标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 ! q( L2 _; ?$ o; k; i3 k8 o 1 l# o0 z% k( ^/ X3 a; F' ~" \解释的不错 " M H, x1 ~+ w" r: [+ R5 n- z( k6 `0 E# @. a9 u @
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 $ F8 V/ Y. e% O3 W8 \! ~ b$ n$ a* A, d1 c: n- B, s5 D" Y/ B U
关键要素8 S4 x. j; s+ B) }
1. **基线条件(Base Case)**0 M3 e! O) m8 w5 d$ U% U
- 递归终止的条件,防止无限循环 - m1 r3 Q' _% R+ e( }) Q - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 $ m6 ]8 ]% P! Z! e9 {! j . `, r) o; [) A# r5 q! @2. **递归条件(Recursive Case)** 1 B5 E9 G H( ^5 k @1 E& ^3 P) O - 将原问题分解为更小的子问题: u( L# J7 _" w$ ]) l
- 例如:n! = n × (n-1)!1 R/ Z4 A$ U$ }1 y( Z2 R
0 i9 d# q: m1 W" l G/ W) [( ]
经典示例:计算阶乘& p% n9 D% S9 n: C8 t- f
python % E$ N" p, n" kdef factorial(n): 6 u- R0 f* u: P if n == 0: # 基线条件5 ?" J0 ? p! |/ T
return 1+ o# n4 N O# R! E, B) f% `
else: # 递归条件 8 e5 V7 `3 Z+ I* a5 W' g% Q return n * factorial(n-1) , g# I; u6 M7 C2 T% q( t; I执行过程(以计算 3! 为例):* @ S8 o/ Q& S- b3 B# f+ F
factorial(3) ( G. m5 o- v P" T( R/ x3 * factorial(2) 0 P; O- {' n$ @3 * (2 * factorial(1))# H- g3 f' g; R) z2 s: e) a
3 * (2 * (1 * factorial(0)))5 g, m* T1 f5 t d1 }
3 * (2 * (1 * 1)) = 6 0 @( h) Q7 w3 |9 Y ' m; Z( W, T; r1 c 递归思维要点0 o5 T( e9 Q/ _. d
1. **信任递归**:假设子问题已经解决,专注当前层逻辑 8 t: h7 o# o8 c! @( Y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)0 p1 C k- a) x1 p# A+ O
3. **递推过程**:不断向下分解问题(递) ; y% f! h9 f7 D. P5 P: Q2 c4. **回溯过程**:组合子问题结果返回(归) 0 h3 V9 o' T2 b- r, }3 I7 V3 S & S: f# }# s2 T6 H 注意事项 $ V: |0 a( S, z' ]. } S必须要有终止条件 . \7 h, k2 H" B. l j递归深度过大可能导致栈溢出(Python默认递归深度约1000层) $ i- M4 v1 D' b2 j) k& ^; y6 ]某些问题用递归更直观(如树遍历),但效率可能不如迭代. H: z( J: y. ?! K# @9 z2 h
尾递归优化可以提升效率(但Python不支持)( |% R; X" s1 l4 `
. n5 u* O/ l0 O$ Q1 \+ s 递归 vs 迭代 3 ^; X5 U- C3 K| | 递归 | 迭代 |2 ]) k7 O9 ]8 |; D$ X9 H Z
|----------|-----------------------------|------------------|7 |, R2 W7 o+ G2 h0 z" r' ^2 D
| 实现方式 | 函数自调用 | 循环结构 |) G! Y. d% i4 X' F# J2 o$ L+ l( h+ o- H
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | t$ M1 c8 q4 B' V% Z| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |% b% s; a/ Z; {% b" S0 F$ O
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | - g! X. B- \+ X% m4 b7 O! _7 Z, J" n0 T% L1 n ^" k; W8 Q
经典递归应用场景 " J; [. i, Q( m- }/ P' T+ [1. 文件系统遍历(目录树结构)* x! d) u3 Z( c8 F( D
2. 快速排序/归并排序算法 % g/ _( l' k! I Y3. 汉诺塔问题: j" }' q( O4 o& t. T( j' d
4. 二叉树遍历(前序/中序/后序)$ y: G; E% I) k+ ~1 f6 ]2 {
5. 生成所有可能的组合(回溯算法) ) I5 @# r6 R! B8 V8 \9 U 3 H+ E+ J) u) }4 i" {$ X试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,: I$ l- m% }& |) p9 ~' J: ~
我推理机的核心算法应该是二叉树遍历的变种。 / l$ |( q$ Z8 m6 I: K另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:7 E" f$ R1 @# ~: |/ V1 W! y
Key Idea of Recursion 5 E3 P8 o; y, i5 w. b# Z 2 j9 n! A4 b4 Q$ `A recursive function solves a problem by: E Q& N0 S: x0 {4 M& k2 E
1 m8 T/ C. M6 u& W$ R) F, w! w; n
Breaking the problem into smaller instances of the same problem.% g! \$ a2 N0 f1 W& l( [/ P* x' |
+ F. }. i( |* \! y- P+ N
Solving the smallest instance directly (base case).! [6 E" v! z% y' k# x! Z t
8 L. b+ X) I: d Combining the results of smaller instances to solve the larger problem.+ p# }2 L2 y' k) L3 ?
/ E: m" H, r* n; z2 cComponents of a Recursive Function 0 R/ |# q+ a: D: k6 x; r, ]2 D8 e0 p5 ^# D
Base Case:7 K: ~( |/ u: d6 _+ q
8 x# C) ?7 V; x1 b& D! m( z; { This is the simplest, smallest instance of the problem that can be solved directly without further recursion.4 R! W0 }* t& Y) \( z1 J# p
; K: n4 A" d! }! b It acts as the stopping condition to prevent infinite recursion.# H/ }$ a o5 O0 _, l* A B
9 g6 o* N$ L; j" }; @7 }' z; l5 Q
Example: In calculating the factorial of a number, the base case is factorial(0) = 1. 2 P, j4 z$ m& `9 _/ P& ?2 E% A/ a1 x
Recursive Case: P6 t- {' e! f% j; y: P+ d , X J; T' x+ O% z( j/ {* x+ e& t This is where the function calls itself with a smaller or simpler version of the problem. $ g6 O& M$ Z; @+ [5 H) e; ^: n* l3 _+ Y) g8 F' M& j1 W
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). ( R7 r/ W( e6 ?7 M7 ^! H& g l2 c0 S) p5 S5 Y3 V* w4 ^
Example: Factorial Calculation" @8 w7 e5 k6 }. s! c3 j5 E
, E: ]4 E4 T+ g9 F0 O: [# Z, w
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, j5 d1 x+ w; y* k# T+ z$ x
, b+ l# e* j) m Base case: 0! = 1! H* [/ K6 E& i( ~6 d
- `( u$ z' ?9 q Recursive case: n! = n * (n-1)! : @3 M& [, h) [( Q5 S9 R" a0 J8 z. J( M/ P
Here’s how it looks in code (Python):/ T0 {; z* h- ?7 L! u. `- Q
python . O& j9 {! U7 Z! n* M w " e+ @" I$ Z6 Y1 O * a' W6 `4 i, ?+ C2 vdef factorial(n):$ p7 R' Z- }/ f4 o
# Base case ' b8 B9 E W: [2 x- J3 z/ I if n == 0: u, w8 q! I1 i; J return 1 % ^# ~* ]0 B$ M H' N # Recursive case& l6 \$ D" t( q. u: G6 M( N' N
else:" R0 }. X! |5 }
return n * factorial(n - 1) 9 f3 K/ m8 A8 b, [ 2 M H/ w# C+ u# Example usage4 x7 O; _5 V: l% ?
print(factorial(5)) # Output: 120 9 J4 y, |! c- v& C/ ]6 V ) U3 S, H8 W; j5 `( WHow Recursion Works" v" N4 t) ?7 D8 h! s; M
, F O5 P! o. v
The function keeps calling itself with smaller inputs until it reaches the base case. # e$ A& W) l. o) T# [- N8 j! m 0 r4 ~) {/ V4 h- C Once the base case is reached, the function starts returning values back up the call stack.: }% g1 ?0 A: X$ m; p: S
! Y" U2 `9 O6 [# s2 ?0 D- j These returned values are combined to produce the final result. ! Z2 E. p* O0 J2 e2 P8 X( d) x3 a$ |, h- o! T% s
For factorial(5):7 e7 I8 k8 V+ `* r& m* e
6 b# n! Y% A D+ C4 z2 l! Q) {* I: k; b2 m: h& b, a# n C
factorial(5) = 5 * factorial(4) . V; Q @; J. P: zfactorial(4) = 4 * factorial(3)9 l; Z! T6 Y; c1 u3 J
factorial(3) = 3 * factorial(2)' q1 g, Q9 S% W3 k) |$ ~
factorial(2) = 2 * factorial(1) 6 n7 j4 [8 h' Ifactorial(1) = 1 * factorial(0)* N+ _, i! u6 `9 v7 p& N6 d
factorial(0) = 1 # Base case 8 V4 x( T0 t5 `% u7 y# x7 G2 b8 h
Then, the results are combined:- C8 V6 U, r* ]5 d! {4 S
5 ]3 ~, j' e7 u+ ~8 @
1 `$ }- U4 {4 o9 f5 V1 [: U* ~: B$ J
factorial(1) = 1 * 1 = 1 , \& B6 l3 R9 }0 }factorial(2) = 2 * 1 = 2 0 t- ?6 `* [# h+ A0 B5 k4 I9 Ofactorial(3) = 3 * 2 = 62 v" }' H" f. j* m1 I
factorial(4) = 4 * 6 = 24 ) {( B+ v4 @. J u. B3 B" jfactorial(5) = 5 * 24 = 120 3 z* A% @3 s# z; n ?2 _' r0 L* l) `
Advantages of Recursion - e) Y7 \% z' h$ {9 Q6 V0 Z( b5 M3 j. O& K
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). 6 p) { k7 {+ T+ `+ U/ Z- ?% g0 h2 w- Y0 q* z/ B7 @
Readability: Recursive code can be more readable and concise compared to iterative solutions. ) Y+ I' H3 c1 f$ S+ W, L: Z) z 5 u) g2 e* N7 T. o9 U2 HDisadvantages of Recursion 0 {- ~& O, e2 v1 M( o# g/ F( H* X. r c+ n) P% m6 `5 |* Z
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. 7 w6 j. q6 t7 I4 Z0 f! _6 H; V * J' r7 @% L' f0 v | Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 H G r, M/ ^+ w2 g5 ?' k
0 J3 b& y( e0 A- @( p! h7 V
When to Use Recursion# `2 `! r V. r% n! T, k% k3 _
3 ^. H. @' y1 c" p) `# ^+ R
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). k4 [7 y5 F5 o6 P6 C2 b; X0 a' l: _
Problems with a clear base case and recursive case. & q% p1 r9 Q2 d! D( V( a- O4 a7 s& p7 n0 v/ J) ]2 R
Example: Fibonacci Sequence$ G! W# \8 t* e6 ?+ S2 ^
5 R+ `- c4 D$ z- T9 h* g8 g& C( B/ ^The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: 5 w4 }. z* U* n `9 M, Q) r$ ~% P9 o3 B& K$ X, b3 O# }
Base case: fib(0) = 0, fib(1) = 1 4 d9 W/ z% a; i+ r1 L , I# Y- T# T5 I Recursive case: fib(n) = fib(n-1) + fib(n-2) - y+ j5 L( X6 B' K ) ~7 b7 K3 {5 d5 B6 @" Bpython% I% W7 x5 \" ?# W3 s- r
9 N3 s0 }$ Q& y. N: M9 ?
! `+ w9 b7 m0 K2 E$ I4 \* p
def fibonacci(n): 3 a+ E2 j! p0 P # Base cases 0 [, d4 I8 P) \$ v if n == 0: ?5 R6 j' n" b, N
return 0! u: b4 ?: p L% y
elif n == 1:/ q# F* C& Y4 S1 I4 D
return 1' {! `- d) x" ~" c* P; P4 A
# Recursive case 8 o. [) M2 a5 c# K- Z5 @ a! E" t else: ! |) F( `# g. G/ d8 _' u return fibonacci(n - 1) + fibonacci(n - 2)* Q) o5 `5 R8 W
, {( i# ~) r& L5 i# u: l# Example usage# x7 G G) n/ z" W
print(fibonacci(6)) # Output: 8 ) _4 a; ]6 ^' @) X$ o y ! } k6 d2 E! w& W! k; STail Recursion/ ~, r; e; P, l' r/ \1 |
0 I2 ?7 Z( `- jTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). ' o) Q2 b- H/ v3 t5 h, v: V; \7 H9 b
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。