标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 5 Y& ?9 H0 L' {% k- ^8 @
/ H. A0 b0 s, o! V& J& O) l
解释的不错4 m" ?) l) ?& o: ]% E
! X! X5 ~1 C Y% }, q) k6 Z$ o, _; W
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; S$ J- x$ M. |0 _, o/ {
, J0 J, D1 ?7 B8 _$ E
关键要素 . f+ z: }# A6 q- X1. **基线条件(Base Case)**2 R; P4 N9 C) \ e% y
- 递归终止的条件,防止无限循环 P) ~; c; z! ^7 }1 u2 Y. i' a - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 ! U' P& c+ l- Z4 U8 \/ R8 N+ i- v1 k) O& _/ r/ ~. p& B: Y
2. **递归条件(Recursive Case)**% M( c' Z0 A# G- N7 t. K
- 将原问题分解为更小的子问题. ^& |% E& x2 _$ k, o8 r; a f5 R
- 例如:n! = n × (n-1)!4 Q! J0 [- w7 h% j& m* v: s% E5 B
- v$ |* Z& x! k 经典示例:计算阶乘6 l# o9 x- ~- A
python% r6 R( o) c7 W$ d1 v' q
def factorial(n):/ a( u0 a. N# }1 W' @! l. M
if n == 0: # 基线条件4 @. L( G. L1 [1 m+ u
return 1# r, l2 c" T4 r0 U
else: # 递归条件 `: T3 O4 _; \ return n * factorial(n-1)& Q; \2 W/ X% c. K$ n) e9 f
执行过程(以计算 3! 为例): ( n4 X6 M2 `, s4 v* O6 L: Zfactorial(3), }6 P3 n n. Y+ B
3 * factorial(2) & i$ y% ~% T! K. u2 {3 * (2 * factorial(1)) 0 [0 _: y' v3 l3 * (2 * (1 * factorial(0)))# R7 ?" P9 R8 p' G, G* I5 g* f3 N; i
3 * (2 * (1 * 1)) = 6 - |# B* Q6 _$ p* _: b 8 g" J& }& |* ` }6 L+ C3 K 递归思维要点 ' f+ s# R; f: w/ Z) @9 \1. **信任递归**:假设子问题已经解决,专注当前层逻辑6 \( j: W; p! }$ F* e# I
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)! G( }4 s( F' c M. d( C
3. **递推过程**:不断向下分解问题(递)9 T7 V; |8 D, `% _$ L
4. **回溯过程**:组合子问题结果返回(归) : Z/ \, P2 p2 F% E7 j1 O, Y7 L9 Z' k0 L# u0 b
注意事项% j" a$ u0 t) |; p2 P
必须要有终止条件 " f5 I0 v6 H* j; P# [递归深度过大可能导致栈溢出(Python默认递归深度约1000层)- M9 `4 a5 |% V9 b/ J) ]& S
某些问题用递归更直观(如树遍历),但效率可能不如迭代 $ ]9 ~* b8 J9 J7 e1 H) F- H尾递归优化可以提升效率(但Python不支持)3 N8 z+ ^7 V: v C% h. p
* L$ D1 X6 x/ Y# q" ~, M 递归 vs 迭代 ; A! K) m$ t' a| | 递归 | 迭代 |' r7 d. n& J) W$ y9 I
|----------|-----------------------------|------------------|3 L! `$ z0 n, R) Y0 R& U
| 实现方式 | 函数自调用 | 循环结构 |2 T% \6 B) L, _+ T9 w
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |, n% W; c1 }1 d2 ~& O
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |0 I ~' I5 l) c( E
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | / P7 B W9 d0 p* y* }" o- `4 m/ D8 b% ]! G1 B2 g$ [
经典递归应用场景0 }1 s% s2 C) y" A7 f0 r
1. 文件系统遍历(目录树结构) 4 j0 r1 ?0 s7 ~9 E+ y1 t1 e) ], e2. 快速排序/归并排序算法9 Z3 ^1 w" A0 y- q: r
3. 汉诺塔问题 B* ^* Y. I6 S8 Y* T9 p
4. 二叉树遍历(前序/中序/后序) / S6 L( L( S5 |8 ?8 E k" i5. 生成所有可能的组合(回溯算法)) i& Y: M w2 T8 i4 ^+ @
/ _* K5 k, F3 t+ L0 \8 E
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,! m; M2 X: s; g2 J& N/ T/ C
我推理机的核心算法应该是二叉树遍历的变种。0 E0 E: K9 [5 l
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: \3 j. e1 d4 b- S5 k8 NKey Idea of Recursion, I( n' i1 o: x* a& a
; U$ ]# n8 P$ d% i4 K! FA recursive function solves a problem by: ( X% @, c+ A; ~$ v. i8 T ! T% x! s p4 D1 B3 I: g% g0 T Breaking the problem into smaller instances of the same problem. * O, u2 K! K# ^) l8 G5 \8 t" k $ U: j" d9 U- C& f z* t9 m Solving the smallest instance directly (base case).$ j, {8 @2 E/ V2 ?; f# h7 a) t
) x! N, ]0 n) r# B$ ^0 f7 w
Combining the results of smaller instances to solve the larger problem. ! d% k) V* e' r+ k' Q1 d* a/ L1 E# [) e+ r, f
Components of a Recursive Function ) i/ {" H, p+ y' T/ @+ l# P5 i8 f/ V" x
Base Case:: x; I+ d/ l/ d5 R2 o
$ E9 w3 j/ t. }" ^& h1 d
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. + e& }$ L" ~! g5 T. \4 {/ G 4 x- R( L& w+ H3 k It acts as the stopping condition to prevent infinite recursion. g3 }: M, L' O4 U; J# b+ A7 v% J V5 h. x
Example: In calculating the factorial of a number, the base case is factorial(0) = 1. # {, w/ Y [! N4 U* f4 H( t ' f" L4 |# K% d9 R8 n- S1 b" O: q Recursive Case: * H% U1 x9 a- ?. e1 ?9 i, Z( P1 R, W2 R$ ]2 C6 t) F2 U4 P
This is where the function calls itself with a smaller or simpler version of the problem." {! p- w! n- b4 }
5 ~# I4 z h4 X* p3 s
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ \+ @7 c; ^5 n0 p
' H% E' |1 x1 [9 k! g. u* Z
Example: Factorial Calculation ; F5 q, J9 O$ I! t8 L& d y6 A" Z x) N9 o1 h
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: ! X* _$ c7 ^1 {- G: z- b 3 X9 @& d+ `0 m# O: w Base case: 0! = 1 1 }9 d% x `( l. i" H( C3 U% |) R" r
Recursive case: n! = n * (n-1)! 5 }! i; t: e& F5 C( E ' W P# `9 l( r. xHere’s how it looks in code (Python): + V* P% m. N1 Epython % o3 y8 Y, V- l; \6 N8 x' [3 [! l! W
' _6 W; S! _% v# T# p
def factorial(n):/ d9 k3 n9 f3 N+ r) z# N' X# E
# Base case' | i- _0 e8 S. f/ d: }
if n == 0: : ~5 T' w1 g: `7 ]% q return 1 ( S) A; Y: ]% e' C) j6 l$ R v' q # Recursive case , J# @3 @9 N. r0 H5 X& {& U else: : ^ q! W& i6 l+ W+ q. f return n * factorial(n - 1)5 Z' M6 e. b$ }, P* w! q
9 j( F! y* L0 b8 yHow Recursion Works / j8 w) x9 u! h; f# l/ a6 I% `8 Y% M' E2 c
The function keeps calling itself with smaller inputs until it reaches the base case. y+ @, o, ^6 Z( ~# q& P/ E$ R1 p 1 Y X5 P2 d' W5 p. N Once the base case is reached, the function starts returning values back up the call stack. 0 ~) {) r" g1 I$ K) t3 W 0 b3 {9 C$ X& E3 d* @ These returned values are combined to produce the final result. ! ?1 J; U/ [' U- S# O6 B/ v; @# r( b& {4 ?8 n# a9 K G
For factorial(5): 3 W/ N; \& g- n. E2 k; j' N; \& D) N" e! Y
: _% D% N; u& G2 B. R/ P1 ]factorial(5) = 5 * factorial(4)0 a& D+ y2 s3 A8 ^
factorial(4) = 4 * factorial(3); @1 e/ [: u4 S# |( J1 h
factorial(3) = 3 * factorial(2)5 ?' H; I& ]- W7 y! I! y' o$ D. d
factorial(2) = 2 * factorial(1) * S6 g0 l( I1 C- \9 b- m/ Ffactorial(1) = 1 * factorial(0)2 \) {4 V! Z9 g K
factorial(0) = 1 # Base case. Z+ |0 X1 F+ J3 Z) B& [/ ]9 w. g
# k7 S$ N5 C% E" U+ D( ?
Then, the results are combined:5 N$ j9 ]) Q9 Q+ \1 Y9 k
, i3 K3 U, R- P0 ~: a/ ]
0 a# j0 [7 P0 A: v% V1 f" I0 l* Mfactorial(1) = 1 * 1 = 1 0 Y2 W; o; ~, r/ C% q9 ffactorial(2) = 2 * 1 = 2; E% s* o( G4 s4 |
factorial(3) = 3 * 2 = 6 ( W* ^" D' ?. [4 J; }. Rfactorial(4) = 4 * 6 = 240 x, w! @6 {5 i3 _
factorial(5) = 5 * 24 = 120, A6 m5 ^& J3 E
6 d( \$ B. M' S
Advantages of Recursion 4 ?) z$ [) {6 u X4 a. j& s; O 8 n) x; u3 i( }1 n; F Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).$ g' s. j( k8 j' Q7 {
$ a8 |! s4 w) p, T- H. q1 V F6 X# Y Readability: Recursive code can be more readable and concise compared to iterative solutions.- L/ F5 s; N" U* T$ |6 S; M" v- C
& n8 @/ c1 r& h- @) c+ M
Disadvantages of Recursion+ D3 I" F9 Y& h+ q. P/ h
; g, e4 q/ V T+ g1 D W' y
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. % \$ Z: b% R2 i, b( w6 n ( p% Z' {/ D7 G; ?; O' v Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). % A- v9 I2 R; e4 I7 J: Y }$ ^ U0 S: n& x% }& y7 Q9 U
When to Use Recursion" R, T2 S- {4 F% |2 p1 o- B
+ p* F2 _! |1 Y5 _; D% k% G Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 c& {% i) n' A- I+ x
; s7 Q# N3 p8 U( M9 J$ T' x Problems with a clear base case and recursive case. 4 A+ m9 {: S3 m, Y 2 N, J7 I# P- T7 D! j5 O' hExample: Fibonacci Sequence% d% x$ l# s) c. Y
8 }/ E# {8 E. V8 t5 Y* b6 I& O
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:- n# ^, j3 B3 n8 b% @- b/ E+ j" V
; z6 W1 j$ J& X
Base case: fib(0) = 0, fib(1) = 1 1 Y* y# e' M- r+ A+ I& }2 Z 2 l% Y& P8 u0 L' X% b Recursive case: fib(n) = fib(n-1) + fib(n-2)5 |. _; T* p) ?9 q6 ` E; y: a
% ?; S8 S7 Y) A9 i
python. t$ D/ A9 {7 C. g$ B
+ _+ s& `5 y2 H! g# B: G# t
" i) H( R" U* \3 K _1 Ldef fibonacci(n):& ]! k1 C( o6 a! j0 b
# Base cases d: G' e3 A6 ^: n if n == 0: 6 n$ [. b5 z7 ^! x/ l0 m2 W return 0; a. }( ]! k: E. e2 O' s$ o
elif n == 1:, c2 i# z+ j- L# z8 I* @
return 1" [3 t1 i5 |, G2 r. W" w0 `( w
# Recursive case8 c6 \& \. B& v- |2 g+ E# x
else: 4 S0 F J6 r" u0 M return fibonacci(n - 1) + fibonacci(n - 2) 5 f8 _% [& Q; }9 L' v+ I8 o: B R( ]6 S% j! S5 i% ^
# Example usage3 T: Q0 g3 j: ]3 d4 ]+ w/ S
print(fibonacci(6)) # Output: 8 * g" I3 {: P$ T* V& b: |$ x$ { H0 r6 [9 n6 X
Tail Recursion Q, e8 }* X9 g7 P1 O9 g! [( n! [; k: s
; e# H/ x- A7 B& M) x% WTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)." i! X# v' K$ W
* }9 B0 z7 u3 w7 U% d: OIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。