爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 : T/ W+ q% P% a5 C$ o5 s4 c; q
7 b6 T2 v1 a8 }0 O; t7 d$ [) e0 m( a
解释的不错
% q9 v$ m& b$ V5 u9 |  d
$ s" ^9 ^) f) P* @递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* _9 g3 |9 R' E0 e
7 U4 f+ ?$ b3 {& e
关键要素
# I/ M, Y, [: K/ A+ {5 ]4 e1. **基线条件(Base Case)**
7 R0 n' u- n  H' T, s  O4 b! S   - 递归终止的条件,防止无限循环
9 r; K$ j3 o" o; J/ h   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
7 E* r( l9 P% a" o, h# l* F' C
5 x+ C/ _# D/ C" G$ l2 S1 b2. **递归条件(Recursive Case)**
& ]% _5 X( d. n+ _2 v8 V   - 将原问题分解为更小的子问题
0 d' Q# o) n2 H, ?9 U   - 例如:n! = n × (n-1)!) a' O9 c& ]1 c
* ]) q! _7 e" D% B& b8 w
经典示例:计算阶乘$ S% t! s: R3 Z% |, T  i" a
python
; O' W! C2 H$ Q" y. Hdef factorial(n):
! {9 V% A) F% k    if n == 0:        # 基线条件- ]3 G) x4 m7 N8 Z5 m! c$ C2 \
        return 1
: L$ W8 C! F8 Z) M4 {    else:             # 递归条件* Q0 [5 r* @0 P7 D/ S
        return n * factorial(n-1). T6 U, Q& u' a$ r  d  [3 b, L
执行过程(以计算 3! 为例):- w& E3 d4 m# {
factorial(3)
9 d+ f5 K" u+ z3 * factorial(2)
3 y  `( N0 o, k7 H0 g7 [9 m3 * (2 * factorial(1))1 N/ x7 Q6 x  R, `& ]6 m" W0 K
3 * (2 * (1 * factorial(0)))
1 Z7 p) _; k; ~0 J3 * (2 * (1 * 1)) = 6
! H3 B; I, D7 M6 ?) D% u+ C' Y5 p( D+ Q0 a0 k- [. q
递归思维要点
4 j8 n# s- X# ]$ D. p3 b3 U# ~6 I1. **信任递归**:假设子问题已经解决,专注当前层逻辑
) f  m  p, D; G2 f3 Q# k  V; j- R5 D2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) d- [$ o8 Q5 }" U' s; G
3. **递推过程**:不断向下分解问题(递)
6 F/ `% d- j+ I/ ^, ?  z" Z4. **回溯过程**:组合子问题结果返回(归)
9 \: _4 n. Q( G" w' L$ g
. m0 G' w/ q6 @( B; G! i 注意事项- P. W: t: v4 t1 l" l* z
必须要有终止条件2 _. Q6 @6 }' C! F  Y: w6 @. i% G
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 ^( }" B  U7 ~
某些问题用递归更直观(如树遍历),但效率可能不如迭代$ e  d, D7 d6 R$ @- t9 T9 E# h- S
尾递归优化可以提升效率(但Python不支持)6 q; p" p$ i, G2 ~8 h  p8 K2 O
( r) G; @( u, e6 y
递归 vs 迭代3 j8 o( f0 G8 D, G, D4 N4 D
|          | 递归                          | 迭代               |
; p1 J, k! h) W) w5 p7 w|----------|-----------------------------|------------------|8 p* w' p. q2 [) K# @/ Z9 m
| 实现方式    | 函数自调用                        | 循环结构            |; J2 B+ F# O& c. V( \
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
9 A7 z( ^, f" T* k& B| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
2 t3 _& |: w& E& ^4 l| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
+ Z* k" F3 Z9 R6 U% {9 i
  H4 i% I& n0 _' P: J5 ] 经典递归应用场景
5 S' E, g1 {2 n1. 文件系统遍历(目录树结构)
, O4 l, E6 _7 N* [  V* B/ p2. 快速排序/归并排序算法" n5 ~# f( S2 w' \
3. 汉诺塔问题
# [& V) k+ r" {' k! N4. 二叉树遍历(前序/中序/后序)
( Z0 r$ P' n' t$ y6 i; \: F8 X5. 生成所有可能的组合(回溯算法)' T7 H  ]5 h# X4 L- F* p

7 ]' _5 V- K  C, T" w4 `3 ]试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
; r+ I. }3 z3 e- j: s我推理机的核心算法应该是二叉树遍历的变种。! {, V" b: Z3 [5 L, r
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 s# B; N7 D8 H7 y
Key Idea of Recursion
  d' ^- M- o" r5 Q) c" _+ D, S$ G5 u& i+ ~* W) [
A recursive function solves a problem by:
; \; t- l7 [2 [6 }0 ~/ R/ r% B& O' W$ F& m# L9 E
    Breaking the problem into smaller instances of the same problem.1 s/ N0 l& @: f5 ]
) l8 n# r/ m/ z9 Z8 w
    Solving the smallest instance directly (base case).
. T6 ^' a4 Y. ?" l* @! [' N8 E+ N
    Combining the results of smaller instances to solve the larger problem.* e5 g* O) p5 Q% Z  X% M# X

2 E& N0 r2 l2 z7 Q- E9 @0 Q, ~3 iComponents of a Recursive Function
! s4 G6 q6 O, ^8 o  k- _9 p& }
/ Q6 w  B$ Q$ A' `) S2 x    Base Case:
, r5 G. B3 H- m" P, _: W: T
7 l" n0 H( k2 O# Y! s" p        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 j# [2 ?7 H( A9 s* E$ o! O
8 a  {, m' \* D1 \7 e
        It acts as the stopping condition to prevent infinite recursion.
# f) Q3 ?( i9 g- t& N9 f! T# j
& ?& F$ P5 Z+ t! q; _        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.& p; O/ j: D8 Z4 a! |! n
: T7 k1 f! g9 X5 H0 g- K
    Recursive Case:
* Z/ n" K% C) X
7 _; d% y# J4 h" r4 W1 S( B7 z        This is where the function calls itself with a smaller or simpler version of the problem.( Z- u0 g: B! C0 n! \  ^

# E" K# Q; j4 |$ M! }        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 q- }( O. g) b- R6 I

3 I* P6 Z4 O  }" D( U; E* |Example: Factorial Calculation
% Q2 u  r8 \- Y) k
, q8 ]: `3 z. u9 p) M2 vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 Z7 ~/ I! ?2 |
# Q& @+ e/ O2 L" y2 x
    Base case: 0! = 1
$ U7 v0 C9 l% X8 i# ~  P( j8 F/ p& A3 n. k8 u
    Recursive case: n! = n * (n-1)!
& f* F1 L5 A1 W: T* @4 ?  D: Y/ @: g$ Z
Here’s how it looks in code (Python):* ~  ^% T" |. R1 w
python
5 S" q6 _/ b! E) m
' \! P* W& u! d! S
$ b* I! D2 d' @. [3 |5 J* K5 ndef factorial(n):* E; s! z, W$ b+ q0 ]5 d
    # Base case
# q) l5 Z- v, q    if n == 0:
& H! Z2 M) N4 }0 O# E4 S( h        return 1
6 O& y) Y! @0 q3 v& x- y  g( i    # Recursive case
) ^# U( h! T0 q9 K2 O1 v    else:4 V9 Y2 e+ h8 u. @
        return n * factorial(n - 1)7 z: b/ W# i  j# }# W5 b7 I, g
! E6 W' V' q0 w! L3 q
# Example usage( _" J6 L6 }+ `7 Q, c" k1 [
print(factorial(5))  # Output: 120' @$ t5 R! z! |: b

, |7 X& r/ y' ~" A9 A* Q& CHow Recursion Works6 j9 n2 e/ l, F/ {% H7 w3 O' p
/ y* i& c* D( Q# q9 v. L
    The function keeps calling itself with smaller inputs until it reaches the base case.1 y% r$ S. }  X3 E0 k
9 L4 s$ T. b: ~: X
    Once the base case is reached, the function starts returning values back up the call stack.3 ?! j$ _2 B. ?5 P3 q5 {
' {; ?% H9 F% b' \9 t
    These returned values are combined to produce the final result.
  t0 O/ o' D5 q7 D3 R
# E! T# A( {* v6 t( N' Z: x8 q" h' p( uFor factorial(5):( [) w  f2 O0 h4 |, K( Y$ a

* H% ]& l2 J" w+ L( P  M& G' `
! R8 }7 r/ k4 H1 R/ o0 S. E/ Q+ f0 Sfactorial(5) = 5 * factorial(4)
: V9 I* r3 G/ t" y* e7 V% {. Mfactorial(4) = 4 * factorial(3)
8 g. v7 l# i0 R# ^1 ~9 v" lfactorial(3) = 3 * factorial(2). M) l' P& S" z( @3 z& A) B
factorial(2) = 2 * factorial(1)
0 B. n  Z! e) ~$ Jfactorial(1) = 1 * factorial(0)
) m% ~! {3 `' Wfactorial(0) = 1  # Base case$ q+ G. _- s; z) u  i, E

3 [1 a+ l0 b8 j6 f% E( @4 XThen, the results are combined:7 a) x( S5 [2 O: @' Q2 G# T

6 O, @+ I; Z( j( L2 y/ w2 e& H7 R" G9 G$ R3 d0 B  t
factorial(1) = 1 * 1 = 1
$ K, G0 Q. N3 hfactorial(2) = 2 * 1 = 2. q1 M* L! s7 H  H2 a  M  [7 u
factorial(3) = 3 * 2 = 6
5 G& B# ]( ?# M" O5 t- n% R3 T% Dfactorial(4) = 4 * 6 = 24. o: h+ v- g; Q3 w
factorial(5) = 5 * 24 = 120
; ?! u: A5 i* K1 q6 J$ a# J3 Y" I! [: X/ X
Advantages of Recursion
, ^) s' h% Z7 ]6 q2 |% ?1 o/ f& `# Z7 W! ]
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." n  ~# a4 F: l; t" W6 J
0 G# w$ ?% @' `0 D" y5 ~$ n
    Readability: Recursive code can be more readable and concise compared to iterative solutions.: w- M, P& |7 z' z% A  v
0 u: h; L) \* t
Disadvantages of Recursion
0 b( L* u$ w1 r# H) \. H5 u( T  ^$ ]- [7 Z
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 G) |7 m! E5 P2 A  c! e2 b

9 t* v/ m7 j- ?    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* Q( J7 q8 a  i  }( h0 Q
0 t: s- E% J9 N; S2 g5 O7 i' n
When to Use Recursion0 F0 f, ~  I1 u, S/ V
! H, q8 G- J& G* |: @1 z+ C7 r
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 r# c1 L: ]* v" j

; s/ j5 o7 l$ Y8 I: J) t    Problems with a clear base case and recursive case.
1 e2 e0 M/ Q$ o
/ D) S7 D* Y+ j% t2 uExample: Fibonacci Sequence& i0 j8 r" `# p# n

9 W+ h" ?. r; i) lThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 [. U0 L1 G7 `9 }

. A( j  {  i6 D( e% `/ {8 {8 L    Base case: fib(0) = 0, fib(1) = 1
7 v9 `. m. }* R0 N6 I- q! c' z! Z% Z8 t1 R: g# z/ ?  E
    Recursive case: fib(n) = fib(n-1) + fib(n-2), T2 j# s! z8 r! A
) x/ s* E1 q5 h+ G3 P2 {# d: D
python
- G9 L9 N& Q7 U
, E2 ^, X5 G0 D% {) `) E' O% F+ [! d# a7 ]1 K% c. d; {; p3 ]3 P
def fibonacci(n):  t, W1 a: p9 L
    # Base cases
+ g( D) b$ N) r, n# E    if n == 0:
" @6 Q9 m) t' N/ R" K( X6 Z        return 0
9 T0 m; c* c: i+ v4 Z) }    elif n == 1:4 [- R  L3 `3 o1 i7 L6 B
        return 1
0 t0 W. P2 w7 p2 J1 O4 ~2 y  r    # Recursive case
6 U* W. n$ l: V; L5 O- f9 t    else:
3 E0 `! u* d2 Z9 e/ T% p5 z2 c$ h        return fibonacci(n - 1) + fibonacci(n - 2). w2 y$ K; ?. A7 B
% X- L5 E  ^5 j
# Example usage
) D# @% \/ i. i1 l/ ~( n6 Hprint(fibonacci(6))  # Output: 8* r5 |4 |% O4 `9 _4 ~' G/ _" p
/ W8 d. U! L* z6 B# ?4 U' s
Tail Recursion
1 s* Y1 {' g6 C
  b" s/ N" t- k: R0 y$ }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
8 ?- W* `9 \3 @& j
! i0 U/ }2 R" ]1 ^0 i$ rIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2