爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
! W: ]+ [3 s9 l/ K! n! r9 X$ e0 Y+ j, o# X
解释的不错9 r! T$ \) [/ W! G/ a

0 e. _6 K+ T) L7 g9 \3 B递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' _+ _3 ^; ~- C: N9 l( _) c5 A. e
# D6 Q4 k( a! Q6 i2 n; `8 J# T
关键要素
. n9 _9 |/ g+ W5 {+ _2 j- s1. **基线条件(Base Case)**
& H) A7 q, P" |6 O! }/ }   - 递归终止的条件,防止无限循环9 `0 X/ G* @" c9 g' s+ W4 F
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
& i9 l$ p% }6 M$ ]
  b4 B, {4 `! @: M! K! L' z+ u# X2. **递归条件(Recursive Case)**
, G) V8 @- ~" G   - 将原问题分解为更小的子问题
  |" g& P+ [8 }* j% f/ k4 K   - 例如:n! = n × (n-1)!& ]0 R- r8 a* F, ~" u

# o  z, Z; l: d* S- y0 j8 _! k 经典示例:计算阶乘, d+ f' U' i$ u9 T
python
" E& D+ v1 {( g. R" f) }( U' Ydef factorial(n):5 W0 \6 g3 o! u" A  P
    if n == 0:        # 基线条件/ o& W9 L8 f+ n
        return 1' O. i, d! S  t" @
    else:             # 递归条件
4 d% V" G/ J' ^& V. R2 g0 J( A        return n * factorial(n-1)0 z9 l2 k2 M% O* @  [5 j- b: p
执行过程(以计算 3! 为例):
7 j! X0 l: y" p2 g2 u# |7 L, nfactorial(3)
, h+ E$ Z# F$ a3 R: Z2 A7 o3 * factorial(2)
4 W( T7 k' M# w# S8 a- M8 \  C3 * (2 * factorial(1)), I  K; B) [& O6 J* m3 t
3 * (2 * (1 * factorial(0)))
# ]; {! U, |1 i( t- l7 s1 F3 * (2 * (1 * 1)) = 67 q' b4 R7 f' B# A/ b: |
* b, z+ z% _1 P+ S4 `$ u/ T. }
递归思维要点
- l2 D6 @4 i1 N! L! Q( B1. **信任递归**:假设子问题已经解决,专注当前层逻辑
0 m  N  k  s/ h" v2 Q2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
" z: m7 }' T5 U- g1 U; d% Z% A, ^" J3. **递推过程**:不断向下分解问题(递)1 W$ W  n/ d* c9 I4 _9 W1 S* f  b0 w
4. **回溯过程**:组合子问题结果返回(归)( r6 [) P, M5 a! j8 D1 |
0 G  h+ }. x2 o0 V8 B
注意事项& f  `! N8 O$ J$ c3 m2 j
必须要有终止条件4 y$ ~$ `* R% z9 \& Y8 N
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 k1 J( {$ A7 _/ ^/ R, N: J0 @
某些问题用递归更直观(如树遍历),但效率可能不如迭代
; R9 {: T* }. T; S* `" @尾递归优化可以提升效率(但Python不支持)
& y  x& ?3 ?6 ^3 p( n- ]% ~# d( H
! q9 M5 l* ]; U) V2 ]) s 递归 vs 迭代
4 l$ C! x2 m, |# `, G|          | 递归                          | 迭代               |
$ |2 j6 G+ t: x|----------|-----------------------------|------------------|1 \7 I" A, A% w, R) E
| 实现方式    | 函数自调用                        | 循环结构            |( t' C1 a# B" T2 t  h1 `
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
+ g* G. Z  E2 u  X3 W- v) H8 ?| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
& t- |7 Z3 b6 V3 Z( \$ U' C# R| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
! L' P; E& u. q2 Y! s' t# d" @" w! o* a, f0 g
经典递归应用场景
& Q4 E1 k7 L" ?" n# D6 T& P; k1. 文件系统遍历(目录树结构). ^. R- k8 Q1 l; h2 H+ L) _* j
2. 快速排序/归并排序算法. O' d3 O; S/ @- d
3. 汉诺塔问题2 R* u+ }" d& \6 B3 ]/ R6 a* W
4. 二叉树遍历(前序/中序/后序)
/ i3 q& k4 ?8 d. R* n! ~5. 生成所有可能的组合(回溯算法)# U! [8 _5 y" M2 z# Q% e

- _5 e0 c4 k9 [7 O+ a! v试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
: H: j" Q; f' s2 v! ^3 ^我推理机的核心算法应该是二叉树遍历的变种。
4 T8 b$ V! W4 P6 c/ |9 S另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, g: {  S! x$ K
Key Idea of Recursion
# b/ c) q3 ?3 o$ z- ^' ^' |* |, Z+ o$ M9 Q. Q$ A! B
A recursive function solves a problem by:% v6 C6 b" ]) w. f' c" y5 x" f
2 t3 ~' P* P% n0 T
    Breaking the problem into smaller instances of the same problem.; @" l1 T, e" l# \6 \' l1 |
# d1 h: ^4 j, J* }2 u6 {' s
    Solving the smallest instance directly (base case).
4 _8 a6 C# J& J$ {0 U! v0 T$ i/ l5 P7 u  }) X+ @6 A) G6 p
    Combining the results of smaller instances to solve the larger problem.# r0 [' m3 `0 s5 A( D6 R
- Q9 h* N( A  T2 G) f
Components of a Recursive Function
* q$ f% A5 d  G! U/ A% [! N7 r; ^
3 V% e; x9 w/ v& n6 @+ j- n    Base Case:
1 u, R& X- V1 |; U% z
/ O- N. o) _: x" Z! k1 D1 [        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
/ o) J8 g% x+ u2 I9 @1 @9 P# F: p( d: o- c
        It acts as the stopping condition to prevent infinite recursion.
/ q$ y7 d1 L: g" A3 X1 T1 B& u1 n7 u' i0 |8 o
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
1 u- \0 N) n$ w% B: A8 z7 z3 E- P" Z( A" Y6 M- s/ j
    Recursive Case:" @9 Y1 l3 j1 j
% g- X6 h2 V/ e/ D1 ^4 Y
        This is where the function calls itself with a smaller or simpler version of the problem.
7 `# W. t7 V  R" s* @2 R, I8 x1 f# b( j  Q  V% V( l
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ r$ k' O4 L# }2 L# r' O- a

" p* ~7 z" k+ {0 C% AExample: Factorial Calculation
( B+ g$ c3 m$ C7 e2 }: D% X# J5 }. I2 {0 }
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( t( n. t% ~0 G# B9 z1 Z3 M

" m) i* i. N4 `2 [    Base case: 0! = 18 ~0 O/ A# n5 I8 T* o! `1 T0 P
0 W+ z* c% d! r9 z
    Recursive case: n! = n * (n-1)!1 |6 y) v" ]" [$ ]" a6 a+ ~  U8 L

3 b4 Q3 Y* _( o  x3 r5 oHere’s how it looks in code (Python):1 \" W6 b4 a  I. e$ |
python) _2 p& K# m* v
$ S2 ?" f0 G1 a6 P: `5 f

3 d) v: O1 H% J- L/ udef factorial(n):9 G) f, x* B! y5 J
    # Base case
; f' P1 W$ F- d    if n == 0:" ~! p5 J* Y7 S
        return 1! K+ k) R% f% g. Y1 X% k8 T3 ]- d
    # Recursive case5 m  l- h4 [0 \5 J7 X' ~
    else:
1 A8 U8 m% e; j" w( W        return n * factorial(n - 1)
- d4 b; D3 T0 Y0 d
* }: j( z* L4 R% a  o# Example usage
9 O% Q4 ~" t6 E! L; I- rprint(factorial(5))  # Output: 120
7 Q9 s6 b0 Z4 S  x4 D- x0 L' V
  b' Z& C  V9 B  P/ K; ]; c: MHow Recursion Works" }7 [) M' X! J

* Q. [# i- P* @6 R" L    The function keeps calling itself with smaller inputs until it reaches the base case.
( p' w2 ^& L; k8 S1 A% [" K1 I  n6 V8 K+ ~3 N7 i; A# A, Q
    Once the base case is reached, the function starts returning values back up the call stack.) o% f: M* M$ N' @" h/ w
, L! E- H6 m7 C
    These returned values are combined to produce the final result.
' Y' m' ]) O7 G9 @" U- \$ M4 v! Q( a( B; H
For factorial(5):
! K4 g) z2 M! g4 r5 R, v4 Z; ~- L  ?- ], A4 z2 `6 f

! O9 y! N" @) s4 B7 `1 ^/ bfactorial(5) = 5 * factorial(4)
* ^/ A% E. m0 l) W3 P; }. R' gfactorial(4) = 4 * factorial(3)
0 K* A, G$ u( Vfactorial(3) = 3 * factorial(2)5 u. P6 n9 W* m0 }) b9 Z
factorial(2) = 2 * factorial(1)
7 L/ U2 K# C, m$ w  u% X& I- pfactorial(1) = 1 * factorial(0)- j& c& E  B5 W" Q: V" V
factorial(0) = 1  # Base case" f" l0 u1 r( H
& y( `* u( K6 X/ c5 i/ h2 Q
Then, the results are combined:
- C* S' h2 \' J1 x$ n: ]8 L1 i. l) t" v; w/ `: U' P3 [  {

, X+ k- K' Q! P7 w! L' s- K% K% `factorial(1) = 1 * 1 = 1+ K: i5 q- j- ^$ C
factorial(2) = 2 * 1 = 20 `" N- l& l* u1 L* V4 \' _
factorial(3) = 3 * 2 = 6
2 ~6 W& _7 g2 P8 S; J' pfactorial(4) = 4 * 6 = 24$ Q/ l. N, a2 U  j( N
factorial(5) = 5 * 24 = 1201 W: P+ z+ h/ x" I! m6 a& X

6 C% b9 s, E- PAdvantages of Recursion
. I. ?8 w8 b$ A" [5 F' F: s& Q* r3 e7 i/ r  d- e- q" h6 T/ `3 _8 k
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
& O, g. B: i  p- \& w; D, m7 y
$ s* {9 r# j- c0 M, A* L! u% ]    Readability: Recursive code can be more readable and concise compared to iterative solutions.* V) ?% _( h: Y9 u) S; V

$ w- {9 X" a+ t5 p% gDisadvantages of Recursion3 I: V" H) X# ~; ^  _3 C1 F2 H

3 L6 y; ]7 }% s    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
* [1 U$ y" N  \9 F5 ]* q" I2 M  Y$ R" A, v( I0 m% q# k1 i" x4 W1 _
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ l; X- f& W9 W' b
# O, g3 x: z0 d$ ~+ P8 D6 v! t
When to Use Recursion7 x) Q, M7 y# v1 C% V
% k1 N) s0 h9 u
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
, p5 Z) D/ f' _9 q4 [4 T2 R2 P% M; P/ m  I0 b
    Problems with a clear base case and recursive case.
: m0 y* U- _% w8 d; G. ^) J5 u& x/ N4 n& G$ p# a6 k5 l
Example: Fibonacci Sequence( |1 Y. O* r2 D2 e( Q8 S
: `$ o7 N$ [9 |
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
4 C. {! R; z. e+ C' x3 Q" r7 ]1 e' p9 I
    Base case: fib(0) = 0, fib(1) = 1
3 I  v; z( O/ l2 Z; M  Q% s* m! e4 E: k" v
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
8 w# T, W- f$ m, b$ v
3 S3 @) n0 I3 ?3 u; V' x7 u, Ypython
# i3 J5 [) m6 [  T7 ~; y9 J5 Y$ U* k. Y+ V

# p' D1 b4 Q: S: V. Udef fibonacci(n):5 C  d4 Z( @: `. K3 ]3 G
    # Base cases4 U, r) n( C& f) S2 E- U& W
    if n == 0:
6 \2 v5 P. e1 ?( m2 [: s        return 0/ y6 o5 F/ N! o& O- v" P
    elif n == 1:# k  V+ F% s& V5 s
        return 1
6 u5 R  e9 ?6 \/ L4 y: e) S3 C    # Recursive case& j4 S0 ~9 {. S% W# S) F
    else:
' i- l& U" Q$ y/ L  r$ t        return fibonacci(n - 1) + fibonacci(n - 2)
4 O3 v) N" Y0 Y- K0 ]  H- ~$ X- l; o9 S9 F
# Example usage, ^- Z( }" B% v( o- S6 ]8 i
print(fibonacci(6))  # Output: 8/ i/ V9 E* `0 A0 E, s
- o( `2 X. x  ^
Tail Recursion* G& l9 M: ?0 R  v* z/ X
5 n, E) D4 x# ^. u
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
# L$ y2 G, ]' n3 Y3 j. P0 F
$ {8 ~7 G, \& f# K  ~+ vIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2