爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 2 Z4 V$ @) {0 k4 y5 I7 F

+ i. J" X. N/ l  `+ R& u  ^解释的不错# w/ D  W( j7 K% O/ k; [
; V5 }: Q' R' k- ~" U; P; K- M
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。& u  M4 P# M  |
1 m% ?" `' o# e: b( G
关键要素7 ]) W' o1 q! @1 _% G* Q5 J
1. **基线条件(Base Case)**
& B% n! O; o: q) v2 _' {   - 递归终止的条件,防止无限循环
5 F" v# V) v5 H% ?+ |   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1+ q4 d6 }+ d2 B8 h  m
+ I. {8 z" f  I& g! \& R
2. **递归条件(Recursive Case)**
, r  y6 X& F( O) w" _   - 将原问题分解为更小的子问题
/ R% d3 b, a; n0 T$ u: X% b   - 例如:n! = n × (n-1)!
* C9 B8 s* b* c! I4 i# i+ |+ N& U" H& z6 Q- M
经典示例:计算阶乘
5 B4 Q2 ]" n9 Y% ]# mpython
1 |9 Z" i9 Q- W1 Adef factorial(n):
. l& R, K/ x. t7 K# j4 w7 z! Q    if n == 0:        # 基线条件0 @7 Y4 d; V5 n: c# N
        return 1
5 ?* y/ B# M$ k3 Z8 g0 A; P% R    else:             # 递归条件
) n- h! K! [) K  Y& p        return n * factorial(n-1)# t4 X% x4 l5 ?/ H  _5 ~
执行过程(以计算 3! 为例):
0 }, A+ c0 g( W, {2 c2 Z* E) ?/ Zfactorial(3)
/ ?& V4 [0 m; W. x3 * factorial(2)) o+ j) i, ]8 H
3 * (2 * factorial(1))/ x$ }! Q$ D9 G* g2 }. A" Z
3 * (2 * (1 * factorial(0)))' c6 E- }5 r: C7 g8 {6 W2 j
3 * (2 * (1 * 1)) = 6" v; {# ?4 J; Y1 W/ [, P' a0 _0 E5 U

' C$ P6 ]( J& D4 M& Y% _ 递归思维要点  O/ ]9 _- z7 ]8 X, f/ W2 [7 l, Y
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
+ f& z9 G& b: {7 P2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
( ]6 {# S# V! o3. **递推过程**:不断向下分解问题(递)
: D! G7 v- z+ L, v3 n5 P4. **回溯过程**:组合子问题结果返回(归), V& ]3 F$ m+ N& [- S# u1 y: p
8 z7 E- I. d. Z" j7 b9 P1 p
注意事项
0 R0 S2 ^! y4 E$ A必须要有终止条件- w; O) ~: H2 F+ T6 A
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)) @% p& w3 N" v/ C2 j
某些问题用递归更直观(如树遍历),但效率可能不如迭代
  H8 S7 `( C6 C尾递归优化可以提升效率(但Python不支持)
: E" x" |& @. u% F; N
7 p1 a, p) i2 V( k2 z! ~ 递归 vs 迭代
0 u5 d+ ?$ l5 ?4 S9 f|          | 递归                          | 迭代               |
4 e3 c1 q. q# b3 _|----------|-----------------------------|------------------|! n6 d& g) j" M) p
| 实现方式    | 函数自调用                        | 循环结构            |( r2 h/ G' G- t( j6 u
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
: ~- m( X8 w9 z7 O* s| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
+ y0 a$ A- ~& X7 || 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |& L' j) E( Y' P

4 D/ O. B- W; }  J 经典递归应用场景" T" D3 Q+ x( g- j
1. 文件系统遍历(目录树结构)- V$ p( m7 o2 p
2. 快速排序/归并排序算法2 J9 b1 f/ G2 H: E8 ^# M
3. 汉诺塔问题
# m8 X& m  G, Y4. 二叉树遍历(前序/中序/后序)
! [5 R9 N% i+ {4 l4 n( ?5. 生成所有可能的组合(回溯算法)
( s) i8 _8 s/ i% K/ ^  z0 T3 k. S9 Z* v/ n& g6 C" q  B8 g
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& E# B/ t' i+ m* [
我推理机的核心算法应该是二叉树遍历的变种。
7 r) S0 p. b. z: G: L( V另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
! ?( o1 R, y% F' }$ `Key Idea of Recursion
( j9 ]- U; `* r  }5 }& t2 |( J, J
A recursive function solves a problem by:
* W4 w4 I( s- O" K8 y2 K/ \. D' K8 {9 |% J5 E1 w* A  k
    Breaking the problem into smaller instances of the same problem.
; g* c9 O7 g5 `/ M8 A+ N# L$ x8 }4 S: m' p# v# n5 T
    Solving the smallest instance directly (base case).
* T2 F9 k% c% I
0 W4 ]& M5 r7 ^$ f    Combining the results of smaller instances to solve the larger problem.
7 {6 M9 @" w. S3 o# m* Q$ k( O- x" J3 z" w/ ?
Components of a Recursive Function
8 Y6 a( w6 M' I6 E
0 k( R8 X1 R* S" s, B" ?% F" k  H! L    Base Case:: d7 ~" j; S* L, c/ S

7 o1 `; R, w% b        This is the simplest, smallest instance of the problem that can be solved directly without further recursion., {4 W( k, J$ W! S/ O: H* m

! {- X3 R6 j5 ?# E. Y; j- Z% `4 V        It acts as the stopping condition to prevent infinite recursion.0 I# e+ U. D) V6 o/ T" q

( V' G0 ]9 M3 e2 ^6 r  O        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
# M0 J, n9 u; g
# e0 l: H% d7 J* G' ~/ r) _0 h4 A    Recursive Case:
# I5 h1 ]0 s# _/ p8 G; ~2 n8 Q
% b3 r% {/ w* L- M1 n  q7 `. ]        This is where the function calls itself with a smaller or simpler version of the problem.% j) a8 o/ y7 p" O' Z9 Y4 N) ^
2 n  @$ ^  H. z0 q; U2 j% h
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
$ V0 g) P" \3 q& |4 g
* ?3 V! B8 `) |6 U+ D$ {Example: Factorial Calculation0 p! J% ?, k; `, B- Z% n2 ^; j- }
; j' R8 x' x' W$ R
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:2 l# D/ k( B1 p. \

3 L# o" t, U" e) E    Base case: 0! = 17 C9 }* g% g9 X/ u! c. j
* t3 N& ]) f( E7 d' [: y/ Y
    Recursive case: n! = n * (n-1)!
1 M$ g/ R' f1 E9 @4 G" G3 B- f8 W
" \8 X7 ]+ u* @% AHere’s how it looks in code (Python):) i  e) E% Q* F  @6 a* a( O
python
. Y2 G% M- h0 q# B& ~" l( {8 u8 G# z6 U; @0 w* F3 N

5 |$ g" |$ u6 O8 {* w, odef factorial(n):
3 U/ ~! E, T4 z6 Z9 `    # Base case2 P  T0 v9 q- Z: O3 t
    if n == 0:" I2 Y7 a& g( `3 y5 D
        return 1
2 s7 U" E3 k: |! p5 j; b0 ]  U  P    # Recursive case
7 k! \1 x- @8 a    else:
/ A6 c+ p9 J/ o. U. u% q" H        return n * factorial(n - 1)* S: y0 W- C' {4 Y2 P
; g0 j! m; |3 }$ @* s" z
# Example usage
$ |1 c; }7 B1 l- W" cprint(factorial(5))  # Output: 1204 z# l) [) ~# U& |

- s) J6 Y' F& k& {2 X1 e6 hHow Recursion Works0 H1 J1 Z) u" e  j  x
$ Z7 }( Y- r+ x( u
    The function keeps calling itself with smaller inputs until it reaches the base case./ u% m! C. [& l" V- Q

7 N. l* u) H8 R    Once the base case is reached, the function starts returning values back up the call stack.  V+ j: u: E7 @  P' Y, n. Y
9 T$ ^; m* \7 i
    These returned values are combined to produce the final result.9 k( u8 ^8 s# W* [: B
: }/ }+ a  L6 J* g: K6 O5 H; i
For factorial(5):) w% E  ^- z5 h. D5 d5 k

0 C) J) C% j! b
% t2 w" ^$ l; Z8 L0 Ufactorial(5) = 5 * factorial(4)- W! N" r  G, b
factorial(4) = 4 * factorial(3)
. g# J$ L; f+ m* Sfactorial(3) = 3 * factorial(2)- M1 o& i5 f8 @/ y2 _+ r6 g# J
factorial(2) = 2 * factorial(1)
$ J" d7 ]3 ~+ O4 Jfactorial(1) = 1 * factorial(0)
: J, L# z- y- j$ z! ifactorial(0) = 1  # Base case. H- M; U: g1 A0 Y* \
9 D, Q7 Q( C0 u3 P5 p5 f
Then, the results are combined:8 h" ?* K! {" ?* W1 Y
$ j% e; Y' p' P  l& s

1 C6 B3 W; }7 K0 gfactorial(1) = 1 * 1 = 1
, D1 S2 e3 E. P% q8 T# h$ l9 qfactorial(2) = 2 * 1 = 2
; I( v: k4 @7 h5 D( j0 L7 }2 z+ rfactorial(3) = 3 * 2 = 6
2 u- l( P& U& |  f8 {factorial(4) = 4 * 6 = 246 F: `$ T5 H$ K  e+ r! J
factorial(5) = 5 * 24 = 1208 ]- Q0 q9 Z; u. \2 |2 T" z9 H' J9 ^

7 @4 F* U3 O* J  R/ YAdvantages of Recursion
6 [  R0 ]* G: `: ]/ [7 X5 H
! ~- t/ [2 k! B- F* c9 m    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
9 j+ q, ?' c1 N# O+ }/ f% R+ q5 _) l6 ^4 h6 ]  L. n% y2 c! I
    Readability: Recursive code can be more readable and concise compared to iterative solutions.2 ~& _" p# [  j

% h; D/ M" L- s; c4 pDisadvantages of Recursion
. f  S' Z0 O: }$ m8 E% {- {# N9 f! ?/ x$ H3 F/ ^& `9 U: Q$ v* q
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
9 [! _, G0 u8 h) }# B- U
& y4 \3 J$ Y; y( F/ \1 f    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 l2 }& l1 n. Z7 A% `
+ \# a2 V  ^$ r$ b; ]
When to Use Recursion
* K' N) Y6 @% Y0 N4 ^7 Q: u# X1 ]1 t; ~
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).2 x2 H+ K; [( n
" E9 [8 u0 R, f# n2 x# j
    Problems with a clear base case and recursive case.
8 [/ G9 M( M+ M* i! ?! v
0 V+ d' ]/ O: {# N- PExample: Fibonacci Sequence
5 r5 v/ f; `2 k) N  r( @5 O1 U5 L3 \5 S2 b# h5 w* b
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
$ i5 y; {) j. R* h3 s3 p
" f/ N1 O4 s- C( q    Base case: fib(0) = 0, fib(1) = 1
; U- p: T/ j8 Y- ^. v3 X! ?' K; Q
: p* E4 H0 @) ?1 @, F* v1 q    Recursive case: fib(n) = fib(n-1) + fib(n-2)# M( t9 t$ c" Z) Q

, M+ s( o7 d) W% h( }python  R7 Y1 C6 y2 K) E, ^
0 ~5 ^; H, x4 y6 ?2 \& d

: z+ k; x8 A0 `# |  ?; |def fibonacci(n):
* x; ]. V- s! X/ o) {  i    # Base cases- }6 C. L( p  |: ~5 j
    if n == 0:
. G: ]! m: V0 e8 o        return 0* P- N& h0 j2 V5 ?: ]
    elif n == 1:. F1 s+ F7 |7 W6 ?/ O* H
        return 1
; W1 J% _7 O: \: p" O8 n    # Recursive case
4 z! u6 z8 }4 ]! e    else:# P4 u& `/ x2 j. J
        return fibonacci(n - 1) + fibonacci(n - 2)
: O2 Y) w# A! ?, J, K& \
0 J* D  H* v  S) Z0 o# Example usage4 o9 D) m/ v2 a+ f1 k* x) `8 b3 `0 l
print(fibonacci(6))  # Output: 85 w7 O# L& M6 F3 f: i8 ^
, a4 k0 E9 {" P" I4 x1 g2 s
Tail Recursion
* |4 Y6 T4 k/ O, ~
% p# P) k# q8 L1 T3 L% l; _; gTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 G% j6 Y) R3 Z+ F1 \4 a; Z, e$ `
/ A$ d/ Y" q, j, ]! U1 }9 T
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2