爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 $ ~$ [2 i% _; T7 _3 n/ a2 P9 b
7 u$ \, f9 C" D1 r/ h2 ?
解释的不错
$ J  J6 b- }& ~3 ?; v. E
% V8 p# \" q$ f/ N& U9 j递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
, H; ?4 U; e- Y" }6 ~) u9 N; A' s' l
关键要素
1 l/ I1 T* q$ X" @1. **基线条件(Base Case)**
* x+ p1 k; U  ]# A# y0 j   - 递归终止的条件,防止无限循环
$ ^" b; k/ C0 ^! k% ^2 d   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
% `7 C$ \/ A$ f$ y7 ~) J
! D* r$ V$ B' i. Q; ]" G  \9 S2. **递归条件(Recursive Case)**5 ?4 q% _( X. Q4 v
   - 将原问题分解为更小的子问题
+ i# @& H8 M4 \9 }; V   - 例如:n! = n × (n-1)!& @5 W6 u5 L, s1 r* @* q& e1 C
8 B% o+ R+ V, J, c3 m) Y( L* ~; c: _$ Q
经典示例:计算阶乘% ~5 M  p9 L" c5 u" X: V
python% V: i3 {. u3 d
def factorial(n):; k+ ?; W" O) V" U) O0 e* r  Z. u
    if n == 0:        # 基线条件
# d4 S# L* `* m4 u5 U1 H        return 1
( f6 F, a* I) T5 d9 A0 i    else:             # 递归条件
+ P) k2 s, H9 F/ i' o        return n * factorial(n-1)& l7 k3 C" K: w- ?7 W/ R
执行过程(以计算 3! 为例):
1 p2 f  G/ R5 w6 I6 ?factorial(3)0 l' E' O$ z1 Y" P
3 * factorial(2)
; e8 c7 b" N% J) W# d' G" n9 j3 * (2 * factorial(1)); ]; e2 V7 e0 B8 Y; L
3 * (2 * (1 * factorial(0)))
4 K5 @4 e7 N( J) z( o* _3 * (2 * (1 * 1)) = 6
& V3 r  f( u; b. y
* E8 O% t; Q! }" j% ? 递归思维要点
- y) r/ [5 z4 n0 }6 |1. **信任递归**:假设子问题已经解决,专注当前层逻辑# m: W  J6 b7 v) i* q
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
  I2 ?" O: _7 F$ Y' f1 e3. **递推过程**:不断向下分解问题(递)
8 M" a, g2 x3 V( i' A0 v4. **回溯过程**:组合子问题结果返回(归)  k! v- g1 h7 z1 b
1 G4 h+ G3 E, m6 z: @1 |6 H4 a
注意事项
5 L. N2 O4 A8 m2 E( R* j" _必须要有终止条件8 A5 y$ ~4 }/ J8 s+ `  u- o$ F
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! `6 F7 T  M2 W  d1 X* e, o
某些问题用递归更直观(如树遍历),但效率可能不如迭代
( H4 o" R) P; w6 ^/ f尾递归优化可以提升效率(但Python不支持)
) b5 A8 t7 D4 m* Q! h0 g4 ]3 J
0 W9 n( e' a. U  \+ Q  k 递归 vs 迭代
# [2 e5 l8 R% s  c5 {) j- \|          | 递归                          | 迭代               |9 e; [0 a1 G2 H. _9 V% \. ]; p
|----------|-----------------------------|------------------|9 x/ W. Z* ]. {/ z- x8 U5 B3 k1 e
| 实现方式    | 函数自调用                        | 循环结构            |
! p  U; H/ O6 J| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 |8 M& r0 H; c7 z
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
! L8 L7 i3 K# d8 [7 r9 }$ Z| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |/ N6 G7 F1 k& P
  Q4 Q! I% _0 L+ f1 G/ y
经典递归应用场景+ N; z; B% X: {& z5 H
1. 文件系统遍历(目录树结构)' f; h- {% \7 B1 f- X( V+ d1 C
2. 快速排序/归并排序算法
" H, n& d) ?% L9 M: M, L3. 汉诺塔问题
; r8 I1 N, b5 f) K. A8 {+ G" [2 p4. 二叉树遍历(前序/中序/后序)6 I. ^0 E  u2 u6 I. _# ~
5. 生成所有可能的组合(回溯算法)* O' P4 o- l4 q: O1 o# ]

/ S. K0 g( w# _试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
1 K% G5 e; a+ L5 G. ?+ u# W我推理机的核心算法应该是二叉树遍历的变种。
% H+ |1 w9 h' q' i3 @7 e3 T另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:6 {/ i" Y' \$ j4 y, L
Key Idea of Recursion0 y0 T5 H) Z# D% a# w
8 j, |, ^8 a; C* I6 R/ [# k$ l( ?
A recursive function solves a problem by:
$ V' {: P6 G2 c& o4 B: f: q$ z% q8 L& n2 ?1 {8 G. G) f* Z$ M
    Breaking the problem into smaller instances of the same problem." }& D8 N* |2 b# E0 `) G
; V6 Y8 i' [! O5 l
    Solving the smallest instance directly (base case).
4 T2 _2 ~" }6 _) }, I+ I5 r( X  |3 t; t+ e- J9 h* e9 [: P2 O
    Combining the results of smaller instances to solve the larger problem.1 l; @5 [! V- s# F8 c% ~

7 n# L% x  K' F4 f) dComponents of a Recursive Function
, a% F9 k) Q* g7 W6 Z$ k1 E0 \; q) p. g4 f
    Base Case:9 {8 s8 q2 I, G! k, T7 K) j
: e1 {  q1 @# ?* E/ y( D$ E# q
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
) u' A# ], l; @0 u) I/ R
7 U2 U3 F( {6 @% s! e4 o        It acts as the stopping condition to prevent infinite recursion.1 p9 T' v4 `$ x0 U/ }  C  t% E
2 D. x% i) S% J; A* z
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.% N' A7 M( n$ ^: h
7 n/ w9 I6 N! s  G- y
    Recursive Case:: K* K: e. ^" m1 S" C7 S

' }4 R- \# T) `% }) j        This is where the function calls itself with a smaller or simpler version of the problem.
' n7 z1 X1 ~) F4 x+ n' ?+ Y$ I- U1 M) h
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
- J" F  B$ Q7 d. }2 D) ~
7 C7 R! s, [0 zExample: Factorial Calculation
  |; x' r- N$ Z0 Z' o: P8 P: j5 [
5 e3 I0 z  o/ S7 T6 vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 {7 D7 l" U! S! ~: [1 |

+ b! B6 w7 i) q) h' f    Base case: 0! = 1
: R; e7 B& U) ~& a& s, {, I2 b
! ~4 E4 W' e: o! a    Recursive case: n! = n * (n-1)!. @' r% m3 t$ e! M% z+ W! T

. L. L, d* d. iHere’s how it looks in code (Python):
1 v  a" b( T" v& d3 Fpython
) G5 t/ n% b6 u3 s+ @, }; B4 n* X
9 j0 Z- W9 u( d
7 t+ o: h# d' Y' F+ E' k& idef factorial(n):& _2 b8 K' n9 \8 R1 p+ ?
    # Base case
" D# }  y, Q; ^* t    if n == 0:
* V2 ?* x6 K" P" o        return 1! a' Z2 \& g  U, s' ]
    # Recursive case- ^# @9 P2 _3 a! l: M- u/ M$ s
    else:
7 L& M# |6 ^" r$ O( g( y        return n * factorial(n - 1)
( z: |2 R$ ]+ j. [' l: H* Y/ {9 e1 y7 o9 h3 C, r' V- v! c' X6 q
# Example usage9 H% N* S( M6 O2 [2 p  d, U
print(factorial(5))  # Output: 120
, n+ h7 m+ W: U$ Z% {. T
+ B: T, b3 o; z4 }7 i- MHow Recursion Works5 t: ?/ \. i3 g2 u  S( }' H

6 i8 ?9 G1 `$ z$ c( B0 c    The function keeps calling itself with smaller inputs until it reaches the base case.
' ~, k8 B# T: \2 _/ E3 R
6 \; I& \$ r+ S, X    Once the base case is reached, the function starts returning values back up the call stack.' Z6 j' w6 m3 \7 g/ z3 |: U
& L- M. B3 b2 @* b7 H* p
    These returned values are combined to produce the final result.' v; v: ^: }4 E  V

" N! \) v8 L5 G; s( [  Q! ^2 I/ tFor factorial(5):
* {+ _; O  x% R) v2 W: V5 Q" e8 Y
( z" K' F% p8 z. p; }
* u5 s: K- W' P: n. q& Hfactorial(5) = 5 * factorial(4)
' u3 A# T- ]* f" m& ~; k; hfactorial(4) = 4 * factorial(3)+ _: Y$ L! n8 ]. t0 Z/ F
factorial(3) = 3 * factorial(2)
1 G( `# \  k9 ufactorial(2) = 2 * factorial(1)6 `% z" o& M( x% R( m/ F
factorial(1) = 1 * factorial(0)6 W" G* S2 h. F
factorial(0) = 1  # Base case- |# }8 `: t0 ~& |5 g# ^! L

5 x% u  [* V$ v2 KThen, the results are combined:# }( Q3 C8 q/ M  Z5 f

7 x/ A8 `- Q4 H5 W$ s: I+ m- X3 a: \3 j4 {
factorial(1) = 1 * 1 = 1
4 U2 L+ ]% d- h% R* Q3 Ufactorial(2) = 2 * 1 = 2. |8 U6 Z4 G+ o" F: `# ]1 M
factorial(3) = 3 * 2 = 6
7 R4 v+ u6 s$ L' c$ S, B# k' cfactorial(4) = 4 * 6 = 24
% H9 I; }8 |/ b2 j2 H* Yfactorial(5) = 5 * 24 = 120
: `8 \; Q; w* |) ?: c7 Z" u9 q( x3 ?
Advantages of Recursion
% i# j) E6 U7 R" a" A. d0 n0 U; s+ i. D$ S. `: S4 |' C
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
2 ]; w9 x" Y: b4 V) ?! I0 N: T7 X7 Z! x* M
    Readability: Recursive code can be more readable and concise compared to iterative solutions.* |2 x9 b2 y' \( C

4 Q, A+ \# m/ Z* `! U+ JDisadvantages of Recursion
" S0 @4 T( L, }" Z+ p9 w. H6 s
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion., T% s0 Q# \  N
- t+ [3 U: z+ @: F4 i0 N
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 R* k# ]2 D. C( x

( c* k- M1 C8 V5 hWhen to Use Recursion
0 c; K' T( }( k9 s8 Y
, Q' g4 P" s2 E- e1 u    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
0 ~) d: K: Q, r. p% `) R& {- ^! L' j0 @% @! `3 m
    Problems with a clear base case and recursive case.* _0 l7 ]% A# i+ h. v
8 o) a4 e4 D; `) f$ n* V
Example: Fibonacci Sequence
" M2 k* T1 }) A3 Z
3 S4 X/ O9 K4 i/ Q" o' [! qThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, H* N- h3 _8 M" L9 S2 J
6 d5 k, z+ U7 f# q
    Base case: fib(0) = 0, fib(1) = 1
& j+ ]1 N. V) Y# K5 ~8 v. ~1 [/ ~# F# d+ C8 c8 B
    Recursive case: fib(n) = fib(n-1) + fib(n-2)! E" j4 H  \+ r
* o! s+ C( L" M' y+ J
python
4 w4 m+ O# I, {( l; z/ B1 M% }  p: X( V
  v, q4 A8 D+ l9 `# }- L8 ^" K- H6 c, j
def fibonacci(n):
5 i/ W) s( s/ ^, k3 G! `    # Base cases
; ?9 f4 R% o. {; b  Y/ I0 c! I    if n == 0:
) `9 b& l: d2 o2 [6 J' j        return 0( s" n+ K6 I  @
    elif n == 1:
* u$ ~. s1 R! O. L0 X  x        return 1
$ I( q- }9 v7 n9 O  O1 M" O. C    # Recursive case
2 a" b6 F1 e& W$ s0 @+ s, T    else:' U" t" Y! N8 `, @+ e4 B9 m2 ?% N9 X: h
        return fibonacci(n - 1) + fibonacci(n - 2)8 i" E+ D" P) Z' R1 F

3 h" t$ S: M+ H5 l# Example usage
4 y9 o+ X  W* F" |! ^7 ]0 Sprint(fibonacci(6))  # Output: 8; ]. }! G2 f6 ?% G

1 \* }: @& b' J0 @; ?) eTail Recursion5 m: _% @. F7 b: c" X/ m/ o. \" A

$ L: @! u6 [2 uTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 J& H2 S+ [: |' M6 E, m& j, g+ x" z

1 J4 L3 {6 Z  s* cIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2