标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 & d! [4 ]- q% x0 P. @, ?+ C: g
' j f/ D" s( u7 S% d% p" g
解释的不错 7 h$ d d. m0 a' ^$ K( E4 @ 2 g V2 L: S7 O9 O0 [, \0 h递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* i; ? ~: i) i2 M
. K0 S4 d; [, t
关键要素% r( N/ Y+ R; G4 Y
1. **基线条件(Base Case)** . m" t$ Q- g( O" ]! o8 N - 递归终止的条件,防止无限循环 8 q+ C( r9 _ V( z5 n( J - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 4 |( \. S% l, F: Z$ S, d1 w$ x% f' S! @5 a
2. **递归条件(Recursive Case)** " ]7 W8 P) k! B6 E" L0 q - 将原问题分解为更小的子问题* {" z) D( b) ^1 Z+ A( |2 |, {
- 例如:n! = n × (n-1)! ( i" A- I. f) H% F# [& M& w! j' I+ U
经典示例:计算阶乘# r# P# O' \4 w8 F8 y$ U1 h0 h9 O
python' U1 k( H. y# i1 l4 g
def factorial(n):0 \9 C s- S- v5 U& r4 M/ }% t
if n == 0: # 基线条件 % g5 O6 |) i& x: y return 1 0 z* I3 b* }" |& a( E z else: # 递归条件1 T4 F) n' n d0 j$ G1 R7 a9 L
return n * factorial(n-1) 0 t4 N( ^0 v$ L! l3 W; i! L' b0 D+ g执行过程(以计算 3! 为例):5 j9 E5 s* D+ _
factorial(3) 5 C B8 U; l9 [% a0 W3 * factorial(2) 0 I6 x# M5 l5 w9 Q3 * (2 * factorial(1))- K$ o( [$ H9 l i, \% W" a. C
3 * (2 * (1 * factorial(0)))$ Z% }/ M, Q, H
3 * (2 * (1 * 1)) = 64 \2 @' ]# _5 n8 S0 d0 ?4 s
# a% W, ]+ A1 n8 x: i$ J3 D6 n# B' I 递归思维要点3 e8 N) m' c0 N
1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 C2 q* D. B5 N9 p6 G. M S
2. **栈结构**:每次调用都会创建新的栈帧(内存空间) 7 W7 t/ Q: j2 F( L6 j, s3. **递推过程**:不断向下分解问题(递) 7 f* A+ h5 m; X( V4. **回溯过程**:组合子问题结果返回(归)% w* u# S6 O0 W, `8 R: s
, Q$ a1 ?6 Y l& {/ \7 ~. g
注意事项" e* n. V* ?. H0 N' ?
必须要有终止条件( }( g5 v1 i% N0 R2 L
递归深度过大可能导致栈溢出(Python默认递归深度约1000层) $ E7 P( D5 J5 W3 y2 c( p" w某些问题用递归更直观(如树遍历),但效率可能不如迭代' ^# s2 `5 O0 H
尾递归优化可以提升效率(但Python不支持) + U% S- \5 N0 P" l6 C# t. o+ D. }; Q5 o+ r: O" F' w
递归 vs 迭代6 `- z# g: L3 N
| | 递归 | 迭代 |9 W7 [6 M1 Y2 N+ u
|----------|-----------------------------|------------------|9 A) w7 v$ g+ J0 r4 ?. m
| 实现方式 | 函数自调用 | 循环结构 |$ M% X& c8 R8 i9 H# q% x
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |3 v, ~# j6 `) o# U2 ~4 K
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |# h" U5 Y, S. C$ q( K
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | 3 ]0 o) ~6 K/ y: B; v* k6 L! m1 V- g8 C
经典递归应用场景 , X1 U& ^+ @7 i. V4 K/ V( r" ~1. 文件系统遍历(目录树结构)- l( G* u- a& o" y/ y7 a# q+ L
2. 快速排序/归并排序算法 % W) z& P; j3 ]+ L' X* Y s3. 汉诺塔问题# ]0 P8 e; d% `' E; h7 ?! [' e
4. 二叉树遍历(前序/中序/后序)2 _4 ~ H( e' e9 s. f& G- {
5. 生成所有可能的组合(回溯算法)8 ?( j- ?1 B* b- ~) p
1 B$ c$ V# q/ t4 I4 }试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, : i" Q$ A3 x. n% t- M3 g( a v我推理机的核心算法应该是二叉树遍历的变种。 2 H5 N6 _7 R5 L0 ~另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: & B) n) O1 l0 b- |8 V4 iKey Idea of Recursion ; k. m, j, G6 R, p: S ) m1 K5 @1 j+ |8 @$ Q9 FA recursive function solves a problem by: & v6 E. c% I2 e- N. u6 A , w% t8 [+ Y- I7 W1 F } Breaking the problem into smaller instances of the same problem.4 h; t# c) V" u- w5 Q3 k- \
% F5 L1 t0 D4 F* i6 O
Solving the smallest instance directly (base case). B8 P9 A+ z1 p g n% E7 V! K, z! \! W$ [; o
Combining the results of smaller instances to solve the larger problem. , r. \- E7 ]6 V' j% A* m3 I4 e* [0 F8 p5 c4 a* R: G1 @
Components of a Recursive Function5 ^ W, w. o3 \. L- F6 n6 q1 O
5 R% u2 p( \/ F7 {1 ]! I8 t
Base Case:' m2 X5 V- e: I( K
% S/ V; s- T+ C4 A9 I7 N, L This is the simplest, smallest instance of the problem that can be solved directly without further recursion.+ ]1 V4 X' ?" l6 l' a+ B+ p8 k
% O. i& c! B; z. j
It acts as the stopping condition to prevent infinite recursion. ) }8 g/ r( e1 K + x: Q# L8 u1 K5 K5 T, O Example: In calculating the factorial of a number, the base case is factorial(0) = 1. 6 y( W3 x2 P" h0 }$ D, t9 G8 R! u+ w! k% q9 \) \" L8 L, S
Recursive Case:/ d( O' n, K. \' O# m
3 t& C# e5 |3 b+ M3 x4 {, A5 \
This is where the function calls itself with a smaller or simpler version of the problem.% c6 I0 ]3 Z; M, G6 Z7 n4 f7 y
1 @: n) W( a+ b5 H3 [ Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). . V0 `3 U, _: G8 F" Q8 e1 {7 y! p# v) q. H) J" }5 c) c
Example: Factorial Calculation + }4 n7 ^0 Q" H6 W8 i . h; h- a: A0 cThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( N9 S' H9 Y' d' o0 r! N( j
' P5 y% }+ m8 [) q2 b; x6 ^9 E# m
Base case: 0! = 1 # @9 c! `/ A% _* Q$ Z2 m/ D N& a; ]9 y+ ^8 \1 L
Recursive case: n! = n * (n-1)!3 D: m( M, j4 _8 @
/ T3 e: p# d* U! ^Here’s how it looks in code (Python):" x% z# w; V# r1 Q F- `' y% o
python ; E( G/ y: a& R# }# j; M+ i' \8 }5 ]5 M. ?. G
3 X% X" l G: z7 S7 Mdef factorial(n): 2 J7 f8 L* u9 ]2 m9 F j. t # Base case 0 m r. |% ]4 f9 ]* l! [3 Z if n == 0: 3 J6 U5 H1 X+ o7 `/ \; ^9 e return 1 6 H9 P1 a: v& p- F, w# i # Recursive case# F: ]$ m; O) G6 n: L
else: + x% s3 n& @* q% T return n * factorial(n - 1)) y! D" e' J$ M( V
5 F; g) R3 T3 N. \& D2 @1 a# Example usage $ V% E+ H9 y. Eprint(factorial(5)) # Output: 120 / J4 M/ B6 U$ Y6 R5 R 7 U% {* ?* q. Y9 y }& S' @How Recursion Works + j: U L0 S, }4 G- k$ p4 e8 X [) H' m8 g$ \9 {" x+ M% u2 T The function keeps calling itself with smaller inputs until it reaches the base case. _2 N; C* n) X: h* T' v h$ T# T
# ?2 S5 J" ?- m
Once the base case is reached, the function starts returning values back up the call stack., |/ ?; j6 M5 m V$ l Z4 z2 O
( ^+ \( ]# D* B
These returned values are combined to produce the final result. + p4 S. O- p* R2 r7 w, N0 v8 K7 {6 B8 E; o& l9 [( }6 [
For factorial(5):+ e8 t. @1 a h
8 H7 c0 s7 C I3 H
+ h1 y$ t5 Q# _( Z8 e0 zfactorial(5) = 5 * factorial(4) e3 k7 j, B8 H* T2 z/ ^
factorial(4) = 4 * factorial(3) 8 E! a L. \3 f! Q" cfactorial(3) = 3 * factorial(2) 4 p$ H9 m0 O8 @$ Ifactorial(2) = 2 * factorial(1) % `; y0 F2 c% {- t/ z5 c& Gfactorial(1) = 1 * factorial(0) ! A! w) [ p) q: `2 Ffactorial(0) = 1 # Base case ; z. U7 P1 ~ |. q& n& Z& H L" Q { p
Then, the results are combined: 4 L, G- {* m' J, z 3 A7 w/ o2 k* h; m e k0 H( l6 I
factorial(1) = 1 * 1 = 16 ]4 ]7 ?; \. g! I' }" X) |
factorial(2) = 2 * 1 = 2 & Y: ?% T7 w) ]factorial(3) = 3 * 2 = 6 0 `0 T- V. m1 Ffactorial(4) = 4 * 6 = 24% ^, g' W+ r2 L% \) a1 E6 m9 }9 e
factorial(5) = 5 * 24 = 120 * D6 e" ?3 S& M5 e2 z; ~3 @ o" w$ b ' Z, H3 v" R7 M& F% S0 UAdvantages of Recursion $ D: ^% q, G& E7 X5 Q h0 J9 d7 [3 t! u3 {. Y2 k1 t+ Y+ {
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).8 M' _3 \# _4 m4 h. r1 t
0 |$ f8 [" Y; S: W0 B% l7 n' X. @
Readability: Recursive code can be more readable and concise compared to iterative solutions.' y; J) u, d- A3 J2 N6 o
+ G% c k: U6 k6 n: s) f$ }; Y7 b0 {4 MDisadvantages of Recursion ; C# A3 z" M& g3 n7 A8 ~0 j' f+ f
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 M( L& ~) D6 U( u
0 f# y3 ^# c: o4 x0 ` Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- {4 \& j2 q# v1 |. Q3 _
3 g: A0 w. x- @- o0 sWhen to Use Recursion 1 W5 I& Z* D" V. q5 F* j3 N, u
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). : a+ }1 D' y0 s0 h7 q0 {7 d5 ^$ y9 V" D( h5 q$ `/ V
Problems with a clear base case and recursive case. $ q4 H& e$ D2 Z5 w 6 {8 n; e3 q$ AExample: Fibonacci Sequence X# S; u6 _# j6 ^; Q, o0 m4 s/ z / f4 n/ r8 T- g; x7 [- ?$ p4 DThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: 4 R& E; M* h8 [. L T, O: q8 E6 [4 x5 p, M! k
Base case: fib(0) = 0, fib(1) = 10 v7 a, j/ R6 Y U8 e
* X7 x" a2 H: B: ]2 o) i# g
Recursive case: fib(n) = fib(n-1) + fib(n-2) ) Q: l! x1 l0 v3 q6 z) a; Z$ \5 u5 `( R1 u) @
python ) [) _5 y/ o4 S8 z- W4 B) ~% E; u9 q6 X! v/ Q
4 Z9 \/ m6 s8 l' e2 y! s' p5 I3 xdef fibonacci(n):, Q& u" Q; n! d+ x6 \% C x# X
# Base cases) X x+ _$ C0 @5 W x; i5 o9 Y$ J
if n == 0: 3 w% ]1 B( J. G return 0 ' m: F. S& w# X1 R1 N$ Z elif n == 1:; t Q8 e$ Z2 |& U
return 1 , b5 A W r i" } # Recursive case9 x8 w& f! `7 F0 q
else: 5 ?3 x+ E& K) {7 ^8 G# q" j1 r return fibonacci(n - 1) + fibonacci(n - 2)7 v r% U4 z5 k% Q! S
( H) h0 x# z8 s: @" W0 m1 @
# Example usage ` h7 m. I; `
print(fibonacci(6)) # Output: 8: W& j: B0 o- M
# V/ }! |/ v$ t9 ]1 q1 A; @
Tail Recursion . s3 ^, {6 F( v; Q) z3 w3 n1 w& Y0 u* K: s3 \( a; t
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. V: i2 P! h/ E8 {
3 Y8 k1 _ W& @* m$ I* U- W+ x+ MIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。