标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 L- x' q4 X* M" @% }* E. m8 J7 ^5 g0 O. P. A- f" V
解释的不错 J; A$ J8 {- A! h( ]: q! ~
/ e- g6 y3 S) d T
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* I/ `6 p! }5 \! b/ o0 }% H* E
) ~1 W: j# a: f4 T+ X% s2 h. t0 q 关键要素. Z6 x/ L, j$ Y) l7 w
1. **基线条件(Base Case)**& x p9 U* R8 ^7 k# b! S9 m
- 递归终止的条件,防止无限循环8 F+ K3 \* f- o, \, M
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 $ G. C6 Y7 `1 P4 N : @: G# t: W% W8 F- Y% f/ H2. **递归条件(Recursive Case)** ; P' m; J q0 h6 T6 ~) ]& ]9 g; w - 将原问题分解为更小的子问题/ Y# q: Y" W' ?7 }) W
- 例如:n! = n × (n-1)! 4 Y- n$ z0 D0 ?* \* d8 D. I; c ; A1 z) ?5 i6 H9 F6 w, q6 Z9 I 经典示例:计算阶乘 0 h# I. |3 u! r8 x! w- kpython 8 U0 ~, \& p) @" I ^! Bdef factorial(n): % w' k1 _+ {* a( u4 t/ [$ X# ]& K if n == 0: # 基线条件 ( q! {3 Z/ Y7 U return 1; o; }6 s v' t8 b
else: # 递归条件. R- F6 Z8 L7 `0 `3 _ O
return n * factorial(n-1)# G% A3 ^1 Q7 D, v3 B
执行过程(以计算 3! 为例):9 @; n/ O) \. S# u
factorial(3) & J# T$ c$ w& I3 * factorial(2)* F, A! s$ C/ T, m/ n: d
3 * (2 * factorial(1)) ) k h6 R" t( t: h, a" F3 * (2 * (1 * factorial(0))) ?3 c; U- r! U3 * (2 * (1 * 1)) = 6! a5 b( a% A* f0 I5 h
" _( V4 e5 A }# u- H: h2 v 递归思维要点 # a- M! w4 a3 {/ Y& z1 r0 G0 p$ G1. **信任递归**:假设子问题已经解决,专注当前层逻辑) r- y, U" ^ @ t0 g" M# k
2. **栈结构**:每次调用都会创建新的栈帧(内存空间) % G, o4 u8 n* ]4 G8 r8 K8 [3. **递推过程**:不断向下分解问题(递) 8 R$ t1 _/ D8 |, J: |2 Q4. **回溯过程**:组合子问题结果返回(归)3 S$ d4 @5 ~: `$ j# ^/ R
6 O; U( t+ S& q) q/ E
注意事项 7 j6 P7 l9 l% D必须要有终止条件 1 e3 z! y' e3 O& H! k! d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)2 b( i7 U8 V+ K
某些问题用递归更直观(如树遍历),但效率可能不如迭代! n4 b' n* K$ o0 K! g
尾递归优化可以提升效率(但Python不支持) 5 h8 Q5 U, Q6 d+ a6 n$ {, d# x( D! l* S0 _: K9 J: [/ Y
递归 vs 迭代5 s% z* C1 K6 u m" R7 C% [$ n
| | 递归 | 迭代 | : f9 b- R5 u* F; Z|----------|-----------------------------|------------------| 3 e; ~/ t; [* y: X| 实现方式 | 函数自调用 | 循环结构 |9 v( z$ Z5 Q4 v3 O; a) n
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |% c4 v5 o+ L4 g" u
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |. A0 |0 Y X6 L+ Z/ F2 R6 T7 k
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | " j+ n# Q5 A: x2 v9 G7 A . b Q/ X8 v* `5 i! `7 x9 \ 经典递归应用场景 8 d) R- a) T$ x, }0 O+ R% [6 O, a2 r1. 文件系统遍历(目录树结构)/ L& K* L* l- G7 H& f5 s
2. 快速排序/归并排序算法; e; r* K. y+ h; D# O$ H
3. 汉诺塔问题3 w1 Z+ V( `! w4 l1 B! w
4. 二叉树遍历(前序/中序/后序)( J( q& S7 e7 A! V @
5. 生成所有可能的组合(回溯算法)/ C; e( @" z* {3 Q7 y
$ S$ ^/ n7 Q( \4 k5 ~! }试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," R/ E |6 z1 f+ L2 A- o
我推理机的核心算法应该是二叉树遍历的变种。4 G8 D7 G ~5 K2 q/ {/ {/ U
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: : Y, E1 p3 A& X2 Z7 b* rKey Idea of Recursion 3 e% L# V1 A4 z9 c+ z$ C ) D5 `3 ]- v( M- F |) m; wA recursive function solves a problem by: & Z1 {. }$ o+ k# e& ]1 F . d" y5 ~/ @3 R6 y5 V5 g' \) K Breaking the problem into smaller instances of the same problem. ; m) a9 ~% m t5 O % v3 F- m8 o& [8 P Solving the smallest instance directly (base case). $ |/ _& s7 p* G# y, P4 G, y2 K: X! F5 `6 n! R" Y
Combining the results of smaller instances to solve the larger problem. 1 J2 ]# @" l/ D* t, }( f9 ^1 v4 h* A {0 l1 |' x; M- `
Components of a Recursive Function ' m8 E0 U& k' M- N1 |0 I/ n2 Q9 x5 \+ q( ?4 T
Base Case: + F! K2 }+ w7 \8 ]& g4 s! o0 L: \! q9 K6 L4 x
This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ K4 |: P9 ]( W: @! i: |
0 r* K7 Q6 C' s( ~7 V- G
It acts as the stopping condition to prevent infinite recursion.2 i) B# D! f8 z+ M
" s' p) v; S$ l& C \6 c
Example: In calculating the factorial of a number, the base case is factorial(0) = 1. % |$ R3 W' a4 t2 B; j. _0 \0 a( M# J( |5 o$ m% L
Recursive Case:- T4 e& z. }# `; D
1 _, d. C' I9 [" O S
This is where the function calls itself with a smaller or simpler version of the problem. / _. x$ |0 B) E: ?1 z1 v; J& [+ F7 ]% @+ R1 ?' l
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 4 g _+ U r! f8 A/ j, ~- _+ c z, ?# j% p* }: D% v. c
Example: Factorial Calculation* ?' D1 I) E5 Y9 d" o P. I2 a
" w' g) J; z4 m2 XThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, c5 c- v8 k8 ?* v |# |" g' a
' I) p' y% @9 p
Base case: 0! = 1 * s" f) ~/ S3 [- k 1 k/ m" ^6 q. o Recursive case: n! = n * (n-1)!9 h2 M# w- z5 H6 M/ d8 s- R9 C' z
' a+ k+ _4 Z- [) V7 Y, b
Here’s how it looks in code (Python): ( U- u- g8 P p- K6 T* W' gpython# H( x& U, X( Q! t$ D
2 ?, p- `; {' z1 c" z7 K3 \
( \/ B& i( S, i; o- cdef factorial(n):: i2 c4 k0 P) r
# Base case* `1 z# t! I& [2 a
if n == 0:/ j" O( ^0 P, }; g* ]
return 1 7 J7 {* X& R: i# p ]9 E- i2 \8 c # Recursive case , A* c7 r' N0 \6 y4 V9 ^. s4 c else: , q+ [3 o) O! J8 C" d return n * factorial(n - 1) % f$ `4 ]( A* p2 ^ 8 r4 t, {8 o, F9 `; G1 b# Example usage% L$ {0 Q5 t7 W
print(factorial(5)) # Output: 120 $ r, k$ c* w9 V" Q" _$ n# F5 I* b& N" v9 ^
How Recursion Works 5 v9 _ w6 s; z" O8 N6 x8 ^* ?' W1 L6 G. T
The function keeps calling itself with smaller inputs until it reaches the base case. $ a) Q0 a! M }) A+ ^8 \7 }+ S- [6 Q# Z% @* y( w
Once the base case is reached, the function starts returning values back up the call stack.8 I w; S- D9 N6 ^5 D Z4 U
- v! K; L9 O" q6 [- e) `
These returned values are combined to produce the final result.0 A& U6 J, ~$ q6 ^/ i& d# a' a
; Z; L4 S& r: x+ V + ?, S. O9 C- \1 Gfactorial(5) = 5 * factorial(4)$ m- q5 r7 Y* B) W6 t$ ^* ~; Z
factorial(4) = 4 * factorial(3)8 K- E# n" p8 M" F1 t8 o
factorial(3) = 3 * factorial(2) ! [; N' E! x3 k+ [% J: ufactorial(2) = 2 * factorial(1) T5 `+ j4 ]% j" s1 t" v: f
factorial(1) = 1 * factorial(0)' V- S5 `# U5 g" M
factorial(0) = 1 # Base case0 [) j4 |, m; q" [! t# ?9 P
$ E2 n! o4 k( S$ MThen, the results are combined: 5 K6 O# [& A f; q! x; P# ` , @/ g1 b b# [4 J # P8 S5 B) O, ~& efactorial(1) = 1 * 1 = 11 V4 x# e. D2 Y
factorial(2) = 2 * 1 = 2" W6 L. o: _+ [' F$ Y0 @1 r2 Y
factorial(3) = 3 * 2 = 6 ' j! i# r g7 ^. [. T9 S' m* z, ?0 dfactorial(4) = 4 * 6 = 244 \* h$ b$ I$ Z; u& A
factorial(5) = 5 * 24 = 120 , Q% N6 s) ^" j) B; N( {: r/ l9 f0 Y
Advantages of Recursion# h+ }6 d# H& _# c3 A {$ `
. _- t* E0 O1 c# S
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).5 L$ f( C# n2 b& P, R4 H3 l
. t4 n6 b. A- v Readability: Recursive code can be more readable and concise compared to iterative solutions.: e! ]$ L) ?0 Q2 a4 ^" `$ | `
% ~# \7 A/ N) n0 WDisadvantages of Recursion; M7 l0 Y, F% y: X& U( @% c
1 o8 b) q- p8 n1 Y: o2 m
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 f( c4 k8 Z! w8 q/ C; l0 T
! R! k1 D2 p7 O: f/ a2 P. j K1 k Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). & ], `* g4 P, o, Y g; v5 A3 G+ Q9 n3 P4 c7 P
When to Use Recursion , j/ K2 t6 F5 X1 w& p0 e2 v. b& \. T @! a0 Q4 C" |
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). # C8 B8 s5 B8 G" n: w # U0 `& y" I$ s8 l2 l Problems with a clear base case and recursive case.' o# |; K5 a+ n, x+ J
, E# Y' P& K x9 [Example: Fibonacci Sequence 7 b6 v2 e! {' I6 H" w" G; h3 Z ) i; Y; b2 a+ h3 w9 [The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: ; \ B; S2 C% r6 {7 A$ \, | ( d8 |6 f6 [' r$ [, ~7 T6 n Base case: fib(0) = 0, fib(1) = 1 " I* O) h( r ]. w1 ?" e8 b0 j( v3 I1 H2 I6 G
Recursive case: fib(n) = fib(n-1) + fib(n-2)9 E9 _3 ~- }7 v% }
; g0 N: {6 T% ` I, m4 n: kdef fibonacci(n): % @8 c- T+ o5 y2 I% ?7 ? # Base cases, P$ v) N. v/ w6 y# B
if n == 0:+ l" D/ d9 o) }, I
return 0! ?" ?9 k N( b7 S4 Y
elif n == 1: " y. J! c. j8 I! B6 j* s return 1 & E8 t' |/ U% A! ]' Z # Recursive case4 |/ @3 f" z, }2 K# \/ w
else: 0 e; O+ N% C. C; }: g return fibonacci(n - 1) + fibonacci(n - 2)+ @" b4 ?: a- n2 K0 O
' d/ i2 u& K) O- W
# Example usage 3 H l# e/ k. _0 Qprint(fibonacci(6)) # Output: 8( a' F3 q, c& U3 u
/ ^) E# a5 U: ^. S3 X
Tail Recursion : v$ i8 Z( a6 L- | l& P; a; a ( \0 {, Y' G7 |' C1 L m. B$ oTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 6 d: u, U; z H' L0 s3 D/ D" p) @" P, Y# e
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。