标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 & J, a. d7 c. y: _7 ?1 k8 r) z o
* h+ x" T& W) z$ s2 Y解释的不错 0 V; n# x9 W, E$ @" e. g+ Z ( i+ n# s% K$ i5 X- A" F; ]递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 J6 @& P5 a& p' m) o1 h# W
( [9 F4 J+ @: n7 ]( r( Y2 q5 n$ P5 t 关键要素6 ~5 l# n3 [7 ~$ \ k% R, ~
1. **基线条件(Base Case)** ! M1 a5 d+ u) P6 ^4 ^) G - 递归终止的条件,防止无限循环 0 ] k1 Z# w, m8 l - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1& v7 ^& r3 [9 e, k" f. Q7 d
+ A/ O" A3 V4 k2 V2 B4 J
2. **递归条件(Recursive Case)** 7 s0 B. p; v& d5 T% o - 将原问题分解为更小的子问题 2 h+ _1 M/ @4 a3 L! M% J - 例如:n! = n × (n-1)!+ h3 ?5 y: f( }( T
5 o" z) g+ H8 z4 u Z2 r4 P
经典示例:计算阶乘4 ^! @: F0 I& a+ g5 ]* I4 {2 Z
python : ?' @$ j7 z8 l3 edef factorial(n): 2 N$ s! W/ G" a* A' n* O7 ? if n == 0: # 基线条件+ ~* O% r+ q9 u( s% e- S. n- N
return 15 C" c6 w/ c i9 ^4 `, |
else: # 递归条件+ c5 r/ x1 B1 e) C# \5 X* u
return n * factorial(n-1) ( u f, q5 x% S6 N& s$ m执行过程(以计算 3! 为例): 0 p3 F+ z! a2 \! |factorial(3)7 U' V) v0 _$ J1 M
3 * factorial(2)4 S/ E' ^# ^" ~& u! j
3 * (2 * factorial(1)) 4 B! V) ]3 B$ H9 m% h( G: G) z3 * (2 * (1 * factorial(0))) 0 [+ P) G) P% ]- V) L2 l3 * (2 * (1 * 1)) = 6$ n$ n4 I) ?& h( u. f
9 t' C h. q. E" |/ N4 d 递归思维要点 q, |' B `9 ?3 R1. **信任递归**:假设子问题已经解决,专注当前层逻辑4 c3 G" P+ p* {3 b
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 x; g" m0 \: q6 W
3. **递推过程**:不断向下分解问题(递)0 d/ O5 n* Q/ ^1 g3 z4 w3 j
4. **回溯过程**:组合子问题结果返回(归)- O5 Z* Y/ c& Q# l( `) u; C
0 r) R* L0 w k9 ^$ | W, O 注意事项 3 v8 A2 l, ]% Q# _; [+ L& ~必须要有终止条件4 j+ A% j" N6 u0 A$ m
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)3 U" |) V* R; F; }( ^, _& ^9 N3 C
某些问题用递归更直观(如树遍历),但效率可能不如迭代 9 M. [+ I0 M8 H尾递归优化可以提升效率(但Python不支持) 4 H# J7 L" I# w2 L N" \5 y v( M0 t1 Y& ]
递归 vs 迭代+ h0 c" @' O9 l* p( _1 G
| | 递归 | 迭代 | 4 @5 ~8 A& C. l|----------|-----------------------------|------------------|" h: ]& i& `8 N T, U9 g
| 实现方式 | 函数自调用 | 循环结构 |, ?: _8 x1 S( X% E
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |: ^: o0 A, [6 h3 }, z; E
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | & d3 L; B# ] P u+ z n6 Z& r( m, Y7 N* ~| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | * T5 h% g+ @9 Z' W! X* G5 v8 T2 t, T0 M: A- C) j j
经典递归应用场景 % H4 C: J0 j' z: ]1. 文件系统遍历(目录树结构) 2 w5 C/ e9 V( D0 h2. 快速排序/归并排序算法7 Y& q: R# t! N; V
3. 汉诺塔问题+ ]- Q3 b% m% P9 V$ ~& z8 J% W* L1 i
4. 二叉树遍历(前序/中序/后序) # W; k2 j ~( c/ e$ ]7 D5. 生成所有可能的组合(回溯算法) & R5 H* d i$ e% U1 G5 R9 @ ( x5 p5 O$ X9 S试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,/ l: z/ z7 }0 l8 H, k" k1 O; U
我推理机的核心算法应该是二叉树遍历的变种。5 _: b) P l. O. r2 T" e
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: " m, X% j- |5 g/ r* A! RKey Idea of Recursion" c5 [5 D3 t) u
& h8 Z( ~- J y3 a( G) B3 uA recursive function solves a problem by: 0 e( d2 T! w# O$ [ U 2 G; W0 P0 v' P7 V Breaking the problem into smaller instances of the same problem.8 n( G5 b/ t9 _0 m3 W5 B" x0 p* S
4 d9 [5 a% F+ F/ O# N5 A Solving the smallest instance directly (base case).6 g0 e( a; u4 q6 R2 g* H
8 w8 G7 p4 y& T
Combining the results of smaller instances to solve the larger problem., A$ h8 O- F. \$ D9 W* r0 i
6 r8 [$ Q5 l/ P- c8 R
Components of a Recursive Function ' K. B( ?# V. g q ; Y) x$ R8 m, X* O$ @ Base Case:0 K9 m# \6 J( \: i. ]$ G) B$ @" I
2 m0 e: _* V& H9 {& M' m6 h) W This is the simplest, smallest instance of the problem that can be solved directly without further recursion.: Y- a0 E/ `- P: s6 }
& [* T1 A' N, Z: f- L1 t& V It acts as the stopping condition to prevent infinite recursion.9 E( D0 z3 g! a
- i* |# l; a5 i: y Example: In calculating the factorial of a number, the base case is factorial(0) = 1. ; \/ R+ p8 v' K3 t8 m5 f5 ~# w8 A. p y' z J: c% H
Recursive Case:* f7 m4 T3 u3 N9 X
5 @3 t. e6 e+ D- A
This is where the function calls itself with a smaller or simpler version of the problem. $ X/ A; [+ A' Y% ~* r, A - n7 u1 }0 w6 J, \8 w+ r+ | Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: Y) ~5 Q0 u( ?
8 ^3 H" j$ D. S- q2 b0 qExample: Factorial Calculation ; d1 u) Q, H+ x3 r7 ^ G- {' U( p' b/ _9 L2 e
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: 2 C+ p' l7 G* j% Q/ C+ t$ ^8 N/ ^$ v; r+ ]
Base case: 0! = 1 / i: J, c" f( N! `& z% w+ ^1 E9 r1 Z0 V+ ~
Recursive case: n! = n * (n-1)! 1 K! b! m4 X+ ]8 u! G1 A G( e j: ]& L5 R
Here’s how it looks in code (Python): # r5 }/ w* x' T" D5 |/ c, {4 lpython, q; j0 J' X- u; K
- N' M. ]# o- z( q% B) A/ n+ [) p+ ?+ z$ Z$ M! A0 F% b7 v+ y
def factorial(n): 0 c3 |' [! ~& l5 M: A # Base case $ n2 y! U4 H% F# Q+ ? if n == 0: _+ N; e- t1 S( J2 r4 E1 Q return 16 V( T v) c2 ~0 P3 {1 L
# Recursive case + a; Y1 ~5 S* \4 D; J( A7 ] else: m* }2 m/ J; O# h return n * factorial(n - 1) # U+ I2 H3 O2 F0 o% I& b) `$ {0 v0 u' z6 V9 _; z, z
# Example usage ( H/ s/ m& _7 ?3 ]: F7 Fprint(factorial(5)) # Output: 120 ) ^) Q' `/ G' O- X v/ u3 N4 i" a, O, {; j& {- }
How Recursion Works & v5 X3 J9 h1 [ ( `% O/ R2 A, O2 b0 a) _, p The function keeps calling itself with smaller inputs until it reaches the base case.2 J, e, c9 u- x0 m1 ]
- x C3 o# W6 ]! l Once the base case is reached, the function starts returning values back up the call stack. M# P7 z+ ^ S' r) @( @# a
( d; ^4 }8 p7 |, c8 F These returned values are combined to produce the final result. 4 H- d9 s0 ?$ s0 N* M $ ]4 D9 E* A! m# c% o5 e6 D5 rFor factorial(5): ) N& w5 u1 g* }, E6 _' d3 h/ i: L/ C( p0 p1 H
9 P- E( E- r# Q3 F
factorial(5) = 5 * factorial(4). w' b2 B( `3 y7 }& c6 [ A% s) P
factorial(4) = 4 * factorial(3)$ B0 a9 x$ ~1 ]4 \: J4 l5 _: [5 H# D
factorial(3) = 3 * factorial(2) ) A/ I) h3 ^3 F0 g- r2 Wfactorial(2) = 2 * factorial(1) 7 g, w& S, b. U1 d3 b7 efactorial(1) = 1 * factorial(0)3 u+ o3 ]" t0 @
factorial(0) = 1 # Base case' X1 b& D$ g% \/ G: X
* N: i' E7 I/ Q# Q* V7 p& q9 p" u0 R
Then, the results are combined: 9 r( ?7 E, d! O2 k. t4 a 7 F; [6 ?: ~5 ^+ M4 p( Y/ b+ e2 U! G/ Z% ^( f
factorial(1) = 1 * 1 = 13 z" [* l$ M$ \
factorial(2) = 2 * 1 = 2 ' T; R3 L- ~$ v( n; \& w4 pfactorial(3) = 3 * 2 = 6 q- O. M) F' \8 Efactorial(4) = 4 * 6 = 247 h2 ^, m2 P& c+ ~
factorial(5) = 5 * 24 = 120 4 S+ a5 ~5 m. Z7 Q6 @! z1 X! K% q4 f7 n6 Q. C& E* h7 C# ~0 q
Advantages of Recursion # L3 _4 `# |8 | k3 B6 \, x% v0 e) p1 y. N8 _3 r
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). # i% k/ g4 p" V; x ! q+ ]+ s4 w% `/ ~! X' j Readability: Recursive code can be more readable and concise compared to iterative solutions.* P: ?3 B% z) t( j m. g2 |
. |9 o. y2 c" D; T& ^# G t
Disadvantages of Recursion 2 S4 l7 u9 u \/ a, d4 ^ * C1 L0 n) l+ f; z6 l5 w: H Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. - z; j2 ]& B& ~# t : b# V5 X% V7 _0 O' k- ]. a Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).. b( L; J1 M9 B' |' {/ K- E
8 ?0 X" f4 U7 J6 X! T; D7 eWhen to Use Recursion: j3 h( \. P$ `# E. o3 W/ V
5 R1 H$ J4 B# }% C0 n" M. @
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). , O3 c2 ~# }2 A, M. \' c0 y" H 4 O; b" t# n: n) V: [ Problems with a clear base case and recursive case. ! \1 t' W/ Q) E9 K( O Q1 s* q' Y. X' ]- fExample: Fibonacci Sequence & l8 E- ~5 U* C. B1 H5 K1 K; a$ m& L- o9 P2 W7 o5 u& m5 ~
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: ( l$ d+ Y* U, B: m: U P , B6 f# C% ]. A- |0 C/ ? Base case: fib(0) = 0, fib(1) = 1 0 h- g! ]; c4 v& G+ Y w 6 a2 M4 A5 g0 X4 g0 ? Recursive case: fib(n) = fib(n-1) + fib(n-2) # T. D7 U: F; M3 s' o1 y: S0 }, O ^7 B) H4 J/ z
python. M" b \' v( ]# a1 |: u
, H& `9 ]* V0 O u! k l% v, M: p
0 B& M# W/ o& x* F) C" d& [def fibonacci(n): * h7 c. o# s0 s+ H2 i # Base cases $ e9 r+ n3 ]# N& V8 J2 c6 {6 H if n == 0: $ h+ g& J9 w5 K( L7 k return 0 6 g$ L' R# n D, w; R/ ~ elif n == 1: ; A2 a Y# U) O( v- u; Y8 | return 15 R4 O/ `; e8 H$ p5 M1 {3 @
# Recursive case) \ a( j6 A4 t& O8 O" b) d
else:8 G6 t6 N( O! f0 ]) r" l: i
return fibonacci(n - 1) + fibonacci(n - 2)% j; Z$ h \8 A0 H7 t. D6 X& N
: _5 d' Z' u+ i2 N; @7 M# Example usage$ |0 ^" J7 f3 e( w
print(fibonacci(6)) # Output: 8$ s# o' o. y- R0 l2 L
( d# B/ D2 w' |7 q# b9 rTail Recursion , d& ?3 N, q* y. O9 M Q, c6 \+ b. w- F8 `) k E
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).4 [+ Q: @: R7 p7 C) p9 R
5 }0 B6 N P8 A b9 i1 k, H
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。