爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
2 j$ Q; Z+ T4 y% f% f1 L% K! t8 h1 x: p4 B/ e
解释的不错9 a) r- B, X& G) W- U1 m) b; F

% [; D" v; L8 C9 D  M. J% N: F递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。6 m, @7 B, l- h: `0 k4 q- M/ K9 `

$ Q" S4 I6 g6 u2 `! h' P- a 关键要素
3 _9 o/ _' E7 p) z$ C; R1 V1. **基线条件(Base Case)**
/ Z$ `- P4 M& \' p' q/ K7 I% U   - 递归终止的条件,防止无限循环
9 v  z& ~% ?: S' p9 ^, B8 n   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
8 i' L/ [, j" u' z
- D* I/ U: m! T" Z2. **递归条件(Recursive Case)**
; d( Y& ?8 e% B3 Q. \9 b3 \, D   - 将原问题分解为更小的子问题5 I. f) c1 V* S0 D! M) |+ q
   - 例如:n! = n × (n-1)!+ G, b3 T+ J# [" _

  j4 G* w2 L! m7 D# I6 z 经典示例:计算阶乘+ `4 V4 S" t, [" b  m) ^
python
* S% L# P- M3 Bdef factorial(n):! I9 n. j  m% n. d) o! Q( `$ O
    if n == 0:        # 基线条件. _. D) o- o+ i  \) g7 S4 i
        return 19 ?1 g# E- g2 l( u( y
    else:             # 递归条件
; n. X' t$ o) c! `5 B2 g        return n * factorial(n-1)( }) N8 n& n/ }& R" C8 V) O
执行过程(以计算 3! 为例):4 |: g( O* I4 q. H
factorial(3)
) w! ^& L: X3 c1 i5 S( q. i3 * factorial(2); m6 b! i) h0 y, j. \
3 * (2 * factorial(1))
  w" M! m* j8 |1 b$ F3 * (2 * (1 * factorial(0)))& m. }; @8 K: _" \5 e1 w
3 * (2 * (1 * 1)) = 6
% @( F( {6 M; m9 p' s5 g* B# V, j1 f- ~2 Z
递归思维要点
# S" l: o7 R# T" s# ?1. **信任递归**:假设子问题已经解决,专注当前层逻辑
. E! F$ T- f- g2 C" d! `- a2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
/ A4 T- p2 T9 X- }% F4 {2 Z3. **递推过程**:不断向下分解问题(递)$ E; C- {# @4 X9 R. e& y, C% z
4. **回溯过程**:组合子问题结果返回(归)/ n5 N8 p" S$ _1 g

# B- H- r0 y4 k3 Z 注意事项
+ ~$ @3 Y8 H' \9 X9 _必须要有终止条件
$ X6 Q( t  l0 I& q  V( p! \递归深度过大可能导致栈溢出(Python默认递归深度约1000层)9 v, ]7 \) I  s! D. u' ~
某些问题用递归更直观(如树遍历),但效率可能不如迭代, e$ ]2 R5 c) ~4 y
尾递归优化可以提升效率(但Python不支持)1 R6 ?* l2 J, A/ l& v- g$ p7 g9 T) }0 V) L
5 w' R; l5 G( ~) `+ l. j
递归 vs 迭代1 b! b5 C2 t2 S; I
|          | 递归                          | 迭代               |/ c/ N: N% Q4 c* P
|----------|-----------------------------|------------------|* A* C$ ~9 p( z" Q
| 实现方式    | 函数自调用                        | 循环结构            |4 Q* K2 \. c- k5 E' U
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |! _* u6 F: S/ x
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& p4 `* [1 k5 n$ x5 |  w* u' P
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
5 K8 B+ c' C7 x
9 F/ r2 W* [$ ]) j, { 经典递归应用场景
' b3 Z. O4 W  V1. 文件系统遍历(目录树结构)
0 V" x) z8 m: P5 q2. 快速排序/归并排序算法
3 T+ I8 O; x1 B2 m% y' L3. 汉诺塔问题
3 ?$ h- d  I/ Q, T; H% P4. 二叉树遍历(前序/中序/后序)% h+ _3 V6 N3 w0 x# I1 x/ ^2 {
5. 生成所有可能的组合(回溯算法)
. n9 o+ E3 q0 W! m3 O- s; U4 s( v5 D; k2 N" o, ^  ^
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,2 ?2 y' `4 _6 X7 }' I1 E
我推理机的核心算法应该是二叉树遍历的变种。/ O+ [* j+ `. O2 ^* y0 c
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
5 Y5 t) r4 N8 U, \2 O2 C  x4 e  v9 HKey Idea of Recursion! {8 x; d6 ~  _7 q2 G+ A

- Q1 K9 U. D* v: F8 Y9 k& ?3 KA recursive function solves a problem by:7 K, H( u" t% v, T* f# ^( O! @( r/ S

: k& I0 ~/ z4 u% {1 Q    Breaking the problem into smaller instances of the same problem.
1 j# I% I0 W' N  n& _) I7 |2 M, E) f& o0 z. k
    Solving the smallest instance directly (base case).
7 f2 h% H' d) K9 p2 J* J- j2 |" [* R" n, H. [
    Combining the results of smaller instances to solve the larger problem.9 u( p8 i4 Q7 o, i* @. O

, W& z/ f' j3 j/ J- |Components of a Recursive Function- s  G9 n0 {' [

/ S2 ?6 u* N% w! W" @    Base Case:" j# B2 l, |5 t. w# Y" e3 K
$ G& V* p+ A8 Z/ e
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
. ~6 N2 A1 x9 p. M% N; f+ K; b; D6 _8 g1 b: D
        It acts as the stopping condition to prevent infinite recursion.
" v* G7 T$ k# S8 L0 ^9 T) h6 t: E
/ O; E: N* y& T/ G8 E7 }6 e  N        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
: ]0 D9 B( c* F* K$ R3 M- Y+ u
" Y8 r6 ?0 D: ?) k% M    Recursive Case:
9 `0 T3 b  b/ y! Y& w' `: Y. k/ S7 |/ _6 L5 k1 ]8 Z0 d
        This is where the function calls itself with a smaller or simpler version of the problem./ f' T8 S' L7 r' ?2 F/ w2 `
9 d5 C. `7 z: j% l1 E0 F$ I" _/ o5 ]
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., h+ L3 v' J$ c( _  D7 j) v
, X+ [3 G' _9 z5 n4 L$ K
Example: Factorial Calculation# x$ g* h7 p( H$ I

9 E1 G/ T; U" M, n3 aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
+ Q; e, I; f% t; s; u5 l( G- `2 X8 Y9 }
    Base case: 0! = 1; a0 Z& B' A9 t1 k/ J: r

0 f0 j0 c5 |' ^( s1 `    Recursive case: n! = n * (n-1)!
) O) y. l! ^. E: y' _& x  J) q( V- `' Q2 u% U! \
Here’s how it looks in code (Python):
) o; v. w1 I$ xpython2 V. ]+ {& b6 L9 x

& V; S1 ^& ]6 R, s5 J7 M- ~9 p  n$ o1 I
def factorial(n):5 U# C+ b4 L6 W: q
    # Base case
' c) p8 ]( M/ `- c) p( w2 v# R' p    if n == 0:/ Z3 \& \/ z* Q6 K8 d7 r
        return 13 y" \# e! c/ |* E% T" P- Z+ H
    # Recursive case  R. V& @. q7 d, u; P
    else:% y4 _/ {( T0 z( G* Q8 i" N! @
        return n * factorial(n - 1)
/ @/ a1 b8 }8 d; {/ r: G( Y" D! B7 s7 s; L0 e) ]
# Example usage
$ k) R; u6 x. B, R% u, tprint(factorial(5))  # Output: 120) v/ h2 g! _* `3 l8 z: |
+ \8 V4 ~; x% r5 D& L
How Recursion Works
6 S/ ?8 [6 d6 Z$ X! }0 r) r
8 W* J4 l- @+ Q, w    The function keeps calling itself with smaller inputs until it reaches the base case., r& I3 t/ I* V0 i. B4 H
! h) f2 E: @8 R
    Once the base case is reached, the function starts returning values back up the call stack.
0 m, s9 h8 t- [, e
* O; \5 Q1 f- U+ }; L; c    These returned values are combined to produce the final result.
; A) M$ B. n& i! h3 l, o! n/ r  o( ~
For factorial(5):
0 _; G! U$ Z+ f  i- }# m' ^8 b" X) |5 W4 J% ]3 M9 i& g* J  |
- K& e/ k4 r0 j5 V/ {
factorial(5) = 5 * factorial(4)
, f+ P: f" ?- ~7 I; x# E+ f" ^factorial(4) = 4 * factorial(3)6 \6 R# m' Z, _! p1 J
factorial(3) = 3 * factorial(2)
6 a, L5 T  t% Z2 f3 Hfactorial(2) = 2 * factorial(1)& \4 I9 i2 ~/ k- ^/ a* s3 y
factorial(1) = 1 * factorial(0)2 [3 ^3 b( ~0 ~6 [; l. f
factorial(0) = 1  # Base case) d, H  D, |. B! G5 P" j) z
' t! A2 w" B' A  W3 ~
Then, the results are combined:! O$ V6 n# e5 J4 V) a

: d% \& {3 }, ?: {( ]
8 l, L- s1 D% i/ r. {factorial(1) = 1 * 1 = 1
2 a' R6 J% @( e' |9 D2 m+ Vfactorial(2) = 2 * 1 = 2
9 O% a  z5 `/ b9 d# J, ^# R- afactorial(3) = 3 * 2 = 6
5 h3 B: D0 M6 Z& T) ?factorial(4) = 4 * 6 = 24
- {6 ^& A! z1 ?, b% o" h9 B9 [factorial(5) = 5 * 24 = 120) J: v) }2 z' u1 j

1 t1 G: j: ?/ U- l7 g" tAdvantages of Recursion2 ]" n/ {) b; o  T7 t5 p1 w2 X, I

2 A6 P3 U- e1 V/ ~( o    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
: ]9 b8 i# s# m1 Z" f* |2 \0 K
; Z3 x0 A( B: [- d- r    Readability: Recursive code can be more readable and concise compared to iterative solutions.
6 c# D, O9 {9 z% @5 S5 w+ u  A; \$ L' K( L: g
Disadvantages of Recursion
$ b  E' Y7 R) c$ v1 a! L9 K& j! E* _& K1 q8 o( ?
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.  E0 m2 x5 ^+ P! R

5 z3 P& u  J7 N1 w* w# ]    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 _: h5 U' F' F. E
9 K: H; a* o, f
When to Use Recursion  L- m. I9 F  v) @4 Q1 ?& m6 x
5 i7 z7 q2 f# {! `, T5 P7 |
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
2 W9 \$ a4 K$ p; e: d/ y  n
  D5 S3 H$ L: I6 X( |    Problems with a clear base case and recursive case.5 O8 v, i# g- K0 J

9 `, i/ W7 h$ X! ~& y; m" S. S0 WExample: Fibonacci Sequence& J2 ?' m: K! c( H5 R' Z( n

3 I& A) [; @& IThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
; g# e" @$ v  E
. k* W, Y( |! `& u    Base case: fib(0) = 0, fib(1) = 1
# N, G* r+ {2 J% n% |1 S- X$ e6 P# B- N0 q! q) g2 q
    Recursive case: fib(n) = fib(n-1) + fib(n-2)3 Q6 E/ d% e8 {( m% i6 d

- b7 a: k& |4 [5 q0 F6 cpython6 _0 A! x2 c  b0 |

0 }% F2 m5 j! t2 a& B/ f! B5 h
7 |; P8 w  `  e( y# Ddef fibonacci(n):
( |2 i. a( [/ g1 [8 c3 U  G+ T    # Base cases
+ L! {8 K# G6 Z" e( x* i    if n == 0:
+ b# \! F/ }8 K        return 0
8 L$ r  J. p* i1 @    elif n == 1:1 o9 {+ P& ~. H3 N8 _+ D, u* O9 l" t
        return 1# ?0 q. f7 c9 U1 X; k
    # Recursive case
' D  N; _7 i6 G  z3 Z6 Y    else:/ e5 G1 }0 C8 W& W
        return fibonacci(n - 1) + fibonacci(n - 2)
" E9 k) w% J2 N2 s& T9 M( p. y' ]  r2 L8 A8 u
# Example usage3 g) ]( v& @5 Y6 a
print(fibonacci(6))  # Output: 8
, D1 D  Y' u5 O; a) Z7 G$ D: g! w/ @! T6 W
Tail Recursion
1 H' P9 v1 W, M" V
" U! |7 }: g; {3 G/ l: P9 iTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ X6 k6 F1 X- z$ f
: ~3 @) V& @; H1 p5 S' `7 C2 }9 ?
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2