爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 $ }4 A# W5 {% g7 z

  n" x( R! W& ~/ _: _6 u2 j- L解释的不错
1 j) v, g$ Q2 W# Q2 X+ z7 t  ?5 k8 a& F7 i2 l9 ^
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。' d- E$ T' j) p* i( e

* l" H  n3 x0 o8 W" F0 K1 s  C 关键要素2 n2 ^* n& L9 y4 Y. Z
1. **基线条件(Base Case)**; K" ]1 M7 [3 `. c/ O8 {
   - 递归终止的条件,防止无限循环
3 Y7 e5 Z" R8 L3 w2 W9 s   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
# _2 v5 H5 Y" _2 I
5 y6 H9 T  X, X9 K! K1 U7 e2. **递归条件(Recursive Case)**
2 G+ L+ y8 r5 ]# S* G4 T, U) ~   - 将原问题分解为更小的子问题
) p/ ?# P- o' b- q7 Z   - 例如:n! = n × (n-1)!. W' W6 e7 q9 \3 X

1 a+ l! t, G5 Y- x4 V 经典示例:计算阶乘
$ Q. n8 a  Y. J0 i! ~% U/ @python
# T4 z' m  f1 Pdef factorial(n):' z- _6 L3 C" Q% I3 r+ G, U
    if n == 0:        # 基线条件' H' v$ P. D3 d3 q
        return 1
, V5 j* s/ R1 I& h    else:             # 递归条件
+ h$ f3 S6 j  [; u6 x  @        return n * factorial(n-1)
5 c6 C3 Y2 D# ]# O: o执行过程(以计算 3! 为例):
4 A& O% t/ M7 u* w& \factorial(3)
  I, P1 t/ z3 w. ^' Q' n3 * factorial(2)2 z5 I# ]7 G$ E2 F# K  a
3 * (2 * factorial(1)): V# [# {7 k' v' }$ u3 x1 \5 Y  G
3 * (2 * (1 * factorial(0)))
* P0 a( @3 Y6 x, v( J3 v3 * (2 * (1 * 1)) = 6
( g( ~! y/ e. R' R, ?$ F8 D1 b0 ^7 @4 e" e4 v! T; S+ Y
递归思维要点' R3 V) I( ^6 v- _
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
+ _" A+ |$ u* f) d' b* F! i1 s6 W2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
* |5 X, K* y8 y2 ]6 x- H3. **递推过程**:不断向下分解问题(递)) m, G4 o6 ]9 V/ Q: V
4. **回溯过程**:组合子问题结果返回(归)/ M1 M) d5 W3 f4 g, T

1 Z4 Y9 N% ^7 v' T' T 注意事项# f5 X; R2 D0 Z9 g
必须要有终止条件
- U4 q: Z! j9 I递归深度过大可能导致栈溢出(Python默认递归深度约1000层)6 g- |2 A; H# ~4 w8 q+ l
某些问题用递归更直观(如树遍历),但效率可能不如迭代
: _" `) I; D, W尾递归优化可以提升效率(但Python不支持)
8 l1 m$ t" K8 I1 ^% C. Q! R+ z
; t, B# P- b5 I( m 递归 vs 迭代
1 N: h. G$ ~: u& T( k, S) ?|          | 递归                          | 迭代               |
: Q' L  P  u8 u* l( h9 n|----------|-----------------------------|------------------|
9 R# ]  [+ W. a| 实现方式    | 函数自调用                        | 循环结构            |
0 S# A4 a1 v9 S: k| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |; `% s+ U& Q" {) {( F/ `3 M  x
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |' y' X& ?5 F6 {2 U+ f; B2 S
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
; S9 o5 \7 r  v" E
  y& Z9 A5 G5 e8 M/ J3 p/ o& h6 _ 经典递归应用场景
) ]+ j1 K5 `, Y5 r1 n7 R2 G1 f1. 文件系统遍历(目录树结构)2 o9 N9 H( O3 S4 I3 x1 o
2. 快速排序/归并排序算法
% _! [7 I! V( P3. 汉诺塔问题$ j6 t4 }  D! [9 v
4. 二叉树遍历(前序/中序/后序)
0 ]9 E1 c6 `" z2 K5. 生成所有可能的组合(回溯算法)
5 z1 G/ |' V' h  w  ^9 N- `4 M/ e$ |" \& m# R
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 k0 l( ^' c" A6 M: j
我推理机的核心算法应该是二叉树遍历的变种。( `' D! U6 ~! @: H6 k: m
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
+ t  I, k' E% }Key Idea of Recursion$ w, _( [0 E2 C. l$ S

) U/ i  `% g4 f7 x  r( U8 E. J# gA recursive function solves a problem by:
/ ^" @7 s3 W& y  B) Y" v
' c/ \. F8 H  x: ], x( V    Breaking the problem into smaller instances of the same problem.  K; O0 `$ g& U" Q& |* s

) }, r1 Z; g. `) r; i4 Q; r% h    Solving the smallest instance directly (base case).% G8 L. M; ~  G+ n

+ ~- K8 a7 O4 c. c    Combining the results of smaller instances to solve the larger problem.
! t( ], q+ b2 V+ L
# W1 f9 V% M: h# v' V4 CComponents of a Recursive Function
9 y! ?4 [' F3 @8 @. Z! V$ k! W: e% A. D
    Base Case:
! b5 {7 c# ]" j( C9 ~/ u* ^3 [- [" Z* y4 ]4 u
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; w; I+ S3 I4 T% c  q/ T: M+ ^

. T) _" a& D7 \        It acts as the stopping condition to prevent infinite recursion.. r7 C% n3 D& w9 X$ Y2 r" B; r7 {

- E# o4 d( b* L3 b  o3 v1 H# c        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.- {0 M  C8 {# \( p

* p" v/ @+ G; P) O, e    Recursive Case:
( `# C- ]7 ?& _/ ]& ]8 d! Y/ C2 o( D2 P, k" c
        This is where the function calls itself with a smaller or simpler version of the problem.
  [2 t* r% F% x# L4 }$ x3 G/ S2 \) \
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
% e5 j+ B; s- ?' d0 \0 c1 k# Q* H) W1 [2 C  H# y  `7 E0 ]
Example: Factorial Calculation7 f( r( L4 B- ?& }, d

( q- s& s  e& l6 C3 v8 E1 O- U: |The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
& A) ~8 ^, F: V5 ?! e
+ _- B- `2 ?0 D2 Q* e) ]4 I3 v    Base case: 0! = 1
! V! ?1 I: y' e+ T
/ J, ~9 O+ r- u9 H9 f    Recursive case: n! = n * (n-1)!/ _, j4 Z7 U7 E( h
) a7 u! ]2 ^+ d: @
Here’s how it looks in code (Python):
8 D4 r" ]: z# j" I$ p* Vpython' x# d4 n3 m& T* n6 {

6 Z7 z) c" {8 O4 G0 ^' ^2 z5 y5 s" h8 e( }) R% U$ V& }
def factorial(n):
/ K1 C9 A0 D& p  b/ X* `/ ?, {5 S    # Base case  R+ U& K/ e" E" x
    if n == 0:
, ]+ d+ Q7 r0 b$ u; Y: B( P        return 1
8 f3 {9 P, }( y, l% O9 X! i2 a    # Recursive case: Y! K7 d5 }1 t; T$ ^( ]# |0 L
    else:
2 O, J2 F0 l8 d        return n * factorial(n - 1)
6 C% x* X4 V- y" m) n
, G! C$ E* J( i6 Z8 O# Example usage2 f2 B; i& Y' |4 h! F% p; ], Y
print(factorial(5))  # Output: 120
9 f# A, ~1 G/ a0 D# m" i
1 e0 D; H& {) T( QHow Recursion Works
% V- S1 T( C% l7 E3 P
5 L* o3 l; l4 O+ O    The function keeps calling itself with smaller inputs until it reaches the base case.6 H4 I9 Z, h  z5 C" s

, @4 A. P! q: s- ^1 ]/ [  A    Once the base case is reached, the function starts returning values back up the call stack.
( A  `8 H; D9 \/ J! Q4 ^7 c/ L& v" k, C9 k: S5 z
    These returned values are combined to produce the final result.
2 C& m% F7 E  ?2 o" i$ Q0 @) c$ ~
, e! s, T9 f: V( d& m4 m2 GFor factorial(5):
7 q2 t% e- B! S- X( q% z
! B& c( S7 C3 \  L: d9 V( y& u  e) G
factorial(5) = 5 * factorial(4)
; C- C" N6 w9 K: ?6 A# J' u/ qfactorial(4) = 4 * factorial(3)% g% d. D$ d. |% n1 C
factorial(3) = 3 * factorial(2)
9 [: J& X/ `. v" x" `factorial(2) = 2 * factorial(1)+ B0 J' |8 B; f% _
factorial(1) = 1 * factorial(0)4 n  i5 p! L3 ?' R( c, p  I& s5 ]! U
factorial(0) = 1  # Base case
1 ~0 S2 b" i  D/ s% e" ~& E: n+ D( B3 Y5 M/ `! n4 G
Then, the results are combined:! c1 {8 w3 P: r( `

. ^% b& x" N6 v' n/ I' l- y+ }5 k1 U4 b8 x# \  S; J
factorial(1) = 1 * 1 = 1
6 v: c* Z& g4 _2 M  t' V( qfactorial(2) = 2 * 1 = 2
; u& }5 ~0 H! _9 Z6 r8 R- _# t7 Pfactorial(3) = 3 * 2 = 6. e+ P7 {% }+ U" X7 s& `
factorial(4) = 4 * 6 = 24* E- E% j  |  q" `: ~6 @/ e
factorial(5) = 5 * 24 = 1206 y: m+ i2 S2 V+ u. ]
% r# a9 h+ K+ Y9 i5 X: l
Advantages of Recursion
2 v) F' v& S  u! D) E/ J
2 s9 k) J. x4 Y/ F/ v    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
5 |1 q) v/ f8 F1 j! h* n* L2 Q% q! o  j1 P3 k! r$ ^% |0 w
    Readability: Recursive code can be more readable and concise compared to iterative solutions.. g' b' ~, H6 ~
$ |5 ?* J5 q7 y0 J+ Q$ Z
Disadvantages of Recursion. `' F* i' H' L% B4 O

3 B0 D7 j, y+ q" M6 i' l    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
) D- I7 p5 Z/ L. l) {! e
( ]5 F" R' l* p: `$ q3 r; E    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
1 I: {! p3 J* {; P. O, ^& t
' l) D: z  c. }! I3 {When to Use Recursion1 s6 {" n1 Y! p: r' T
8 F5 q, Q9 [. [9 j, v( [
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).+ c' A: @2 \, b
4 m9 r! ]) S5 h* S% k1 T
    Problems with a clear base case and recursive case.$ [/ k# [7 o8 i' }! ~/ R0 Z5 D+ \7 P

7 S- S5 M1 w! i6 ?( xExample: Fibonacci Sequence- v! d" Y) R$ ^9 G
7 {  w# k. `: e/ Q
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:+ u5 P8 g5 X4 z

# K! Y7 M9 j) z- [7 w    Base case: fib(0) = 0, fib(1) = 1
9 A0 r, h/ \! `- _
( {  v/ `8 p: H& M    Recursive case: fib(n) = fib(n-1) + fib(n-2)  _/ B" p2 V$ G( |' l9 _
  C! G) |( X# U7 i* I$ D" X0 w
python
  J2 I& b3 D* _5 s2 S7 r2 _& d9 r0 C4 T) g

4 s% j. _  J, sdef fibonacci(n):
( G) f: z8 y- w6 q    # Base cases& e" f# X" L  S! s
    if n == 0:6 [& B4 S9 s8 Y- w/ X! }
        return 06 s4 E4 C+ H; x1 }& ]+ @6 g
    elif n == 1:
) |: ^- A0 q) g/ X) e. u/ _        return 1( G$ J' ]2 e+ k# [
    # Recursive case; I0 X, x5 {2 H/ m+ L/ u/ C2 v( m
    else:0 D8 `: _& n4 a- w( Z. F! J
        return fibonacci(n - 1) + fibonacci(n - 2); k& B& I7 ?7 z# ?( \

- c0 r5 l0 x$ G8 g$ e( h3 p- b# Example usage
( }1 {$ p0 E- p" Qprint(fibonacci(6))  # Output: 8
% G& H! L5 m- V3 x- ]$ d  N3 z
" f$ t* @; Q; x, y( sTail Recursion) B/ ^" o5 A- p

# {3 O% V* H0 M, W( s. a' f/ }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)./ u, [3 |/ E, r" W- _

8 D1 o9 ^3 ?0 u9 p  V% n! t# \& UIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2