爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
' y4 ?. O+ m- }7 l  Z( C4 R+ C% e5 T- t; o
解释的不错
* y! }: K4 R  @
' x2 \2 |! W$ x. c5 z: V递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. t* ^1 u! i7 k: S6 S. L" q. |- L7 K

9 R/ S/ H- X% v3 |! V% j, H 关键要素
7 z/ w+ b" ?+ K2 h1 t1. **基线条件(Base Case)**# E5 c: S. B2 d' c, A9 E2 F% m
   - 递归终止的条件,防止无限循环. P1 \8 Q# N; L' W: a0 G; {: f2 n
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1# I) B) x0 d. a8 w1 I
) V3 e1 j# b6 n8 J
2. **递归条件(Recursive Case)**
4 r6 P$ {1 U: y; y: c/ q   - 将原问题分解为更小的子问题
( u% R* ]+ s/ M; T8 t: K/ `- n   - 例如:n! = n × (n-1)!
* P: A! u; T! U) S" C* \3 {0 N$ D! Q7 g; k0 S
经典示例:计算阶乘
  h7 l" g- U( E4 fpython
1 a7 g$ }- }- Z8 M3 h7 Adef factorial(n):
( V( d- Y7 y. z! y. F. C; O    if n == 0:        # 基线条件. g& {# R/ _) l7 c0 k
        return 1
9 s9 Z9 }, \/ R9 m5 T2 ?    else:             # 递归条件
2 D+ R+ `4 w6 ]/ L9 p1 K$ u8 e        return n * factorial(n-1)
/ z' g& k3 y8 m执行过程(以计算 3! 为例):
1 \) X$ t' [, M4 b7 }$ |factorial(3)
& {% \: [! ]& d6 W- d6 M& w( W3 * factorial(2)
! I; c- H( i& A! n3 * (2 * factorial(1))
* ]: y7 b- f. Q' K3 * (2 * (1 * factorial(0)))
& B7 E; }$ j* J$ ]  T3 * (2 * (1 * 1)) = 6
% c# b, ]: {6 o2 O) _; Q9 @$ K9 x
: K& t1 e8 d6 c 递归思维要点- l5 l6 d: r$ e; |7 W
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
3 t* L8 l6 Z) y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)5 ^* x: n) J- d1 D) w6 O
3. **递推过程**:不断向下分解问题(递)
! L3 [: [: y, I9 \" b6 {4. **回溯过程**:组合子问题结果返回(归)
# o0 U1 n3 s1 N" L5 T& Y
' v( x' `( t* G  F2 U8 y 注意事项/ f" D- G$ r: E0 X5 X' j7 E
必须要有终止条件
- A& k' `% t; s: h" v1 d- K递归深度过大可能导致栈溢出(Python默认递归深度约1000层), m# g  N7 l: ~( h
某些问题用递归更直观(如树遍历),但效率可能不如迭代) Z6 r1 t0 `& g+ ^% P- M
尾递归优化可以提升效率(但Python不支持)
4 b  H7 k: u% }& o  \" g, u( j; a
7 }4 }% x' L" L6 {0 u" w 递归 vs 迭代
* g/ q6 P2 b5 n% z& j: ||          | 递归                          | 迭代               |
4 m' ^5 {0 [0 P/ C$ Z|----------|-----------------------------|------------------|
4 |" H! ]" m" T5 m4 J  E0 K& S| 实现方式    | 函数自调用                        | 循环结构            |8 f) V, M, r0 U$ p, U$ Y- m
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
! z5 g3 U3 X/ e- i/ _7 H& F) c| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" w/ N: ~/ D9 t! v- a8 }
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |! x/ f, F2 h- ~+ ?* R6 P

9 a/ f" S/ H( D2 u 经典递归应用场景, J" {7 h) @; y9 c+ A
1. 文件系统遍历(目录树结构)7 |4 ]9 E7 @+ x3 M5 \9 a3 Z+ L
2. 快速排序/归并排序算法; B9 T5 n9 F$ f( E& L0 M
3. 汉诺塔问题, T$ S2 b# T$ Q; {
4. 二叉树遍历(前序/中序/后序)) T6 y% Q7 Q: Z( C/ ?; `" {
5. 生成所有可能的组合(回溯算法)
" g  y* @7 e9 c) ?0 |0 {% y1 {/ h. d* I+ Y7 u2 M
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
; i! x: N0 ^( l我推理机的核心算法应该是二叉树遍历的变种。
/ v- c8 ^2 G! p3 G- W另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
. D' U/ Q* I2 X8 S+ |, B5 IKey Idea of Recursion- S$ `$ a7 I. C1 V4 c: {3 {

6 z: K+ w/ a- k& xA recursive function solves a problem by:
- A+ N3 x1 A  q7 l* w- z( m8 h
. j9 Y* W% W! R- N    Breaking the problem into smaller instances of the same problem.8 u  P/ |) S$ l7 K3 R: j7 j8 s! a
3 ?: N; [" k! h# P6 s( }# r
    Solving the smallest instance directly (base case).
, ~) m2 W% f3 F6 z' R: ^) r6 G3 P
9 B, n& {4 ~% M" y7 A' p    Combining the results of smaller instances to solve the larger problem.& d0 K6 h- E( m( ?6 t
/ t& Z6 Y. W9 u% ~* C0 e9 ?" v% S
Components of a Recursive Function; d) T, ^  Q( ~) r7 K) d. F

: }& p  A" |- @- C/ I0 _3 _; r* K    Base Case:. q9 n. t$ D$ o0 q0 K! g5 v  q
5 b6 Y+ q. S( g$ a9 M
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' R3 F. i( `" a, Z& ^# ~0 O
0 t: y0 F* X% Q4 k
        It acts as the stopping condition to prevent infinite recursion.
+ P. F' P# ^2 g- k; M& I% S8 z3 F7 ~6 v
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
& F, m1 c, `& J* S  r# @% M$ d- I2 k# o
" g4 e/ x1 P+ q0 E. r+ I    Recursive Case:# a4 Q& N6 Z) @& V% c0 z
% F0 V6 Z5 _* q+ y
        This is where the function calls itself with a smaller or simpler version of the problem.
) {& x1 @/ x( R! f1 X/ l+ n$ g8 F, C- A
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
* J' Y3 n" _5 y0 o$ Y8 w8 p% ?' q3 L0 d
Example: Factorial Calculation
$ u3 o) I8 H3 C0 H- Z/ e: D5 Y+ Y. Q. d' O- Z$ S( `& T
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:( G! k. }6 L. ^7 \* p
2 [) M8 s# s4 S# r7 F0 O
    Base case: 0! = 1
8 w/ H% t# a# ~  c# I( e# T) ^
5 B5 R  g  u. d6 D; v" m& Y    Recursive case: n! = n * (n-1)!6 F+ R* P! ~: I0 l
' M& ~5 z% r) X& a4 U
Here’s how it looks in code (Python):, U, J& D- l/ h/ d& R
python
+ n, S& q9 C" e  S8 b. Q- ?- f9 ~3 `5 X& N% T$ s" p

; x1 f! l! K% {6 @! i! Vdef factorial(n):
$ c1 i' j+ o' ^    # Base case" D1 M  M5 z* `. `: f
    if n == 0:9 [3 ^9 `6 L: a6 W, D) C
        return 1
$ N2 l7 T% X# F    # Recursive case1 P9 R$ G$ h( P% T& x1 @) b
    else:4 h/ @6 g' ?7 V4 [; G9 Z
        return n * factorial(n - 1)
8 @3 M! L; F9 F/ S/ D# y- u% J) D5 ~  K: [5 P. k
# Example usage
; B% J: M3 Y, B  e, Bprint(factorial(5))  # Output: 120
) ?9 h9 x: ^9 H% w5 v1 o! a0 N2 [0 i5 T/ X& G) H' Q
How Recursion Works
3 P6 O! t( D: T9 I% E3 w; h. D+ f1 u6 t8 ?
    The function keeps calling itself with smaller inputs until it reaches the base case.
  P3 W8 y4 D' `$ B& R' H3 ?! @4 a" k8 k
    Once the base case is reached, the function starts returning values back up the call stack.( {( B' }: k; N$ }/ u+ v

+ ^& z$ u9 t3 V/ f    These returned values are combined to produce the final result.
+ n1 \5 D- |- v8 k7 H
% ^8 [3 S9 f/ Q; WFor factorial(5):* o9 |7 X; K" q- p& S! u) A# [. L

) q: D$ B: P2 E9 d! v# @" ]4 g& @1 h* Z" {, c) Z" f9 [. U
factorial(5) = 5 * factorial(4)
3 d0 G8 j2 o- H. Dfactorial(4) = 4 * factorial(3); L/ y+ ~1 y" I6 Z& B
factorial(3) = 3 * factorial(2)+ y4 L! v5 A4 |4 z2 q
factorial(2) = 2 * factorial(1)
) `. D8 v1 {+ Bfactorial(1) = 1 * factorial(0)
, L% ?0 @* L* `$ i! nfactorial(0) = 1  # Base case; C# `3 d* k( W2 V; M0 p
4 \& \% d' e, q/ Y
Then, the results are combined:
  ^& ~; E. w: W* @3 m+ s
+ h) d4 B/ q5 ~% U# ?
% ^6 x9 h: ?9 N# yfactorial(1) = 1 * 1 = 1" y1 `+ _0 F8 q! y- u
factorial(2) = 2 * 1 = 2, Q  g* Z. T& Y8 S9 x
factorial(3) = 3 * 2 = 6
. ?( e& n; y$ Gfactorial(4) = 4 * 6 = 24
8 l9 `1 G* ^( Cfactorial(5) = 5 * 24 = 120
) j2 L% q5 F( u
/ n# J- U, h7 ~: cAdvantages of Recursion: ~  i/ x9 t4 A& ?2 n

% x/ r* g8 H6 }/ O" S    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
/ l5 N- q9 `1 ]0 U5 k2 D  N" H) m4 t. ?7 U" l* _
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
7 x1 P9 i& `" W* x3 `9 U5 i" k5 D; d* F( F& i+ _
Disadvantages of Recursion; f- B; f- m) K4 O
9 W9 E. b7 d9 A6 Y
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.. P' r+ Y4 P- F7 p6 O7 j

! H+ a- L* g1 J# {# \9 u    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).  y5 c9 G( M  {

) M# {6 h" n+ C$ tWhen to Use Recursion
8 u4 ^5 w7 k% K$ ^# `' _( @& [* Y$ j+ ?' w* ]5 K) j! Z! O9 e
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
, V/ h* n3 }* k( q: R( D
  H# E# \1 \* I% |6 _2 Q    Problems with a clear base case and recursive case.
+ o. g' @7 f3 O' O. _
0 P! _$ p; M2 F7 c- GExample: Fibonacci Sequence' h; N) v0 h. ]+ W" B2 j

9 `" I* y; i( e1 s. a" OThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 b! R$ A: D0 x$ m- Z

; t. [9 h8 v! i- j. P) `* w* n    Base case: fib(0) = 0, fib(1) = 1. \- s" H1 h9 A

$ G6 s9 C! l: ], K    Recursive case: fib(n) = fib(n-1) + fib(n-2). a/ a# `' r6 ~2 g& w

# k# S, a: O" z. O7 Zpython
4 w0 v9 \0 T, y
, ^" F6 S" z& J: x0 H$ l
& [  n! v& _+ Sdef fibonacci(n):4 Y* R, h$ a  \% q# i# o9 s; x
    # Base cases1 j7 l+ {0 \4 m- o+ S
    if n == 0:
$ @5 U9 {5 f9 K5 O, c        return 0+ k7 [$ p, b3 a. @  [
    elif n == 1:; R. G1 Y* @# Z; A" l  y
        return 10 V$ i. b3 [% `+ O' I$ q
    # Recursive case
1 s2 v& i9 o$ D+ G& L" n( g$ T1 x    else:0 j8 Y, {: z- O5 {. ]$ a
        return fibonacci(n - 1) + fibonacci(n - 2)7 G) g* J8 [$ i% ?

4 x& w1 i2 F4 Q4 X) G& `# Example usage
2 w% Z6 ~3 x$ r* dprint(fibonacci(6))  # Output: 88 A! ]; a8 `. ^( t( ^4 Y

5 r# j; n  t; p" M2 F6 p9 y0 O6 sTail Recursion$ Z5 l4 Q! X" ^% h
. @6 l5 ~8 g, ?
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
5 |6 h7 }  a% s; z7 C9 E- X4 X9 v  e' A
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2