9 _% r( q, U4 z( F6 U解释的不错# `8 {# H3 n! V2 R0 w$ Y! c
) c( G, [8 J4 d1 W8 Y# P递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 $ s8 y- X v* h( [0 A, r) y ! Z+ _! t! o$ ~6 H! x M I, {6 L 关键要素 - }; V" A5 Y7 G6 E( J$ |+ P1. **基线条件(Base Case)** 5 `/ b. T, C5 t' ]/ a6 l - 递归终止的条件,防止无限循环 / t, I: I: f, ~ Y+ G. h" Q. v - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 * h* E0 j4 _/ r" g# C3 S' } * N& c) q, I# r# E& a2 w) t2. **递归条件(Recursive Case)** 2 k! a% `. x1 s- a- Z* c9 x - 将原问题分解为更小的子问题" Z4 @/ X6 Y" b/ l# {
- 例如:n! = n × (n-1)! 1 o7 T0 y8 g! R# [% M, d( F# V( M4 P# e( A
经典示例:计算阶乘 + Z! ~& |+ [; @) d% Rpython 1 g: ?8 R5 z$ H9 y) j" E5 y+ rdef factorial(n): ; l0 {! y! B _- F if n == 0: # 基线条件 , }3 q# M( }0 q return 1 # L7 k7 l) ?( h: C3 c else: # 递归条件 , v! z9 @. E8 F- p return n * factorial(n-1)% c5 ~* e8 r0 n
执行过程(以计算 3! 为例):9 @- M2 a. s- a+ F! n/ g) l
factorial(3) 8 F8 t* z2 x- u0 Q4 f3 * factorial(2)! Q }: X E8 ?
3 * (2 * factorial(1)). R( g! e& H2 L9 b8 l: ~+ J8 r/ z c9 E
3 * (2 * (1 * factorial(0)))1 ~0 @, u& k' R2 h! f
3 * (2 * (1 * 1)) = 6 9 e) U q6 D! D; P6 x2 U! k % z6 ~8 \) T- r4 d/ { 递归思维要点 " Q" i+ ]* g% k) P1 }1. **信任递归**:假设子问题已经解决,专注当前层逻辑 + N4 z) @: x0 L7 _$ f0 O2. **栈结构**:每次调用都会创建新的栈帧(内存空间)- [+ m0 P9 O- x# t
3. **递推过程**:不断向下分解问题(递)9 p) K) Q7 ]$ F2 A0 w9 A9 Q
4. **回溯过程**:组合子问题结果返回(归) : ~( ?4 ]7 z/ t# S' `& f q9 X( Q( ?
注意事项 : g7 g9 r" P; H% _, u必须要有终止条件 # ]" V4 T- a/ U; C8 `9 h! n递归深度过大可能导致栈溢出(Python默认递归深度约1000层)' J8 y! @- F; d: O
某些问题用递归更直观(如树遍历),但效率可能不如迭代 ' y9 A/ \7 H2 |# x; |, _尾递归优化可以提升效率(但Python不支持) ) [# J, c* _; U/ g( V! g* o0 |9 r, y0 C0 n a# `. }; f
递归 vs 迭代7 g h- B1 d4 F2 z% p' ^8 Y9 U7 W
| | 递归 | 迭代 | , d% C- V! d5 W|----------|-----------------------------|------------------| a1 e' j7 a7 Y, h7 w| 实现方式 | 函数自调用 | 循环结构 | ! G$ h( X# E6 H- [3 z| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |* |" o7 w/ d' o$ c3 W! K# ]! e
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |) n5 D M% i. k
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | % b: n" A$ N2 V; o$ j/ [& ` + i# T) k6 H, t( D R 经典递归应用场景( g3 I1 v% v& {, I9 e7 d
1. 文件系统遍历(目录树结构)( J# U5 Y7 m0 L9 D. d: t3 c5 S
2. 快速排序/归并排序算法 ; N% n7 B. }& r T# Z3 }/ P& x- l3. 汉诺塔问题# s) l; s- l; B' P2 w, f
4. 二叉树遍历(前序/中序/后序)+ i7 s4 K2 C. r5 n2 L7 X* q+ V
5. 生成所有可能的组合(回溯算法) ' q: a6 g! c3 Z # ]0 M! |4 I0 E4 X' L5 K试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, 9 G1 ]" p: {. Y. G我推理机的核心算法应该是二叉树遍历的变种。 3 E+ l& n7 x0 ?/ Q* F7 D9 |另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: # F K: c$ [% p$ S9 {' A) l- pKey Idea of Recursion8 I) i. ]$ ]+ Y3 o: m! D) I; }+ t
2 l0 ^- g8 | {- ~$ I
A recursive function solves a problem by:' N8 m: |# F4 T$ w' |/ Y
% E" _$ h3 F ^5 }
Breaking the problem into smaller instances of the same problem. 3 ]- t+ ~5 n" Y- l/ Q" W 2 W; t6 V; {- g Solving the smallest instance directly (base case). , l+ m" v9 k4 j+ @+ M% l. M0 }4 E0 x7 k' O. k
Combining the results of smaller instances to solve the larger problem.0 X: Y* \6 Q3 K$ F; v! b3 { y7 X4 R
. T/ A5 N& N" ]! C. |1 P5 H$ g6 OComponents of a Recursive Function4 [3 k; x) x F% J# D# a) q
2 L' D! ]/ {7 M6 j* C
Base Case:7 ^. K- \! P7 |
! f5 x6 O+ j. f9 `3 }) n This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 2 S& O% e: I+ u/ T- X( ]4 M. I$ N. N) {& C$ `/ Z, V ~: X/ n% O1 y- {
It acts as the stopping condition to prevent infinite recursion. ( ]- L0 ], W* c0 {, t) S 1 t8 `/ V( n2 ]# S& y: \4 z- i Example: In calculating the factorial of a number, the base case is factorial(0) = 1.3 d) ]* J% O8 i9 I) x+ B
4 T" V1 |' ]; e) k0 N
Recursive Case:6 q; j; m( _) m3 g' l4 ^8 I
8 h$ y3 y0 B; |; O# b. ?& } This is where the function calls itself with a smaller or simpler version of the problem. 7 ? S% @/ x% `" I8 J+ s7 }% x - V1 p+ u0 a6 K( m6 c( l Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).: _! T8 c' x# a- H" t
+ w* N% u1 @4 |" \1 z3 n% o8 v8 l5 I
Example: Factorial Calculation. }' `6 c- W- I# K. b
# k' t% _5 `+ S5 N# hThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* X( I/ q9 L. T
: G: m B4 b7 [/ L$ j
Base case: 0! = 1 " a3 c U' P* `0 ?, f0 m# O* V& _: d+ y: h6 y2 X5 r
Recursive case: n! = n * (n-1)!1 j- S9 }9 I( T- r
% U$ p* C! K+ uHere’s how it looks in code (Python):" i; s% O5 J4 p9 W# N o) L
python+ [% y3 r) i& h2 y" ?
$ n* Y& j, u; S" z! b# F 5 ?0 e- l- x: _0 [def factorial(n):1 c: p' ~: W b/ J4 I
# Base case 9 l7 Z( H$ h: z if n == 0:. I( n( s6 y$ s0 u
return 1 6 c- E3 i8 U: n- d* `0 R # Recursive case 0 P* v C& s) A) D( N else:# b! |2 \6 a% t" W- E( i
return n * factorial(n - 1) & p$ f( J8 O7 z2 S # v* K! I. a9 G% S8 S# Example usage 5 d: R5 T* H' c9 jprint(factorial(5)) # Output: 1209 f: \) a) W, R: ]8 s& L+ x2 C- j
9 Y. i+ D) z) ]+ R5 CHow Recursion Works 5 {2 @5 S! k& c* Z & u, { ]$ B3 u* Y The function keeps calling itself with smaller inputs until it reaches the base case. 8 ]% b6 ]2 u3 Y9 O 7 _0 ?6 X, \7 `, j$ b3 e Once the base case is reached, the function starts returning values back up the call stack. - K' e) n6 G- l- W2 D* Y: r+ T2 }* u. w; n8 y) Y
These returned values are combined to produce the final result.5 ?# E; a2 \ q
- r3 ?' f( E7 D! B
For factorial(5): V- i; G" G$ k* P, F/ @3 y7 f5 ^9 `+ h" u8 G- r. J9 \- H
& Y2 u. j9 `2 l [3 L4 ifactorial(5) = 5 * factorial(4) ) D+ Y. |7 `6 ]8 @5 ~8 s) hfactorial(4) = 4 * factorial(3)8 o" g- F g' T1 ]4 ^8 v2 j7 U& {6 E
factorial(3) = 3 * factorial(2) 7 s# H+ \& l- u7 A2 m% Cfactorial(2) = 2 * factorial(1) 6 {, T( J# l; ?7 P8 E2 K; Pfactorial(1) = 1 * factorial(0)$ z, ?6 T6 m# m
factorial(0) = 1 # Base case ! }7 D& n- g! d( { } 3 r1 K4 B( r2 e1 ^# ~Then, the results are combined:& N* _) V: m, z
& X5 L" v7 v4 n
$ I4 L( B3 A" \6 x0 M: e z' o$ L: Kfactorial(1) = 1 * 1 = 1 ( c# f% b' O6 R& f# V7 a5 {" @# p2 Hfactorial(2) = 2 * 1 = 2! S0 a6 D$ e: x. H; B+ d# X* ~* A
factorial(3) = 3 * 2 = 6 * I" v9 Q& C+ I% Z$ R- d) @factorial(4) = 4 * 6 = 24; `; W8 k: [" U- U3 U, j' |6 d U u
factorial(5) = 5 * 24 = 120 $ N8 z. `2 R+ R$ g $ h$ J2 ? f# O, t& HAdvantages of Recursion0 Q) A% V; {* \
' Q# B) ?- q2 i7 Q% @ x
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). ) R8 F- V5 h9 O4 w3 s; D% e2 a+ [% p/ }% P- A, f4 D/ c+ g3 g8 u
Readability: Recursive code can be more readable and concise compared to iterative solutions. / z$ q# f ]8 \/ y3 e" ]/ C1 f' {) y 7 ]* ]% r, S' g1 J7 `Disadvantages of Recursion3 r4 ~- N3 ?$ C" @/ w
# }" i5 [+ T, d7 E Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. 8 ]. H+ R# G0 g% `) G # T( S: T7 U* g/ J Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). & X3 G& D `/ N7 G + P. b- T" ^) nWhen to Use Recursion# t( U, @& j0 W: m
! ?0 ]' F/ w* i) K8 X Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). ^4 H% e& B7 M$ ~& l/ e' D# y
# d! {8 S0 v1 t m% g
Problems with a clear base case and recursive case. + R/ c) Y! n) ~" S4 g# g7 O, e( s' i- J' I" f8 A
Example: Fibonacci Sequence 9 U/ i6 i4 h8 x' Z. {8 J) F/ i( h# q6 K3 I9 L J
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: - n# Z3 b8 ^3 v& |; o: o, t2 R- E' L8 [, y
Base case: fib(0) = 0, fib(1) = 1 4 B4 t, L9 [0 F. Z- J1 l 7 a# m j+ ~ j' m Recursive case: fib(n) = fib(n-1) + fib(n-2) 0 T; K7 K& R) X- q' h" @- ?: m% X1 u: q0 e. X' L7 z3 ^
python 6 W) s+ Y8 k) H. B- s, T: o! z) V W: x3 U9 i6 M2 q" T/ _+ K" B
' K; y/ ^2 a( `; T. v4 t
def fibonacci(n): * _, U+ j+ I$ X4 O! o) n# w # Base cases4 i6 Y0 z) I8 s6 \& O, B$ V
if n == 0:& w' z+ O7 E/ \2 I9 ~! ^
return 0, b* k0 E4 Q' u( K5 K
elif n == 1: 0 v; G) h, v5 ] return 1 & v( d; k& A( }+ |7 U # Recursive case " G6 F0 I1 U* _" S- v& z1 e else:- C8 _* Y" s$ T# c
return fibonacci(n - 1) + fibonacci(n - 2): U$ V- @; J5 R3 i' ~9 {$ _
2 H& a$ O; z, w1 `' w0 y- N6 F# Example usage 0 O% Y- l) k- Eprint(fibonacci(6)) # Output: 8! X* b/ r- M8 U0 B" r' ?' K. Y
6 O# v+ m0 S) ?- q
Tail Recursion # T( x8 J3 Q' V: z0 C) z, v ^; T' g7 G9 Z$ r# p4 S" y
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- B( r8 G& C) Z! S% T" o0 S2 Q7 O
5 b7 z" G, `8 R5 Z) k9 FIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。