标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 7 c# I5 |& ~- U Y. X/ j. M
; y+ x: j3 k+ I: _
解释的不错/ }7 {/ H- T: D# R2 H9 f% h
7 M$ T+ u+ i& l' s
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。# G- O' e, D' _: a6 |
7 ^& O% d: N5 j$ ^
关键要素 9 U" n+ S' t9 Y# ~6 |4 q1. **基线条件(Base Case)**, }; r6 s# |3 A4 k+ l
- 递归终止的条件,防止无限循环/ u7 w8 H! k; A0 L+ p# d
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1' ^' J* U9 E8 A
0 S6 l, i- c3 {% h+ l0 X
2. **递归条件(Recursive Case)** 7 T3 L3 b2 ]" O - 将原问题分解为更小的子问题5 z5 {8 _- H, X3 A# x* p
- 例如:n! = n × (n-1)!9 Y% Z, T- d9 |
- K0 R& F0 A2 E0 d2 {+ f9 i 经典示例:计算阶乘 N2 \) K* f- f3 |. {1 a: k3 Zpython ! B) L9 W- l7 u7 g. @def factorial(n): 1 j1 N" B' v7 G6 { if n == 0: # 基线条件. _ e% V1 V s0 {; O7 R0 D
return 12 r* W% C& b+ Y1 U
else: # 递归条件. e7 a9 M% Y) i0 a" W% o
return n * factorial(n-1) 2 U; R/ k3 \0 m& _执行过程(以计算 3! 为例):! J6 {- y5 e9 O$ G7 P0 I
factorial(3) ' L) W. M+ B5 a3 * factorial(2)6 y4 o4 q0 I3 R% q0 W5 I" Q% n1 W
3 * (2 * factorial(1)) 9 w: a+ m, ?: X3 * (2 * (1 * factorial(0))) ; ?2 d4 F+ [7 {/ e3 * (2 * (1 * 1)) = 62 [ \) ?0 @( U7 J6 K
% j) q. P, h: X
递归思维要点 $ d Z: ^3 x8 S' W3 m) C1. **信任递归**:假设子问题已经解决,专注当前层逻辑 - F% B$ P* ]2 C2. **栈结构**:每次调用都会创建新的栈帧(内存空间) , \9 k7 L) S. }2 P) J3. **递推过程**:不断向下分解问题(递)6 X6 r. Y. X$ z4 j0 T& _
4. **回溯过程**:组合子问题结果返回(归) ! B' ~4 o) L F( }7 m( N& O: T2 p $ c# @- W: n2 m6 Y3 m/ k. y 注意事项( w% V" o4 [8 _+ A& M% o
必须要有终止条件2 R1 R. i3 ]5 y
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( Q" e; F8 j. F, N3 G# q
某些问题用递归更直观(如树遍历),但效率可能不如迭代 4 E+ B: w4 X' _尾递归优化可以提升效率(但Python不支持) - z$ X$ z0 k) s2 {: l 3 U0 y$ r/ r. w% p 递归 vs 迭代 * Z2 j. c1 @6 {| | 递归 | 迭代 |( j: ~1 j& _0 B5 U6 r" q: ~
|----------|-----------------------------|------------------|3 X' } R, \" d, |7 T
| 实现方式 | 函数自调用 | 循环结构 |2 g' W; C, r1 e$ r( X) z$ D
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | 0 ~& s: [0 H% q P! }8 \4 P$ h| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | ! n3 k7 ?/ |) G9 [$ q( I- E$ n+ A| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |5 j* \) c1 G$ ]- B" M: v
: {+ J* I, H G# _& I 经典递归应用场景( p- _/ o1 c0 d: B' |$ r
1. 文件系统遍历(目录树结构)! W3 ?% S) A# {" [
2. 快速排序/归并排序算法 2 P! M9 B8 N+ |. e: l5 w3. 汉诺塔问题 + f! Y4 q5 ?0 J* Q" V9 N4. 二叉树遍历(前序/中序/后序) - M K, R$ n/ B( z' t% O( Y5. 生成所有可能的组合(回溯算法) ; Y: W4 u- n, ~# v5 e- O3 [( ]; c- R" T5 N8 q2 C% R
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, , W: X: g5 l3 n# o* ~我推理机的核心算法应该是二叉树遍历的变种。 6 u9 L4 P$ r W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:) o# F* Y( K) B3 v3 {8 H
Key Idea of Recursion1 u6 b* [2 k1 e: u& L4 }: ~1 @
* q0 G& j4 y! T6 Z* E" R, Z
A recursive function solves a problem by: ; N9 v- x) r& `7 K: o+ P* B! t s& n6 M& h# P, c! w
Breaking the problem into smaller instances of the same problem. + `4 f- g u! ]5 T4 r8 [0 O; b1 K, u: k9 s( b8 @: @+ Q
Solving the smallest instance directly (base case).* _. j: {5 n. U7 t) K+ x' f' z
" F/ b1 A' K( _- p8 g
Combining the results of smaller instances to solve the larger problem." N( Q7 E) {; t9 r
+ d& Z, n2 j) g$ X+ J& O% T- l TComponents of a Recursive Function4 W# G3 Q- ~( r. W$ `, w; A
7 M. f2 O* ]6 o) E* S' r8 f' A% I Base Case:, x4 k2 h! Y3 `! A. {' a; y
# |+ r" z& F) H( b: X This is the simplest, smallest instance of the problem that can be solved directly without further recursion. . G r4 H! y3 w1 M ~# ~" c4 H4 v9 R
It acts as the stopping condition to prevent infinite recursion. . v) a$ C7 ^! ?' d* w, [ 2 p9 o; o7 E" I9 Q$ C/ w: Q Example: In calculating the factorial of a number, the base case is factorial(0) = 1., @3 z4 i F* V3 o2 {, H
" o6 U& w3 C( g6 g* A _& J Recursive Case:) b9 t' }, c* `2 Q+ N/ v6 n: r
$ J9 e! `, P' Z9 L& m& q' P
This is where the function calls itself with a smaller or simpler version of the problem. 5 N3 }9 J. y1 _* M3 K% T S3 N: z& k e3 `% t1 E* @2 E' {
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)." U( b; x: D x5 u8 \" B5 d" q
- @9 Y% {3 L* |& \; E, ~6 x
Example: Factorial Calculation0 ?. ~% k% q+ L" Q, d/ ^
* E: d- w: J6 U8 y& B5 [* ]. dThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: 9 k8 }; x! z: g 1 O* I1 m* G5 @$ |2 b. G- m Base case: 0! = 1 * {2 ~/ f( m( f- m4 T% Q# Q1 L3 K8 d4 e7 N ?8 [
Recursive case: n! = n * (n-1)!- G% J" Q' O% ^9 f1 \" F
# Q* Q. P# R8 c: L. X+ D; }+ A. l0 L
Here’s how it looks in code (Python):( P2 Q3 h$ \# P* X* f
python8 M, ]1 c6 Z9 x5 T u" l
$ z% V! Y4 r& V+ x
( Q$ J0 B$ U% L6 |) g. p# n" V0 s. h" @
def factorial(n):0 f( r8 l- t. Z; _5 b3 ~" X
# Base case' c6 t w& T7 Z( A. l$ H/ N+ q
if n == 0: 9 D. p: M% G! q4 S( m1 | return 1 8 h; a4 F. i C" }7 V* l' ], m # Recursive case ! _: n' R# e9 U' A6 e# j else: - G8 o% T; b; u* U* T2 r2 q/ z& G H return n * factorial(n - 1) , J9 G$ q+ M6 ^2 J 7 k, Y4 j6 i2 U1 A( J( Q# Example usage: \2 u! Y+ D; y7 I8 N. W. v
print(factorial(5)) # Output: 120$ j. s! O' H* e! p: K% O
4 L7 h6 E0 ?8 @/ u9 G6 [
How Recursion Works 2 t" P$ y% ^4 ?1 o. _& C m5 C( ?1 k* j) \* j. g! d
The function keeps calling itself with smaller inputs until it reaches the base case. ) a9 K4 c! E+ z3 I6 T& l( E! ~$ L
Once the base case is reached, the function starts returning values back up the call stack. + A& W" `5 \! E! k3 {8 v + U& ^( B. C( m4 y, ]/ g These returned values are combined to produce the final result.+ @! S( K& Z0 {4 H) x* X
$ X5 j" X/ X X; U1 k7 U' s9 T0 \
For factorial(5):8 y. ]/ A# }9 r0 y O
% X3 f3 a' x4 c3 G Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). . U% V% m1 C; J7 r# l: H) N5 k. ^) A# B7 T4 _) t% d+ H
Readability: Recursive code can be more readable and concise compared to iterative solutions. ( K" K& G. ~4 h7 q. x9 {3 R: p" k2 _% p3 Q
Disadvantages of Recursion 7 e7 L0 z( u6 g ; w; s1 D% l# i) S/ q Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. 1 V: ^: m% S! \+ t5 v: i 9 k$ b p4 p( b/ w# ]1 o. @ Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). 4 o" i. s- V8 d% R0 K: V E; ~& V& w: e2 J
When to Use Recursion ' ^% v# K% o8 `/ M: Q# s 3 t0 z- B( f+ f3 ]- K+ t+ b1 j Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).$ @; B8 Y: w, P9 c6 _# g) d9 q% e
; ^2 y* h5 {5 O' d Problems with a clear base case and recursive case. # k2 A1 W2 {# O, c; |8 d/ r2 C
Example: Fibonacci Sequence) {) x" E, l4 w! d. P+ i: u/ D) T
/ C8 A( K' M7 a+ x( c" ?The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: 6 B; R4 @5 G, N9 W9 t1 y9 b # Z6 Q! F4 I5 S$ P4 s Base case: fib(0) = 0, fib(1) = 18 k/ R0 d% f# e9 p l4 |) i7 k: B
. C: N8 G& s' m8 d- R; Z
Recursive case: fib(n) = fib(n-1) + fib(n-2)6 K' q G( @" I1 d
* z j; f/ P! @6 f( e9 ~. d3 H5 n
python 6 v5 v$ w' S) ?* E. k! K0 w: t7 b' X* E6 W/ P) N
, h# }- x( i8 N% Y& I) E- o# D7 t
def fibonacci(n):8 Q8 d+ N: N4 a* }4 }4 u* C
# Base cases : l4 K1 K2 J- q! \& n, c5 e g if n == 0: 5 \5 S2 {( z; J! N5 B W) G return 0# e# F$ g5 U3 K3 z( {, O$ O
elif n == 1: 6 z: C+ X9 U e/ c; c0 Y return 1 / `0 w" n7 m$ D1 ? t; c0 w # Recursive case# r' w% A' S; u0 g8 a" N! }) N4 d
else: 6 P$ p4 p# ~' i% E3 J( K& |5 \) K# i return fibonacci(n - 1) + fibonacci(n - 2) + }! B& K1 ^' `! H4 w! m& d: ]* A4 n! `0 b7 p
# Example usage ) p* E m) |0 N2 V; `print(fibonacci(6)) # Output: 8 3 u, ~+ E6 l. w2 ^: V8 p9 X1 w0 F5 _$ V( _/ C% ]
Tail Recursion/ `1 w9 {5 Y, }7 Z5 q% G: y, u
6 h2 q- P8 U- G7 O- {+ a
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). / S) l( ^( {+ [' q# |" N) O9 X! [; L/ l4 j/ i- [! r; h" F$ S: ?, ]
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。