爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
8 d/ g' l( ]( u
4 M: j( h/ x' t" k# c解释的不错
6 n1 D& W- j, l4 M: B0 j
5 \% t& U: A, Z1 M递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
7 G& j6 g" Y1 s0 t; w) I( ]3 Y3 L% T7 b, B
关键要素
% g! g" F) [# w7 a' m, K# {' w+ N/ ?1. **基线条件(Base Case)**
/ c+ v2 i3 C0 W1 V" p( p# K   - 递归终止的条件,防止无限循环
* }* s. g$ A6 w* Q   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1( g6 N7 I" S0 z6 ~* J* L" F: a; L2 d
$ ?, b0 ~0 G  G/ w
2. **递归条件(Recursive Case)**; ^0 A( `% g3 e9 s
   - 将原问题分解为更小的子问题3 k% L9 k+ b4 {, }$ s4 P
   - 例如:n! = n × (n-1)!
1 O7 S6 w& b% P/ V8 b4 s) K+ y4 p3 h7 ^' u; R! `/ b* e7 |
经典示例:计算阶乘
7 }; e2 R. D+ m( W* [0 K+ C0 V1 Jpython
/ q9 t) j" \0 e- F2 r' }4 q6 o/ jdef factorial(n):
/ h& f) _" i1 u# ~5 ^! B    if n == 0:        # 基线条件5 n9 X3 B4 b" W2 Z# |0 {! f* H1 j
        return 1
& m  f% H- h8 c4 c) Z    else:             # 递归条件
5 \: W' v6 C5 C  ^        return n * factorial(n-1)
. |0 R9 l# C5 ?: Q执行过程(以计算 3! 为例):
: x: f. T, q5 r& ?factorial(3)8 e- v8 L* N. G% d6 j! i
3 * factorial(2)
7 h2 u$ {- S+ ?% F! n3 * (2 * factorial(1))2 Z7 `; i, {7 t
3 * (2 * (1 * factorial(0)))
4 o) z5 }: f* ?3 * (2 * (1 * 1)) = 6* e7 [- x7 g- Y4 Z

' Y; l! f( D$ m: T 递归思维要点3 w1 B1 z/ _3 l6 D( t
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
% j- o9 z# K+ ]% E5 r2 x2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
3 `; f- \, v' o* E! _3. **递推过程**:不断向下分解问题(递)5 `* _/ q& I! @% F
4. **回溯过程**:组合子问题结果返回(归)
" O: ^* `0 A3 |: [7 l( w1 D; h1 V
5 T, ^0 U& X, N& \. y% Y* Q 注意事项) n5 s. p5 a$ |( r* I4 r7 x
必须要有终止条件: y0 [; X& `) G) f  k
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
) c% T6 E% D1 M8 s5 s& ]+ @8 V某些问题用递归更直观(如树遍历),但效率可能不如迭代
2 `8 G1 L( D2 B% X6 u* z( s) v尾递归优化可以提升效率(但Python不支持)8 |7 ]; J6 e1 x. l; V& [/ z$ m" n

) Q8 l* M( V) |5 D: F 递归 vs 迭代3 v2 H9 \( A3 A6 J. R% p9 h1 K# H
|          | 递归                          | 迭代               |
# P2 e0 [* O' J% G) T|----------|-----------------------------|------------------|5 N) }; v+ s+ [4 r7 a+ ?3 }. N1 p
| 实现方式    | 函数自调用                        | 循环结构            |
7 a' I1 L* M# y! t9 K| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |" e/ Z: L% s" O( ~( r
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
+ c: f, a5 I. u% o  @3 ^* p$ m| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
( t1 Y+ H% Y0 r1 Z6 l' }
9 z, M) |. m) u4 Q& {2 S3 A* i: B 经典递归应用场景3 w: F% a; X2 @7 A4 N
1. 文件系统遍历(目录树结构)6 r0 ^/ o6 ~/ {/ Z# U
2. 快速排序/归并排序算法  s  w# l) ]7 v
3. 汉诺塔问题
# H  a( g  D, _. x% ]& G  _4. 二叉树遍历(前序/中序/后序)+ s' X  U, C# ^9 ?% _  [% f
5. 生成所有可能的组合(回溯算法)* j0 B8 k1 Y+ _( D1 c
; N. b. I, O4 l9 Y  |
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
3 p! E8 o  V- j我推理机的核心算法应该是二叉树遍历的变种。0 _( c8 W8 R& H* u+ C/ R( \) {
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
9 D% S% V9 k: g4 i; H# f1 nKey Idea of Recursion9 m8 Q/ B- Y9 R( T/ ^5 s5 Y
7 E5 L# \# c1 `0 N
A recursive function solves a problem by:
8 w  s1 _, w8 u2 {) y! e5 K9 N
9 @2 U1 E3 m9 p( R    Breaking the problem into smaller instances of the same problem.  _& W4 @4 {/ H' P# _/ _6 e
  b- {+ f* e6 F3 c
    Solving the smallest instance directly (base case).
  p( w  `! x$ Q$ O' @; M! l& H! g5 d& ~5 H6 x# @
    Combining the results of smaller instances to solve the larger problem." X3 {, @5 N& m& r

* f. S# I& E  V6 {% t8 xComponents of a Recursive Function
6 `& p% }% ]* q" y/ a
8 K8 ]! M, L* B8 J    Base Case:
9 t0 u: R! \8 S1 b1 c8 f: V' W& _  ?6 ]8 O
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
+ K6 }% \# A$ [$ J! I5 ~# h0 q+ P* V2 {
        It acts as the stopping condition to prevent infinite recursion.; h4 b% }& b% O; }: |# \- x, A( u" p

- f0 F+ l8 L: A5 D  Z5 }' U        Example: In calculating the factorial of a number, the base case is factorial(0) = 1., w4 E+ K* G: S9 x2 j& q
1 P" F! Z4 D+ w9 t0 w' _! ?9 C" s
    Recursive Case:9 F5 ~$ m8 G% Q
+ L. L9 k% @% {8 Z$ x- ~; h7 e. u9 y
        This is where the function calls itself with a smaller or simpler version of the problem.
0 b3 J7 e9 N- ]6 P1 u1 r; b5 o6 S& e, @8 g
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
9 Q/ |+ {  f% f6 x# s% S2 b, o" ^) M  D) s# ]6 E" Y) R, \, K+ p
Example: Factorial Calculation% P- z9 l; i7 Q2 ~/ i

- q  E6 f4 J4 o; `: }: S/ r0 d0 f7 {7 wThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 f/ N# `0 ~* I5 T8 l
6 T" j- i9 c3 G
    Base case: 0! = 1+ i  d! B0 a8 [; L4 |$ }5 n# j
$ t8 S+ Y2 b( p- l% o
    Recursive case: n! = n * (n-1)!& v3 O" v9 n$ [6 }, g) V. a8 _" f9 {0 L$ V
1 U; H6 }9 L, y2 t( F8 ]/ A' N, J2 x
Here’s how it looks in code (Python):
3 L7 [: s7 Q7 j0 Lpython
1 ^- v# w" V2 N2 I/ x: [6 G5 V  F5 v- n0 V/ o+ y+ R
+ K4 u( i* p3 @$ i; Y  ~; f. F
def factorial(n):
1 k. M6 T& e& A) r. b* e' u    # Base case) p( [' O2 q% X2 Z: T
    if n == 0:
( Q; g, f6 x! d* u% ~        return 1  I; f4 M; C, |* F- `( v
    # Recursive case
! v0 G! T, L% M# b& T$ l    else:
7 J' r3 h8 X* L0 i4 E0 }, {        return n * factorial(n - 1)$ @7 w. O+ ^) ]5 b9 s

$ l8 a8 K* M$ w) a7 L: E# Example usage" ]! V3 c4 r1 b- k) I
print(factorial(5))  # Output: 120
# N% i& P6 L. Z# d) `' W
2 l  @  y4 [) C0 ~! k9 THow Recursion Works7 A4 T; |% a7 W. k, T

6 Y, Q4 |/ I" R8 d3 s% \2 _    The function keeps calling itself with smaller inputs until it reaches the base case.0 t. e8 c4 K5 D1 e  U

. c/ \8 X! Z- ?5 E/ U; ~    Once the base case is reached, the function starts returning values back up the call stack.
% f1 Q& c, A. q. j6 F: y; s8 [9 b  W( b$ W, L  S* z2 v
    These returned values are combined to produce the final result.# {5 T' M% w5 Q! r+ C) e+ S, \% A
! z  o& ~1 P3 O& f9 o2 s& m
For factorial(5):9 {3 h2 _9 ~8 [6 v" Q

0 `4 q0 q& ^- s0 k4 j* P7 t* W0 N+ v
factorial(5) = 5 * factorial(4)+ A( D# k0 _$ Q+ \
factorial(4) = 4 * factorial(3)8 |. M# x/ `! t/ `0 T: t/ o# |0 R
factorial(3) = 3 * factorial(2)# k. y' M/ Q, ~0 g) ]/ G6 |
factorial(2) = 2 * factorial(1)1 D- X- Z3 m3 y' l6 Y2 A
factorial(1) = 1 * factorial(0)
! S* n1 w2 \# j0 N* sfactorial(0) = 1  # Base case
3 F1 A& k/ T$ R5 T  G
' o, I& }' r) b4 B% pThen, the results are combined:
8 q0 d  }% v0 \8 ?% m$ Z
4 G$ k" _  h8 v) t9 X7 h6 A- f3 f5 Z9 T
factorial(1) = 1 * 1 = 1
1 M; q8 v5 m- \1 ^1 J( K# vfactorial(2) = 2 * 1 = 2
1 p# }  B  L+ j6 t2 N6 @6 lfactorial(3) = 3 * 2 = 6
8 U& ^& F0 f& z5 Tfactorial(4) = 4 * 6 = 24
. ^: U2 _' x/ c3 `factorial(5) = 5 * 24 = 120
0 K8 n. r+ h1 v' G0 `8 U1 p# }/ d  ~  B
Advantages of Recursion! c1 M1 c2 Q' {7 T* ^
8 w  ?, \  t% l5 l# t- M, |
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 E" L7 B: j! Q
5 x% ~5 @9 \  s8 b# p( c7 j% p
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
0 B+ q% T& e: x; \3 ^
" n) o1 A4 |! |7 T: RDisadvantages of Recursion
5 d3 Z! g& t, K; E6 t3 i( ]9 p; t/ Q& o
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
7 b2 ~: o  D/ t5 q, o! s4 W) v
) u9 K# f% q$ n    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% Q, L7 G( X9 C, }
: A5 m( D( d; ^. R% B& ?; {& f" Y
When to Use Recursion8 a  _& [, g2 _. i7 x+ G+ V
$ e. a+ H7 G/ I' |, _  G
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ H) s1 z% H4 z

7 q0 o* ?$ K3 B% H    Problems with a clear base case and recursive case.
2 K* p! V9 B' T1 E4 @: [' u0 Q0 Z) u, l$ r
Example: Fibonacci Sequence3 D% Y' a% j: F0 f/ O
% ]  Z5 I  y* M( o* D
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
3 r& V. b8 w/ `) b, e
! E9 M, a) {/ Y    Base case: fib(0) = 0, fib(1) = 1
4 m$ n7 Q( ?3 }7 s* e0 p# S
+ N. ?9 h- F5 B2 M  |$ z/ J    Recursive case: fib(n) = fib(n-1) + fib(n-2)
: w. U+ T7 ?4 ?# U' m
9 N- v( G) p! p% t% d# @python3 J6 R1 f9 g& z3 \% a

5 _4 l6 V; {, H
6 B" K- `6 Z2 }1 V5 i4 ?def fibonacci(n):
5 f" p% [! l& m' B' u/ A' G! Z    # Base cases5 `1 Z& b2 e" }" \, B  \5 v
    if n == 0:
' ~9 v3 `4 A3 B6 ^  t% \- I        return 0* Q5 g. H1 z2 Z+ L% m* g4 _
    elif n == 1:
$ B$ }1 n$ |& t0 f        return 1$ [6 Y  E7 e: |+ U
    # Recursive case  b" P6 v6 m- }4 l* N
    else:
& r' |3 c7 s1 f$ ]: A% ]2 _, x4 P        return fibonacci(n - 1) + fibonacci(n - 2)
1 J1 M! F* n( V) T' s4 S$ g1 o; v  k- J1 ~. ^1 G8 r# D
# Example usage  A- x0 @. P, o0 D9 Z; a
print(fibonacci(6))  # Output: 8
9 y$ m* f) q+ T$ ^8 R; H9 [( `4 {1 {
$ D0 y; m3 ?+ d& c) F& d. NTail Recursion, r- p2 ?, Z* B7 N/ n) `, z
) H0 r  w6 I. X+ ^3 P
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
0 x7 q3 z2 D/ x; G; [1 R3 w% r* w0 y# b! k2 A+ o/ R
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2