标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 # N7 P- v) g' h6 b; s
$ L% b! ~' k0 I. l
解释的不错 ! }! S" N+ e9 O9 e. B2 ^& l, @' M1 C. S* \; M) i
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 2 B* @2 M0 W5 [" L8 U 4 t' p) s8 w- o8 @% o 关键要素# ?" a2 s: i- D3 J l" C) _2 l* ?
1. **基线条件(Base Case)**4 K2 j: O+ @# C- S
- 递归终止的条件,防止无限循环( H: h+ _" x: p# W/ D
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 8 n, u, ]+ h w1 p- p; X2 R$ j, j" p% n
2. **递归条件(Recursive Case)** ; f1 w( S! U4 l; Y% t - 将原问题分解为更小的子问题- G/ A& Z, p, a7 w3 V
- 例如:n! = n × (n-1)!, t% [( E, N& t' J2 F5 R h% i
/ f" l5 d3 }! s* p6 [; N: F 经典示例:计算阶乘: X8 Z" a( g4 ]) s' O: t& a( X- `
python" B! @' z2 N |7 E4 d
def factorial(n):# `, K! X6 y: b9 }8 K/ P
if n == 0: # 基线条件 " G% d& [; @ u9 w return 1 * x2 u. V" L9 F. s9 [9 Z else: # 递归条件 0 X# a* B: l) V; g# _ return n * factorial(n-1) 0 g4 Z$ U) B- C$ q X. }执行过程(以计算 3! 为例): ) ?* X x% H; P3 j- sfactorial(3), D6 C6 w- l/ H7 ~( F
3 * factorial(2)$ C/ Z5 Y/ ]- i" G
3 * (2 * factorial(1)) 3 j. ]* u) [; G o4 q; E% D' t B3 * (2 * (1 * factorial(0)))/ I! \! z, A; v& P$ r; G5 D! T9 l+ @
3 * (2 * (1 * 1)) = 6 2 C: j' W. f' L+ M* b8 H * z5 G6 g3 }9 C2 f% h& \4 N0 t6 c 递归思维要点 ) x4 A/ e& r% K5 }! z1. **信任递归**:假设子问题已经解决,专注当前层逻辑 , z3 J6 r; N/ F) A7 z1 c6 W9 @2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 a% U1 R, a3 x0 v3 t
3. **递推过程**:不断向下分解问题(递) 5 M! O. `* A: y- Y9 Z* O1 l8 h4. **回溯过程**:组合子问题结果返回(归)3 R" ~6 o& R; `- o/ J8 t1 Z
- `5 d( T7 t2 J6 O' l* ?5 V# t' h
注意事项7 r& P$ J/ w: n5 Y7 B9 y" f
必须要有终止条件 " M4 G: y2 b# A# {: H3 w4 S4 J8 O6 p递归深度过大可能导致栈溢出(Python默认递归深度约1000层)5 x2 }; e4 T5 `, l1 E, T2 g1 S
某些问题用递归更直观(如树遍历),但效率可能不如迭代 2 A7 {, I+ [: v+ Q K尾递归优化可以提升效率(但Python不支持)5 y: w; T# {+ { V& \: P# T
. {9 I% o# b8 u5 F
递归 vs 迭代' E5 B0 \( R3 H2 Q; V0 |
| | 递归 | 迭代 |0 g- {. c* B% L" S
|----------|-----------------------------|------------------|9 j+ ]7 q- w0 c: {5 s& B1 \9 ]: t
| 实现方式 | 函数自调用 | 循环结构 | l0 X! {$ K2 H- ~/ \0 `" m1 ^
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |2 n3 t/ v) z; B* M( M
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | ; r, g$ c# _; ^/ b5 G& D) j| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | 8 l v) b# w# p0 y' P8 e) Q5 A3 C* M; j* `- V1 i/ }
经典递归应用场景 3 y, n- p3 L; }$ d! w m: b) b1. 文件系统遍历(目录树结构) 0 j a8 y9 i7 z7 k2 y2. 快速排序/归并排序算法 1 e( f' c" l1 Y3. 汉诺塔问题& t8 |; o3 h* e: l! l3 U, i
4. 二叉树遍历(前序/中序/后序)( w+ }+ e3 D+ y( ?6 r
5. 生成所有可能的组合(回溯算法) 5 y. ~* r0 ^( y+ v& B + p5 H1 m, G# P( ?$ [! T0 a! Q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, 8 R- N/ `& {; D% C) @! _( U- [我推理机的核心算法应该是二叉树遍历的变种。 3 p# p- e1 T% b0 s/ U) N$ m O另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 k2 @' v) c4 ]# k6 x$ o
Key Idea of Recursion * V: v7 f3 z. E5 B . _4 x6 z; Y2 F3 x) OA recursive function solves a problem by:8 J; W! R3 w- F+ |$ M7 A
. E" s( n# I- a! T( }( ? Breaking the problem into smaller instances of the same problem.: c$ |. e7 ^0 ?* r8 M$ _8 ?
1 X- p3 E: \, w Solving the smallest instance directly (base case). ( y h1 N" I$ M; e6 N1 q$ q! O+ ?% t$ D [* i
Combining the results of smaller instances to solve the larger problem.& H# \- N$ b- _+ A3 N
, L' O2 H3 w3 v( @Components of a Recursive Function. R) m% T2 {' J) o
5 O4 L y; G* u9 B" o+ Q, e
Base Case:" B% a$ T- _. O' U7 v( H; f1 p5 E
8 O( b! x9 M$ E. b This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 3 ~% U# q% a _5 J, O 9 t& M0 `3 A, {2 N5 l& C It acts as the stopping condition to prevent infinite recursion. 2 W/ I( [: Y) z% N- u' i% S1 u8 H" B5 {5 w
Example: In calculating the factorial of a number, the base case is factorial(0) = 1. ' q' ~; X7 q, q; X" j* W% ^ 8 O# a* o0 u1 ^ Recursive Case: # R/ I0 K. @+ {7 x' H9 r, S+ Q7 {1 ~) T( a9 X$ p- p* j! i
This is where the function calls itself with a smaller or simpler version of the problem. . p! i2 \, @2 [8 _, ?5 S5 T! }8 M% @' R& i
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).2 _* v* T @% }( E' K
& L l" A% N: n6 f1 c
Example: Factorial Calculation 0 J% I! z/ K u, P - G9 T5 x; |. N' g- aThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: 5 m# a9 D* Q- w: |7 q8 Z# P: Y" ] * t9 a* m! ?) r Base case: 0! = 11 `9 J4 n) C. ^& D+ r, E
/ m0 r/ i; O _! w# Y+ OHere’s how it looks in code (Python): 5 Q3 k3 R4 P1 ` G3 x7 x. Bpython 1 R* W" N7 e6 `1 b% r6 m ! n3 k* Q- Z( c* m; I: s" M' m 7 {- [0 v& G, i# rdef factorial(n):$ C7 r! _ g0 U) e5 F1 j
# Base case 9 @1 f% X( Z# }: F if n == 0:; \: l4 K* _% n% T/ I/ k3 [
return 1 2 }% a( b* L7 M1 D5 ` [1 A, m # Recursive case 6 R, W" h# z% B( x else:& k& H+ k5 G, D2 y2 @$ V
return n * factorial(n - 1), N) A6 L8 G/ l
- b& [0 J1 V/ }7 |7 @; `' @# Example usage7 M) t2 l' h! i" Y
print(factorial(5)) # Output: 120 / \0 h0 d! u1 t1 P e8 g; H ( B+ W. b% d7 C2 `( xHow Recursion Works 8 j# M" D7 j# p' Q2 \ % F3 I+ l! l; \& L3 J$ d8 Z+ n The function keeps calling itself with smaller inputs until it reaches the base case. ; k. ?! b4 P- a1 D( X5 m3 t * c$ r- m v; s( j% u: G Once the base case is reached, the function starts returning values back up the call stack.. s; F T8 ~+ h, @8 Z2 U
3 G* d. Y( D. o, b9 { q These returned values are combined to produce the final result. ) ~, z4 A) b5 `# j% v- B6 f1 B0 S6 `, `$ ]. ]# i5 O- c( Y
For factorial(5):" g% U1 e1 |9 c- ?1 [# f6 K
0 L+ V4 F" t7 c- z7 O& cAdvantages of Recursion. w, R/ h- f; O+ x) j2 x; g8 `2 u9 R
- u" x9 E# ~3 G/ O* r( J! F: z( |9 k
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).1 V u( |# p" }
6 |( ~% K* _6 X
Readability: Recursive code can be more readable and concise compared to iterative solutions. 7 ^- Z/ Q( @6 A/ w9 a. U1 k/ A/ S5 |, L: K" [- _4 ?
Disadvantages of Recursion 3 g M& q9 q' z$ u6 W 4 n2 l+ {* C0 v2 J9 _8 C4 q Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. % D5 f& t/ M: ^# k$ ?8 N( _4 @* {8 _9 U& b7 T7 }7 Y
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization). % [6 C$ a+ b- m6 g4 C7 ?& n7 T( a g
When to Use Recursion9 P/ W5 j4 M7 W# L. q
% G5 T; M- J. m3 r. [3 k* X
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). , z4 k; f! Y/ O5 O/ E D r7 G f6 `/ T) B8 C9 M$ @" D$ Q7 Y4 q Problems with a clear base case and recursive case. [3 ^. z2 T: w+ c6 a5 Y4 c( N& t1 f+ b& Z7 r& a7 H
Example: Fibonacci Sequence9 n8 k v$ J) o% D: L& F0 ~
J) y; z, X( @! R# p8 g
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: # j# O+ h/ U1 i7 {' Y* T# d C . m9 }, H( I% [* b! B0 Q3 N( u Base case: fib(0) = 0, fib(1) = 1; H' {8 M2 }, P5 Q g
. T/ u# D6 c8 g7 ^9 C# m& v% i- w Recursive case: fib(n) = fib(n-1) + fib(n-2): p1 g: ]. x) ?! ?) l' o3 O1 Q! P
( F2 t- l( c) y- m) @" J0 r/ ^, D
python 5 u& \0 n5 l( J/ e. O0 _4 F5 h! n# R7 G! D O
4 |$ B2 [5 X) M) m, a3 L& {$ O
def fibonacci(n): : e s' K: f/ m. ^ # Base cases ( |; ?( R* i# S% a2 u7 W if n == 0:( f: C) s; \1 `* N5 {
return 0 % a( \) i6 t5 k+ \* |& K/ T elif n == 1: 7 Y6 W9 I3 L. C& i1 l- [# } return 12 K2 K$ G& U: |" e8 j: U0 {
# Recursive case l |3 Q1 x; u' v3 U else:# _( p8 w# G# l, S) }+ q
return fibonacci(n - 1) + fibonacci(n - 2) 4 j+ V5 {5 e9 C, b' F& k4 v$ V: o: Z5 s0 Z( V2 T: g
# Example usage 3 F* `3 Z) `/ e1 z7 B2 ~print(fibonacci(6)) # Output: 8% I( f6 s) c& L7 c+ ]8 Q* ` T
- U8 f" q4 W3 F: l' L" I& e
Tail Recursion9 b2 ~. E1 N9 O" _7 g- U
8 w) T: m" G! e! b6 \7 H2 P9 C$ pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 {4 v U9 z& |
1 b, p- `. X8 JIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。