爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 ( K1 ^; W/ K$ s

, s8 u* m) Z& q) v解释的不错
) u( R+ T- S/ \  e" F) e; x/ ?0 `( P  h8 j0 N& ~4 s
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
8 a( Q  e5 o5 p- u" ]  ^: k% g. n/ y5 z3 ~- f9 m
关键要素( H5 {( w% Y3 y  t
1. **基线条件(Base Case)**
/ B* E9 ^2 q* f8 p   - 递归终止的条件,防止无限循环$ s+ b, M4 L  q  G0 [) b
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
  _" j  |+ N7 P
. H& Q. h0 b; l/ G3 `' s2 g2. **递归条件(Recursive Case)**! G2 W$ o  }, E. V; B
   - 将原问题分解为更小的子问题9 v- G2 ~# e+ C5 q4 r
   - 例如:n! = n × (n-1)!
% Z9 s( `! D3 {3 L, v) e0 `0 _* z3 ^, l9 ?
经典示例:计算阶乘
3 U1 h; [; N) }python9 b, _( F& w3 `6 o0 i2 O- M3 j
def factorial(n):6 ^% J/ s; w! X( W' m
    if n == 0:        # 基线条件
: X. a" S1 `5 O        return 1
( w8 ~, \/ ~/ [& c    else:             # 递归条件" k  r% w$ k! M$ l: O7 p
        return n * factorial(n-1)
- a0 I/ p) `) ~, b( e( v2 `$ V: d$ a执行过程(以计算 3! 为例):
. `! Q# o% o* Dfactorial(3)
9 w1 e! Z% t; c; O" |* M+ A3 * factorial(2)
/ `2 m& Z. L  f# A1 }3 * (2 * factorial(1))
* r2 G# j! N1 q5 Z% y3 * (2 * (1 * factorial(0)))8 h0 f) J$ _5 ~
3 * (2 * (1 * 1)) = 6
" g- r2 U4 D" R: t& j
, y* E- a" H. ~2 I. r- N 递归思维要点
4 ?  L; D$ v+ v+ m1. **信任递归**:假设子问题已经解决,专注当前层逻辑
8 A1 F0 j# |8 t2. **栈结构**:每次调用都会创建新的栈帧(内存空间)1 N4 l; {& k; L; D0 B' [
3. **递推过程**:不断向下分解问题(递)
2 m  E: }- }+ S7 ?* d5 j+ R4. **回溯过程**:组合子问题结果返回(归)
; ~. L# g" e2 l4 M: F' p$ K
: c7 y2 T4 p5 e; |2 }2 O1 y 注意事项
3 _7 H( V6 U  e" P4 P# h必须要有终止条件
4 ?* R5 @# W( p# M* f" F递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
0 r( y, g0 U/ {# R9 {/ G% l某些问题用递归更直观(如树遍历),但效率可能不如迭代  C. m5 o7 W! C6 V
尾递归优化可以提升效率(但Python不支持)) Z0 G& A' F( R+ t& B, R5 X6 U

* b; o/ ^, ^8 S5 ], O- B. B 递归 vs 迭代. E- w% B; E3 }7 d6 @* N, t
|          | 递归                          | 迭代               |
; @- O. N  l3 J: C" w|----------|-----------------------------|------------------|1 `- |5 \  D7 u8 ?4 E
| 实现方式    | 函数自调用                        | 循环结构            |) T' x$ c* w# m1 U0 ^* P) h
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
; J, |/ t: d' V8 d1 e| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |: B7 H, Y8 s5 n$ C  J  U
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |3 m0 D4 G$ J$ k4 I+ J9 V

. Z) H' _& C& ~) K 经典递归应用场景
3 U8 b4 k6 u, z( {- m: s* Q& V' F1. 文件系统遍历(目录树结构)
2 t& K1 D- J. ?1 E8 M( w; R2. 快速排序/归并排序算法: j) P6 C) [) ]4 J* g9 [
3. 汉诺塔问题" b8 t7 h4 ^+ M% [2 W' v" A
4. 二叉树遍历(前序/中序/后序)
% E7 V0 Y2 X# n3 B0 i5. 生成所有可能的组合(回溯算法)
: V7 T2 E! o$ o: E( w  j- n* ^1 O  j8 o% |: V! [5 Q6 E
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,- K" z8 F9 B5 j1 E8 M- ~7 c
我推理机的核心算法应该是二叉树遍历的变种。
8 S  N9 \( S' b另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:' l) N; W6 T4 A8 }2 N- z+ m% r
Key Idea of Recursion
% s2 i- K& l4 y, {/ Z2 B; ?) e5 n' `( |/ ^1 R' N3 ^1 L$ _! D
A recursive function solves a problem by:
2 k3 a% t8 s4 e+ g' Z* [0 c- `# g5 ]% F. @
    Breaking the problem into smaller instances of the same problem.
6 M  `( @! A0 B6 m4 I" [: ?8 O( _* S" q7 b( n: r' z' t
    Solving the smallest instance directly (base case).
* J6 m, Y8 x! ^+ S3 I; U5 }5 h; e6 V8 z  |
    Combining the results of smaller instances to solve the larger problem.
6 N: c, u) N% v2 J( d5 O
. X, \; r$ m, Z% ~9 D& h) W  |Components of a Recursive Function
' W' P6 j& I# m9 ~& D& e# Q6 j3 t  N" _
    Base Case:. o( b2 ~) ]/ F) }* ]

+ B$ c, ~7 X* x% o( O        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  _( c, @, r& @( G3 A. W/ C' R, [: x
# G( I3 `( a) G
        It acts as the stopping condition to prevent infinite recursion.
# c6 O: D5 Y5 w9 {9 l5 F
% ^8 G% L3 ^& o' D( C        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.2 B3 f2 S, S& q+ H9 l3 M

: L8 b4 ?8 s+ p, N: L    Recursive Case:/ Z$ p; H  y; x, ?& F, \: P

& |( n1 s# h2 n: H9 D1 W        This is where the function calls itself with a smaller or simpler version of the problem.
4 N6 y4 w% h9 f# ?2 o2 T- x8 y# i" F# v/ Z' R3 t
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
, S+ M( w1 F& K
, m5 h9 u- @+ f) X4 \Example: Factorial Calculation" U% |0 ]8 W& M$ \* H% F

3 N3 E* J" s, h% B' Q# ZThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, V6 r) s& r3 V! Z; o! Z2 _
  d- M3 i" U! @6 O0 U
    Base case: 0! = 11 I; n- D# g- s: k4 ]

! R/ x9 i1 U3 T, l2 e7 \1 f    Recursive case: n! = n * (n-1)!
+ N. A9 J. ]& k& f3 Z: `' H# U2 X4 N' ?: d1 {
Here’s how it looks in code (Python):
6 |1 M2 Q! @  u# X1 Apython
, V4 c  {7 K* {6 G2 b, e4 u% K; Y& r. [9 b% z+ S! p4 {3 a& i
) g; G) y) R/ m) S5 g
def factorial(n):
7 J. T% Q' Q7 r) b3 `    # Base case
1 U* A3 _- ^, }9 p3 K2 V    if n == 0:+ v: j# F+ g% @# W
        return 1/ d2 R% N5 \0 ]
    # Recursive case2 O* `! h5 w; q
    else:
6 T" u4 s. o7 g" V( o        return n * factorial(n - 1)8 ~: X1 I5 B/ Q
" d: B0 J" H- ^& {- D* V' Y+ a
# Example usage
- K$ I3 n# Z" i0 Iprint(factorial(5))  # Output: 1206 s- k: M4 {  i' \  G8 P

& Z1 X7 g6 s2 C$ R6 Q& W8 h4 |+ }+ xHow Recursion Works
! F9 z* e9 a" _" `5 Z& r
+ O' j2 D) w5 ^, j) c8 F    The function keeps calling itself with smaller inputs until it reaches the base case.! v5 O' b7 `/ E$ v  l; W4 F

1 N- e8 P/ y" A) \- x- g  g    Once the base case is reached, the function starts returning values back up the call stack.
( m% l% D/ j0 o1 g) u4 k* A1 r; @, a  a( |' _/ s+ v6 }+ o
    These returned values are combined to produce the final result.7 Y& W9 V8 N' R4 g% A0 f, L* |
6 R% v5 ^( u2 k% \9 J" ~0 k
For factorial(5):/ ~7 B" {$ j, Y- N1 \3 x/ h. p
1 p: p+ I  P7 m/ a' z& O! L/ J0 V
- F: p* f7 @; `5 r
factorial(5) = 5 * factorial(4)# w; @9 y* V; A0 s4 x; v/ K
factorial(4) = 4 * factorial(3)
$ ~: B- {% K# w0 d! K8 Ufactorial(3) = 3 * factorial(2)  W: v: s( y: }7 V- h0 |# C4 }
factorial(2) = 2 * factorial(1)& W/ S8 _; y+ B% L5 @' s& q
factorial(1) = 1 * factorial(0)( p. _- t0 T5 x. Z5 [& I: @
factorial(0) = 1  # Base case! t% L) X, l8 Z6 B- M
2 l* j/ V! t5 y4 o% S/ G% Z; E9 N
Then, the results are combined:
" A0 S) p7 M/ V! E& u) _1 H/ H* G, \/ n: _' a0 _! T. Y
  i% x- p& \( v; ^: [  q
factorial(1) = 1 * 1 = 12 I7 A! c6 N1 `
factorial(2) = 2 * 1 = 2
, H" B9 K7 u) n$ k0 B) lfactorial(3) = 3 * 2 = 6
) @  [6 S( J) J  U8 B) Dfactorial(4) = 4 * 6 = 24* U8 Y  A- s/ X8 ?$ E4 Z
factorial(5) = 5 * 24 = 120
+ a1 @& v( Q; F( h* T2 B* U. x9 X2 X8 ^" h
Advantages of Recursion. D6 r5 r/ k+ a9 L6 f" S

% K$ s  g2 u' O1 q    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).3 M! c. \8 |7 y$ x

' Y4 A: r) G# L1 G  F2 @; A    Readability: Recursive code can be more readable and concise compared to iterative solutions.
) P# R' S! F7 O, h. {  M& w: |$ T" ?3 N: G
Disadvantages of Recursion( _' @1 V! o( w# m
% z2 W' j. ~& q0 V3 U* }- _6 }; `# r5 Y
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
9 J7 E3 v5 q( l# T' I
/ Z( x0 L! D  g    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
; F' K  K+ g7 ]* F
2 T! E5 X/ C3 K; J& TWhen to Use Recursion* k" A% {9 K. o$ m# m$ [' t( J% r) l+ A

5 q( l2 o- }" l  ?- s. @    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).9 U$ P* u7 ]" M9 i5 X8 J( ]% O0 `
+ @2 U0 b  r  M9 O
    Problems with a clear base case and recursive case.
; x) B6 I* @8 L0 [, l  D
9 E& g. R4 \8 M2 ZExample: Fibonacci Sequence4 f( ?' `+ B* G" r* b  ^/ q

* z) }2 u& b" m: v) WThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
7 @% A7 u; |8 v3 m  Z$ ^
( n5 r: A7 B; K8 J- D    Base case: fib(0) = 0, fib(1) = 1- l# ^6 k/ H5 v
) X2 n: `# X) {4 A
    Recursive case: fib(n) = fib(n-1) + fib(n-2)+ X& x. L5 |; k- r6 z  b6 |% x
( V& w7 X# a4 T4 l2 g) E$ ?) B
python
) I3 u& r4 Q' e& Q7 m; m' z
$ j* ?- U. ?9 j1 J, |% F/ T5 T, P; s/ j9 m% q
def fibonacci(n):# f# V# t0 t7 u5 E* T# C, D7 H
    # Base cases
6 }# C( g+ s3 H2 U; \. }7 v0 c    if n == 0:
! J. b0 N7 @/ D- x* S& v        return 0
: S- h/ e6 o- i7 j# h    elif n == 1:: c7 [' }+ T" \( {! B4 l
        return 11 I: q, ?- i- f) X
    # Recursive case
/ R3 x. b, g1 ~0 z    else:8 C  y& ]. e$ C" m( e
        return fibonacci(n - 1) + fibonacci(n - 2)
8 n7 j/ S, X( T1 j3 r7 L0 q# `% {( h7 O6 D  L0 b7 z( F. U; d
# Example usage( w+ ~. f' R2 C+ P4 w! F1 }7 {
print(fibonacci(6))  # Output: 86 P" q1 P* q) \0 X- ?8 G+ V; B; i& r$ J

" U6 ^( ?2 x; f; Z& uTail Recursion2 W6 Q4 M" t3 H' A
: @# f6 _' u6 i. _3 ^3 j
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 L. e7 @% \. R& e
$ ^" I& T6 i* b" r5 r
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2