爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
' S& _5 S+ [' O( n5 p  U9 ]& `
; a6 H# d6 Q9 p' a# x: [1 Z% y$ K解释的不错1 V2 `: i/ ?( z) _

: R+ @8 |3 U8 G. D! X5 z! L递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
" c7 @* v  d6 u  T) F7 J( L5 ~! ?7 b! V/ [8 [" |9 G
关键要素* j6 s6 X, R5 r) t1 P! W, S
1. **基线条件(Base Case)**
4 f6 }, @  M: V: g$ k5 x   - 递归终止的条件,防止无限循环9 l# e  I( F6 u  v  Y0 f4 ]2 P0 e
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
( B" R2 p$ F: n9 i2 u" N. I9 U5 B3 X; x
2. **递归条件(Recursive Case)**/ I: _' Q8 Q  q% V
   - 将原问题分解为更小的子问题
4 L5 U* M& h8 |1 I   - 例如:n! = n × (n-1)!
2 ?7 ~, l1 l1 J7 Z( {1 B, I4 |: m5 C* O
经典示例:计算阶乘. L" Y0 E0 `" Y4 s
python
# }- o7 z- ~) c/ Qdef factorial(n):
8 K2 X2 `' |/ C5 K, P/ C; i    if n == 0:        # 基线条件1 R3 V2 k( K4 E# x; q
        return 14 i! Q1 ]& p: m! x) H
    else:             # 递归条件+ O  V0 g: Y5 Y5 C% @, h( N
        return n * factorial(n-1)1 B+ E- M  ]' P/ [
执行过程(以计算 3! 为例):5 S: j3 |+ }3 {. s
factorial(3)
0 b5 }4 R  O4 `! T3 H3 * factorial(2)
+ h6 P* F7 n9 x& k3 * (2 * factorial(1))/ K: r0 n- v% g: |: \" N
3 * (2 * (1 * factorial(0))); f4 f; B1 ]# Y$ q9 }% {1 g, t
3 * (2 * (1 * 1)) = 6  t. ]  j1 h5 Z

( C1 J1 x5 a5 y* J: r5 U& [0 t 递归思维要点
1 B6 m) I/ A3 f3 t1. **信任递归**:假设子问题已经解决,专注当前层逻辑
- s% C2 n8 F' R% Z' f. E2. **栈结构**:每次调用都会创建新的栈帧(内存空间)  d: f; Q! n& B  Q$ [8 |3 J, B
3. **递推过程**:不断向下分解问题(递)& R4 q" ?2 q; I3 ?
4. **回溯过程**:组合子问题结果返回(归)0 t/ T2 ?, X3 K$ p
- q' |. u" @6 g: i6 v  `
注意事项  X! Y) y6 q8 O' r4 K
必须要有终止条件
) G  `0 f* c9 {6 e& O4 a1 Z6 \0 d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
! @- M1 j3 F* N7 a某些问题用递归更直观(如树遍历),但效率可能不如迭代
2 r! m! \( P( o7 P2 `尾递归优化可以提升效率(但Python不支持)
& \9 `% C8 P0 L, ?9 M1 h/ Z, C2 A$ D6 k. X8 @& }, S6 ^: ~3 q+ r/ M! @
递归 vs 迭代
* r5 B( z" H0 f6 O' \' E|          | 递归                          | 迭代               |
+ X# h* k4 x, N, Q& u|----------|-----------------------------|------------------|3 K$ r7 R# `* ^& i/ h. K7 j7 ~
| 实现方式    | 函数自调用                        | 循环结构            |& t; O1 b% K( H% f, F
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |* r( p1 i+ X6 ^* U
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ R" s) ]! n9 r
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |9 {$ M, ]+ f/ Z3 K

7 I4 u. D( i8 J% z- J% V! e0 j 经典递归应用场景5 d4 Z2 o& y" x; x/ _1 B6 }; w; f
1. 文件系统遍历(目录树结构)
9 q' W! T% @  C3 v6 s# z2. 快速排序/归并排序算法
" {7 Q8 g- B" M9 ]3. 汉诺塔问题3 B0 N) S) i% P) B+ {3 U- N
4. 二叉树遍历(前序/中序/后序)2 j4 Q% J# e/ f" f, L1 _+ v- R
5. 生成所有可能的组合(回溯算法)
8 T9 a. r7 v8 Y' K7 \7 c& |7 ~* e- A) j  g! `) V
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
  J3 L2 f2 D* q) ]我推理机的核心算法应该是二叉树遍历的变种。9 o" Q5 c; d* E6 i0 D/ D( {, N
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:0 J" l" r/ ^: u4 z$ B
Key Idea of Recursion6 e$ T' P% ]8 D
5 l( c9 X% h6 j3 l% Z3 n4 c) v4 i  L$ H
A recursive function solves a problem by:, D8 ~1 h& x1 I
- {- P8 K2 M3 h9 X
    Breaking the problem into smaller instances of the same problem.$ E4 T& m( }, q* n- `- ^& L; M
! b9 h$ l) O4 m. d( p: x
    Solving the smallest instance directly (base case).3 e$ R/ s, P$ `" M4 E! l
; q0 ]- t" w* D! ^1 r; r
    Combining the results of smaller instances to solve the larger problem.! C' P+ }6 ]8 n$ B( b' r5 d& A: K+ v

# ]9 b& G4 a& a$ Z2 W* n3 e6 WComponents of a Recursive Function) h- V/ p) m/ F+ J. _7 E* U0 n

0 A" X- ]" w* |7 t    Base Case:
/ z; R6 Y4 Q6 m( @: z% B: }% k) I1 Z) O& s* r2 \" o4 H7 k8 r4 k2 L  u
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 J% F* V4 ^0 ~6 k- `7 y4 k
; q! U7 z& h$ O- {' W
        It acts as the stopping condition to prevent infinite recursion.
9 n: H+ Z" \+ F# v+ ^
; |; Y4 I$ ~. ]3 J        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
# _; ~. k% P+ w: h  M" s+ F  F2 c2 Q4 w' ]0 J9 U
    Recursive Case:# R7 H, z* e- W: g4 d9 u* P, G

4 b. ^+ F1 h8 R$ q, |/ l        This is where the function calls itself with a smaller or simpler version of the problem.
, T4 N1 |2 L( l( v1 L% O# O' p" f0 r
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
/ T1 Q; W  A5 b$ W: f. x4 Z+ j) S/ L% J1 g/ a6 ]0 L
Example: Factorial Calculation
/ ]& ?* M2 F9 p/ o: F1 L0 o% X  }  D
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
4 [& [1 b. U6 y  d0 \, y5 D( p* Z8 Y7 l& o" w* k! L5 }  D
    Base case: 0! = 1' e, Q$ ^+ s0 i7 B# [1 W' S

) p1 y4 V+ b7 h9 j! F" e9 E    Recursive case: n! = n * (n-1)!% L6 Z7 U: c6 L; }  p+ p% l

. l) Y- |; d, kHere’s how it looks in code (Python):
6 X0 J" {3 c8 y) ^' X% Qpython
- ~5 R: _& p7 ?; W! j# L, |8 i) q" F/ A: Z0 g
  f8 h( x: s+ \! T$ F3 R
def factorial(n):
9 v  M( ~' |" u" P    # Base case5 f# |6 |, P$ I  x* W5 ]/ C
    if n == 0:
  t# {6 u! D* r3 C/ z        return 1
. A, J' s2 S7 `( X    # Recursive case
; g) d: q6 W+ j9 s- ^5 m    else:, E: r2 w7 V4 z: q) {& f! V, `
        return n * factorial(n - 1)% U! I/ c7 b0 z
8 S. N! d% l9 Y1 C& g
# Example usage
, F. L$ X) x) Z2 O) ]6 o0 A- _print(factorial(5))  # Output: 120
" m6 Z/ ^8 y0 E6 g& H/ a% T
" ~% g, V& T% S0 |! w) x8 vHow Recursion Works* ]* W: L2 {3 Z, y/ a4 h

- U* @) {( C' \5 t' x# y    The function keeps calling itself with smaller inputs until it reaches the base case.* ~- ]" Z; s: G8 P

  a0 m) C( X- F. ^0 v    Once the base case is reached, the function starts returning values back up the call stack.
  a8 W0 y4 Q' \* N0 C
$ j' \" i! G' o    These returned values are combined to produce the final result.0 E% C# U$ J9 R# A* u
2 W" A0 f( N3 `* t( `8 R
For factorial(5):
. L  X9 M2 p, i" h( G
- n8 A  I$ v( N: `: C4 G. \( E# Z1 b
factorial(5) = 5 * factorial(4)
5 J) j1 P/ ~2 n" _factorial(4) = 4 * factorial(3)
. R" _' k3 y7 N8 p5 [3 a& ?' O( wfactorial(3) = 3 * factorial(2)) f$ I3 e! W: k- Y3 N- N9 U
factorial(2) = 2 * factorial(1)
, Z# s; v8 m2 E" O5 ]factorial(1) = 1 * factorial(0)" `1 C% J, ?  j8 }+ V9 w# s
factorial(0) = 1  # Base case
+ R) R$ d/ }3 R- g( R  r+ s* }+ ~9 Z8 A2 H, q# f8 ^  K. N
Then, the results are combined:
$ @% }5 X+ W" X% S0 I; j9 @. e8 o* K6 L5 a2 U, D) V9 f- a

2 _# i2 f. x: O* D$ v6 _( Hfactorial(1) = 1 * 1 = 1
4 J, P. @* |$ v. rfactorial(2) = 2 * 1 = 2
. t+ D; d9 i* d& L2 `factorial(3) = 3 * 2 = 65 z/ ~5 k+ W% g5 n
factorial(4) = 4 * 6 = 24$ E) J" G' ?/ v
factorial(5) = 5 * 24 = 1203 ~4 t) T4 _; A7 s+ b, H; E0 m( r5 B
% t0 c5 j; M% Y5 R/ p9 N. k
Advantages of Recursion  l* b9 [' z% {2 r; x- o) ^/ @: i

* a5 g, L+ t3 X# p4 j) B    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
: @, S8 B# {; T# E6 Y) C. U7 `3 f$ C
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
$ B* J- g, m5 i
: N! u* }2 j# y' @- D( ODisadvantages of Recursion" U% `0 a: F+ |3 U3 W: V
, g7 ]6 ]/ i+ g) |  V; v" ?# D
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
5 N1 z& S6 y( B1 f
8 d1 A0 F1 N' I/ d6 k* l! ?    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
, V4 s' O* ~- e6 b7 w& f* R: t
6 M6 V: F3 k( y. c% ^When to Use Recursion
- v1 V1 y- Q% ^4 g
7 B9 y8 c) i9 c) E) \3 |    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
8 b8 `. A$ M" C$ w# e: S6 E7 h
1 p' \8 ^" Y0 m& `' R( x    Problems with a clear base case and recursive case.
' n/ W" Y* x3 [8 b8 k: c: g9 `) \
6 \+ _8 w) P2 j- r. I$ gExample: Fibonacci Sequence
- @: i$ E9 H% v% _" W. \: r* _
! ~) g: q: G. }2 {6 u) S$ H0 @The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:0 @1 p2 Q  f' }" g& G

' I) C8 g) K5 s    Base case: fib(0) = 0, fib(1) = 15 s. H- h$ \4 `
) |: u) b! }2 R1 E5 ~/ n4 Z
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
3 u2 I2 j; T4 @! |$ Q
3 ]) G  B$ @' Z) m3 P: Spython" t2 z* ], T! |# g1 H2 I/ j

2 N- H+ Z) G; A: w! l9 |# G6 V( h7 q: _$ W
def fibonacci(n):* b8 n) C/ H' G! s$ p; M
    # Base cases
$ D# _" s! v# J8 y& B% O6 n    if n == 0:* Y) T% L2 ]2 e+ v& w
        return 0
4 [4 p2 d1 `' I% j" f8 f    elif n == 1:
3 j8 K1 `  I8 f  x# P        return 1, @2 m9 w, e7 r- N9 s
    # Recursive case
, L  |: K3 W5 x% t+ u0 d& L    else:- X6 r$ O! N0 v
        return fibonacci(n - 1) + fibonacci(n - 2)
  F- F- y) P3 V9 L) X, h7 N) B6 u" k- a
# Example usage6 l: c7 E& B% `& K% s: \
print(fibonacci(6))  # Output: 8& G! l" s, }' H9 y, K

* b) p7 ?5 c0 c7 P5 E' |7 ~Tail Recursion/ L+ K, s9 v& E! P/ o" |8 k" g7 t: t; ?

: }( n- F1 I+ N: wTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
+ z1 K+ U( L- ^* G5 E  R
( A: O) S( o; n9 W, I6 ^8 A9 TIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2