爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
0 q# Q+ h" m3 Y# f. W' d$ g, ?' f" U) ?3 e% _% T
解释的不错! n* a* P8 N0 h- q% v  F0 i
8 @! s( V, x! h  b7 h8 P2 @
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
2 {( O3 ^4 g  V% Y
0 X) ~1 V  y( d4 f# b2 ` 关键要素
- v' N) {/ k( b6 S1. **基线条件(Base Case)**
$ G" e# R; X) F$ U   - 递归终止的条件,防止无限循环. Q  K5 k; h3 X  L/ A  F, f
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
+ h' S) Q; t! T* B) q8 h- n$ S7 r# U3 V3 ]7 {% Q& B, ]' ^3 J
2. **递归条件(Recursive Case)**
5 z, i6 B1 e0 H5 F   - 将原问题分解为更小的子问题  J( _' @) h3 R* z: ]  `
   - 例如:n! = n × (n-1)!
: N- M! b/ A4 s  i' b& K6 z( o/ ^7 R5 P9 N7 y
经典示例:计算阶乘7 H% b, o$ i3 m
python8 d. ]) [+ y, }$ w
def factorial(n):  j) i$ r( I2 Y  O
    if n == 0:        # 基线条件
% U% L* k  `& T4 l        return 1$ W3 f+ L6 _( B* Y% D  `! `2 o+ E
    else:             # 递归条件: U$ A6 K' ~5 {2 R
        return n * factorial(n-1)3 B% j0 Q' X7 P4 Q
执行过程(以计算 3! 为例):8 [) k! B) Y/ m- n/ [" ^
factorial(3)
9 Q) B' ]1 \# q. E: k3 * factorial(2)
& D0 u! g, y0 D% Q8 @* k3 * (2 * factorial(1))
+ I3 x" Y  \+ [" r6 B( q. H$ X' ]3 * (2 * (1 * factorial(0)))5 W/ a: F& {. q5 p4 U( F+ }7 Q. @
3 * (2 * (1 * 1)) = 63 H: }" ?4 R* a# Y
8 K$ Z4 q7 m) U& g0 y! ]
递归思维要点2 J$ D( y2 ?2 R# T3 v+ V4 x) s
1. **信任递归**:假设子问题已经解决,专注当前层逻辑# [( U2 D5 t# }. ^0 M0 L0 X
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
2 |; q" y7 ~' w3 U% Y3. **递推过程**:不断向下分解问题(递)/ Z5 ~3 n, t7 e1 \9 I! a" B
4. **回溯过程**:组合子问题结果返回(归)
0 c& w0 X+ A- f; Q" z, `- R) @" ^+ X# {* F
注意事项& [4 h& J0 M, q$ X
必须要有终止条件0 |3 A) E) `7 ^/ o, @( k) y+ A
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)& `% j  {* W. ~$ `3 w6 Q
某些问题用递归更直观(如树遍历),但效率可能不如迭代; i. J0 ^2 V5 u; I1 \
尾递归优化可以提升效率(但Python不支持)8 U) c% e7 G* n2 P" e; |* ]# q

) |. }8 e0 ?0 s& w1 I) G( j 递归 vs 迭代; w9 v* N" p4 F0 [% w( [8 F" \) w
|          | 递归                          | 迭代               |
& A; X" ^! p) A% m1 I5 e|----------|-----------------------------|------------------|
/ o7 O" s# {( t3 x( {| 实现方式    | 函数自调用                        | 循环结构            |
' E! ?/ V$ }+ E- X1 D| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |: s+ s2 h# X$ B1 ?
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
- W9 {0 T- y! R% b$ y+ y* z/ ~| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 c0 z0 t8 m1 Y  E' z; B
7 ^! f+ H. P1 i8 \4 n# n5 X7 r  o
经典递归应用场景
  X! N; Y6 I  m% H' e# ?1. 文件系统遍历(目录树结构)# Z  T& T6 L6 F+ H; H; q
2. 快速排序/归并排序算法
2 m6 P( `- a3 v* {7 q5 I3. 汉诺塔问题
& e) F& X6 s4 t: O6 u9 z9 E! l& x7 j4. 二叉树遍历(前序/中序/后序)
1 s! U+ B9 ^) h( x6 G5. 生成所有可能的组合(回溯算法)* l0 M; a# r; k& K5 u) b4 ?% W

9 L' w6 W% H( G/ m" ?2 r试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! s1 R9 A! r- v3 A/ C+ o5 w. s4 a
我推理机的核心算法应该是二叉树遍历的变种。3 C+ c3 k  N$ f) Y
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, F8 s9 S8 N- g
Key Idea of Recursion2 b6 H# F9 a! X. V; r& z

/ q7 P4 R; \, a/ [; DA recursive function solves a problem by:
  r4 ~- f: z. ]7 a
1 c, w# q; t4 C. ~" G    Breaking the problem into smaller instances of the same problem.
; x- @5 ?/ b1 R+ ?( Q4 d' z. C5 k# k
    Solving the smallest instance directly (base case).5 d' D2 v8 d0 @, k

/ d& ?* F: R5 d% @6 ^    Combining the results of smaller instances to solve the larger problem.
7 i* K/ H& X5 C) z2 b6 o3 U& F
) e2 P2 r7 T4 yComponents of a Recursive Function
& q$ k: \) b/ o( a3 I$ U6 ^& x
. T' \- H. B  E# B& b2 ~$ C: g    Base Case:
5 v- \' Z; y- M1 \0 ~0 ?" b/ q; ^8 e* B4 y9 c
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% c, t: O5 u5 I
* S4 _7 }5 ^! X1 ^; X2 f$ Q
        It acts as the stopping condition to prevent infinite recursion.
3 t  Y: M  m5 L+ A5 p9 Z' T( H/ X
% n% i& y# F7 Q( K' G2 \. g$ o        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
# ^) I$ `' h$ l6 c
" e( ]; L6 t1 J7 z# R" ?    Recursive Case:+ M- x; ?9 g! D* E2 k

6 [8 x& ?; A, C  S/ ?) ]; T  R        This is where the function calls itself with a smaller or simpler version of the problem.* C. C, |% t1 w& g) B- z
" k* T$ ]- d. ]; e1 u
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
+ T4 z5 ~1 E% o4 `% U9 N* C; y1 Y) L% `3 ~: _% s( A
Example: Factorial Calculation
* |0 V+ W5 L# J  H. \2 p2 a
  ^  l8 M8 I5 N7 n! T1 Y$ XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
3 N2 W) g5 j4 V+ |" u* B
) c9 t, E5 p3 c  Z    Base case: 0! = 1
3 [$ X) s) D: F" S2 a: L1 V% c6 ^& I1 N: z- J2 \* Y- P! R0 B
    Recursive case: n! = n * (n-1)!" R! W1 ]( Z) a# [

9 o4 V! _# Z; v" D# \4 HHere’s how it looks in code (Python):; V, B8 a0 c4 d& o' A
python
$ ?" z6 {" W* k" O: A7 L4 `$ G) P4 N" P$ T. J$ F1 u
1 H( W' p1 G6 x$ t. |/ }) i; \
def factorial(n):; A# S8 F( D! H
    # Base case
& h/ A. ]3 |# \    if n == 0:
# y. h, j# g; @+ I4 S        return 1
% b1 J; F: B  Q0 A) x    # Recursive case
9 n9 i9 b! a; y4 i. R7 i    else:
4 q* _" g0 Y8 _' S( ~( G% a0 b        return n * factorial(n - 1)
$ H. Y+ }# {* v+ }8 b. Y; u
. X- r4 Z& _% ^; m+ i0 }& R# Example usage/ U. M" W3 ?: d4 @- F# [, c
print(factorial(5))  # Output: 1207 ?9 V6 o5 \9 R$ M; u% k( M

* a/ N0 c7 U  vHow Recursion Works
5 v/ _  z8 R7 F' f  R: s, D4 `& a( x
- o. d4 ?8 |5 B0 o7 E5 m. ^- \    The function keeps calling itself with smaller inputs until it reaches the base case.' K. [( Y% _* l5 _5 {1 f4 B

  w7 y9 H7 x4 G$ @. E) I. p  Z    Once the base case is reached, the function starts returning values back up the call stack.
4 q" q9 n1 ~4 O! P: w& W4 L1 Y
6 d: d: y4 e8 ]$ m    These returned values are combined to produce the final result.
; A# e. v2 q5 ~
8 @& w6 H, D8 F& p4 s0 V, KFor factorial(5):
- {+ L. @7 q& z$ J: K; Q9 t5 v. t4 s$ m

& M, L4 I: n, V3 ?: M" W1 g) t$ Ffactorial(5) = 5 * factorial(4)/ m! _4 j2 P4 r" \3 a
factorial(4) = 4 * factorial(3)
: V; U* c9 k$ u, f* M1 M; n5 ffactorial(3) = 3 * factorial(2)
# `% L- B9 n6 S" X5 r$ Cfactorial(2) = 2 * factorial(1)2 q4 _; o) x8 @3 u  v1 L- N0 _
factorial(1) = 1 * factorial(0)
: M; d) c0 U; M' g7 m2 O7 yfactorial(0) = 1  # Base case
! u5 o6 O, D+ M5 ]) ?% W7 i
" r# k" _$ b/ B/ G; E+ {Then, the results are combined:4 ]+ w: h$ K# u

, p. X+ O# Y% N) L; {& {  M1 P2 e$ Z" ]% Q2 @1 Z
factorial(1) = 1 * 1 = 1
+ G8 W! x% Y: U4 y. h# L0 Dfactorial(2) = 2 * 1 = 2
( D( e. F8 v: _3 V- y* efactorial(3) = 3 * 2 = 6: e. k$ }* m/ [% W6 W7 B3 }) l
factorial(4) = 4 * 6 = 247 J9 ^: z* n. w0 o2 n0 |- z
factorial(5) = 5 * 24 = 120
+ ?, r! h) ?4 m
' C; r' g# U- d& k% N- SAdvantages of Recursion7 C$ a! Y2 {0 T5 r; ~1 J% Y
2 {, K- f7 @& L
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
. _0 n' G2 S7 h* }4 E8 {
+ z2 T- I; d( T8 d3 H    Readability: Recursive code can be more readable and concise compared to iterative solutions.% l. x6 j7 v3 ?' D, [+ e0 i

- e3 R: G5 l& L2 N; [Disadvantages of Recursion
' n# J9 o& P9 I  {" H
( h& [2 K8 }! ~% Z- @    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
6 u  q1 H" i! _8 o8 e
6 l; r2 T; b" c6 e5 [    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
* U" ]6 }/ }: y7 e7 o5 L5 f: N1 u* o9 g6 ^
When to Use Recursion
; f+ ~: \0 N' w! f4 _% e- e
- P3 D8 w* F3 b( B$ W& N( W    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).4 W$ X9 b. n+ I

/ F& z7 @& w$ F    Problems with a clear base case and recursive case.3 V9 l2 X. X/ \
, h3 t. \- q+ p+ v  }5 ?4 G
Example: Fibonacci Sequence
9 y/ U; X1 W+ |) [6 {& m0 J2 |" g' V6 |" I- g
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 O& [$ ~6 K( f! h% K- ?3 x! o

2 o. K. `( p. g2 s! g/ P    Base case: fib(0) = 0, fib(1) = 1
+ N& x( c; N( D9 ?) J
* L% t" y6 X" h' d$ r    Recursive case: fib(n) = fib(n-1) + fib(n-2)
: Z; Z: p% l0 i! C6 @4 p
( j( u' H- e- t" _python
9 }1 G1 U* P& q" R  D; P" a1 b9 Y0 `# Y  @. O
4 b# ?1 w+ K0 ~. T, |- P$ j" Z
def fibonacci(n):7 B$ |! B7 X& t( R5 W& j' |9 ]
    # Base cases
  p2 |; a6 ^  E- `% p+ k" h    if n == 0:
: ^3 E% _* b% [9 y. S        return 0: T% r8 A, H/ w9 l  U
    elif n == 1:
( ~% \) k9 g) `% h: b( W& `        return 1* R& q8 U( }) |5 }/ t# u
    # Recursive case
- r6 y( L9 @$ g5 J6 U* [" u# u    else:. u# \- F: T6 N; j2 [2 s6 s
        return fibonacci(n - 1) + fibonacci(n - 2)
1 C9 |$ `( ]% g- u1 ^) P: t( b3 |7 g9 I+ _+ s
# Example usage
1 }! v1 Y% {) Y  e) @/ o$ V. Y. Iprint(fibonacci(6))  # Output: 8
' a; o( L7 t8 i% ?, {+ j4 U* _% c0 N0 ~; o  L- [
Tail Recursion7 g# q( V8 {+ ^. A: |& F+ s1 S

0 H: ~: }. R6 k  e9 A, H$ O: CTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).3 }; W( o6 a, F$ g2 z
% L& o3 k: I# B$ s8 r
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2