爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
4 a% g4 X( ~* [2 f! G( J# t* O2 L4 p; ~6 t+ r+ [+ c& q9 k
解释的不错* C- N: ?" T5 ~0 R1 L
$ ~7 M# L# V2 @9 T8 S* J
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。8 }4 n/ z9 M- C. s
! v; O& x4 p; V
关键要素( [5 ~: |2 Y* i. M
1. **基线条件(Base Case)**8 P0 R/ U6 {2 o- X3 G8 U% S4 L
   - 递归终止的条件,防止无限循环& `( `; V5 Z5 j
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
1 @: O$ M+ s! p$ I; G: @1 z) p1 b( y9 e1 _  |3 U1 v
2. **递归条件(Recursive Case)**( W- X- |+ i8 t5 ]6 e
   - 将原问题分解为更小的子问题
! e$ i& Y: ~' H/ Q) f( T   - 例如:n! = n × (n-1)!
5 ]9 @6 A& P6 y4 n. E/ S/ o! n* q& }" o6 a3 r; b* Q
经典示例:计算阶乘
6 |# g: s* @) lpython
; t$ `* \" n& k- ydef factorial(n):/ D8 M1 C& o- P  Z5 b
    if n == 0:        # 基线条件
% A! z7 C# K$ q5 P& g3 ^        return 13 a6 P) B: \1 _( p
    else:             # 递归条件
+ f- n+ A+ Q- [% f        return n * factorial(n-1); {2 ]& I4 h8 r2 O+ |2 E
执行过程(以计算 3! 为例):
1 C3 ~$ a8 l7 {: h1 Xfactorial(3)
: o8 J: C4 E6 Q$ E0 Y6 P3 * factorial(2). @+ x0 n# S8 t, U
3 * (2 * factorial(1))
) {) d2 l. h2 b3 A* E3 * (2 * (1 * factorial(0)))
( q3 V9 Q- l7 J8 B+ k% U% F% f& D3 * (2 * (1 * 1)) = 6
1 T* I7 T+ r( ^8 x) I! q' V8 |" L6 ~- x2 S8 V; r
递归思维要点8 `/ \- z7 `, @' C( j$ l# J" J1 A
1. **信任递归**:假设子问题已经解决,专注当前层逻辑- ?$ B" }, o% l6 H9 q5 I
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)% W" b+ B+ @3 u8 }+ B8 R$ d
3. **递推过程**:不断向下分解问题(递)
( B$ [( d' U$ o9 A. k5 J4. **回溯过程**:组合子问题结果返回(归)& l" ?3 A1 }" Y* r

4 I% k  |% i. g" } 注意事项
: x' d- [1 @5 g! ~: A: g/ F必须要有终止条件
- z; l  i0 L) T* \& I3 M递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
$ b1 |: [% o9 J某些问题用递归更直观(如树遍历),但效率可能不如迭代
: {  B0 p, I( p, J% E尾递归优化可以提升效率(但Python不支持)! }0 }: z7 f' A$ J- D& ~5 |
# f) G' v* e- e
递归 vs 迭代
( Y! A% B- g) d" C; _|          | 递归                          | 迭代               |
4 N* F8 b% ~5 t( d/ z( j, N|----------|-----------------------------|------------------|
! e2 a/ s) q/ W, i| 实现方式    | 函数自调用                        | 循环结构            |
% P( @/ O* k. E+ `7 k| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
' P& M6 J9 h& z, g' ^" a| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |4 @4 a4 X! k3 @) h. @! [
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 Q; v; i! z" A8 l% I: N: V
6 O+ [7 }* ]6 c" Y9 @+ Y
经典递归应用场景
! B  [0 ]- M1 r1. 文件系统遍历(目录树结构)
$ ~* f; L' M( Z  C! U( H9 J0 I2. 快速排序/归并排序算法
$ {  J3 R9 Y4 p; h3. 汉诺塔问题. z4 ~1 ~- I/ B. u. V) _! l
4. 二叉树遍历(前序/中序/后序)  v( Z, ^- a# ~3 f  [* `3 X2 g7 v
5. 生成所有可能的组合(回溯算法)
% o: v( j6 {' m9 ^! O/ c0 s
% ~/ o. R2 r& @! Q7 P/ T试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
7 U$ _! M1 H+ D4 _) H+ [我推理机的核心算法应该是二叉树遍历的变种。7 [# u6 H3 t$ x2 m/ [) J" y. n
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 A3 ^! P4 u" h% ?$ t! K
Key Idea of Recursion
7 J! K# {2 g# F& `7 A, N* w2 Q
- F: k( O0 [# i! P4 W- d2 ?A recursive function solves a problem by:% Z' I" |- K; h7 j5 @7 q
6 x# ~* g0 \2 l5 b  O9 y
    Breaking the problem into smaller instances of the same problem." Y  R+ L) [0 |) Z9 T4 x: z  V" x
# w( [$ W, d# _( `& q
    Solving the smallest instance directly (base case).; M( g+ G) I6 D/ E# W; @
; ^6 _9 D+ K; B% G3 F
    Combining the results of smaller instances to solve the larger problem.6 l; F% G: P6 U
$ m3 y0 x& {. x7 [+ c; }
Components of a Recursive Function
/ G# A8 S% u) c  d' Q7 n: k7 Y+ t
, h3 s& V- ?" D7 q    Base Case:
2 b" E5 N; [# S+ J
3 l  k2 |2 d# [; |. [. E2 [) n9 T  n        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
- a9 x" a- H0 }/ C3 H* w0 K; I5 B2 H3 K9 E% I* g, a
        It acts as the stopping condition to prevent infinite recursion.$ k6 F/ Z9 Y" f! O& d
% M8 v  u) U/ M; L
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 K( U( A. {9 W6 o

- x' e! Z; D. A+ P' Z    Recursive Case:
4 J% V( {% n# W& H! ?: k- ~5 ]6 {* s  m
        This is where the function calls itself with a smaller or simpler version of the problem.
9 f' `+ M/ Q% ]1 l  ?4 I
, y. U( f2 F1 ]5 d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: z. [8 y4 Q3 f2 A8 [# f; o4 W6 p
0 v% v" V4 n* X9 N9 l' z3 V4 c: i8 w
Example: Factorial Calculation5 J% W4 ^0 ?9 h: F) O7 e
; n7 Q( |' f" \; S3 q3 Z
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
/ W  p, n$ j2 b7 o) \1 f+ R8 s; B7 V( I2 R1 ]' {- f  r- L
    Base case: 0! = 1
8 B" {" W( b6 s8 q, [, Q9 i. j
# m, C1 b& {, o: i9 b! h  w/ o% {0 b    Recursive case: n! = n * (n-1)!
& r! y% a0 l! r# n: h/ N& t9 d) W* ]5 E8 U& T
Here’s how it looks in code (Python):3 T7 s" D& E0 R. o* J+ T4 U. m5 o7 c
python1 W2 p, P3 T6 I2 Y
, u! j; h# `1 P7 L' K! i
8 X5 i! Y8 C( B, ]
def factorial(n):8 A5 i: V- o! J- M$ d
    # Base case
# t, z, g# k+ j7 L" r" p    if n == 0:
# _2 I0 ?4 O2 G5 T        return 1( h* _* A: o6 B2 B+ F% y
    # Recursive case3 H1 d0 M3 W* V& @' a
    else:" ]( T# A3 G  R* K8 l) L1 p
        return n * factorial(n - 1)
, o0 x) f, P# k6 q0 u" U$ X" S! L) |6 p# `5 ?3 d
# Example usage
$ e) E0 `) |2 iprint(factorial(5))  # Output: 120- u7 T8 Q* F6 @1 x1 U/ t" G

- {1 ?$ \. [( M2 T2 ^8 q1 eHow Recursion Works' X, D: @5 Y" U6 @! i
. `- J4 T9 m- n; i, I. W, K4 ]
    The function keeps calling itself with smaller inputs until it reaches the base case.
* |$ ~2 l  a6 N+ t
7 X! r/ S9 @6 P+ q    Once the base case is reached, the function starts returning values back up the call stack.
; z3 u: R! {" Q  D- W  |+ B' u: t' E& k# ^* W( a
    These returned values are combined to produce the final result.
3 N3 ~' n& c' ]; |4 U0 u; F5 L" x- r  r
For factorial(5):
" W( p# z/ O) o: `
$ ~; u! a2 Z& G1 h$ a7 S: w5 ]
7 W4 X9 b  s+ {9 E+ ?factorial(5) = 5 * factorial(4)+ {# h" a* x$ m, `
factorial(4) = 4 * factorial(3); X! Y* \" f5 [1 `+ c2 A2 P+ F
factorial(3) = 3 * factorial(2)
5 E: _: t3 y1 X+ y/ M( kfactorial(2) = 2 * factorial(1)
1 J# I# I5 W3 t) V$ X, Qfactorial(1) = 1 * factorial(0)9 ?4 v; A2 H! S8 n
factorial(0) = 1  # Base case
8 R/ t0 s5 b* [2 f$ W
* K- D" @7 k8 r: x" mThen, the results are combined:
1 M$ h, T4 V* }3 n) J% q- A2 \2 l) o
. t, Q7 |) N; ^7 e
factorial(1) = 1 * 1 = 15 t7 s$ Y  @3 u, n0 w5 s/ f6 e
factorial(2) = 2 * 1 = 2  R( I1 G2 I& y! v% L
factorial(3) = 3 * 2 = 6$ z5 t+ z! g  i8 ?3 q7 R( ~6 {
factorial(4) = 4 * 6 = 24& _' \. M. U( a
factorial(5) = 5 * 24 = 120
# P& O) o# L* s7 T8 }4 b/ d3 ]; W2 Y/ ]5 S
Advantages of Recursion% A6 L( j. r- u% N

1 |. f$ ?  d8 U3 U, Y    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).2 {& F3 M* s! Y# ]5 T$ X) }

9 ~8 C1 {5 y/ {+ X1 b* r6 ?    Readability: Recursive code can be more readable and concise compared to iterative solutions.
3 }2 g: E! ^& q8 Z# ~
/ S% X, L& b8 ~# iDisadvantages of Recursion/ p. Z, `- {) H. v$ [  |8 @3 a* p: U

# c: f. V& L' Z+ Q. B0 n5 I    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
4 L# U7 X6 U* ]) Q) E* h; ^" U# h6 G' Q0 w
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization)./ m( _1 @) `; N/ b& E" T
4 P  }/ F/ r7 \, ]$ R' Y+ m
When to Use Recursion
, \5 g$ Y4 k- ^. @, c, k+ x6 u& b
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
; s* h( v& J* ~. w+ r1 V& s. G4 h8 V9 D+ l" h5 A
    Problems with a clear base case and recursive case.
* A# A7 l! q! l$ a, l' {5 Y/ n7 ]+ T; |2 ^
Example: Fibonacci Sequence
$ m; P) a7 _, O+ }7 o% ~
5 b$ h: X. F5 B3 d/ ^6 o6 x+ V- w/ \- yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
$ Y- x7 j) ^' M8 O. [( O- O# s. [2 m# s! B5 n9 x+ X
    Base case: fib(0) = 0, fib(1) = 1
* j) P; i! ~- G% B( i' [' R8 R. ?0 g1 ~; x' U7 f
    Recursive case: fib(n) = fib(n-1) + fib(n-2)9 h( n! B8 ~* ]! K$ d* o# x

; _0 Y$ K9 a& h7 x; K$ T6 Xpython6 ]# c) F4 B4 Y3 ]* R

6 y' k0 J+ @2 P% `& j
& i4 c7 E9 n3 ~0 W) G8 Gdef fibonacci(n):6 K7 x& y. l& H8 w. ?; W
    # Base cases
$ z3 t( J. u0 d& x# G4 M) W) V    if n == 0:
) O7 x, E$ `1 L- y2 s, O        return 0
  j, O1 R7 |# h6 r4 ]' [    elif n == 1:
6 j3 w8 h6 f9 g& S& q4 z% J        return 1
) J# v7 l5 r( {. ^  e    # Recursive case+ x- R" w$ b) \" }- g8 ]9 N
    else:
1 m4 J' K+ w: P* t        return fibonacci(n - 1) + fibonacci(n - 2)
" P! O4 |. I$ c2 C8 w! _6 M5 x3 O1 f+ o8 C
' E- n5 L; ~) n, `# Example usage, y6 `' U0 N4 ]
print(fibonacci(6))  # Output: 8$ _& u- P' x2 i

0 t4 V7 P9 |5 R# u9 e1 cTail Recursion2 K4 o0 h" q; c9 C3 [

/ {8 t6 E7 d( V$ W) JTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
6 P" g4 I& I% S- W8 k: G) n. c. l& I( M/ p  w: x
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2