [: p5 x; u! |: O
factorial(2) = 2 * factorial(1) , ~! `1 o& G2 b- J1 Q1 L+ q5 Qfactorial(1) = 1 * factorial(0) " @2 l) u! w, H, sfactorial(0) = 1 # Base case. c. R( y0 j5 X1 i. f
+ N6 J3 S+ ~; `$ lThen, the results are combined:( \" w, x% _% p9 _) B" m( \
% e, c6 q4 z# g4 n7 B0 z/ j( z d) ]: J, \+ t, U- Z
factorial(1) = 1 * 1 = 1 + ]* u- o6 Z: ~4 _2 {factorial(2) = 2 * 1 = 2! A; U1 v' [- h5 ]- d6 ]& F" o
factorial(3) = 3 * 2 = 6" t( g( @# Z# r8 ~9 q* a
factorial(4) = 4 * 6 = 24' s+ V1 r8 u7 l: L
factorial(5) = 5 * 24 = 120 9 O+ S0 H& s7 j! g9 w$ Z2 z % _4 P9 E0 e/ `Advantages of Recursion `$ P) z7 ~/ a" }1 [ ) s0 Q( z7 S# }- e _; n- ~3 C, H% K+ Z Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). - U2 T7 K4 h3 S7 R" R) C4 p 8 e/ q4 p' f. v5 j4 l! [ Readability: Recursive code can be more readable and concise compared to iterative solutions.6 M. N0 @- L( M# G
8 K" E% j9 D4 c1 SDisadvantages of Recursion 1 B, Z3 E; \+ w, ?0 P+ s" c/ ^ . C" N7 e: L0 G) k2 H0 {4 m Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion." ~* G0 D. f0 F9 M/ g% l+ ^$ E+ P
8 n8 R$ { [: f6 W$ {% }, n9 `: ~ Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). ) W; F2 k. h* e! a' e# S; j % P. ~- w9 l, T1 J! ]- U# cWhen to Use Recursion: x4 I4 o$ d$ H2 E$ p& h2 m
9 S" |$ R! ]$ w Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 O) R+ U+ W' N0 G
- i, S' L- Z3 _8 G1 D: a/ c3 R Problems with a clear base case and recursive case. 2 Y0 o# n# d6 q+ g3 Y6 c: ]/ l! L# k% |
Example: Fibonacci Sequence , z6 H0 ]( L3 x5 ~6 t- y+ U0 Y( h( B! X+ d4 }0 J1 s3 g
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: 7 g% i: c: t- p: K# {: \; r' z& s% r* m8 u* T
Base case: fib(0) = 0, fib(1) = 1) D' o& m6 B/ A% o! k$ P& M
' ~7 `8 s9 S" `" k6 A Recursive case: fib(n) = fib(n-1) + fib(n-2)6 \, A: E' E7 S# l
2 S4 M4 M, T0 U3 Q2 ?
python & u4 _9 O2 I; s9 B* E2 q ) Y* a( }; Q: p% L& C& l 9 k. z* V2 l. d4 M; kdef fibonacci(n): 7 l( ] ^, |$ t! ?! k( |6 u # Base cases + q! b. ]1 Z6 x' u$ ^% O if n == 0: 5 x% u, v' k9 `6 j return 0 & J9 X/ a5 a' O/ D elif n == 1:$ T s% _- K4 s
return 1 ( D7 R' Q+ p1 E) j6 [& U: |8 t$ J: e # Recursive case - n1 O$ T0 l3 p( l8 c else: * y3 w# U* a8 n5 W" l- w: |+ n return fibonacci(n - 1) + fibonacci(n - 2)- \7 Q& Y6 c E q4 `2 u" C
9 r8 I2 k3 c9 M* d+ f7 v% \' H- F" h0 M
# Example usage& ]2 ~% l6 G# o2 K7 ]
print(fibonacci(6)) # Output: 8 : a* y" S' E6 {( H' V3 D* u: |) T/ _% w* a% P
Tail Recursion 7 {+ _/ r0 c4 [" t( D3 d Y( O4 M- N" @+ v' w' T
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).# l1 J O3 @0 x( D! Y
; W0 [2 u" M$ r1 uIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。