爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
* n+ `. s- l  b; @: s7 i7 o! Q# L2 t- ]) C" s
解释的不错3 n9 t; Q) b, \* y
* V% Q6 |* x5 v' o- L) T' A7 V# X
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
! v4 I3 l4 _- e2 L/ O
' O/ D. _9 ~( }! f. s9 P 关键要素
0 U. @. I5 s+ S4 m- @$ t1. **基线条件(Base Case)**' l# T# j* I3 M! s8 \
   - 递归终止的条件,防止无限循环
  e' E7 G, {, p: g   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
. W0 X, B- T* S2 `
% X* I6 A5 B- `' ~$ E2. **递归条件(Recursive Case)**
4 ~& P% k, ^4 x6 A% }( c$ w- Q   - 将原问题分解为更小的子问题
* ]  ]  j' M5 A5 {1 d   - 例如:n! = n × (n-1)!- L& b' P' S. [
5 A' Q- }6 h. w& L
经典示例:计算阶乘
9 A0 w$ d- S! T9 N2 `1 o# apython
' p$ n" M2 `3 _* {- @def factorial(n):  j+ ^3 a* @  H/ N
    if n == 0:        # 基线条件
- Y+ P& Q+ J* \        return 15 `: ~  P9 t5 _' |: \
    else:             # 递归条件. H' a+ R7 K1 C0 R9 b: q  y; y
        return n * factorial(n-1)" I! r& G% l1 W9 f# l! K
执行过程(以计算 3! 为例):
: ]0 o/ L6 m( j7 _# Ofactorial(3)
) L/ \- K1 z" N! O( u/ O: _3 * factorial(2)
( Q. k* m8 m* {3 i& z* v' V& v, K) o3 * (2 * factorial(1))" {+ u$ _7 T7 f
3 * (2 * (1 * factorial(0)))
7 P! J8 s( m" V3 * (2 * (1 * 1)) = 6
" X( T! ^1 I- W0 X1 W
4 ~3 |4 n, v: H( M 递归思维要点6 m3 [7 w, V, F5 W+ I1 m* n
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
% e9 g: k3 n, n- I5 C) Z2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
& Y8 p4 w$ q6 q3 S* \3. **递推过程**:不断向下分解问题(递)
0 r, j: Y" `4 `& P4. **回溯过程**:组合子问题结果返回(归)
3 i7 ~; e5 l0 v
/ ]5 J; q* d; A: V" \ 注意事项9 v+ T) [, t/ ^. q' w+ V9 G
必须要有终止条件
3 e5 w  u4 g* R; x0 S! i% n递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
! ~) m5 \1 V& _: `某些问题用递归更直观(如树遍历),但效率可能不如迭代
& `7 p' c1 E3 O# M  p% s尾递归优化可以提升效率(但Python不支持): j# @  H! q4 N. G0 {1 @

: d5 v6 ^; t/ L) A/ q 递归 vs 迭代' W3 J8 _+ u: n3 E1 J
|          | 递归                          | 迭代               |, x3 ~8 \/ w& ?# V% s/ r2 k
|----------|-----------------------------|------------------|
8 F" Y" J2 l3 T* t5 O' d0 x| 实现方式    | 函数自调用                        | 循环结构            |
5 {4 G2 z" v6 b2 T( I| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
! I3 m; c! t; X6 h- H1 b! p. q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ q5 A- i4 }& [
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |4 n8 ~+ p4 }9 e: F; _

) F2 W9 ]; ~3 f& B7 O; U3 B& ?, t 经典递归应用场景
1 @2 `1 R. T  S  O1. 文件系统遍历(目录树结构)+ K# ^. Q  d% A: ^4 C' C+ v
2. 快速排序/归并排序算法
. y; y/ |$ x/ _# J' i3 Z0 A# l( `* ^3. 汉诺塔问题
) v0 ]9 F& [6 r+ W6 i% E4. 二叉树遍历(前序/中序/后序)8 x8 b' d* \; N; Z% x) W! N
5. 生成所有可能的组合(回溯算法). q: L* x5 |9 e2 a
1 [7 y# O% S( N7 e
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,0 @% n' \. s6 F8 t
我推理机的核心算法应该是二叉树遍历的变种。
- ?0 W2 A. g$ j% n! B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 X0 K+ E+ I$ u
Key Idea of Recursion" b# D5 U: e% v9 m2 ^6 ?4 _" F  F

: [! v" O% L' F$ x0 c& O0 G3 [A recursive function solves a problem by:' z  n  j: C: Z

7 s8 F) `, ?. b) n  h6 j    Breaking the problem into smaller instances of the same problem.4 U5 Y* g. f/ q  G0 h& ]

( a6 {4 Q& t" h* m    Solving the smallest instance directly (base case).
! z8 _3 P; K( O1 e! B
' B: e' u) d* {- w2 U7 f    Combining the results of smaller instances to solve the larger problem.
; x) @, p5 `, a7 O1 A
! ]# n0 K: E4 V+ [9 _5 R# OComponents of a Recursive Function
8 f0 M/ ?6 U2 x) I
. e; X  j2 d) Q4 c1 U* e: w9 `: e    Base Case:" f+ p4 L$ C5 P" o$ V

3 r% f3 S& b$ d; o        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.$ g0 s! d5 P5 x7 E
& q# s( p( C: z2 F7 J
        It acts as the stopping condition to prevent infinite recursion." V5 g* E6 L' B: J0 f) v

" [( C6 a; H5 |1 d        Example: In calculating the factorial of a number, the base case is factorial(0) = 1." H% ]1 d0 ]4 ]) Y- R4 ]

+ N3 V/ t3 W' u% ?1 h7 B; i9 S    Recursive Case:
3 D8 W6 d7 \& u8 i0 Z/ i3 d
& P, p& x' M& D& a' u        This is where the function calls itself with a smaller or simpler version of the problem.
. X0 ~- R- o' ^3 e) `* T( h; S0 d& n: b, d
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# ]' I- k( B# g4 W

6 e8 b1 n; D) J& ?  UExample: Factorial Calculation
% `, f2 W" _: O8 z+ C3 g- @1 p$ z5 B. X! r5 }/ B& Q
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:- D) s( y# x: M2 g3 n6 B
9 S8 G) f4 M/ i, J1 P' O, R
    Base case: 0! = 1& @( w3 T* ~7 p+ O: y* J% m
  |4 X. s, y8 ~( ^9 f! w9 z. _
    Recursive case: n! = n * (n-1)!
3 x$ O5 Z$ B. \4 [, j. |; M
0 N7 C+ \* `: Z/ {- C( WHere’s how it looks in code (Python):: M( b  r' b' h0 u4 q& r: Z
python
4 t" i1 F+ o- d/ z
! `' @/ D4 i. f0 ~' C
+ A: s9 {) B( }# m7 `def factorial(n):  p! P9 S8 j3 Q* n( F6 K
    # Base case- y4 N2 c! J- A1 }. S/ d
    if n == 0:& E6 ^- ~+ j# b- s! @
        return 1
" i8 q, J3 h: F# ]2 B% E, c    # Recursive case2 y! E/ w8 G: S
    else:
3 I9 p$ ~, t  M3 S7 z+ U% {        return n * factorial(n - 1)  q2 S/ C6 a2 \7 d! v  ^
* [$ ~* B, ]8 V! q$ r
# Example usage
+ ~$ f* w: v5 Rprint(factorial(5))  # Output: 120, Q+ ^$ K7 a% @0 d
" a6 C% z. }0 l- R' J6 O7 {8 m( y
How Recursion Works
2 _) l% j7 W5 s2 S1 c$ ]/ I8 ^3 x
+ Y. W; s1 u* b* C6 F/ I: M    The function keeps calling itself with smaller inputs until it reaches the base case.
- z6 B( c, u: x& j# f5 C% H. [
" k/ e0 C0 T  Y, W! |! B    Once the base case is reached, the function starts returning values back up the call stack.- x8 i6 j' L+ F) Y$ h) W
$ X: O1 ?3 F7 {/ J! s" Q
    These returned values are combined to produce the final result.
- u7 \2 n5 r5 G7 v
% j- r' K8 W9 q) KFor factorial(5):
9 @$ \8 T4 I5 T3 Q5 p' w' n. c7 s
; {$ A9 F) y1 J& I' q/ ^0 m- ~- z% `0 Y' _
factorial(5) = 5 * factorial(4)
3 X- L) M: s+ h0 E* jfactorial(4) = 4 * factorial(3)
4 |2 A. n) R$ |. Q% z) X% xfactorial(3) = 3 * factorial(2)
# o  `8 {  Q5 Q3 u5 Q. w  v& xfactorial(2) = 2 * factorial(1)
4 J8 v9 G: }  ], `1 A2 Z4 xfactorial(1) = 1 * factorial(0)
, I4 H/ j# i" [" W% ifactorial(0) = 1  # Base case! `, X3 e( T1 i4 N  _

* {7 A, Q3 T9 G+ l* ^Then, the results are combined:
% X0 P4 X$ |% ~- @6 S4 o, F3 U. [' `8 R. Q# n+ E) G

% r$ K) }  U: |4 ?& U7 k  `% qfactorial(1) = 1 * 1 = 11 t$ W, W- ~* t& l- b! s  W) W, M. @
factorial(2) = 2 * 1 = 2
: M, ]  c0 R$ X  b# Ufactorial(3) = 3 * 2 = 6+ |- R1 M. o* R4 `, N
factorial(4) = 4 * 6 = 246 e, d+ `( i0 d0 R- @& S
factorial(5) = 5 * 24 = 120# Y0 P7 A4 \( T7 n
5 d1 J+ Y! l, c2 A1 O/ B5 _
Advantages of Recursion
  K" n6 h& k& q1 ?6 S2 X* i1 y3 @8 T, d, }  v# `( N3 v% x
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
) F; u# D6 x8 I5 I! @
2 h- p, s" j  H( U) G* Z# @    Readability: Recursive code can be more readable and concise compared to iterative solutions.
/ q' L6 M4 S4 B* z6 r8 F. D
$ U- ^1 _! Z  h2 s# JDisadvantages of Recursion
- V! b+ `# O1 [/ w7 }5 J7 b; X1 `" l2 J1 c( v- b
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.2 O! X6 Z# k5 i4 |: L
- y# ~7 d& X8 s7 M- H2 t! d/ a8 Q
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
) I/ F, p. d# b/ Q
( p( f" S% e, O( v1 ZWhen to Use Recursion& f6 A& T% ], t3 L7 n% ?& e0 S( W
0 w- u9 P5 n7 W  C( b* U
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  r" d) x% k2 l$ r8 Q3 U3 m
9 E5 n4 @% d2 K, S0 C6 T; w
    Problems with a clear base case and recursive case.5 E& d  x9 ?: @, Y/ G

4 g* D1 Y5 Z$ C( A+ v6 }, b& oExample: Fibonacci Sequence" m* h  {8 _1 \% c. Y. S
5 B/ _" p/ E5 \+ T% S$ w
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:6 k! Q& ^: g/ [$ V$ `3 q1 h9 ^' j
3 G& _5 _3 `; k8 q: ]2 E5 c2 I
    Base case: fib(0) = 0, fib(1) = 14 D/ s* H. f: B' w5 A+ @5 E

  x: X! P- A$ T6 m4 H: V    Recursive case: fib(n) = fib(n-1) + fib(n-2)  t$ Y( B  X2 Z

% ~$ x8 R4 ~; n7 j6 u6 `2 tpython
" `$ L" C8 f# G) U5 c6 d% X7 b/ G% t( d8 X( e
& i7 {8 P! ^0 z2 x
def fibonacci(n):
$ g' p3 j: x8 C" B    # Base cases0 W; k; D) x& }! n! q) M, w, @: q. l
    if n == 0:
5 S8 j; e! p: q. Z" G' i5 ]" I! ]        return 0" `. B& E9 g7 o/ {4 F
    elif n == 1:$ X$ b1 w& \( A- ?4 L
        return 15 D8 V  l  g3 A, e
    # Recursive case
9 L! ]) A: _% k& P6 p- U    else:
! R  T* R% h! o1 j6 ^- m        return fibonacci(n - 1) + fibonacci(n - 2)
/ b2 m- ]3 [9 o) O6 ?. F
0 u3 G3 _8 I0 o9 ~. }" Q8 d# Example usage3 G/ A; f! w! e$ Z' P% \) z, z+ B1 G
print(fibonacci(6))  # Output: 8% ^  q( S7 J! u% T5 {! A( w8 w( H

9 R. x3 ?! O; k. p' F% QTail Recursion# A/ {" h& P) P% F3 D1 Y. g- w
- s% B) A' d  w! x5 G$ X3 f0 `
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).: M/ ?# Z4 n% b
7 h& T$ Z( e6 G4 f
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2