爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 # R  `7 j5 T, u; C! K
. ]0 J7 d2 A  m) s
解释的不错+ |+ Y; e8 D$ I) H

: Z9 M! a0 o4 r% y7 L1 t- F递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
1 W* U% ~' I; t8 j7 g3 C' q
. E8 ]; e# Y% |+ L5 Y% g  F- v4 D 关键要素+ |) L5 Z3 U$ ?: H3 ~$ W7 M9 j5 o2 @
1. **基线条件(Base Case)**) F! G+ o1 p9 q
   - 递归终止的条件,防止无限循环
) e9 b/ f0 T- S/ N. {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, U8 l  A- c4 v% H* J0 z
0 @* p% F/ M/ l
2. **递归条件(Recursive Case)**
0 K+ ~9 u  d: T4 D; F   - 将原问题分解为更小的子问题; w% F9 t. w8 a& i% j( J. M
   - 例如:n! = n × (n-1)!
( Y5 w$ T2 u4 R, U* N
) T! \) e5 H6 R& L7 p4 J7 F- d 经典示例:计算阶乘
6 p# @6 u. ]: X, h! Q" ]* v( ipython
# _: s6 A& O6 P% H6 xdef factorial(n):
- s3 Z! @  a7 p$ g8 e0 S    if n == 0:        # 基线条件* U" o; y+ T1 u
        return 1
( b% F4 o2 l& x; N* ]$ o. F5 B, a    else:             # 递归条件
6 g9 A- b1 }; Z        return n * factorial(n-1)$ s+ s. D( C, q' F# y- H, b1 U9 T
执行过程(以计算 3! 为例):0 `- B6 _9 S& T" u' Z' X
factorial(3)
- L% v- Z; v/ E- N) P. R9 `- `3 * factorial(2)2 p" f8 _9 j) }# L
3 * (2 * factorial(1))1 O; W5 T& G  U: H3 W
3 * (2 * (1 * factorial(0)))* B) z1 e* [2 |! C
3 * (2 * (1 * 1)) = 6* b: T1 m9 n/ T: i6 S) y: ]4 s
: l. h3 x% q; s+ T6 ^+ h( ]0 ^3 {
递归思维要点
3 T( ?' |7 ?- Z6 r4 I0 j- c$ x1. **信任递归**:假设子问题已经解决,专注当前层逻辑
- J+ T. G( o  b2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
  W  f- j- U4 n' }3. **递推过程**:不断向下分解问题(递)
4 s( j+ e  \. k! a' i  U* F9 m4. **回溯过程**:组合子问题结果返回(归)
& t& [% G, u; w  Q5 H8 D
$ g0 W* D8 p! ^ 注意事项2 V: U: I, o7 ]3 J* L' F
必须要有终止条件
9 p  u, s/ h$ l3 F& Q/ X递归深度过大可能导致栈溢出(Python默认递归深度约1000层)" S* g' i1 o9 g0 ], C/ Y1 M
某些问题用递归更直观(如树遍历),但效率可能不如迭代5 E- y. D3 j9 d0 b8 b/ s0 Z
尾递归优化可以提升效率(但Python不支持)
% v6 \2 G) d: B- n  `# u  S# M: ?7 e) m
递归 vs 迭代8 a8 E9 d2 l. L
|          | 递归                          | 迭代               |0 T- }7 p/ F: M
|----------|-----------------------------|------------------|
4 {! o% n& r) D! l, C| 实现方式    | 函数自调用                        | 循环结构            |
: c) v9 r5 R: o* x) d" F% q7 W| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
/ u' }- C0 g" h" u- I| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |8 l5 E$ U: f+ p+ H9 r3 z
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ v4 @3 z! v5 T: m

% m* z* F% L- u8 G  M4 i 经典递归应用场景$ ?1 E$ h9 Q" c2 C
1. 文件系统遍历(目录树结构)$ d% {& K$ D+ r: D
2. 快速排序/归并排序算法0 |6 E  [$ t5 h
3. 汉诺塔问题8 U$ D$ }8 y2 g* p
4. 二叉树遍历(前序/中序/后序)
& P- w& _/ y& o$ V5 D5. 生成所有可能的组合(回溯算法)( ]) `4 O  f1 V% l9 Y1 W- ^2 n

' f' D' _. V6 o试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
7 k2 F( i( ]' ?' D8 ^9 Y) y. f# A% s我推理机的核心算法应该是二叉树遍历的变种。
5 X. ]# P/ B6 \; j另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
' {# H$ v' Y: D! v0 dKey Idea of Recursion' l3 f7 o4 P9 e& Z$ i/ w- b2 u
" P+ c& ^" h; _
A recursive function solves a problem by:
2 N7 E; I; Z0 W$ y
! ~8 I+ h6 a- m    Breaking the problem into smaller instances of the same problem.5 w# K/ i2 b- v7 i) F5 f

! E' H: j$ K  L, c    Solving the smallest instance directly (base case).
' ^8 M- |' E( w
/ S0 U$ Z0 Y7 t! |+ |8 C    Combining the results of smaller instances to solve the larger problem.
# T5 ^  K0 L3 p! W- e& \
. a* M2 T1 o/ u% {# i: b: m6 BComponents of a Recursive Function9 N1 T. `& Z8 N0 R( f, b5 [
) _* C6 \/ a$ K
    Base Case:
. K$ h# I0 R  v0 c$ h$ a$ z8 F
% F6 |' B! w( h' A        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 R" S, L4 n# S2 a' M+ \: v
2 q3 h4 T: L. T6 {4 @8 U
        It acts as the stopping condition to prevent infinite recursion.6 T" q, y7 x& n. n' p
# g8 n; Q. p$ \8 m& c
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 y( k6 o( h  E8 X0 G
+ T1 u2 x$ i! `
    Recursive Case:
7 u# v5 [/ i+ ^* W: {9 w
2 w/ r( G4 r9 I4 f        This is where the function calls itself with a smaller or simpler version of the problem.- b' F6 j; n- O

1 T6 O; Y2 N/ d4 m4 d, w        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).3 F! H9 i) s' ~1 M

% B2 ~; L& q! d# fExample: Factorial Calculation
9 P8 O; Y2 d' |! Y$ C" n  F* [9 |! I. \/ _: r  x0 ~( B' X# E3 y
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
- w$ R) V, [, ~) i0 N" r+ K
1 X8 m& F6 e% g/ C    Base case: 0! = 1# X8 h8 A) P: y9 ~
& [% j5 B1 ?& l
    Recursive case: n! = n * (n-1)!1 l5 r$ M7 E  q! j3 X$ J8 [

' t5 r. f( D" t2 }0 O* v, [( w9 T# x. N9 V  oHere’s how it looks in code (Python):
* ^5 N) e0 E8 S$ b3 E4 x# D! Gpython
5 ^0 [" o. Q  a. N" \: J& T
* S. H; q9 J3 }) _
( O3 o3 |0 ]/ D" Fdef factorial(n):" V+ S; q! G. `9 u
    # Base case7 {  @5 }; `$ b1 n3 r& T
    if n == 0:
: k2 v! d! u0 P; S        return 1
# a/ K, a/ M7 c    # Recursive case, ~/ u7 P9 o* O+ v# v. H+ ~8 ]8 h& i
    else:7 o' I8 o; L6 s& x
        return n * factorial(n - 1)
0 G+ z" _# o5 P4 @$ Q# f" l5 E+ c; |" b7 C# a, \- o
# Example usage! T1 T4 |, \  Z3 p* `, i/ l. {
print(factorial(5))  # Output: 120
0 B, X  c" h% g
; [3 c: F! T' ~2 @1 O$ WHow Recursion Works
5 g! i- T# N3 u( b0 ^6 Q+ ^2 U' k
    The function keeps calling itself with smaller inputs until it reaches the base case.. s- P# A1 }6 P) F

% l8 H! n; M3 ^) ]1 k  A; Q( S    Once the base case is reached, the function starts returning values back up the call stack.
' l2 L8 N/ ^' G' T
7 d! g7 C' S- U0 i, l9 \- D    These returned values are combined to produce the final result.% D9 n: [0 }: K6 r

* A9 T: J4 p# i9 k! v0 L! F; S5 HFor factorial(5):& V& e1 T, c9 R8 d
* I- |# [* i- B4 P

  X+ [# z! i$ z: s" ]2 r& |+ Nfactorial(5) = 5 * factorial(4)
" Y5 p# q. y. l* efactorial(4) = 4 * factorial(3)
& B+ V, T- ~# x8 Lfactorial(3) = 3 * factorial(2)
9 B. B  x; {* i; C0 Y* n. }! Xfactorial(2) = 2 * factorial(1); Q( s7 v+ x7 X$ y
factorial(1) = 1 * factorial(0), p% u4 g' C0 G2 e
factorial(0) = 1  # Base case9 g1 Q$ T; f/ ~( d8 p
9 W! [2 e  @# v9 }8 D5 D* V- H7 a
Then, the results are combined:
, k1 \8 W+ r8 l+ l* h$ `4 u8 C5 f6 U5 L

4 C' C5 Z5 f7 c3 g. yfactorial(1) = 1 * 1 = 1
/ m3 y; `  L; B' Cfactorial(2) = 2 * 1 = 2
- x8 \7 i4 p5 l' Ufactorial(3) = 3 * 2 = 6
3 s/ E- O. E- g. b' L  M- _$ [7 U" Wfactorial(4) = 4 * 6 = 24
, v- Y  W5 n, r0 z) \  Ufactorial(5) = 5 * 24 = 120
0 N9 \1 r4 Z3 G
! n* `; \4 b; ?5 ZAdvantages of Recursion5 x, y' Y9 ?! t( d

, d$ z3 p. u8 k    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( d7 A8 J8 z4 V3 c' x
/ H0 B* X& W) W7 k# D1 X; \
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
$ q4 S$ Q# x( ]- L  e, P
  I) ?0 _; t3 v4 X8 rDisadvantages of Recursion
$ q( l8 t# B2 Q1 z8 R
5 }& Q% Y' ?- L3 i1 z6 k' |    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
2 j: [- A" B" g7 g  m! Z- v- T' D% Y
! O  I0 i( t7 T. C" ~    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# a! V$ ]1 v! q0 S7 M; F3 L
+ ]; m6 u! v& b! f, M' I
When to Use Recursion6 w% \+ G# K  E& v6 T* C# {3 F
7 D" q9 C9 \( H/ v
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
+ {$ ^8 v+ }$ R" `5 \# ], Q5 M3 S2 f" {6 Y2 B! l. O- g! ?
    Problems with a clear base case and recursive case.
- R: S4 _. F% d; x3 M5 }7 i4 Z" Q; N7 K& |6 ?
Example: Fibonacci Sequence; s% w5 k4 |% F  d9 r8 [
, W0 ]1 `3 T+ i: K& j) a
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
0 A- e. F; ?( ^7 K( }" E( u. ~5 H/ ^1 x% K
    Base case: fib(0) = 0, fib(1) = 1
1 m" K" }: Z! C8 z) g* E3 d' U
- e9 o5 [8 V* o" k" Y    Recursive case: fib(n) = fib(n-1) + fib(n-2)
- Z- R) z/ n8 y. O, f) \2 O
( X, ^# H$ w/ |5 Wpython
$ Y" O3 d1 f. i2 M
% L( F9 o' s* w  E& h1 `- Q- a
6 B- q8 Q: v" p$ s9 {def fibonacci(n):$ \  h; ^  i7 e; T
    # Base cases
- ?- [6 X- k; s$ x; m    if n == 0:2 h* h* e: g1 e1 l- S
        return 0
, d. ~1 \$ ]; j% g! S( A    elif n == 1:
4 h1 M' u1 J* E; B1 [5 X        return 1
$ z: u$ n+ v$ ^+ z4 Q1 s7 T    # Recursive case
: ?) z; Y, p1 ^* g0 s" \    else:
0 s, F5 a" S9 Z9 y$ q        return fibonacci(n - 1) + fibonacci(n - 2)1 d$ o  U' s5 f

: U( M  M5 w% A4 Q9 L# Example usage9 u- P4 p0 `% m: P
print(fibonacci(6))  # Output: 8
# L  z7 @  o2 C8 B7 J3 Z6 _) R
7 r( b3 ^( I& \1 M7 x' o3 A+ U' ~Tail Recursion
/ z1 N; z$ t1 v& _! ^9 B5 Z! a0 u! z) ~2 T# K% m
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
, h! @# L6 y: H' u
& k5 `6 A% N8 }4 fIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2