标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 . q( A* K4 K" ` Z" W) G$ T5 w5 T: G7 U- @8 c- d
解释的不错 1 K5 s: J$ k& c6 H+ Y' b- }/ a ^( T/ ^; V# |$ ~
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 ; Y) K0 T- b2 P; P5 n0 d# B3 w
关键要素. u- A1 F9 K* s7 L5 B. T
1. **基线条件(Base Case)**0 T% s& y! S( s r2 v+ y# I
- 递归终止的条件,防止无限循环 7 W- e+ z: X5 G; t! J6 q( |" ] - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1. e6 q, Z6 O. z r+ A5 `
& e7 W! m: b! e7 Z2. **递归条件(Recursive Case)** + o. a$ l( B' [9 f v - 将原问题分解为更小的子问题5 ~; _- \# n2 s$ N( e
- 例如:n! = n × (n-1)!* b; H( G2 V1 O; k4 K
; x0 A5 J! X1 L 经典示例:计算阶乘. M( u3 \6 E L0 G; Z
python! w7 @( D$ @& v4 k
def factorial(n): ; }+ Y: u2 {5 n! K if n == 0: # 基线条件 " _7 u% t+ N! ?; y5 O7 c return 12 {! u5 C: F. H4 S) |# X
else: # 递归条件/ j4 Q% p! n. A v6 I- v5 R) O5 \
return n * factorial(n-1)7 q. f) d! x3 I4 b/ R, d
执行过程(以计算 3! 为例):9 \6 z8 t* _1 G7 s @& o& O2 i: A L# B
factorial(3)- v* B \$ t9 V. n- k
3 * factorial(2)6 `3 ^! S3 R) a# s( \
3 * (2 * factorial(1)) ( C4 I$ V g7 G3 * (2 * (1 * factorial(0)))" W: J& a& w% N
3 * (2 * (1 * 1)) = 63 @) c/ I: c) Z5 l) |; X
% b* `: }. x( K2 Z% S. r
递归思维要点 4 g6 A/ z) T$ `% c9 W1. **信任递归**:假设子问题已经解决,专注当前层逻辑 # j `6 H2 R( F! `2 |2. **栈结构**:每次调用都会创建新的栈帧(内存空间) $ T1 K- c) a' o3. **递推过程**:不断向下分解问题(递), e6 l6 V% C$ M/ u8 |( W' Z' z
4. **回溯过程**:组合子问题结果返回(归)! U' R' E- x* ~2 X/ v2 d
; O9 Z5 D) p. j- t
注意事项) F+ @) v9 `: e
必须要有终止条件 . \1 C, o5 t7 X; M- A递归深度过大可能导致栈溢出(Python默认递归深度约1000层) 1 k( w' y( I7 e2 D8 O' Z% N h某些问题用递归更直观(如树遍历),但效率可能不如迭代3 u+ q* W* p# F; p( _7 Y0 F
尾递归优化可以提升效率(但Python不支持)3 q9 c9 u0 s! e0 w \0 k" d
' {3 D2 f+ l4 r A8 ^. c7 A 递归 vs 迭代 - e( l! K0 y( x' u* m% T| | 递归 | 迭代 | + w, p# U8 e8 M Y|----------|-----------------------------|------------------| 0 k) X2 K4 G8 Z8 E8 T$ L. T4 Q| 实现方式 | 函数自调用 | 循环结构 | " e* c* r# r( p6 }" f" s9 ]| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |6 v) k. B2 J: }/ ~& o
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |9 f9 i3 R. [ m7 u. W
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | / ^) ?8 V3 I& `1 V+ t& g0 J1 g 1 b8 {1 {0 v7 @( h2 K ?! e3 t7 P 经典递归应用场景/ G% P8 a$ h+ h8 C6 B3 i% w
1. 文件系统遍历(目录树结构)' P$ ]3 }+ L& u3 ~) P3 C) C0 c
2. 快速排序/归并排序算法$ k9 p" H" P4 w
3. 汉诺塔问题( ~! } h; N; O4 ~' _( F
4. 二叉树遍历(前序/中序/后序)1 c/ o, B/ i( Q. d: ` u+ W) o2 d
5. 生成所有可能的组合(回溯算法) + ]- v5 ^" W7 Y3 `) J8 t) F% q5 I' Q; {
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, ) U ]& \9 W$ D* R1 J我推理机的核心算法应该是二叉树遍历的变种。( o5 C1 U7 x: h' z
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: * V8 k: b4 G/ h$ R& A4 N7 W0 YKey Idea of Recursion 7 J' D) e, N7 ^4 o" c" O( ]6 L+ h2 ?5 F+ @" B
A recursive function solves a problem by: 8 N3 P4 k# P& M) Q$ f! P v& _1 i: Y( t. v) C D
Breaking the problem into smaller instances of the same problem.: t7 f6 j- {+ G" T
7 X& I- c5 M* R Y$ W% M2 W Solving the smallest instance directly (base case).* k$ T; n0 b4 }4 b- \
; x5 V# @8 c' r
Combining the results of smaller instances to solve the larger problem.: H& y! w( r+ i3 ~+ c
' Y, K. j$ Y, U- Y2 O- R1 uComponents of a Recursive Function % F: ?( E- z, u$ \- C3 w/ D 6 V4 U6 T4 M7 Z, r6 W2 Z Base Case: ) D! p6 R& U5 S- S3 o6 S1 t- t, Q0 B* ^# p0 d- |3 u: V, ^# D
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. * Z% a/ L$ Q- o1 {, Y $ t6 s7 d' E: V$ X It acts as the stopping condition to prevent infinite recursion. % P, h$ s3 l8 S% w6 k 7 `0 o% C( @4 ?0 I0 s. P. u8 p Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 \- C# e' r$ o; D# b8 j6 J( ^
( K g( w* J4 S; |9 I8 V Recursive Case: 0 d' \6 I% o7 W/ N/ E; n9 K# G1 ?1 I5 C4 _; C9 k
This is where the function calls itself with a smaller or simpler version of the problem. : c8 Z& v3 s# H' x0 d6 K5 q* G# y. m+ W2 Q7 N$ z6 J
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 6 X' [' |- r2 e7 F$ ?8 k; u' C: I6 {& y+ ]- j& M, w
Example: Factorial Calculation. S( O+ l5 R0 x8 W
* G. v0 |: z1 l! w5 \2 fThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: * N+ F/ w2 I1 |! q0 b2 E/ n9 {3 n' O: u' @4 F5 p
Base case: 0! = 1 - ~2 @- o/ j% ?' u% Z( ? % h* Y! v" j* b8 u/ r Recursive case: n! = n * (n-1)!5 t, d+ s8 N# p M/ Q5 ~% X% L
4 Z# H! w I. M$ V; n3 E% {Here’s how it looks in code (Python): : [; P) a; k1 S7 F! I/ |python- F6 Z* l3 K0 t3 }' G3 r. _" z1 L
: ` g; T! Q9 f B+ ?% E6 N5 z
R; z% [" d' S7 Udef factorial(n): " Q& p. O. f: H# p) Y; Z # Base case / u! M: D" D# w [' n& M if n == 0: O' c, m9 ]& r# D
return 1% ?; P2 d" d* O" M8 J
# Recursive case+ n* }. U; N. _4 X
else:- E/ s& t; t6 I, v& Y0 x
return n * factorial(n - 1) ' v# k6 N4 T9 M8 P& d, P3 @* i7 c2 l5 n$ U& B
# Example usage/ A [8 }* [7 c6 w+ D
print(factorial(5)) # Output: 120 ) q+ u& q1 g) x5 }+ q8 P+ J, I( o+ c
How Recursion Works 0 C* d; i: j4 O8 e8 V I0 A$ i+ r . Y- U0 e9 s& p: ? The function keeps calling itself with smaller inputs until it reaches the base case. 8 x/ x" W2 Q$ S2 ? 7 O, J1 }7 y# j% r: F- c8 \' R Once the base case is reached, the function starts returning values back up the call stack. # a, u# s0 P: ^, \1 X0 ]; E! ^0 B. z& ^2 i( t6 y
These returned values are combined to produce the final result. : h5 x C' ~1 h* G9 _2 ^" u/ o& w( I6 N1 g, S. S
For factorial(5): * e( U6 r2 @* d2 O. z3 d 9 v; Q. v3 B/ x: ]+ E- [ / z0 s5 }5 K ifactorial(5) = 5 * factorial(4) 5 b+ x, h3 U. D. G4 e6 F8 }factorial(4) = 4 * factorial(3) & U7 s9 q% ~) b" q/ d7 R2 \0 y8 Xfactorial(3) = 3 * factorial(2) ) ]; @% Y. ^$ }7 ofactorial(2) = 2 * factorial(1) , O3 G/ j0 Q$ o% `) v. P' T+ Xfactorial(1) = 1 * factorial(0)+ ^( R% _+ q" f: G$ F8 w; N5 i
factorial(0) = 1 # Base case5 \. E1 n) M: ~7 a
" D% a. B' {' ^ O7 jThen, the results are combined: # f! U+ F2 I1 t" ?5 ~9 N+ f3 o 3 f& D6 I& o8 F/ G4 \" D 6 l. S; H* \; P4 E# {, r+ k7 Ufactorial(1) = 1 * 1 = 1 9 L: k/ T9 U! f* `6 rfactorial(2) = 2 * 1 = 2 & W% m; J% R0 t% z3 p7 c2 [& gfactorial(3) = 3 * 2 = 6 0 v* T& ~9 R, L8 Y+ Sfactorial(4) = 4 * 6 = 24 0 ?: H! B' _3 v I ?! W, w6 Gfactorial(5) = 5 * 24 = 120) N! V' S8 C3 J6 F0 N
! m+ ~: v u# j F% g. b# R
Advantages of Recursion 7 m+ U5 Z& C V! @+ G( x / X, J$ ^0 F$ `1 D. I1 o Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 ^* X8 @* S- C1 S( W
: E' v8 G+ s2 Z5 k Readability: Recursive code can be more readable and concise compared to iterative solutions. ; Y H- P' O2 G" v8 h1 f 1 B; s/ Y3 A9 E+ o* [; C' DDisadvantages of Recursion / a0 E: W0 s+ |& l" w 0 c6 T$ W% U9 I2 i& x2 j" P Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. 9 i7 x/ W- h- \: {* [. j/ c1 q9 V3 o6 c0 T# C3 W3 U
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). $ F! D7 C9 U" K: O5 d ( R% d; j7 ?. W( {6 W, s& @4 e: GWhen to Use Recursion0 O2 D |- \3 @' @; Q
0 h: s! H* A' ^3 U Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). ( b- {$ h! i% Q% t1 F1 M7 ?& m4 F! g1 G1 t ) k; @, ?+ Y( d2 W: t+ y% @ Problems with a clear base case and recursive case." X5 n$ o0 ]. p" [ w! p, e+ h4 X L h
. ?6 e }8 |" L3 [) G: rExample: Fibonacci Sequence' F$ B9 o/ f/ X# J4 Q4 v
' T9 y* v0 }! O; T
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: 3 ]) ]) W7 P2 B( f5 P, k2 M* h) ]2 ]: G' S7 t$ O" o: z
Base case: fib(0) = 0, fib(1) = 1 . t' ^4 R( U" ^/ _3 g" p! v/ Z" t( n8 `1 g
Recursive case: fib(n) = fib(n-1) + fib(n-2) ; T' @' d& O" s5 B3 |& @; {) j T! a7 ^0 \( Z
python" w4 Y6 a, {2 w* E- H
. q; ?' ~1 J' K% B) ^
5 ]$ h+ e0 z! ^def fibonacci(n): ' Z1 R0 R: e" A; i/ U # Base cases f) m. K- V% z) X* F( j
if n == 0: 4 g& E' o5 |0 q) w( G, d return 05 U- y0 d# s5 w' S
elif n == 1:; f& d; C o: ]
return 1+ o9 g: H3 F+ c8 W. K5 H
# Recursive case * m6 j4 w. v1 R* y9 y1 f else: : \( B* ]+ q3 E$ _6 U return fibonacci(n - 1) + fibonacci(n - 2) L8 y" h3 [ {/ e1 Y5 M
& Y8 P- x8 o3 {, D- j& \4 [4 k
# Example usage- D i; P2 x6 ~4 K Y
print(fibonacci(6)) # Output: 8: U. O3 P) M% I* d( }2 s
( B; O1 r: ~# V
Tail Recursion! I+ d0 t+ R8 o2 P6 I% |% k% n
0 Z* |: A! v1 R: jTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 5 D* L; U, _2 E( ^& s1 R2 w6 D6 Z/ y2 V z( I: B! H7 q
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。