爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 & s1 X' o4 c. b& y* }. n6 s

( O) q+ |& c* k& @' ^4 P; K解释的不错7 c0 N0 `4 k1 M9 U8 ?3 `
: k0 @& |2 ~8 E2 c  C) p
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
2 |  V  {% E9 m& I% C0 J0 k( v& r, U( y" s
关键要素
7 _, S6 r% @( ~2 P1. **基线条件(Base Case)**
  y5 F- F; n, J, z' h# g- F   - 递归终止的条件,防止无限循环
7 I7 }& L! m. D1 l8 _3 K   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1- q; d$ b4 O) J# o2 i$ e" l
) f2 c5 ?6 j' s) E# g1 m
2. **递归条件(Recursive Case)**
/ h  u* K1 }0 j6 n/ u   - 将原问题分解为更小的子问题
: C, ?7 W& i+ H, I- E   - 例如:n! = n × (n-1)!
" d! [. k6 i  R1 ?) y
- y3 A" L7 y, ~ 经典示例:计算阶乘. _5 b" {) @, L% w; ~4 v8 m9 o3 B
python
  S& a9 S' P( Ndef factorial(n):
* b8 S3 x6 c# `# }: A    if n == 0:        # 基线条件
! F- {8 \$ F2 q" T' s        return 1
6 }, r) V. N# l& \  |2 e    else:             # 递归条件4 l8 g, h5 |9 X
        return n * factorial(n-1)
9 I8 e7 s( O. r& |6 Z. E执行过程(以计算 3! 为例):3 M8 L" i6 _' @/ q2 E
factorial(3)9 _! H% ]& J5 i9 o6 x7 S$ T% p  `4 A
3 * factorial(2). V) X5 w2 @$ I! p; h0 h
3 * (2 * factorial(1))
7 v& s' g/ ?( k2 [3 * (2 * (1 * factorial(0)))
( h; U# V7 y# M6 P3 * (2 * (1 * 1)) = 6
* m+ h5 I0 S: r3 v& N9 H  [# A7 Y: |, [9 f+ A
递归思维要点) e7 _* \+ M# W8 V+ ^
1. **信任递归**:假设子问题已经解决,专注当前层逻辑7 K3 W, p, ~8 }/ r2 g
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 G1 k) b2 W& J4 Y
3. **递推过程**:不断向下分解问题(递)0 c; P4 J* `& _/ H/ Q* s
4. **回溯过程**:组合子问题结果返回(归)
0 E( a: ?& B: j+ N  p8 n0 ~0 B! x$ a& M: s
注意事项0 m: H5 `( I5 V5 R( h$ Y1 e3 u* g
必须要有终止条件
7 x5 ^/ K/ g4 z8 N6 _: x递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
6 M3 e# m" U2 t- g# i! k' u某些问题用递归更直观(如树遍历),但效率可能不如迭代
2 k; l  O' e. C, J6 ^& g尾递归优化可以提升效率(但Python不支持)
; q- @" d* I* D. d3 `3 M6 ?: z/ x# P# L0 M
递归 vs 迭代
8 ?6 H% _' j7 @8 e8 v+ z|          | 递归                          | 迭代               |
9 K9 ~! p2 E, x0 M|----------|-----------------------------|------------------|: s9 w( v/ f7 ]/ }2 K4 Y( L
| 实现方式    | 函数自调用                        | 循环结构            |
7 _$ H% ?5 h0 l1 m5 s| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |9 f- {" D; N4 m
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
; a4 _8 d: f' ~) G; d1 F) T" v| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
9 ]$ |4 Y8 j+ l/ |, x; N7 U! _+ M4 L" O9 [8 A  G6 D
经典递归应用场景, @$ l7 v9 X$ v5 j* F
1. 文件系统遍历(目录树结构)
8 N' U* L3 J& @) T$ p9 A2. 快速排序/归并排序算法
% d! `! X0 G' V: j0 B! _3. 汉诺塔问题
( a& q1 S  P# C8 u4 _, E, |4. 二叉树遍历(前序/中序/后序)
' o& Z& u2 X1 N% n5 ^: g' Y+ k4 s5. 生成所有可能的组合(回溯算法)
- e" V4 G# ]7 I
) p9 E) M/ |: b4 z* Y# \: h$ a试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒," h6 I, K0 W% _) Q
我推理机的核心算法应该是二叉树遍历的变种。
) Q  {+ S1 _+ i% O- `: }: @另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
- O) B) @4 Q8 TKey Idea of Recursion
$ R! U4 f7 q4 P  W
$ k+ G: f& G" M2 j% ZA recursive function solves a problem by:2 y* d9 g" Q. ^; I3 X% u; Y3 G
2 y: H2 r9 t5 h! ^
    Breaking the problem into smaller instances of the same problem.6 e, _/ ]3 m. L- d  z4 s2 j2 w
7 w1 W/ k# Z. K  _
    Solving the smallest instance directly (base case).8 c' H9 _! ]* L3 y% C

' d* {, T6 ?" V; ]    Combining the results of smaller instances to solve the larger problem.
( S+ \  p4 ]' H/ G
1 ?% k: n) g* W" N- LComponents of a Recursive Function2 I6 ]6 O# U. p4 B- j/ e; r

% k9 d5 Z& \5 A" W$ X" g; `    Base Case:( X( Q# {- {% H8 W% z! j9 [
) ~) T1 m8 z9 x7 @$ t3 z
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
- m( \- q! F" p8 }5 B
2 V" y- }; t+ X+ V        It acts as the stopping condition to prevent infinite recursion.
$ F0 d5 U& w5 N$ P, k* [
& H  n7 N5 d0 t( v        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; q  e+ u' T1 j2 |
1 N7 \0 p. o+ R3 ?) ~. `
    Recursive Case:
. |% R; F4 k8 r- N: i* T3 |, D- v: P+ T+ d
        This is where the function calls itself with a smaller or simpler version of the problem." y& k$ E( o# \

) y/ I3 S& Y! s& `7 I+ z        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).7 u* a, \& _" z9 y9 i2 k! [8 e

# B; a" W& I/ B* o% gExample: Factorial Calculation
% A7 C/ n% r' y4 V! |7 Y5 \% x6 l) i6 H/ c8 Z3 e0 |
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! W; c6 J7 r: A; q" {7 J4 F

( n# ]& r- ]3 \5 y' u    Base case: 0! = 1
' O  H; m' s/ J; Q: O$ p9 G9 u- t1 Y) O# q- T
    Recursive case: n! = n * (n-1)!! J2 q8 E* s4 o3 S3 Z
9 d) }0 m' r7 D
Here’s how it looks in code (Python):
$ C# J- n/ n, Z% d8 N( f( Apython% a5 m  _5 M* d% Q! C

7 r% h3 i  M/ P5 o4 L/ e7 ]4 |/ A/ K1 x6 z3 }$ b2 y
def factorial(n):' }) ]5 }" U) }' F
    # Base case) ~" D7 z  [' q( \, ]
    if n == 0:
: j/ a2 n7 {- w0 b  K1 r5 C        return 1
9 I1 P" s! x; C5 W    # Recursive case
, C# S. R7 G6 a8 c6 ]    else:& t) d/ \# S7 c$ U0 I) w
        return n * factorial(n - 1)  A# g+ p$ ]) ?& ?6 A7 m' n

2 |& t/ u3 B2 n# Example usage7 t. z4 z  z+ ~' B) h
print(factorial(5))  # Output: 120( o+ w" w5 \- `% g

( o# t5 r; K- q- U* p# b8 {! ^How Recursion Works8 R& J, h( ~% l, X7 h

; Y9 N5 x1 b5 ?' g2 }    The function keeps calling itself with smaller inputs until it reaches the base case.
5 W# F. J& K$ N: b/ k4 C3 t
2 ^, R0 E$ X! i# h1 |( S$ h    Once the base case is reached, the function starts returning values back up the call stack.6 l! t* K9 s2 _  T2 G! m' x% W

3 [. i/ `6 u# |7 R7 x( R0 v4 _: V    These returned values are combined to produce the final result.* t4 A0 ]9 E- P* e3 ?% [

+ ]; j7 K* z$ g5 p) ~3 UFor factorial(5):
& m1 X  m2 W/ S6 X1 J
" w7 q$ S4 Q$ d4 r+ W
. {+ y  ]: K+ B( O. @factorial(5) = 5 * factorial(4)  o; i$ Y- j' S
factorial(4) = 4 * factorial(3)3 f7 m, L, F  Q9 U  J) \- I
factorial(3) = 3 * factorial(2)
2 }9 E* u: A% w/ E# {2 hfactorial(2) = 2 * factorial(1)
$ Y7 G# u: c5 u' Y$ [factorial(1) = 1 * factorial(0)& N: N9 `( R6 {, p9 z
factorial(0) = 1  # Base case
0 T# T2 z0 X+ H( g& [1 m
3 |, n1 k' {6 C' HThen, the results are combined:" Z1 q& J. R! Y* b& z& B
" s* g( |% t# @$ a( t; p, ]( N
/ n: y$ @9 s; r% g4 ~
factorial(1) = 1 * 1 = 1: H5 g2 _9 m- W
factorial(2) = 2 * 1 = 2! W* N4 p2 Q8 ]! w1 \
factorial(3) = 3 * 2 = 6  ~1 W2 N" t# b1 y8 [
factorial(4) = 4 * 6 = 24
5 @0 F. Z# w5 B! ]$ J* ufactorial(5) = 5 * 24 = 120
! v& g/ k! c. D' M& C
; J( O- R8 p6 J5 V5 o6 M) `Advantages of Recursion- c& Z( k( T* E+ O6 f
: C4 a7 Q! T" |5 `
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
; H" `5 q, c* w) _
) b2 f* f9 T, Y    Readability: Recursive code can be more readable and concise compared to iterative solutions.
  n1 I9 H+ u; w& K! B* X# D& E, w+ c6 R# K! a8 H9 X7 h3 r8 W7 V# H
Disadvantages of Recursion
  R# D0 C/ G' I  `8 q
- \( i) ^- Z0 ^0 {' d    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
6 S. ~8 ?. {6 _+ k' z1 G, o7 g- ]5 f8 p, L. P7 O+ @' C
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
0 g! |# z( r- D) N% C# i" O7 E* k* V0 f1 O7 y
When to Use Recursion. I; d4 Y$ Q- G/ h2 w$ \9 e/ K5 I1 O

' X9 Q4 v9 l7 @  l  {0 a3 u    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).! P/ _3 u- N/ D; O, @* E. w. ~

1 X* W0 i: e' ~5 ]    Problems with a clear base case and recursive case.
) E; |" H/ s# [" ~4 V* q5 D3 f( U( y' R  G! M9 r
Example: Fibonacci Sequence
- s7 n' p: a2 O. R: i9 m8 i- I
6 n$ T$ F7 H6 Z9 @+ d, f/ F# A. X% y* DThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 d( X# ^$ b3 t

! u. `2 w; u( `' l" K1 W- Z$ y- ~    Base case: fib(0) = 0, fib(1) = 1
! X, Z+ B0 p# x; Q. s6 d; {" u+ w8 o) `+ m+ r1 Y
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
  n+ s3 K9 @" ~. F. C# J# a  K/ b2 J. P3 D
python8 ?- c. S& t: q6 G5 M' }3 E
, I7 e" Y5 u' V8 o# f
. I5 o! Y, {: d8 u8 G
def fibonacci(n):
* b. W, v$ g0 m. x# S: ?    # Base cases9 R- U  c7 U. u+ ^2 a. g9 T0 e
    if n == 0:
# y8 A. o7 k6 V" k3 p7 k( y! r        return 0* }8 {& D0 l& |
    elif n == 1:
* C8 C+ w9 F: s5 h" d        return 1! e. k8 A2 ~  z6 u# D' @6 `$ v
    # Recursive case9 {. Y. F& }3 i. H8 i
    else:6 F0 i  Y# }- c
        return fibonacci(n - 1) + fibonacci(n - 2)# p/ u) H1 ^3 z0 V
# Y6 N# k3 l5 l. q
# Example usage8 P: c' ^4 f6 w! F
print(fibonacci(6))  # Output: 8
. V6 m$ t5 s1 R, Z) v7 z; R! H3 J
Tail Recursion! N7 C# i& u8 [. G
4 x% {) l  Q) n( J8 @7 y( C( S
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
! U3 h4 b0 v1 I  c: }, u0 E( e+ W5 s/ T9 i4 ?1 Z) x
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2