标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 M: W4 ^" @/ m q1 r) G* i 9 r) Q7 l+ y& j1 Q6 C0 J: }% m解释的不错9 z: G" ^! U5 i. t/ H. F
7 l5 V" V( d6 v( x* W* `5 O# ^0 w
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 7 k# o" ?3 {' ~ ' d6 j* l q- H5 c+ Y! R6 n2 M7 J: e 关键要素* e r% y. @, a9 J3 R7 C! l h* \
1. **基线条件(Base Case)** + p- N& d" h2 }* o( s2 K - 递归终止的条件,防止无限循环0 _0 { l T4 v5 f: B
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 ) j& k4 S. l( S7 i- \& _4 F* \. j+ J/ h' @' H x
2. **递归条件(Recursive Case)** 7 e E/ ~0 H4 W1 M' [! X7 Z/ N - 将原问题分解为更小的子问题 ' z9 K. Q2 s% e/ M7 f: ^) i' r - 例如:n! = n × (n-1)!! w; M8 @$ Z# g$ T. H1 X; e; l
" `+ W5 e3 J( B2 B5 l3 q' | 经典示例:计算阶乘 7 n' ?$ E3 s, L" P+ U# d. G2 p Upython( {: y9 r8 J! v! H- O
def factorial(n):: q/ M. ]5 ]( w% J$ w4 ~+ C. \
if n == 0: # 基线条件1 ?$ w& K1 Q s( |+ o
return 1, e; ]! j0 `; g; c7 b
else: # 递归条件9 u# m+ _7 w; I
return n * factorial(n-1) : \+ |! C0 R( e4 [( s9 K执行过程(以计算 3! 为例): " S% ^% w b! {$ o! [* F; cfactorial(3)! \; i1 m* Y n; L
3 * factorial(2) R9 J: {% h# W% K3 L7 Q3 * (2 * factorial(1))0 \" Y+ }, g) q7 k" g4 ]! m8 l
3 * (2 * (1 * factorial(0)))# d- X1 l0 h! B: w" R& O
3 * (2 * (1 * 1)) = 6 " g6 }5 L3 s; L( [' P0 C3 _( d+ c2 C, F; u5 v4 L8 l1 E R( [
递归思维要点7 B/ g, u3 a; G* i4 \; t
1. **信任递归**:假设子问题已经解决,专注当前层逻辑- z0 F! m( e% M0 v @! j9 [, F: P9 N1 y
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 V/ [: A" Y4 I6 b$ _
3. **递推过程**:不断向下分解问题(递)5 j1 h, c. Q* Z6 D0 \* c. J6 A
4. **回溯过程**:组合子问题结果返回(归)! B% j% A3 j' y" U8 e$ W
1 d( |. |8 T" G9 p0 E/ Z3 l$ l& T 注意事项8 V1 d* {& D- K
必须要有终止条件 , Z" H# q N2 }& `; t递归深度过大可能导致栈溢出(Python默认递归深度约1000层) 6 Y+ q: Q( _& N某些问题用递归更直观(如树遍历),但效率可能不如迭代2 H4 |4 q. b0 D8 |' K, N; f5 v
尾递归优化可以提升效率(但Python不支持)) M" } O0 a5 P/ B) o
8 H" n# w. ?* e* A4 P1 {2 P j' A
递归 vs 迭代. `- ~, p; Y( Y) {! A/ z. s
| | 递归 | 迭代 |2 h5 g" h$ r: Q {- ?
|----------|-----------------------------|------------------| . W7 L' ~" h0 t- N2 X5 j| 实现方式 | 函数自调用 | 循环结构 | ' { Z7 Z: }: f/ P( `- T! [| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |: s# ?7 Q1 U2 D! ?( j, Y4 e
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | 4 K4 B5 |" |7 T0 h9 @| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |3 }" s+ P' {$ H- g0 B
$ A; u; U x# e% d& [6 Y9 ` 经典递归应用场景 / L7 ~: j) W5 d$ m" @1. 文件系统遍历(目录树结构) " a5 x2 l2 l/ O/ {; ^2. 快速排序/归并排序算法 ( c/ M# {9 @2 P' Y. K6 I* K+ @3. 汉诺塔问题 # p0 v8 Q' x, Y# n5 k# w2 S4. 二叉树遍历(前序/中序/后序)3 C$ b% ?( w( A5 v: e/ I
5. 生成所有可能的组合(回溯算法) : }5 t1 {2 `5 Q/ p4 N) u7 @0 V2 Y- U9 y N4 M
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, * ]/ Y' D( F0 g* \% c( |我推理机的核心算法应该是二叉树遍历的变种。 $ q, E3 g2 r& A/ {" X7 t另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:5 R; w! V1 v4 e2 W2 N% n9 t
Key Idea of Recursion" [2 Y8 ~4 E* k$ y; W% M% D
4 D7 `4 G2 u. E6 Z" I! TA recursive function solves a problem by: 5 J7 t$ p4 X! z5 I" a6 @+ N s+ V" \
Breaking the problem into smaller instances of the same problem.& y0 D# b9 ]& l, ?' I, H
; v/ A1 \ G4 d# N Solving the smallest instance directly (base case).4 U9 Y: l3 q5 E& O8 o, y3 d& L2 g
+ D$ u5 `& R9 A/ b: Y- S
Combining the results of smaller instances to solve the larger problem.& B$ m1 N7 o- S3 I: l- G
: ^2 H. l" q4 d' y
Components of a Recursive Function ( s5 Y, m, j# E: U4 m9 { . A3 ^. {! g8 m) E: B6 m; B" @ Base Case: & U7 k" y; w) N+ D( \0 | % n+ i1 u( W/ d( J |. {( n This is the simplest, smallest instance of the problem that can be solved directly without further recursion.* Q; _& X- S2 S3 ]* |4 i$ N: D
4 ^# d: f& g7 k: v8 z3 }. ] It acts as the stopping condition to prevent infinite recursion. # [* m* G! L; n Z * _: p: F( S2 ^# F2 L Example: In calculating the factorial of a number, the base case is factorial(0) = 1.4 }2 R& _/ K4 ^. f o6 q3 K
) Z. Z- `* h4 [* d" [, X: r
Recursive Case:' w5 P |% Z0 t+ z1 r" k, Y
# D! y% r9 ?- }) m9 C- F This is where the function calls itself with a smaller or simpler version of the problem. 8 K: E/ U4 Y6 a5 Z/ h2 O' T1 K8 Q8 _1 H5 e$ t
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' y5 L5 ?/ B! M# C
& D2 f; a0 H; n3 c: V! E0 ?
Example: Factorial Calculation$ Y# U& I6 g: `+ z
8 i Y$ K8 `4 g& w- D* u( EThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: 6 L) a' j# S5 S1 I) r1 u% Y y! l7 J
Base case: 0! = 1" q5 ? w O1 ^* N, p
/ p' V7 a" m8 E0 J' g Recursive case: n! = n * (n-1)! 2 F. n$ m6 j# q* b5 v& x7 y5 d- k4 ^0 c& Z
Here’s how it looks in code (Python):+ h0 l. I6 k" X
python ) a/ K2 t+ u$ j9 r* @ @. ~/ ] 5 ]3 @) Y4 `; B$ e. Z& Q7 ^' E: W1 F+ w# l* r
def factorial(n):5 z' v5 @+ R/ I7 t$ X
# Base case- e0 V5 b% M# c. p8 K" u% Z
if n == 0: 8 M2 s9 j$ ~: j/ ` return 1* ~- |, h( a" Y* P- n; s5 X
# Recursive case& s' ~0 I/ H4 B
else:2 v% m2 O* M3 U% H% N
return n * factorial(n - 1) & g. v- E# l3 C4 m. Z! W2 _4 | 2 s5 A1 A* s6 \, M# Y# Example usage 0 A9 Z: S% s3 U2 f0 t0 \print(factorial(5)) # Output: 1206 P1 B8 ^' i* Y
! R$ {9 C6 a# ~3 tHow Recursion Works. A" }) v0 D9 c2 n( b$ Z
1 X1 g a- F( ^6 O5 c, i% P. S
The function keeps calling itself with smaller inputs until it reaches the base case.0 x7 c2 v( s/ q1 M) l* D; y8 r1 B
& a( T2 T: n3 b/ x5 \; d6 b
Once the base case is reached, the function starts returning values back up the call stack. 3 p2 J: a; t1 l! j8 T4 _2 M# l ( y4 x$ i2 {8 W9 ~/ ~ These returned values are combined to produce the final result. $ r3 S' J! W8 u6 N* M% A1 A5 Y( T) |. m0 {+ s7 }
For factorial(5):& e3 g! ^' N% T9 u! V7 p7 ^ D% u
, l/ o t, I. j& t7 ^ [# J6 n( D: S# s ; y+ s2 R, A( W3 _2 x* ` afactorial(5) = 5 * factorial(4) K& Y, Q; O: L2 d+ z6 ]* `" S; z
factorial(4) = 4 * factorial(3)% F5 v: @$ H) g; b/ D! Q
factorial(3) = 3 * factorial(2) 0 V/ O& i% p$ n0 S1 H7 Z j, Xfactorial(2) = 2 * factorial(1) . k/ Y* z7 w7 f! d& ^factorial(1) = 1 * factorial(0)9 u, Y6 n; p6 M
factorial(0) = 1 # Base case/ i5 ?: c+ j- j) G. B" j, G) l
. f1 I" U! r5 |
Then, the results are combined:) f$ t6 F- S6 E9 {! W2 [
2 \& \( M. w) a9 Y5 V' u- K
~" p+ h! D0 }( B
factorial(1) = 1 * 1 = 1# h. ~7 L/ S+ f5 ^- ?2 q
factorial(2) = 2 * 1 = 2( S/ m' g8 ~, S& W6 b* X# S: P
factorial(3) = 3 * 2 = 6 " Y, k8 a$ d; w# j- Yfactorial(4) = 4 * 6 = 243 j- H- W: d: }5 {8 r& @6 ~. F: Y) N
factorial(5) = 5 * 24 = 1205 [) d& q0 f3 x- _/ `: B
" B8 C& m5 L' MAdvantages of Recursion & `; Z) w7 K5 V( ]/ ~" U$ C2 @# M2 Z3 A/ P6 j
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).. S5 Y4 S9 c4 h' B9 Q0 J
# C! T5 e% w" N# S
Readability: Recursive code can be more readable and concise compared to iterative solutions.; ~ Z5 x: n8 V" z4 n: K8 U
/ Q- O0 k3 h7 B" i; P
Disadvantages of Recursion ; M; ?0 p- \: j% L3 _& B# \4 b6 a) A, E- j- T$ R
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.4 Q5 e7 _8 C, ]2 \7 z! @
" N$ j$ z& ?' L! n# i- b Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). 0 A9 Z9 \. C$ L k8 h+ m . ~( l( A: Z4 YWhen to Use Recursion) L8 ?; J/ @- u* z
- `8 D8 U7 s$ A6 P Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). 2 z" z; _& M) [$ x U' m) Y0 {) u/ }( Q1 v% B/ ^6 H) X7 A* x
Problems with a clear base case and recursive case. , n' u. R& R, G9 s' P2 E* E2 L4 Q, A% v# N
Example: Fibonacci Sequence 6 g" t4 ^8 R0 |3 w& K9 n4 p4 Y( Q; E% X# G
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, ^9 }! C: \* Z+ |: P% }
8 ?5 w% m+ m& r2 J: i! { Base case: fib(0) = 0, fib(1) = 1 0 l7 z! }' @3 m7 A5 O# Q+ ]- u5 }% U2 ]0 C; I; a
Recursive case: fib(n) = fib(n-1) + fib(n-2) 9 p+ h5 f% i( d& A! i4 `, h- A- k/ z: ^) E3 g
python ; C1 o, V; \/ P0 C# ~ S& c, Q 8 |8 j6 [: a( s& s & b) N9 ?2 }: q7 c8 U) Ddef fibonacci(n): : q! B$ X e% V, m2 y: X4 y7 H # Base cases3 H' h$ z4 r. e3 X( S/ ?9 y7 v3 [
if n == 0:3 O% p; K: {- d* i. U; @
return 0 3 r0 d2 d' [5 Q4 ` i4 B* U5 n elif n == 1: 2 U. @, I( c0 l% E8 m# c return 1 9 x# U& x% A# i/ [. R( t # Recursive case 9 i7 v! J: J: ~% [0 F else: ) E9 r1 ]2 ?3 x2 Y# K5 W7 S) X return fibonacci(n - 1) + fibonacci(n - 2) . D$ G0 f% |3 x# l4 o/ Q8 s: f5 I# t8 Q2 j+ z
# Example usage 4 z2 h* t5 @% K4 m! i' Kprint(fibonacci(6)) # Output: 8 & y' y( {: ~+ q: O 3 A- _( l- y4 U1 i. f# D% NTail Recursion# j0 o+ M) `& {: }; _( F
. g( D* `! b& a' f5 U0 J2 c
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. _8 V$ a6 r- m$ h0 g* B( F
5 r: z, U4 A+ R; @) P; d# F( kIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。