爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
( r) l& h" h; }. V
* ^8 p5 r4 @6 V8 f0 k解释的不错
- @' j, c9 g7 e5 W5 Z0 O
3 S. A- ]& l* h) Y6 q( O递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。" Z' w, L  P! ~2 h
5 ~8 W8 y" u: t2 Z2 X! a+ I
关键要素
/ V* S3 H$ h, {5 E5 [1. **基线条件(Base Case)**$ F; o/ w. ?: c% O. b* z8 s  Z
   - 递归终止的条件,防止无限循环+ u5 Q$ o+ B" f4 e) q3 W' I4 X
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 17 d, e# j# L/ c1 k  x9 X

/ I: [7 {; c. v" B/ Y! j7 P2. **递归条件(Recursive Case)**
! J' G7 a$ c2 Y5 Q/ c2 L& V# R   - 将原问题分解为更小的子问题* t; _0 T% D5 I  p" x
   - 例如:n! = n × (n-1)!3 k+ B+ f3 i" j
! s; V) e; e" X! @9 r" A
经典示例:计算阶乘' J0 K& [0 L0 D
python+ r( V$ D6 b5 O: D
def factorial(n):: C; @7 {3 u4 [
    if n == 0:        # 基线条件) D& d6 \- s  \$ ?. z& t9 E. {
        return 1
- M, @- k4 i4 C" G4 x+ }    else:             # 递归条件# W, R4 _7 D9 u6 `
        return n * factorial(n-1)
* c' U& w( c, C5 Z* a" B3 Q9 Q执行过程(以计算 3! 为例):
0 P) K2 c$ J. ?- U! g# Q# K: sfactorial(3)
6 |% e% S2 W* g3 * factorial(2); j7 v0 O7 V2 T
3 * (2 * factorial(1))
/ o  y& P$ r2 F$ ^3 * (2 * (1 * factorial(0)))
* G$ k, e" [5 a3 D+ _2 F3 * (2 * (1 * 1)) = 6" o# A/ Q  U& A4 K+ H/ _

' `1 e. K+ P: t: u3 | 递归思维要点
# s( B. h+ }7 h. E2 Y3 {1. **信任递归**:假设子问题已经解决,专注当前层逻辑
* z5 R8 v- r# ^2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
) d9 v8 q! r- H! W# v3. **递推过程**:不断向下分解问题(递)
$ ~; n) s% h& U1 w4. **回溯过程**:组合子问题结果返回(归)
7 [. s5 K3 p# T& M3 O
6 y8 F: H/ c9 n3 R" k! z% H2 r3 j 注意事项0 M4 d( a$ v5 ?( `" \: W% X7 s
必须要有终止条件/ V1 Y) [" W& O2 O! d
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
5 v" z- y- P3 U! ?某些问题用递归更直观(如树遍历),但效率可能不如迭代. D' @  j# E1 z8 e) ]$ F
尾递归优化可以提升效率(但Python不支持)
: x* Y8 s1 v: W$ ^7 D" Q& e. L+ D/ Z3 K
递归 vs 迭代
8 n' q" K: `* G( G" g|          | 递归                          | 迭代               |! O8 ?' F, G7 |; q# |6 \- U: U' e
|----------|-----------------------------|------------------|6 |. ?2 w6 I; D0 q2 E9 ]
| 实现方式    | 函数自调用                        | 循环结构            |
  D* b: Q$ k) Q| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |4 e/ [# p. E" ?' J# K
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |& ^" q8 `. a+ C6 x; c
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 u, d# h8 c8 A1 M" a, Y

8 M4 s* j8 A: p" l* W 经典递归应用场景
2 w$ z& Y, R( N1. 文件系统遍历(目录树结构). J1 U* X5 g, t
2. 快速排序/归并排序算法$ v" H3 L4 i* j4 @+ n
3. 汉诺塔问题
$ M9 @# o- `! n8 e% U0 l8 M4. 二叉树遍历(前序/中序/后序)4 N$ M6 H$ E3 \. l$ x$ m
5. 生成所有可能的组合(回溯算法)- _. l& s8 @: ]/ j/ |

. ?4 x4 Y) b: u: v5 c试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,1 y1 Q0 v8 z, o1 \+ N
我推理机的核心算法应该是二叉树遍历的变种。( ~* p9 H/ b; P6 Z  t' Z, f6 C& h
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:# Y. T, i& y8 N& `5 W
Key Idea of Recursion
  D. j/ Z3 ^+ h* _
6 M4 g7 @1 l0 _( }' f3 FA recursive function solves a problem by:% v  F1 n( \. b  ?& c  b

' W+ a: Z9 p4 L  r% L( C    Breaking the problem into smaller instances of the same problem.
! ?  |6 p& z# y* D+ q- G2 n/ M% U9 z' {6 t& l0 m7 a6 f; P
    Solving the smallest instance directly (base case).
. ]% c- g5 w& \* }$ c
  ^0 `8 N& k1 O; K$ E    Combining the results of smaller instances to solve the larger problem.
7 G: b" a( S  a8 T( [# s/ j& o" S* \6 z9 a+ j
Components of a Recursive Function; ^7 ?& t0 x1 z2 _. E
. Q5 O, W9 A$ {" I  R' p6 n: }
    Base Case:
4 i" @9 P0 Y$ {0 C" }, `1 v/ {! r" ?; Z, c+ y6 C( V1 {
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.' u) K* x8 s3 v: L" O
8 z6 r3 l  y- ~# i- `
        It acts as the stopping condition to prevent infinite recursion.4 D& B% R$ J' [  t0 C

) c: {1 {$ J% Z- |1 A* D        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.  C. L3 g0 Q! W
& c* ]& g) Y8 y' d3 c! c3 S* k
    Recursive Case:
7 k  @, I& ?8 w3 J" G6 U: ~% \- V4 q& h. V" k
        This is where the function calls itself with a smaller or simpler version of the problem.
6 I+ c* U& g0 M+ y& J3 f6 `' J7 s% m! k3 a8 H$ j
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
2 x$ h* ^6 t$ G5 ]& A# k) p; I6 v2 ^3 R6 P7 `+ e7 ^% e* U
Example: Factorial Calculation( X* Q% @0 q* B0 m

1 o+ M  {' ]9 WThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: r8 A4 C9 c3 F
% ^' R5 N' d& E% p
    Base case: 0! = 1
9 Y3 G" d$ U  z7 L3 I4 I: P* W4 ~) v; A" \5 O" x) h
    Recursive case: n! = n * (n-1)!/ T+ g7 k; c8 t! V1 E# H

7 ^. \- b/ \# h2 w' bHere’s how it looks in code (Python):( N3 n6 E8 D8 P" J8 R3 R) _1 L
python
1 c: M" q% q+ d( G; ?$ C% m5 Z! ]. x5 L+ x5 r. @; D
" Y$ B' b  s2 E
def factorial(n):
; C9 k$ r2 f  c8 _    # Base case0 L/ m) u2 u0 O( P$ n
    if n == 0:) r3 u' [0 {! K: s3 }
        return 1
: m/ z+ r/ t9 ]# w0 ]    # Recursive case
  b, W; Z! k. ^! N& K4 W- a    else:
( L8 k; [' S9 [8 {  T        return n * factorial(n - 1); J  D' N# W, \6 |2 H8 ^  M& Z
, N8 M& G4 G3 B' g
# Example usage/ p9 X2 u4 x; n- l9 f
print(factorial(5))  # Output: 120
1 P, Q9 d. v' r8 ?& p% f2 x2 X; Y& Z/ [* q
How Recursion Works
1 Q3 u4 J" E) A9 |" o
5 g: W. m. J% \: ?6 ^1 L    The function keeps calling itself with smaller inputs until it reaches the base case.
0 W5 p' ]; v1 h' A. W
6 m& r) m% w# f  d4 g! N    Once the base case is reached, the function starts returning values back up the call stack." |# i3 u8 K! E/ e3 [3 j1 h* e0 M
! U4 C, w  ]4 y  z' A, A( Y( Q
    These returned values are combined to produce the final result.
6 V+ n8 N5 G  a' x: e2 C# Y6 p9 c. X7 k/ U8 k8 v9 U
For factorial(5):! ?: C* Y8 }" S8 E6 t: T

# W2 P8 x$ s( f5 c; s7 q$ @: ^8 v
( p/ x8 l! S/ X9 Pfactorial(5) = 5 * factorial(4)
/ u  C4 ]* `0 l5 v0 N# Sfactorial(4) = 4 * factorial(3)
6 D( e' V1 F8 |factorial(3) = 3 * factorial(2)% ]1 f: W; S0 R$ F- l4 V6 z% v8 n! T
factorial(2) = 2 * factorial(1)
9 h# B8 e7 y! Efactorial(1) = 1 * factorial(0)1 ?& Q: i  k$ u; l" i+ Z1 b$ F, n
factorial(0) = 1  # Base case' H) d; l* H+ C3 t/ f/ [! n: M/ Z
8 r0 H  _5 m3 e; `2 d# @
Then, the results are combined:6 G* M  x; V6 U
  R' Z: }! G6 S: U6 h7 q5 m! V6 S0 u

$ j5 s9 v7 L1 f# T& Z. D5 hfactorial(1) = 1 * 1 = 1
- p' U! |, ^' r8 X6 S- U, Cfactorial(2) = 2 * 1 = 2
, h5 S+ Y6 c# t! U& s+ e' ]* Efactorial(3) = 3 * 2 = 63 O3 U# }( Q2 W, k/ }' e% p# }  w
factorial(4) = 4 * 6 = 24( g% Y  V6 B( U/ c- x1 c: \
factorial(5) = 5 * 24 = 120
- |& O4 z0 x7 Z0 S" W+ @+ P8 S1 G0 m7 T% r' {
Advantages of Recursion& V% l+ ^$ K2 o5 R5 `

5 v% t) }; z9 D    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
3 ?+ |: I" ]& G; M& H
" Q; S, X. z( W, n' q    Readability: Recursive code can be more readable and concise compared to iterative solutions.8 T+ o2 O3 z* l

3 ^" a: V7 p& V( K- kDisadvantages of Recursion) ], c$ }3 e4 T7 x  B( b
* U( u( v& P! M+ i
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.9 @; `- \; v% p4 h: W6 S2 v9 R, U
3 N- d  f0 W* u: Z4 Q' f6 ~
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
0 d5 S& S7 F% q6 O; f# r. U
- R  c! c7 H% R$ eWhen to Use Recursion2 x6 Y1 W4 B/ |8 C

* F- Q9 v# `- J7 F    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).3 }, ~( y3 J- \
! }0 Z6 s+ M) m1 F' o9 A
    Problems with a clear base case and recursive case.% t9 U0 W" O: N, B% T" `2 `
9 \8 ~* {" p; \% L% t2 I# Z
Example: Fibonacci Sequence
6 F& Q! `/ J9 H6 Q$ `
  i0 \; J' }% {3 @. L1 m- s0 j: ]& Z/ IThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:, x' }& N% N" n
4 x$ M1 H1 m' ~
    Base case: fib(0) = 0, fib(1) = 1
+ w: X) }' D8 r6 j
' Q; u# Z+ x- q8 H    Recursive case: fib(n) = fib(n-1) + fib(n-2)
" B- V& s' D; F4 \) C3 `6 v$ ^4 f% r- \3 x0 ]5 m. U7 H
python
8 C2 ?4 k6 X6 D( \
) y& R# l$ m$ _/ H* W* [3 d* A' K% m" W
def fibonacci(n):
. B( K& \* E# b' E. Q* W6 N2 w    # Base cases
0 @; i1 A0 V, ?* B    if n == 0:
' g; ?3 F/ i3 ?% W" ~        return 0
# y6 Q# F6 p5 p. p8 [% K    elif n == 1:1 O7 R* x9 C: H, `, F$ ]3 r3 }( Y$ T
        return 1. ^+ K" c4 R8 O+ {8 b/ A# g
    # Recursive case
: z% P7 z6 S. v- Y6 `. C- {* t    else:
+ G( v  H  b+ X& z        return fibonacci(n - 1) + fibonacci(n - 2)$ W0 D) `. D2 c$ I4 x6 Y( A' @
+ }$ J6 @$ k# W& I5 x
# Example usage
3 W' U2 a4 x; p% s5 Vprint(fibonacci(6))  # Output: 82 }' j1 B, e8 Z' L

/ N7 d6 I% X1 N) |, H5 `0 G/ h& }8 HTail Recursion; ^" x% {: G" s! m+ K
1 k! I5 o$ o; @4 N7 Y; s& W/ b/ D
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
& p+ K. l5 O( u8 a% {# x# J
% Y, i& w4 O7 f4 Q5 q  y4 HIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2