标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 : E _3 s) e: \! y2 k, o/ D( d6 q- ^' M% V- R
解释的不错* U2 I+ |: H! W) k
2 G. c, T, S4 |0 b
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。9 k3 g$ }8 E X
* J" W1 T; L' i9 c) W: P# Y5 s
关键要素, m4 Z* }$ T; E/ O. ]: s
1. **基线条件(Base Case)** 0 K2 u9 {* x: A4 C4 Z - 递归终止的条件,防止无限循环6 U* c+ B" n5 F. `
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 3 Q, T. \& J3 E2 ?% i! P3 I3 T
2. **递归条件(Recursive Case)**7 @7 B# R! i' h- C& @# d- n
- 将原问题分解为更小的子问题 1 b4 q* m+ d; X4 s" e3 \# e4 ` - 例如:n! = n × (n-1)!' x! |4 @( h) d: Z
g8 g7 A5 o; v" R/ M" q! a' z
经典示例:计算阶乘! x: d( H2 c1 ]# k- k; r
python 1 W8 G5 {! t5 \' W4 _- jdef factorial(n):& _! C' K/ ?9 t7 P
if n == 0: # 基线条件 4 P# W- H$ q3 S5 N- P return 1 4 d+ ^- n! ]6 r$ k5 z6 D else: # 递归条件 ( ~$ q& y; K/ ]0 I return n * factorial(n-1) * v m6 e! ]8 f( N8 K7 e# d执行过程(以计算 3! 为例):4 d( u, t h( l9 }( D# t" U
factorial(3) , n I/ M6 d: f# c+ e4 i3 * factorial(2) 2 t" J0 R9 z) h3 * (2 * factorial(1)) T- B* {. _/ @1 B6 x0 `# A
3 * (2 * (1 * factorial(0))) 5 L7 z$ \3 Y3 C% J3 * (2 * (1 * 1)) = 6 3 a4 R% O+ L6 U7 d- m1 x 9 d2 a* G, y" f3 D! ^4 H, e# _ 递归思维要点 , r- h9 ]1 F1 E1. **信任递归**:假设子问题已经解决,专注当前层逻辑2 e( j$ @: P9 m/ ~% b: d- a
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)( `7 N; R5 v1 D, M* p, U9 _
3. **递推过程**:不断向下分解问题(递) . e9 R! d1 }9 O9 G$ p4. **回溯过程**:组合子问题结果返回(归) $ H, u! Q" z+ s' L' ? % ]0 l& n( Z: \" g d. L: A1 K 注意事项 N( {' B. q" }- D) f! h
必须要有终止条件* K+ y' ]# ~1 u" A6 w: K
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)$ t* \ ?+ b# n1 \& E; r3 q
某些问题用递归更直观(如树遍历),但效率可能不如迭代1 y j* m' z$ N/ f
尾递归优化可以提升效率(但Python不支持) 8 m( ?/ o/ Z1 J* l5 `0 U4 t" I5 O0 B" C/ U& Z% @
递归 vs 迭代 * m6 L- d1 R8 Y% g. c* g3 q- \! u" y| | 递归 | 迭代 | . a3 V0 v, o/ Z7 _$ E|----------|-----------------------------|------------------|9 B! g z5 l4 R. Q9 z
| 实现方式 | 函数自调用 | 循环结构 |' A& y/ f* O$ c
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | . p( y6 d' X* n8 X| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |! Z8 t% ?$ s* Q" n
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | - }* P7 i' v- m- s3 G2 p8 d: P9 T% U
经典递归应用场景 t0 E! {) @" t9 B1. 文件系统遍历(目录树结构)! Q4 l8 L- o. Z& b! ?
2. 快速排序/归并排序算法; D2 l9 w- }6 k& f. _. ~7 r2 d
3. 汉诺塔问题% a/ B( ^( ?8 v% o) _' }* `
4. 二叉树遍历(前序/中序/后序), a) _6 l& O k$ i
5. 生成所有可能的组合(回溯算法) 1 G( r# H$ o4 Z$ L; s h2 N- j" r3 K- ~
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, ) h' ~: [) H' Y( b) N. V; w5 \我推理机的核心算法应该是二叉树遍历的变种。 T; S; w# \* U6 D' O4 H- w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:+ \, X/ }' I/ P# Z0 z
Key Idea of Recursion * P6 Q; i6 R ~3 Z* w* r I 2 s w$ j8 v2 q1 RA recursive function solves a problem by: ; h' s/ m) s# U! z2 M4 d U* ~! T+ o1 f5 f" O# u Breaking the problem into smaller instances of the same problem.( M$ G% S! G, S/ J2 ^
4 [ o( o, c9 @9 F2 Q
Solving the smallest instance directly (base case).& \, K4 [( I7 w! L
5 l( m/ Z: ~0 ^9 F. \$ E* }
Combining the results of smaller instances to solve the larger problem.+ M2 a9 R" N9 Q. z/ {
6 E( y4 I( D" H( } i
Components of a Recursive Function " w% j e! V# C8 @) x; u: T % r5 [0 V: D$ V9 u- F1 K8 r Base Case:9 H: j# }; T$ o" v
; K% S4 {9 h6 b3 N& w This is the simplest, smallest instance of the problem that can be solved directly without further recursion. * K* u0 |5 K! Q2 Z/ x! I3 y. }2 o' |. j# Q: P+ s
It acts as the stopping condition to prevent infinite recursion. 6 J+ r( m$ I9 g3 o. A$ {6 @8 d: I0 [+ f
Example: In calculating the factorial of a number, the base case is factorial(0) = 1.6 ]: h3 }. ?" D/ s
: g1 s% i! h+ k; \' }, `
Recursive Case:- w8 r2 E- J0 r
( \ I* S+ H7 V/ l6 o' `5 b This is where the function calls itself with a smaller or simpler version of the problem.4 e9 v H& @, d5 ]
# n' S" `) P+ X. x
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ ?$ A+ Q0 S( t
& g! I& }) ?( c# b( @# [The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: , c g3 ^5 k5 _+ z# h" v) O& L, v! a3 L2 R' [" m; y
Base case: 0! = 15 F5 c7 B& @2 `
" J! E7 r, G& i1 X7 X Recursive case: n! = n * (n-1)!6 c; p- |4 |$ n0 L" @5 B6 \8 P& S
, a6 }. q w/ h1 W B6 b" w( FHere’s how it looks in code (Python):: A0 o" H6 ~+ ^+ j* h
python' f7 v/ w' n& p8 d- c
8 E+ p% r3 G( @! L/ I; N' `/ L
% f1 T3 W, }2 k" ? ldef factorial(n): % k0 Q" N. C6 ?# z, `0 m1 H # Base case' _- P+ @1 q! K0 D( A7 m
if n == 0: . d! q" ?3 c% {, m! R return 1 ! I' z' `" k% r; s # Recursive case 7 F# k! p- ^6 E% d/ q5 {: r else: 4 D% V' h8 C C$ { G7 F: ? return n * factorial(n - 1): R3 o$ Y" \4 T
( D" h4 q4 ]" e: s1 {
# Example usage . U' x: C" {0 T3 o+ ^$ fprint(factorial(5)) # Output: 120 ) l9 { L: Z" |. [/ U 6 `( l: f2 l. I: I9 s3 KHow Recursion Works4 `0 G1 T# K' `! J! ]# w
1 ]" o$ u$ u+ ]9 K3 L
The function keeps calling itself with smaller inputs until it reaches the base case. ' W+ g: u) Y8 C4 O& j; _" B* P. ?' s! j1 G% F( B5 J
Once the base case is reached, the function starts returning values back up the call stack. 3 g( k* P8 N5 I A; T7 a3 d, M, R: v; T3 [4 S" N2 M. D7 P) {
These returned values are combined to produce the final result.8 C. k p* x3 s) l7 @4 G" o0 h
* h0 p7 A0 h- R8 `' I! hAdvantages of Recursion! P& [8 F6 [( f( `" }& w5 n
" _3 j. T! [. D3 E0 w
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ _* A# A2 H9 ?
# ]- G( @2 z4 t: X1 |
Readability: Recursive code can be more readable and concise compared to iterative solutions.' w3 Q/ E7 @3 e- W5 {; j8 X
; y- p B1 S+ V4 l: j. c# uDisadvantages of Recursion+ A; M: P( M2 h' U% B' h
; C! D! r2 g/ Z Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 [- F: r, t. N& y
% s- r3 o* b6 l+ O; B Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* q- h5 x; J7 ?' |3 S
. u4 M, @; r V d% @0 m
When to Use Recursion % b9 K( Y% m: q4 c& f # Z$ g5 Y. _; V( D! v( O+ X# ]5 e3 |# x Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). 7 a, ?: A: F- x: u6 m! ^4 q( { 7 I. k7 Y4 {* E2 ~* v2 e8 n Problems with a clear base case and recursive case. ( @* L7 H: k& G% N- L: u2 ~% L$ J+ r) Q; x. E- K0 C
Example: Fibonacci Sequence 5 V7 |4 |$ M* q! o+ s ?2 Z- t1 p4 {; c, G. ?
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) [; r' h0 b# b) \) d
, u. x/ L/ Z* n3 S* O" v
Base case: fib(0) = 0, fib(1) = 1 , i* p- k* `- m# U! w z ~3 U5 a" J ]! J
Recursive case: fib(n) = fib(n-1) + fib(n-2) L1 V6 {1 u: Q
4 g6 U1 f5 m* G5 J7 f
python ' c4 g. O8 P- z0 S; I; O7 c( x3 f
1 h/ {8 s. c2 W) b" cdef fibonacci(n): ; ~' n. \0 Q4 v, w8 _9 R/ L. Q # Base cases8 ?0 z! G9 c; Y" G% ]1 ~' M
if n == 0: / A/ b/ y3 _! P return 0 " O! r* T9 l4 H* P* J8 e elif n == 1: 9 V9 |6 U- ]- @0 J' O+ {* `+ j return 1 ' u" ^& ?8 n0 w+ R" L # Recursive case9 _8 r1 s% W9 H+ U' c2 ` t* G
else: * P) U+ U& |* t* P return fibonacci(n - 1) + fibonacci(n - 2). f2 U3 G9 C+ d! D2 |
9 a+ Y+ Z9 ?: n# Example usage % r) ^6 S( |5 Z1 Z; Pprint(fibonacci(6)) # Output: 8 6 E, _, y* w/ j* Q0 h6 L9 F& v2 c+ L. ]# o' b1 H9 z0 _! O
Tail Recursion" k0 D$ o, W! j5 G2 Q8 j
$ F' z( K! y$ D7 T. l' G' m
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 9 a5 ?7 T! c8 g! [( R/ z1 M0 r) {0 g
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。