标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 ! U7 E; m2 T5 ?7 i% x r5 a- K
$ X0 H" z3 b4 [5 U& K
解释的不错" \# t L1 ?; q8 p! T
1 M1 O$ u I8 u6 s* c' o( ]) |
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 7 \ U6 D( z+ {8 a" L0 j. _ [/ u% c$ \! m/ V& P& a6 K
关键要素 - e7 [" `* s& F8 x1. **基线条件(Base Case)**& e' b9 S* c* J. e" G8 Q& N8 B2 R" }
- 递归终止的条件,防止无限循环 6 X6 M+ [# e+ j0 I) U: p - 例如:计算阶乘时 n == 0 或 n == 1 时返回 14 y. ?9 ?7 k# {1 |4 U& Y7 x
+ l. ^; |7 c( B9 r2 }2. **递归条件(Recursive Case)** # B- c3 S0 P9 J1 t3 s Q - 将原问题分解为更小的子问题! R' V. K7 p7 U
- 例如:n! = n × (n-1)!2 d4 E: O/ O1 a
! k/ @% ?6 d l7 E& p% Y 经典示例:计算阶乘 % d* B: N# `" X5 `0 |python $ G0 H# d$ C0 J1 A- P. S3 ~def factorial(n):4 |* u& ^) g8 i
if n == 0: # 基线条件8 { D' Z9 R' T
return 1 % N3 I% ~* T2 k4 W- k else: # 递归条件; |1 g' L0 c3 V. w2 r* ^1 a4 M
return n * factorial(n-1)' a+ C, r/ p4 N4 M& P5 @
执行过程(以计算 3! 为例): - @; I" D5 {3 c. {factorial(3) ! m+ W6 L0 ~4 D) ]3 * factorial(2) 2 @ T0 n, k( l7 g7 L2 }6 O4 j3 * (2 * factorial(1))7 _, s2 Z2 Y' |- A5 y3 Z# u6 U
3 * (2 * (1 * factorial(0))) # U2 ^4 t! r9 |# h3 * (2 * (1 * 1)) = 6. ^. Y. R4 h' [, w" c2 q* I* \- W
* H/ _8 C% o% }- _/ n$ Z0 V! a
递归思维要点& d \3 c% f& C) p& l1 [0 [( f
1. **信任递归**:假设子问题已经解决,专注当前层逻辑 - F1 x, L4 F3 ], f+ N7 ~6 E7 p2. **栈结构**:每次调用都会创建新的栈帧(内存空间) ) n& X: y$ p% `+ ?% s: X9 S3. **递推过程**:不断向下分解问题(递) $ b2 `. t Z, V1 b( W) [; m6 P1 L4 G4. **回溯过程**:组合子问题结果返回(归) ; h! Y. N, \5 U- O( A( v- |' y2 D/ Z
注意事项6 l) n, j9 `/ q- e# b/ {9 s
必须要有终止条件# K5 ^1 O: D& k& I; k
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ c) j6 Q7 Y& r1 I3 o& P( K+ {, S
某些问题用递归更直观(如树遍历),但效率可能不如迭代6 N1 V7 k5 I% V4 ]1 ~8 `
尾递归优化可以提升效率(但Python不支持) 2 l: S$ ?5 x- m. @ N- ]! w' Q4 k
递归 vs 迭代: J1 t v3 P( i
| | 递归 | 迭代 | 9 v& [( ^3 y, J4 ?; _7 Z( F8 [|----------|-----------------------------|------------------|( b0 F2 D7 Z* ?! i+ U* _& @9 z( h& q
| 实现方式 | 函数自调用 | 循环结构 | * ~7 c, v. u5 y; Q, W+ Q| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | ! w7 d2 v% Q2 J5 y- w6 n* v" K5 I| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | - g7 i+ s, U0 K4 H| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |. r- J" J' u1 p u% u$ l. h; w
1 y- \! G, M& | [- M0 a7 ?
经典递归应用场景 " l3 ^8 ~& I |9 x$ o1. 文件系统遍历(目录树结构)6 F' c7 T" {" \1 e8 x1 w: V
2. 快速排序/归并排序算法/ B6 _& B8 A; |. v$ H# ^) w1 P2 h
3. 汉诺塔问题 % S& L/ ~6 b% A$ ^+ Q4. 二叉树遍历(前序/中序/后序) 5 f& D1 g. ?) e* G) k- W: v! B: ~5. 生成所有可能的组合(回溯算法)1 Z3 }2 ~& p: @/ D" ?. O) f
) N' [4 R; q: @* R
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, 0 v: h, T h' K3 L3 g/ l我推理机的核心算法应该是二叉树遍历的变种。 + Q5 R, F0 W( \/ M6 T& x$ A另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) x6 x8 b2 O5 W$ Y* o
Key Idea of Recursion4 S" c2 p0 C, Q( }8 ?, _: j
) a2 [0 b9 X# ]5 b6 mA recursive function solves a problem by:) Q3 T8 H+ J9 H4 Z6 H' }1 E, i% }
& `/ A) y0 _2 w! S
Breaking the problem into smaller instances of the same problem. # V# a t3 P: P9 s) q; C: H. F0 H ! h3 q+ }1 e; Z" |1 } Solving the smallest instance directly (base case).2 x) ~5 G( {1 {, ?" J
5 E1 C( x9 Y# ?- b+ `
Combining the results of smaller instances to solve the larger problem.4 L& P3 S$ k% K- d
+ R. w% g! C+ h k/ ?2 _4 K
Components of a Recursive Function! Z, ?8 V6 ~9 w# B9 x3 t
w& [/ W9 |0 D% R' P" c Base Case: 9 y, o& s3 [/ F4 c( W: E3 b3 D: v/ y4 k9 k8 {
This is the simplest, smallest instance of the problem that can be solved directly without further recursion.# H6 a0 J2 U$ w# b5 s
" z+ f: ]) x e& h/ [5 I It acts as the stopping condition to prevent infinite recursion.9 J: p: V) h. b
# D9 }) ^ F0 Z* w* e% V" F Example: In calculating the factorial of a number, the base case is factorial(0) = 1. 1 I# K B6 N7 U, T1 ]& M( }9 ], s& Z# a2 e$ G% w7 R. y
Recursive Case:* V8 e7 M% s; v4 I& ]+ s& v
" y( x% A y5 m F This is where the function calls itself with a smaller or simpler version of the problem.: H0 a1 R; H( i6 R/ w$ O
3 a; J2 z9 c- b( K6 Q. ^ Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 4 t' \0 J% u7 m9 Z; m' ? + w5 b9 Y) a( ^Example: Factorial Calculation K/ F# F& A2 y: w
7 Q- h5 f7 V/ K2 w1 m
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: ( E) Z, q, \" r3 S# G9 B5 R 1 a/ N q8 f* c. ]/ [; R } Base case: 0! = 1* g7 L. m( U+ d
4 j% i* r; v& L( R: p# \0 [5 t& w. a Recursive case: n! = n * (n-1)!2 | r: M5 n2 Y4 b# Q2 n
, }' k, }1 H. y; ]0 v0 _; S; M
Here’s how it looks in code (Python):& C' @3 \2 ]% N" D1 d
python M+ B* K3 m, O% t" ?$ E# j( y- I2 o7 Z2 K, W, Q, Z* e
2 Y# L( |- M* P( t; I1 J. _" o
def factorial(n): 8 q, ^8 ~" `* k5 S # Base case ; y5 P/ G* x/ b* _5 P if n == 0:4 O9 X; A) Z5 k& J
return 18 p3 O1 |/ Y a% a" W
# Recursive case # Y- X! t! W( f) H1 p6 h else: $ c* O$ h; D8 Q4 {; }; u+ [ return n * factorial(n - 1) - I6 c: G( i5 ]; h1 h( l! q/ [# c3 t8 W0 b- |& J
# Example usage( P) V. ~, M, [, ~8 y* t- g6 e
print(factorial(5)) # Output: 120 + X% c4 h9 n" ]* a3 a" Y . k: L& M ` J$ f! K( u' X7 BHow Recursion Works 8 O8 n$ L1 T8 ?! L* O( u 1 @* B" V2 R# {/ d8 [" ]* P J The function keeps calling itself with smaller inputs until it reaches the base case. 7 u1 p) Y k' D6 s7 j 4 t8 B! f+ K* [ Once the base case is reached, the function starts returning values back up the call stack.+ X! H6 {$ l, t/ Y" {; j Z
* b9 ?8 ~# g) Y% {! R% ^6 x( _" g
These returned values are combined to produce the final result. ) K# Y) w5 M* j% F" O+ Q) `3 O) u- n9 G! t
For factorial(5):! L6 z8 K1 M! o* S1 O* ?
0 _1 r0 ]" ^4 U
; ~7 h: P! d' A7 ^; Mfactorial(5) = 5 * factorial(4)1 [; o! c. W D6 z0 i/ K% C/ u, F) o0 y
factorial(4) = 4 * factorial(3) , n5 ^8 M1 y" H! H2 V. J vfactorial(3) = 3 * factorial(2)* e/ k) j2 j" E6 n4 y% s/ u
factorial(2) = 2 * factorial(1) 6 M* Z1 O8 r+ e) [& Q+ z3 x6 R' Qfactorial(1) = 1 * factorial(0)8 X* d t5 S3 \
factorial(0) = 1 # Base case7 g$ f ?1 r* W( i9 |* D
$ g6 b, `, |' |: UThen, the results are combined: # O5 X* v2 i) ~: a5 X% T ) H) a3 x+ t0 ^ E* X" C4 l- n3 J8 j0 t, _
factorial(1) = 1 * 1 = 1 $ y1 k6 `) J& u3 r% e( Ifactorial(2) = 2 * 1 = 2 t% T% {5 S, V$ P$ M
factorial(3) = 3 * 2 = 6( d" C7 M) w7 a T, O
factorial(4) = 4 * 6 = 24 + F/ g$ V3 ?2 ]# X1 ~) ~factorial(5) = 5 * 24 = 120 6 M! L$ n2 n6 C6 m: w- { @6 u. |: m2 R$ y. g. V
Advantages of Recursion# Q2 @! e* p6 M A4 {
9 q: Q. D: F# C+ N p1 j5 ] Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). 4 S0 d! W& F( J6 U% y3 j1 g$ ^6 ^) J N! ^$ o' Z; d. N" ]+ Q
Readability: Recursive code can be more readable and concise compared to iterative solutions.$ w( p6 u2 r1 f/ t
! [* `" q. D+ r5 K$ O" `" M. f
Disadvantages of Recursion' }/ n( O( p* a* p
2 G" ~; U# w" P; D" t" M& M: I) z
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. 0 k2 ]& x- g* x1 { $ l l m9 c5 V8 k! ~ x \" [ Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). & O2 W/ V. J! E& \2 q$ B r0 N8 N1 A6 j, U: D
When to Use Recursion + n. m+ {" x" O4 l$ w # h: _1 }; e* t) T4 B1 B Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). 0 N' O: v( }; ~ e9 H % F, c% g4 A5 d V' N7 r Problems with a clear base case and recursive case." j( J% H8 z1 H. r0 x
4 [7 D, i8 \7 g- XExample: Fibonacci Sequence) u7 p0 K" y1 J" _$ J3 R
$ c. L& X6 Q7 V: r* m0 k* ?
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: / F+ {2 X& b/ t. `* x' s% G, Y: q. N * n, K% A3 D1 ~% I6 f# I Base case: fib(0) = 0, fib(1) = 1 1 ?" @ v8 }6 O( X g: K0 M: _' N7 `6 A3 L( c* V* y
Recursive case: fib(n) = fib(n-1) + fib(n-2) : L3 k1 A! ~4 ]& }) U2 t- i0 g& ~ 6 n6 f, S+ k1 A0 t+ b. t* Kpython / J+ C/ m7 p3 y , G/ l2 [$ h) T$ d$ t2 { i! f9 ?+ v, R8 w7 C
def fibonacci(n): ; a& E! @/ z# X P # Base cases, M+ f% V6 @# _2 K {0 C; b- z4 E ~$ D
if n == 0:/ f0 ^6 L4 x- l, T
return 0 # b; ~' ?4 I1 o! f elif n == 1: 7 ~4 {1 W0 _9 p# [' z) [3 | return 1 + i; E, ^$ m! h C0 p # Recursive case # f3 W3 y; K* o- X4 { else: & l! C+ c6 a3 ^1 M t0 J/ Q2 W, Q& g return fibonacci(n - 1) + fibonacci(n - 2)/ U) ?& p- b3 l# S+ O0 A
1 N3 O1 b3 F$ T( n% g6 Z, ]
# Example usage % C8 v5 i# s5 V3 h5 \8 u' B6 |print(fibonacci(6)) # Output: 8& h% i5 N! N( F7 J
5 d% n# T0 i+ B" I
Tail Recursion; S/ k; m0 ^4 a1 m' `7 C3 g* q; D
: e/ }% k/ l6 h3 s* |6 C3 ]2 ETail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 1 @. N# A/ J8 m$ A. Y( v 4 e2 z7 S0 Y. O4 `In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。