爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
1 Q* Q. x0 C0 q0 w7 Q& F
0 x. Q, @+ ?( a6 l4 _" g解释的不错1 J4 E/ t8 v1 ~
" t( q* k2 e7 ~8 u# J1 S
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
( _6 R/ z3 r% Q4 ^4 L1 h! S' Y, H9 C# p" s9 P  x
关键要素
! |. l3 q0 u; _- r4 {/ \1. **基线条件(Base Case)**
6 @, U( }$ ]( ?* G9 B1 ]  ]+ U   - 递归终止的条件,防止无限循环
* K+ ?- X% @5 h/ T   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
. ]- K( H3 k, j0 `3 l, c
6 u) ], V. ]& E5 u2 z, q: f; x1 P2. **递归条件(Recursive Case)**
$ Z( s1 x( w+ R9 M, Q   - 将原问题分解为更小的子问题
+ _0 q/ z( R  m, |   - 例如:n! = n × (n-1)!
1 X8 j5 b1 @4 P3 I( h. A( M) b' l2 u2 v  s9 z9 R0 L5 V! Y% k/ u  Z0 k# u
经典示例:计算阶乘; s( k2 `6 i. @6 `  Q# ?' B/ M
python" P0 t. ~8 c6 f; n9 O1 `' U% S. V9 F( @! u
def factorial(n):5 }, ^' \* \6 `- ~. p1 w8 _
    if n == 0:        # 基线条件
( s, R( P# Q% U1 K/ K        return 1% H" k# `$ B- w+ Q3 W+ g
    else:             # 递归条件
3 t8 o' Z$ j0 R: i: Z3 k        return n * factorial(n-1)
! }; B: V7 D# p# u" O执行过程(以计算 3! 为例):! f- A3 D9 O- G- J6 [9 T
factorial(3)
! M  B/ r. A  o1 S, R; E4 c3 * factorial(2)# u! p+ l3 @8 G8 L+ f
3 * (2 * factorial(1))% B5 @1 h8 M. R( B( V
3 * (2 * (1 * factorial(0)))7 M/ L3 k3 S! w3 k- a0 y* b
3 * (2 * (1 * 1)) = 6' ^4 H6 c' @/ w8 M( `: H
, z9 z- W+ w3 i( b5 y+ I9 Q4 }! q. U
递归思维要点
0 k" S& b& K' N1 T" V1 O' p1. **信任递归**:假设子问题已经解决,专注当前层逻辑5 B- O' R& z! }' p2 n; u: u; v- y
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
. a$ R2 w- o. y8 w6 _' R0 ~3. **递推过程**:不断向下分解问题(递)8 ^1 M& H! L" p2 `* a8 i9 l
4. **回溯过程**:组合子问题结果返回(归)
, H4 h% ]# k- W2 i4 A% V
% O% Y6 P1 r/ k  P  r0 X" C 注意事项
* E2 d, g/ G# X. x2 h6 {必须要有终止条件
7 X+ K8 u4 @3 v  j递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
- M8 I0 Q6 c- k* {( }' K某些问题用递归更直观(如树遍历),但效率可能不如迭代
7 F7 C) w# s" {! ^尾递归优化可以提升效率(但Python不支持)
9 N+ Q0 J" \& a% o& E+ K. t, r0 V' G4 j4 S# Y3 S( A# S6 U: }
递归 vs 迭代
- N1 C$ K" S1 ?) [* E|          | 递归                          | 迭代               |* P# w9 c" g# r
|----------|-----------------------------|------------------|3 u7 P: n* m0 f& `. \2 j
| 实现方式    | 函数自调用                        | 循环结构            |8 S- H7 W. T6 \1 F  O3 ]; x/ S
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
3 g) s# x2 U4 X6 W| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' b$ w3 B% q1 `1 J' Q
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |) y0 w/ Q0 t! K' b/ p6 H2 ?2 D2 Z  P
8 K+ \) I) ^. u
经典递归应用场景: W# B. k4 s1 u" j2 B; y0 [( f
1. 文件系统遍历(目录树结构)
2 @) g# e2 o: g. K4 {2. 快速排序/归并排序算法
# f0 i: g7 Q7 |# |7 B) }# Y3. 汉诺塔问题
  B/ \# E$ y$ L+ U: ?# U4 L* j4. 二叉树遍历(前序/中序/后序)
+ i6 ~4 ^, s* `1 c* L5. 生成所有可能的组合(回溯算法)$ n& k  J  O8 Z- `" Q
$ ]9 A/ H$ n/ `: i7 d
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,$ N8 t* X' m/ V  v. V# C
我推理机的核心算法应该是二叉树遍历的变种。& F1 [) y+ v% i& n$ h5 C- Y
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
! c5 t9 A, `! xKey Idea of Recursion
! X3 _% G# a' _" G% I
) Q$ @4 C- s, z/ s6 qA recursive function solves a problem by:: a# u) S) |6 W0 ~5 v7 V
; w; ~0 ]" ?# I4 i, x5 z. k% F- s
    Breaking the problem into smaller instances of the same problem.
+ b: @0 ~2 b% L: g) E$ Y; b! e* r1 d" Y
    Solving the smallest instance directly (base case).
! G5 T$ l5 w& `$ Y: k9 ^! d
6 A' t+ B) V  \" P7 x    Combining the results of smaller instances to solve the larger problem., t4 B/ }- a2 p* u$ }

& K, }4 k/ x/ K9 ZComponents of a Recursive Function
5 V* g6 P9 t, ~) d; |# B1 \5 c) |# S* \2 M
    Base Case:
4 g/ A7 g# Y0 G' D9 ?' u' s; y/ E# h7 i) F( S5 X7 I
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
  B8 o* `" X+ e! M1 E
( Q$ k  F# ?% t        It acts as the stopping condition to prevent infinite recursion.; V% W  q2 @- V' d/ |
+ ~# h% ]+ W$ S) q4 X9 O3 v- G
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.; u7 p* h* ]6 L

( A* q9 x& _  V, M: w- d) t8 f    Recursive Case:4 o/ {4 K1 m( j; c! ~/ I
# Q' X) Z" \# s; m/ N! ]
        This is where the function calls itself with a smaller or simpler version of the problem.% V1 g$ B6 b, u5 s1 P6 P" B

- i. y  y* _6 }' V8 p" H# I        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( e/ N0 b, w; e' z0 a
9 M; l# Y, l: F7 R% k3 U+ F$ M
Example: Factorial Calculation
1 [2 x6 D8 y9 ^! C' G0 |0 m$ l" h2 K
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:* N2 x/ Y/ _- l7 M9 n, |+ U& ^
, d- C, Z: i7 b3 ]9 X9 q
    Base case: 0! = 1
, b$ {; N3 B  g2 ?. V; L2 v8 |
: x2 j: [! `2 s$ y" {* n0 {    Recursive case: n! = n * (n-1)!
, h" d! p1 b( h1 @7 [' b- K0 V" i8 b  Q2 g0 v, a; F- s/ L
Here’s how it looks in code (Python):
& r& ]4 ]! f; z5 u+ jpython2 t6 i( x8 {% j4 v  k' I$ M8 m

7 H3 I% e& r7 e3 v" z. d2 d, e% u6 _7 F& E3 Z
def factorial(n):* O' {. p6 n3 n- ?* j6 m
    # Base case
. S3 N+ s3 O- G" w' O( g- R2 |    if n == 0:
" Q! H+ `* l( l* _( j! M( x! c4 I        return 1
0 W: c' X; Z, J. c$ C    # Recursive case
7 d+ A$ L: z" Q    else:
6 B+ G7 A1 B- D        return n * factorial(n - 1)7 q; c& C7 O1 i3 q
1 a; i* v3 `) j  r% V2 w! x
# Example usage1 C: `* M1 T' n# O
print(factorial(5))  # Output: 120
% D- F/ p; u5 z! a; O, }8 {2 O
, L; Z- d1 J. x+ R1 W. THow Recursion Works
5 A5 t4 G; H- ^8 v) h3 N( |  b6 r6 h; {3 u8 p
    The function keeps calling itself with smaller inputs until it reaches the base case.
& e0 J7 n5 d2 P1 n) n- W4 C" q
3 e7 r! k' R5 D) l    Once the base case is reached, the function starts returning values back up the call stack.
1 U5 S% }! `3 n7 @2 R3 {
( r/ O7 ?1 j( C# ]& q$ w# j$ z, z    These returned values are combined to produce the final result." x  P. l4 J! D. Q2 T' i4 m: c5 s# U& I

) a1 z7 K1 B# Y7 L1 `For factorial(5):  ]0 n, `0 \, S$ k: x% Z- L- G
3 V) a8 b: n" e# p9 o! J, B- s
/ N: q: D4 k+ q. T% T+ l7 f
factorial(5) = 5 * factorial(4)) A6 U6 w- P7 H; x: C: ~6 [/ H$ s
factorial(4) = 4 * factorial(3)2 \3 j6 l4 k9 r; n$ c0 Y5 N
factorial(3) = 3 * factorial(2)8 |! B5 ?% q" c
factorial(2) = 2 * factorial(1)
) p* X  p& P! n6 t% `6 A2 X) Afactorial(1) = 1 * factorial(0)
7 x* I) G! D* Z- f/ N( d) ufactorial(0) = 1  # Base case
! i- `5 X/ z! U: v  r* l0 Y* n+ U" X
Then, the results are combined:( k* R1 k. O2 j) S" G3 i' z* h

( s& q' w8 Q* }9 Q' ?
9 N. J- c. v" ?; {  Z  g$ B% efactorial(1) = 1 * 1 = 1
, L+ \% a0 [6 ]0 x) x! Yfactorial(2) = 2 * 1 = 2
9 p, r9 H1 D6 ]  Efactorial(3) = 3 * 2 = 6/ L  L3 H1 [5 a5 U3 j* B
factorial(4) = 4 * 6 = 24! v/ L+ W8 `5 \+ A+ ?
factorial(5) = 5 * 24 = 120; l3 S' X8 @0 `* E& R% B
- `/ F2 I, r! |* [9 O
Advantages of Recursion5 @( U* ]) u" f) f

: r; A! Y: T: D5 a, J2 K    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).' Z7 X& m% E' Z5 s; L0 e

8 {1 _; |  q7 ]5 y    Readability: Recursive code can be more readable and concise compared to iterative solutions.! d4 w: V) A  }9 T0 |' y8 l3 a

: a4 ^. [% J1 U$ }9 R6 S4 wDisadvantages of Recursion! u8 @& Z1 }& g) u

. _/ s' L! o* ^5 b" Y; p    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.( B4 }4 O# Q& s  R" A
% O! t! _, H0 u$ g
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
3 E6 B. S) _- _( [' A+ z* }- h8 h7 C( r' p
When to Use Recursion
4 G+ g" Y5 z1 ]$ m( \* o$ y, m, K. m' x3 h: \7 s5 `1 o; B$ I0 n
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
1 |1 U- o: H0 d) K0 a2 H- Q: W1 }# Q; E/ b
    Problems with a clear base case and recursive case.
2 T  k1 S' F6 o' x7 D+ x: c5 p/ v& `! r, T
Example: Fibonacci Sequence1 Z; m1 N1 G  ]; {; Q; U

) h2 }: |) i% I4 ?& N! \The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:. p$ o& j; {0 t1 _" v# t

2 o8 o' l* @+ k( J+ S! `2 e    Base case: fib(0) = 0, fib(1) = 1
/ r6 ]$ o* ?" T/ k. I: w& N5 P! Z2 @9 T$ s% v- ^3 i) l5 }. N& d
    Recursive case: fib(n) = fib(n-1) + fib(n-2)# J% d) H3 U8 Z/ Q

& i( `1 l: V4 Q0 D1 V6 E0 }$ w' G  Wpython' O& C0 B! u8 U: G; \& b! h$ y: w' ]

5 X/ M2 T! ~# S. @: J) J1 z7 N+ A- v4 W) A0 K. r  A" O4 _% l& M
def fibonacci(n):: x4 @. M* i& f$ W9 ~2 ~
    # Base cases. B" s: p! S* B* `! b# _9 H
    if n == 0:* _% L! j9 P; _" O
        return 0
2 ]0 O. Q) ~, T/ P2 N    elif n == 1:
) Y* B! R9 m0 I- X9 c$ O        return 1
9 M- |; D# @1 [2 d    # Recursive case
5 o- i8 K7 U& l( H0 D    else:) I( i9 U8 a% ^& P! q# \+ Q7 p
        return fibonacci(n - 1) + fibonacci(n - 2)
! b  b4 |* i' d) s+ T6 d, U  A" I( A) V, d0 w# W( x$ O
# Example usage& U( h; m% i7 S0 l$ O
print(fibonacci(6))  # Output: 80 T+ \( O1 b; e0 S+ M3 T

% R; x  s) s3 i) w. [Tail Recursion! ^- M0 ?* Q6 y$ v; \2 h8 o- x
) ^2 f! t9 Z5 x' Z
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
% o* H! v" V# C) y+ O% ]$ ?
+ V6 v1 V8 L# M# h8 c# v- N7 AIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2