标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 # a) F g7 [. e; d2 z5 K; A1 {$ W1 q6 Z% b6 G! d* n
解释的不错7 Z, S) Q+ q; Z' F1 ~1 w
5 e9 _$ V5 f$ a) G- [递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。) K. ?4 j, p. u5 V$ W+ w, [4 t
! b+ Y' K6 S# d( K8 C8 A" p 关键要素 * y& P* ?; y- ?5 Q0 s0 B2 M ?1. **基线条件(Base Case)**& h- W+ x# n+ r F
- 递归终止的条件,防止无限循环 - n' z ~) e; R. F- f - 例如:计算阶乘时 n == 0 或 n == 1 时返回 11 ?0 b, @, ~! ]) b
; F) v( X5 w6 @% P2. **递归条件(Recursive Case)** 6 M% ?/ E6 l) h9 e - 将原问题分解为更小的子问题3 z/ y$ P# d" _# f/ P c) q
- 例如:n! = n × (n-1)! s! M8 Y$ I; P' E) O: a2 |0 v& f$ N; f5 f1 l
经典示例:计算阶乘 7 T1 ?+ F% i/ s8 ]python& _5 X8 }( ~" k/ q5 C8 p+ S8 @
def factorial(n):# N- U. F" P( o) V* F" N
if n == 0: # 基线条件 ( x( o3 t w' S8 G return 1 : I- I" J3 l, r# Q; }. V) l3 y else: # 递归条件) O! J' m7 b& D y, R0 p n; r
return n * factorial(n-1)! s1 l8 T R% m. b4 i2 V5 E3 U
执行过程(以计算 3! 为例):7 D8 l! N1 |4 G0 i: O& \6 a! E
factorial(3)& b! E+ Q5 K8 Q, v
3 * factorial(2) 2 P+ N2 R& c U2 `3 * (2 * factorial(1)) ' @4 V' Z. J w6 C4 w9 V5 q3 * (2 * (1 * factorial(0))) " P8 S( | \2 K1 D0 a" r, ]! c3 * (2 * (1 * 1)) = 6 % X+ T3 z; g& I2 w7 }: L3 v( v. Y# J* C. ]; b7 K5 G
递归思维要点 3 s R J9 s, D$ |1. **信任递归**:假设子问题已经解决,专注当前层逻辑 6 b; T. I( R3 ~2. **栈结构**:每次调用都会创建新的栈帧(内存空间)# S$ E9 x% n9 S; t Y
3. **递推过程**:不断向下分解问题(递)# C$ U, W! Y7 x- A+ D
4. **回溯过程**:组合子问题结果返回(归) ' a! b& l5 J7 S2 @8 G# H% ^- O0 J1 a
注意事项 ; `9 ~3 P' D, x9 o0 W% M必须要有终止条件 9 ?+ J' N3 _( h+ S% T* G/ n递归深度过大可能导致栈溢出(Python默认递归深度约1000层) # z( S+ O( n3 @9 o7 ?( k某些问题用递归更直观(如树遍历),但效率可能不如迭代# U( Z3 _6 j) P4 W) n# ?2 l" M' V
尾递归优化可以提升效率(但Python不支持)$ Q4 j- F1 q! E4 l
1 T8 k) _: C! Q. I1 l: c& L 递归 vs 迭代 1 t f) a! V- |3 m' P0 m| | 递归 | 迭代 |) {1 J( ^$ |% R7 k. Y/ E
|----------|-----------------------------|------------------| 9 G4 V c" y' D5 v$ ^; U3 k| 实现方式 | 函数自调用 | 循环结构 | 5 @3 P1 d' O! o" O| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |$ C/ `1 N1 k, v
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |0 v* |! W, m! W9 H/ }; \
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |( M" A" j1 u% I2 z" D
2 E; z: a5 b4 N: G# d
经典递归应用场景 8 L3 X4 f" t$ W8 m6 b1 Z1. 文件系统遍历(目录树结构) / L7 V- h! o r2. 快速排序/归并排序算法 + B% h( c" Z2 K8 {8 R$ V* f3. 汉诺塔问题, z. p% A+ i* g) l/ M0 o
4. 二叉树遍历(前序/中序/后序)& W( b* X. b$ U6 D; _$ K6 ~
5. 生成所有可能的组合(回溯算法) ) }! n5 V, n; u$ p( l5 }+ k, f+ d2 g! _; R# t- G: u; T
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,; \9 I, o; F- g, n
我推理机的核心算法应该是二叉树遍历的变种。 ' n" c1 |# t+ o5 H B8 J6 s另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:4 d" B' q" H$ j9 e! B" d
Key Idea of Recursion 7 R c& g7 s0 _8 M + k) V# L$ [6 R8 k- m) G" ]A recursive function solves a problem by: 7 H, L9 u4 X f1 U ! g, W' l) Z$ }4 ^ h Breaking the problem into smaller instances of the same problem. . W0 w' w( T, A+ J/ D% E- J& H" q & J* \% \. g- S3 ]* m8 R% \ Solving the smallest instance directly (base case). - S4 j0 ~" R, ~, [2 u, u. t& Y" E4 |* u8 B+ A
Combining the results of smaller instances to solve the larger problem.2 z2 e9 b, c' z( V3 c3 f: \
: E% V+ {: Y0 P: e+ u# ^9 A
Components of a Recursive Function U/ ]8 ^: q. ?/ @% G
. ]7 d" O4 n5 P0 |2 y
Base Case: n, e' L8 X/ G/ A$ Y& t* Z/ R: z& a% `. q
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. : _5 s. d% i: ]" O. ^4 w- B9 ?& F) q
It acts as the stopping condition to prevent infinite recursion. 1 _3 ]* [6 d5 [! g/ n- k* O/ N0 n0 }: \8 i: x$ M3 U
Example: In calculating the factorial of a number, the base case is factorial(0) = 1. ' a; I7 X9 t$ C( c$ K: C & J* u. A4 U4 J Recursive Case: ( Q2 E4 A8 D& y' h8 p7 e ~" e( n1 [1 ?- V2 r+ L
This is where the function calls itself with a smaller or simpler version of the problem.3 ^- {, q- r" |
; u( f; p( Z* T( n' y
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 2 |+ r4 g! M0 i7 y' i' S $ O9 r$ E- _* lExample: Factorial Calculation& c: e. o, b7 |% J- E! d; p
) l9 l8 g! w- c4 ^2 A3 Z( c
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& ?" N/ _0 {' @4 q9 _# ~
4 ]$ }8 p( V1 x7 ?" ]& S( V0 c Recursive case: n! = n * (n-1)! ) Q8 }1 t3 G% g 3 V. h0 S1 z1 A2 q3 y2 ^Here’s how it looks in code (Python):& N) @' `3 c/ U; x9 i/ E, y
python" }5 B! ?* t+ z' k
h8 c+ T' q1 j& V7 F* a3 Z9 Y
; F* \" i( O, c! ]& [
def factorial(n):* s* I2 \3 L3 y, q
# Base case + k6 _. @ ^6 V if n == 0:* J8 H/ b2 Q) C2 {
return 1! _2 ^+ k9 N/ `0 j5 J, f# |
# Recursive case8 T1 a- a: I1 K7 o6 @+ `
else:2 X' n5 h/ U% G8 M
return n * factorial(n - 1)8 d; f% S8 ~$ v
( T' E9 j; P* i4 S. B) N0 ^! j2 |
# Example usage- v3 j. H% V* l/ c) \3 S
print(factorial(5)) # Output: 120: J' Y# ~5 n3 Y. a- u
; f* `; g) X- _) d2 GHow Recursion Works! O: N: L! T+ N$ d/ a9 V, d
# {0 m# V7 K, z1 h# s
The function keeps calling itself with smaller inputs until it reaches the base case.9 P+ ?0 U5 u+ i; n& A) W
2 K+ i$ ]7 T2 t2 h7 D0 M7 j: I Once the base case is reached, the function starts returning values back up the call stack.1 u+ \* t5 y% b
3 I/ G1 S( | R2 r: h
These returned values are combined to produce the final result. # N+ V0 U4 h$ \! C1 x- B/ Q( H+ m - u1 E5 N+ w* VFor factorial(5):9 C4 @& H! Y0 j+ ~: r; a8 D
! `& W" E- i) D- H0 r" z& s* I! gThen, the results are combined: ( q! R8 K) _! x Z# Z/ D b & [2 t( I* V8 a, a! s, m* o * g; L u+ O* e0 z# l |) xfactorial(1) = 1 * 1 = 1) S2 M% k5 j+ d- H- M
factorial(2) = 2 * 1 = 2 : T" M$ ]2 ?! @' kfactorial(3) = 3 * 2 = 6) u6 ^) O, H) T) F$ ~0 a7 j
factorial(4) = 4 * 6 = 249 s+ o, s# |) {3 c1 y3 b( Y3 s4 ^
factorial(5) = 5 * 24 = 120 1 Z X8 W; H+ f; n2 m+ e 8 e! d# E$ F2 YAdvantages of Recursion 8 D5 |4 s; A/ I2 |; E$ |2 y 6 \& A# D1 m# u0 W Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). ( L: f" |) I4 m. m2 C* a: z9 o+ L& q: b- _( s3 a
Readability: Recursive code can be more readable and concise compared to iterative solutions.9 {# X' }# A! c0 Z
2 C) g! K+ h. o$ y/ J& @4 Z
Disadvantages of Recursion " b& v+ g. @3 w* H5 z/ O! f, ^/ Z9 U3 [6 R, ]' H$ ^( ^3 N3 m
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. ) N+ ]1 K9 K q* ^$ z7 Q 3 d2 S* J I2 I5 L9 V2 h) A4 }, J; r; w Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). / U/ Q- ^" o7 V* j6 H+ r7 o. ~$ S8 N n' [
When to Use Recursion3 {7 J0 T) B. }- y8 E
6 t6 C! M9 G# Z3 i Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). 0 b: q0 Q7 L2 ?- l: p ! K. m* l+ d' }9 q- W( V6 W r Problems with a clear base case and recursive case. 9 h. ^, p0 F% m$ E6 X% `3 Y% j( U, {
Example: Fibonacci Sequence0 ]% L, m3 s6 J; E5 u, a0 Y
) v0 A9 u! o6 }) Y9 yThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 E% b2 ^0 I" G* v* t6 C" E: w4 n
: G: @- W+ j1 E2 p% Xpython) H U$ V* U) v8 i6 a) e
! V$ }$ N: B8 R8 N$ I- l; k: |: q6 O# k1 X- D, Z$ ^
def fibonacci(n):/ J- Q/ ?: X' {9 E! {
# Base cases + s) s2 p* `, J9 P if n == 0:) E) F9 C* ~" L% R
return 0 6 I( s, i2 l* a5 ` elif n == 1:) L T# L, h! M! k2 l5 P$ ~
return 1 " W/ X. M. w: K5 ?0 C # Recursive case & I% F/ X% G) X: U1 } else:2 J( D" a3 X% D
return fibonacci(n - 1) + fibonacci(n - 2) 8 s- x5 q0 t- j 1 u) }3 S- K+ m' t( w; r' L# ]# Example usage7 ^1 D; I! w* K2 U3 j' t Q9 ~
print(fibonacci(6)) # Output: 8( E; F5 H) U- g( d g% g' X
. V4 k, N8 T' c2 O6 X1 A) JTail Recursion 4 s# l2 I& ~" u, x4 H5 Y, T& N% F) i( d9 s: ?
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 a# L2 y1 O4 G# m# B1 R" ?
5 A9 w r6 ~# M
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。