标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 ; q9 @/ r0 G2 p) v; |3 m; F' g6 D
解释的不错, p' O/ [& Z2 p
d' L( h0 N! }( {. A
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 K8 i( R" N* z' B; g! }
& }$ `' W! A. H1 D& h; |
关键要素 3 m9 y) w: N* d( D. z1. **基线条件(Base Case)**- a; [- ~9 S& [5 x/ v3 l
- 递归终止的条件,防止无限循环" p! o9 G" W6 o+ \' n$ i, N
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 18 i3 p9 j6 q2 H# t( F
' z! z$ I0 q* G: c3 |8 L2. **递归条件(Recursive Case)** ; ]+ I. @& v }. J4 y - 将原问题分解为更小的子问题4 I6 T/ ^8 N- q& q/ z& H
- 例如:n! = n × (n-1)! 3 V% x# c! B3 ~0 u: A ! C6 e3 p/ x4 {, x# ~ w 经典示例:计算阶乘 1 `- Y* _' I! Y% _: ~# {' i' ^3 wpython& v8 ~! D* o0 T H5 b0 v- ?
def factorial(n): 9 U( X" I' t9 O" R7 W5 _ if n == 0: # 基线条件5 ^. w" o4 |4 L$ g
return 1 2 Q* L9 x- R! \5 C" p! f% y& I else: # 递归条件1 W6 m; V" f) D
return n * factorial(n-1). y3 m2 H) B. x8 n' w
执行过程(以计算 3! 为例):" z2 V5 y7 [; B/ |4 Y0 j% Q
factorial(3) 2 K( v/ R/ H3 _7 G+ c" |3 * factorial(2) 4 y, Q) R2 L" N3 * (2 * factorial(1)) " B$ c- x _: B; d3 * (2 * (1 * factorial(0)))4 R, J7 x6 p+ p- F" }
3 * (2 * (1 * 1)) = 60 }5 i+ ]+ o! h7 X5 E0 L
/ _8 h7 ~: ~. o) @; R/ S! q
递归思维要点 # f1 h% Z* ?% ?" B1 T4 n4 @9 h1. **信任递归**:假设子问题已经解决,专注当前层逻辑 0 m6 f$ i. j: K! X. ^$ G# ]% A+ ~2. **栈结构**:每次调用都会创建新的栈帧(内存空间) " Q' p: J9 U( @+ e( ^8 X3. **递推过程**:不断向下分解问题(递) # Y S5 |+ U: |8 p4. **回溯过程**:组合子问题结果返回(归): _5 _& j: Q9 d
, `: F. |! d* f" A
注意事项0 Y: ^7 X6 v; \( \1 G$ V
必须要有终止条件0 n V% g7 }# ?' b
递归深度过大可能导致栈溢出(Python默认递归深度约1000层) ' P' B% X9 E0 F* k某些问题用递归更直观(如树遍历),但效率可能不如迭代0 r9 Y7 d0 F/ H* k
尾递归优化可以提升效率(但Python不支持) % h- h; Y5 V6 ]9 |4 g( q8 X' B- w% H8 \ S; T$ x7 D
递归 vs 迭代 # @) C6 ^. V6 N* a# l| | 递归 | 迭代 | ) m# V( A4 e0 F% q; [) S|----------|-----------------------------|------------------| 0 @4 h6 @; g: f" H9 h8 n4 U' Q1 g| 实现方式 | 函数自调用 | 循环结构 |- c/ c* A' b9 x" c2 g& Y
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |7 j# w* c# O6 M e
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | . E2 p$ C* i6 u' H; n2 y% n| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |7 P. U3 f" B4 f r% N: ^) k6 a& w; S
$ z/ ]7 \) t: w8 V0 D# [" I
经典递归应用场景* t3 w6 Y# R! J
1. 文件系统遍历(目录树结构)) p9 E r) [& n5 }3 ~
2. 快速排序/归并排序算法 2 `( i* l. E9 Q1 F3. 汉诺塔问题 5 E" t& B/ S3 i+ f8 s7 y$ Q! T4. 二叉树遍历(前序/中序/后序) 0 V8 V6 Z! H9 r- u5 A. s5. 生成所有可能的组合(回溯算法) $ ~' j X, x" B# s, { \' A) K! m& i9 n" J) k: R) o$ o' Z5 P
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, ' H& u# Y, N) h+ o# V2 b我推理机的核心算法应该是二叉树遍历的变种。: \' L) h2 i7 B2 ^5 {7 ~8 ~, }
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: $ ^" ^8 t, B6 G: U6 ZKey Idea of Recursion . F* i+ W! D9 [9 w% V1 T) F 6 U" g; }! x( aA recursive function solves a problem by: 0 |, A# R/ z1 ^) M- A2 F , _9 y- r9 U8 q- F& S/ j Breaking the problem into smaller instances of the same problem. d4 \& j5 W7 M8 Z" o% Q8 ^: V, t' f( t
Solving the smallest instance directly (base case). 0 s( X5 Z+ b1 L+ {, h f: Q! k& z ) |% \) J2 J: ?" i: I' ]8 S4 r1 Z Combining the results of smaller instances to solve the larger problem. : _4 f, S6 Q- x. R [" L8 r3 i I6 o4 A0 m
Components of a Recursive Function a5 V/ `- L( P# h# N) V; s+ t
5 |# e" H0 @$ t: b* a$ e% B( f# X' T
Base Case:9 \/ p s7 T- F, a! A
. O% Q5 K* \4 L# O+ W
This is the simplest, smallest instance of the problem that can be solved directly without further recursion.2 r. ]' A+ Y( L& G! P6 q
* s7 F0 M" L' _/ I& D It acts as the stopping condition to prevent infinite recursion.# Q- \ Q( Q! Z* d0 i9 ]
+ Z6 T6 \' U3 U# }7 A
Example: In calculating the factorial of a number, the base case is factorial(0) = 1. , h/ y2 n u6 H/ p' R# N; e4 B $ v: x" E8 ^+ B Recursive Case: ) m! ~3 T6 ?4 C " ^7 O. [1 w# O4 a3 ~3 h This is where the function calls itself with a smaller or simpler version of the problem. + Q, g% S. O9 v * w5 s) F' V- t; J7 q4 J* d3 r Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).. p. k8 k" @* F) b2 N
) y5 {7 L/ H. s1 S: A$ h6 lExample: Factorial Calculation; }4 M* O0 t- d. ?* }+ b! D) M2 y
; k6 ^8 L. Q7 z& J/ HThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, Q5 L/ ]$ {0 [. F1 P. b
5 g* `! \1 y) k/ }1 p) [7 `
Base case: 0! = 11 t R- }2 R3 v E8 }
- F7 {0 t @* Z) P6 T: h4 ?! A Recursive case: n! = n * (n-1)!# B- g9 j, M* ^: q; r
, \+ K$ P9 U) Z% T) _
Here’s how it looks in code (Python): - m) Q# Q% G9 a3 B+ c% S/ B( vpython " P1 y G; P$ a$ E; \ ' j e$ a3 b2 Z: P" @1 G6 z% m
def factorial(n): " ]$ H" a- m$ z+ i # Base case7 E% ?' F. M4 S- O' Z
if n == 0: C+ S! Q. Q9 q5 e: N! i9 G) y3 X
return 1$ S/ L8 i6 Z- }& a2 S; s4 \
# Recursive case . h7 Y* J( \5 C' C0 Q: K5 G else: ! C) G$ ?/ l2 O return n * factorial(n - 1)' w9 M$ L$ }2 b, l
b/ W x, w9 R6 B5 o2 g
# Example usage( w4 j3 [3 H) C- L& O1 N( z3 a
print(factorial(5)) # Output: 120& V- _" T" X# {9 `$ g
2 t% c6 D6 }3 s* u( |4 AHow Recursion Works& B1 t3 ~# _: L4 R2 L: G$ g
) X2 V4 y* `: d6 ~
The function keeps calling itself with smaller inputs until it reaches the base case.8 s* f2 i9 f) J! @. Y1 _
' b0 ~ X& a) R# r( l Once the base case is reached, the function starts returning values back up the call stack. + M2 u+ D: c% o" ]: z% ^/ G0 n- n" k- g+ h6 F6 E1 a' K
These returned values are combined to produce the final result.0 h% V9 r: I6 R8 |; z
. ^* K8 i/ g) z* P3 h& N
For factorial(5):. S. P2 |* B& N3 ^
b4 Y x" \" ]8 m1 r* N. J l. ]# N+ V3 Y& P
factorial(5) = 5 * factorial(4) 2 T3 `3 _* c& }. [, q+ a- z8 ?factorial(4) = 4 * factorial(3)- d- g- g4 V; k+ t
factorial(3) = 3 * factorial(2): s4 _5 _0 W4 C
factorial(2) = 2 * factorial(1)4 j) H) v0 Q8 _& H7 \& T
factorial(1) = 1 * factorial(0)" o; \( x$ g/ O4 Q; W
factorial(0) = 1 # Base case - i$ ~+ H% H& h! |8 y 1 }$ W# `) g4 r7 \4 U$ g. sThen, the results are combined:* d' N# l" q ]
! g8 b" U( g( o) B( a+ d9 d' L1 S0 i z6 f9 U
factorial(1) = 1 * 1 = 1 . ~9 |: W( k& O# W5 D1 Ufactorial(2) = 2 * 1 = 2 ' k, q4 |! q0 t( l% u9 U8 _) ?factorial(3) = 3 * 2 = 68 U2 h/ [) F; ~! y8 k2 u& _" d5 p8 O
factorial(4) = 4 * 6 = 245 U _. W) ?) p s) P
factorial(5) = 5 * 24 = 1203 G7 Z: |8 T2 O3 P+ G, k X% y
0 |7 J; ?$ [: C! e- [- g) c- r
Advantages of Recursion , p1 p. T, n4 q' n) Y ) @* @5 | w3 a }) K Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). " z$ r1 a( h8 v# t% D; W3 F2 g. R" b' F3 D* @
Readability: Recursive code can be more readable and concise compared to iterative solutions./ T# u+ o* q* s$ j: D3 l ]2 \
4 r, U9 D! F# Q1 r2 i9 N+ }Disadvantages of Recursion ?* t& b' S7 L {6 e+ d 6 K' b$ Z4 H8 u; F6 g9 b Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 }& `* l0 I: {7 C# q9 _9 a% Q
( Z, @1 I1 [: w9 q1 {
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). / D" ?6 c: u9 S! ?7 {+ e' C* n' l1 B7 b3 b T! \' t
When to Use Recursion , f! }* Z! i; Q5 y" q% s4 G8 L$ L- Q% w
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).8 \9 h. M7 U' v+ @1 L
: g* y' Q$ R2 ^! [. _# Z3 c' @8 Z% | Problems with a clear base case and recursive case. % G; z2 n4 F3 R' J0 t1 |& |5 v: n6 V' d% D. K
Example: Fibonacci Sequence * g; v( S1 K* |% \$ b0 U5 W1 p 1 z0 p8 G9 B+ N: m' _5 T _The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: ! O9 J& q7 L/ p0 W 8 E! Y+ Y4 K7 k5 W) m- n, [ Base case: fib(0) = 0, fib(1) = 1 n) Y4 h8 |! N3 D T * x8 H) e% u" n& k8 G& l1 U Recursive case: fib(n) = fib(n-1) + fib(n-2) & j. \0 R( h' U* a" J / \* E/ `0 o! A8 u9 @( @python4 X6 w( S9 e& T
, O: b7 C1 z6 T- s" s $ C9 M' E6 c+ Z2 A5 j" ]& S6 p& hdef fibonacci(n):: C, \ x# t" G" n+ Q; `, g
# Base cases ! `3 f( u9 q, q if n == 0: ; m9 ~9 i$ t. f2 C return 0 0 [3 j5 g; Z6 @! f elif n == 1:: R. l2 N$ i7 L
return 1. Q+ |9 S1 f, c
# Recursive case 7 e, y5 g# }' G$ t else:' S) ]3 C# E9 b! ~3 v
return fibonacci(n - 1) + fibonacci(n - 2) % B3 y: f- |& ?- K( O+ ` ' ?3 E4 z" w7 M0 O% b/ c' U2 d# Example usage4 @. v. O# u* z. h \
print(fibonacci(6)) # Output: 8# ?2 d" w; E+ w b6 U# b3 l# Z
1 u3 w, s; Z0 ^
Tail Recursion, t, T0 p" o7 `& [
2 Q, N& x9 [2 v! \+ K+ w
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 t! G3 M3 ^. ` s( P
6 B* G t* ^0 b8 @
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。