爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
; W7 G* B0 U8 t# a- G$ s' B. O- a( i( O) f2 T( P9 [
解释的不错3 ]+ w7 |6 B) A, P8 H
" {9 w& s# j7 G: l
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
( M- [) d. q8 l  ]7 p
; p+ l3 Y# W# H" q; J0 P9 ?3 I* g; u 关键要素, F' X9 F/ P0 Y- G( }2 ]
1. **基线条件(Base Case)**
! ?$ Z3 d) {8 z0 D; f  u- r   - 递归终止的条件,防止无限循环1 U/ s) R; ~6 a; D
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 18 S3 g3 N2 v1 y, L/ ~/ C, \
8 O9 A# E( @; C, h3 \. H7 K
2. **递归条件(Recursive Case)**
8 R1 t: ^* f3 K3 B+ B   - 将原问题分解为更小的子问题1 C/ n: \+ q( s( q7 Q3 [
   - 例如:n! = n × (n-1)!
; f/ u3 w( h5 E" y9 @) C# D6 S8 Z' J) }* L; I
经典示例:计算阶乘, \$ X% Y7 E4 M! y$ t
python
7 d+ E9 j9 p2 g' Q' O$ _2 Sdef factorial(n):$ P$ r! b9 C- k
    if n == 0:        # 基线条件' M* U9 y8 o' l1 {/ F; G
        return 1
# H# k2 F2 a& ^+ Y/ X* `( q  {    else:             # 递归条件
& Z+ m# {& b: u. C2 g8 `$ b        return n * factorial(n-1)& Q. b) V$ W6 o: N2 L5 f3 h
执行过程(以计算 3! 为例):! m" i  x) `$ n  q7 }  g2 Q
factorial(3)' ?6 l; j+ `7 L" W
3 * factorial(2)5 l4 w( D; L6 A7 ^. c2 ^
3 * (2 * factorial(1))
% \3 M! `5 k' T- S3 * (2 * (1 * factorial(0)))
+ a8 x( n  W1 V2 [: @6 [3 * (2 * (1 * 1)) = 6
6 Z! Z7 q& L- A
, N# z8 w8 K  [( {) N 递归思维要点( N2 j8 j$ O+ r. H" i
1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ m: L0 Z) t# ]) d
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
- [" H2 F& y, v1 L, H0 h! x, R3 [3. **递推过程**:不断向下分解问题(递)# N9 e8 i, @3 V. }- G
4. **回溯过程**:组合子问题结果返回(归). x3 ~, r1 I) b8 E/ @6 f

0 g$ i9 b3 z# P" I  f7 N9 i! U 注意事项/ ]2 _5 z+ i. R0 k6 e1 G* |. U
必须要有终止条件+ h; e1 `; s* F5 c% l) K( v, T
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ X) t8 l6 T2 P* M$ D) ^# y% ^( h( x
某些问题用递归更直观(如树遍历),但效率可能不如迭代
' K) k% u) _$ M+ n尾递归优化可以提升效率(但Python不支持)5 ^* }$ D! P$ `

& ^, O. K7 Y: s 递归 vs 迭代9 G. ^% E2 H6 H, L  N
|          | 递归                          | 迭代               |: U6 ^0 i7 R. e' ?" c
|----------|-----------------------------|------------------|
( A4 T1 s+ m' T" w1 `8 B5 \, H. p| 实现方式    | 函数自调用                        | 循环结构            |7 m+ @. H; U$ x2 j4 ~
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
6 M8 x8 O/ _1 r, z6 B  ]/ u. u| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
8 L, }4 y: Z% t& f| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |5 Y9 O8 ?3 W& Q# x
1 c3 m: q. @4 d. y; V1 r
经典递归应用场景1 \) ^$ L6 h6 g
1. 文件系统遍历(目录树结构)$ }! d7 S* k" o  D9 |
2. 快速排序/归并排序算法3 J" J$ D7 K1 ]" R% z% V
3. 汉诺塔问题* s' ^2 t6 [/ [! k
4. 二叉树遍历(前序/中序/后序): J7 I7 U+ x) b. Y% O+ @6 T. N3 X3 x
5. 生成所有可能的组合(回溯算法)* j4 X/ l' ~- H: s
4 D9 j/ T$ W! k- G
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
0 [! E/ A, _/ @% _! C+ q$ |6 a, u我推理机的核心算法应该是二叉树遍历的变种。
% {9 h; Z9 o9 ~另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
: s7 H  y5 g" b. J4 X8 C, dKey Idea of Recursion
3 o' e/ d; E; k. m2 Z  j; r# S; @) H% L% b) J
A recursive function solves a problem by:% V1 k' t+ l: p
$ g" G3 O- Y7 h/ r
    Breaking the problem into smaller instances of the same problem.. Z, [6 x9 k. d0 u5 n- j
4 S$ _& O/ s, G
    Solving the smallest instance directly (base case).$ `& e' h2 k8 |
0 [. Z( ]( h! N; `: |  c6 h
    Combining the results of smaller instances to solve the larger problem.: P2 _' i% ?" F2 s; g7 ]( j
( t' v( V8 p" @* K+ v
Components of a Recursive Function. N3 U$ Y; E$ ^* z
5 I+ D3 W% D+ U& C, d# H
    Base Case:
# p6 O. s! q( K/ M& o6 r
* r4 s; _- z: o% K& f# K$ d. ]        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.5 f4 D2 h; a4 M) ^
& N* l  i9 [: B$ |% p; M8 q
        It acts as the stopping condition to prevent infinite recursion.
1 M! d7 g% L9 O+ \2 P& n! f1 x  z( w7 G6 J  G( J
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 D5 u, y% K5 e0 N& P5 E
% \! P( d0 W  A8 o
    Recursive Case:' \' |3 Q2 Q: _. A  E
2 }2 H7 v! X/ p1 E6 u4 L; d3 V
        This is where the function calls itself with a smaller or simpler version of the problem.- h) N4 u; k  ^" L7 Q' ?" M
% B8 a* g, r7 u% s# F- g- h
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).4 }6 B1 v5 q% y0 E. }
7 B8 z1 Y8 w) ~6 N) t( a3 A
Example: Factorial Calculation' H: [, v4 J' t* j( R, u1 P

  z2 p5 `0 L0 k  _+ m% kThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:% i- k  s# W& v% n; T5 X

' q; o1 W/ d- }: P    Base case: 0! = 1
" ]/ O; Z* V: P! y5 D+ D6 m( L
& b3 e$ Z+ u4 h" V    Recursive case: n! = n * (n-1)!$ [# ~3 c. S0 ^) _; W. j& |

1 b- @1 a) r+ HHere’s how it looks in code (Python):
+ M. V( t6 s9 t* i4 a, Tpython
1 _9 a) P9 k( C+ Z1 b: ^( g
! \5 l# R6 d; B% S, o
0 i2 }: g: O0 t' l% J/ R0 [6 edef factorial(n):1 q& l. \0 o" B' \6 H9 ?
    # Base case
6 q* d' v* A$ t) z$ T; x0 s    if n == 0:
; `& O% ^; I0 K. Y$ J        return 1
- B8 O& N! |9 h, n8 Z    # Recursive case
/ ?' D' j' R8 o! i8 G) m$ B0 B% G    else:
' ?: K; Y3 r. c6 B/ t        return n * factorial(n - 1)$ F' G$ F( [5 e6 a7 w# y! B

2 W0 F) S2 @9 d# Example usage+ ]* m8 e1 ~# w9 t( ?& q% `, ]2 b$ z
print(factorial(5))  # Output: 120
1 q, v7 d, a6 h
: p8 k; O9 N  h4 D- l1 `4 CHow Recursion Works7 q: T" j8 y  H/ E0 [% D  z$ @. t
1 E2 ~' [8 A; l  N+ f
    The function keeps calling itself with smaller inputs until it reaches the base case.
* o' b) G' x! U3 T! E& ]9 v- W
    Once the base case is reached, the function starts returning values back up the call stack.
6 a5 Z& ?( a( n$ _4 T) i" m; m
- @9 s8 u9 _4 z- h7 g    These returned values are combined to produce the final result.' Q; y6 c1 _' u8 m% z

, u2 \9 Y! M& J- |0 Y! {For factorial(5):: ~% B8 q1 j) N/ X1 b! O
5 B& V% v' L5 n& k" d

- J  E6 f( a" t' Z, ^$ h9 {factorial(5) = 5 * factorial(4)2 M; z& Y! F/ Q) f
factorial(4) = 4 * factorial(3)
' v) M) f2 \  Qfactorial(3) = 3 * factorial(2)
( u; F/ m: ]% Z& u2 e, }9 rfactorial(2) = 2 * factorial(1)8 t( |4 `- g" z
factorial(1) = 1 * factorial(0)! ]' c0 }0 H+ C( L
factorial(0) = 1  # Base case, v) _5 e8 f, E/ `0 @" ~
$ W7 V2 \5 Z- x! ]
Then, the results are combined:6 Z6 C" P" B( r
" K6 ]: r! z4 `$ L' u6 `, @

! q* \+ }' P1 I* t3 Ffactorial(1) = 1 * 1 = 1
/ P* ~) u% V' q; |$ |) d8 i1 lfactorial(2) = 2 * 1 = 2
: P3 u$ W- u3 h9 s, ]: Qfactorial(3) = 3 * 2 = 6
! w7 u* T* [! o" A( G8 Rfactorial(4) = 4 * 6 = 24" i, {- p/ b6 T
factorial(5) = 5 * 24 = 120
2 ^' l  V% n( ~; @- O
. J" I8 L1 i/ JAdvantages of Recursion
  O: R  j  }' d% I2 P# U* D# {5 L
  g5 w# s( f- O7 P! G    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).6 Z& |, R/ O6 n
5 w3 N: T1 ?0 n# b( a' h
    Readability: Recursive code can be more readable and concise compared to iterative solutions.
0 n- a  _2 \5 h$ c! l0 h7 l' m( ?/ ~, i! M& k
Disadvantages of Recursion
+ U8 \$ F# |/ |4 j) X" H4 \; b7 T+ o/ X- S
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.6 ~+ ~; `9 W1 U4 r) G, M
# b+ e5 {6 I9 U
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# C8 D% p6 t# ~+ L: m9 _
0 @. s: }5 V6 O) U1 w# j* K
When to Use Recursion
. D( [2 l0 d' ~* q) m0 c& ?  G
7 `) v& H! f5 j$ e: W8 a( E    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
4 z8 h; ]5 z2 Q5 V
0 d7 T& r2 T9 U, S3 [3 X/ R3 Z    Problems with a clear base case and recursive case./ f% i' P5 _+ g1 N# a7 j6 A

7 g* l: [/ x) U1 s- zExample: Fibonacci Sequence% _( {6 G) }4 _- ~% @

: k- }, T- o9 g: U( V. tThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:& m4 c. A0 f, j; b4 t( R. R
1 g2 C' R8 ^* h) Z9 R) ^# x
    Base case: fib(0) = 0, fib(1) = 1. _! F( Z5 D' q* l. ~
% X1 ^/ u" f) C0 X8 |- k2 \
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
0 n$ Y6 f! R' t1 C' ], D2 H9 X. [* Z3 W* J
python/ O# E1 f9 ?; B5 j+ ^* l1 w9 ^
2 V  o* i) R% @, Q3 ~- x; _$ i& [

5 f" ^; T) f" y6 ^1 `. r4 ~6 tdef fibonacci(n):
1 [1 S5 j& N8 K    # Base cases3 T) s# {9 [; x# g" A
    if n == 0:2 }: \4 }3 i$ h% `' }
        return 0
) x5 q; c0 m$ j3 {3 F    elif n == 1:
* |! R, Z& p9 c: R% c7 l        return 1
) o0 N, V& \  H    # Recursive case" f: K) K4 ^. L5 O& J
    else:
# M' Z( X$ D! ^6 V- U9 s        return fibonacci(n - 1) + fibonacci(n - 2)
0 J8 J7 a  ?& B- h$ H9 q1 [9 y# Y3 w* O
# Example usage! Y- ?  X% l- }$ b' Z! }6 z
print(fibonacci(6))  # Output: 8
4 }* A# h5 Y3 @# s% e0 B3 P: i5 |5 e1 g6 M
Tail Recursion
- u& ]* ^! J& Y
6 P0 u9 r9 K, }: [Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
" s9 k$ v* s/ n$ a0 C8 s: `- m% Y! ]. D4 d
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2