爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 ( d: r7 N* Z# T5 z4 s; E) h
' b' U5 [$ Z0 s2 ]  @/ I. j
解释的不错
: _) Y  Y" |( F* l& A8 w# w. g' }; \: d3 e+ @4 S& H
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, w) a2 Q* O+ N3 N% c% y4 I6 v
$ s2 S" S1 m- w2 U# b! N
关键要素! Q) v  X* Z5 [7 m9 |8 f
1. **基线条件(Base Case)**
$ o1 Q4 H8 u% [1 s   - 递归终止的条件,防止无限循环) y# n% H1 F8 x. G# o4 q7 ^, [
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 19 P, D, t6 j, J' r) u' o4 O5 N  V
1 i$ J3 M- L' E1 p% u6 H( ^4 J
2. **递归条件(Recursive Case)**9 V2 ?& U+ e% }6 D- c) P: s/ o( H
   - 将原问题分解为更小的子问题
- e( s* Y6 U9 b; x   - 例如:n! = n × (n-1)!
; z. t. k# p/ V0 }0 U" e! l9 ?  W, e7 N" Z8 ~3 J0 N
经典示例:计算阶乘
7 s! a4 m% e) a$ r1 w! D* L' opython
* Y1 \+ ]# g7 l" @5 T5 i, p$ b, Vdef factorial(n):4 B7 ]: M0 ?4 y7 }+ s7 b! W+ s& {
    if n == 0:        # 基线条件
# X- B8 X7 {7 J$ D" n9 A        return 1
6 T- x( _0 \. E  _    else:             # 递归条件
% G" q9 B4 a& B3 }7 A        return n * factorial(n-1)  b4 b& y/ [$ O5 V: t
执行过程(以计算 3! 为例):
9 h& `5 W7 x' v0 P0 P  P$ d+ L' ofactorial(3)
7 Q' D9 g$ w( o. z8 b' t0 l8 N3 * factorial(2)
0 s) |0 _8 u& l/ W9 E4 C1 K) N3 * (2 * factorial(1))
! Z& U8 e, D; b# R% A+ w  X3 * (2 * (1 * factorial(0)))
1 L& L- ^0 i( {' g3 * (2 * (1 * 1)) = 6
# O, z5 V1 ]" n0 h. ?. g1 k3 V6 n# B# |- P9 r+ _
递归思维要点- \* c  J5 n: X# y+ [
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
; g/ a. D3 d& H0 I6 P2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
3 g  U# K  o' z0 c& Z* L& y3. **递推过程**:不断向下分解问题(递)
$ W  O; x, Z. H* m+ m4. **回溯过程**:组合子问题结果返回(归)
& f2 h! e) Z+ k7 e8 w. i6 L! z- n$ c) W6 u  ~! y5 f3 E0 D+ u) K7 V
注意事项
8 f* F3 o% L/ `* m  S必须要有终止条件* F* H2 v- H0 H$ a8 t
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
  e* ?, Z2 x9 @2 x某些问题用递归更直观(如树遍历),但效率可能不如迭代
' N! R) Q: V1 ?( l; d尾递归优化可以提升效率(但Python不支持), @  B, }" G- z5 f7 [

( Y; z( M; O  I  p9 K3 r4 D 递归 vs 迭代7 E  ?0 B7 Q. j
|          | 递归                          | 迭代               |0 m7 w  L# |* C3 Z
|----------|-----------------------------|------------------|1 o) O5 C& D4 T% t1 A7 Y6 D8 N
| 实现方式    | 函数自调用                        | 循环结构            |( D7 X+ }0 L$ u/ I5 m- l+ g
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# c4 j# y- \- m3 X9 m$ \3 N
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |/ C$ R  Y( @+ |+ T& d
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |  h# A" |$ ]# t/ u  I

1 S0 F- [; m% C  @$ z; g, M1 G" K 经典递归应用场景
- ?( v! V/ c# m0 W1. 文件系统遍历(目录树结构)$ P4 J' R* {) u) y
2. 快速排序/归并排序算法, w* a. U6 e$ f" L& a
3. 汉诺塔问题
+ ^' F1 |7 {* ?0 R4. 二叉树遍历(前序/中序/后序)" M- f% j9 A+ ?4 Q; j* G" @4 S
5. 生成所有可能的组合(回溯算法)
7 y8 \* `: e: o; s1 H/ g  n! _0 ]
. A2 V7 b6 u" `6 w1 X试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,& c; T/ o- {3 f1 V5 r$ i; d
我推理机的核心算法应该是二叉树遍历的变种。, N  ~$ I- U, z* Z8 Z; a
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
- y& i' K$ E5 P: QKey Idea of Recursion
; @( D" ?- @, x- |( P8 c" O0 F: Q3 k! v
A recursive function solves a problem by:
% I4 ?, F0 Y& q" I! o  A- Y
, ~! Q! g0 w( K- e  b    Breaking the problem into smaller instances of the same problem.
2 [+ {7 b5 y0 o) w7 N8 L7 R( c( k* P7 R" m7 W6 G
    Solving the smallest instance directly (base case).
3 ?4 \7 w+ [" B& X4 s: [3 I9 P$ o/ ?- X' O# R9 o" \
    Combining the results of smaller instances to solve the larger problem.( t+ a) ]  }  b) U0 }) t) |

( `9 R' }8 u8 q6 y' ]3 UComponents of a Recursive Function' I! J7 z( N* t4 h. r2 h. H0 j. q

9 @* B* n3 i. i/ k    Base Case:' v) V1 {# p" d' Q. h
+ ?! W6 |/ Z. J8 B% n
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
7 O* U# b' B5 L- e2 s. A0 e) d2 |
        It acts as the stopping condition to prevent infinite recursion.* e* c4 n0 ^  J7 {/ W; x
: B# k2 L  B* m  Q
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
9 I9 A. [% H3 l; T# r
% R5 W: ?1 A& H+ }( J- [    Recursive Case:  v/ ~1 B' {" ?! @# a* m
& B- P& s" Q3 m3 C0 X. x6 o& b. ^
        This is where the function calls itself with a smaller or simpler version of the problem." B5 K1 |! [9 B8 \/ p- ?% A/ L  K8 K

% \" D) \7 J% T9 q1 d        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
% M' y+ r9 x( ~* Y& s# d. v7 F4 h& S' O: C/ w) c, b
Example: Factorial Calculation
. V. z2 j, W: Q+ D; m& \7 a: E5 J) F
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
9 D1 ^% ]# Z/ D' r8 z) X9 x! U! ?1 v; i4 f
    Base case: 0! = 1# E$ `* V. B% \& o, c9 o
( J: o; h5 A  i1 A  p. W# K, k
    Recursive case: n! = n * (n-1)!
: B. M" y- ?; _/ ]' y# s
& ?2 T. h' Q. k" WHere’s how it looks in code (Python):
: |7 O* |7 v3 K+ G, {3 Kpython8 u7 x* a+ G# z5 R9 G
7 j. G# e9 A  C

8 }# s/ ^, V( K5 f  r/ M+ |def factorial(n):& b( v4 o' v" z5 U5 ?3 R+ m
    # Base case
: Y7 A! ]- p" v* e( ]1 N5 Z    if n == 0:* m) x- C! t; E4 o2 s7 ~9 n6 y" z
        return 1
; A3 R8 G# y  N) `    # Recursive case/ z; E! J+ f& v3 x$ k
    else:
) J/ e2 R' A1 m0 q3 [, w5 ^        return n * factorial(n - 1)
  D; L& Z& ]7 J4 q9 }3 M
2 A. w' @( o, Y! x# Example usage9 ^6 \2 E1 S" r* Z0 V7 z
print(factorial(5))  # Output: 120
4 u% @3 W# ]1 ^4 R6 j5 P6 k! C* s0 X  l; ]
How Recursion Works
  d& e3 s9 w- e7 @# W5 A5 f8 I! ^
" k# c- c+ i$ p; y    The function keeps calling itself with smaller inputs until it reaches the base case.
) B" W, [( O2 e5 n; C0 _  i
( q$ ]3 Y' w5 ?; d: V/ `3 A/ ~    Once the base case is reached, the function starts returning values back up the call stack.
' u# K3 V5 \) z: L+ s2 q5 i7 S/ g) @- H& H6 a2 P
    These returned values are combined to produce the final result.
8 J) v2 j, W8 g/ C( n/ R! L8 X' u  W( F' y4 u; u6 \
For factorial(5):
! b3 _: _2 u% Q1 {7 A* ?' h& I- A1 j2 B, l  x. g) Y0 m

2 m. p; i1 d* w4 I# t: M5 f) A) c) ^factorial(5) = 5 * factorial(4)
- d$ a% w* z* \- }6 cfactorial(4) = 4 * factorial(3)
. S) r9 W8 o5 ~% Z; D7 rfactorial(3) = 3 * factorial(2)  \) [6 H7 v+ K' W* T+ {
factorial(2) = 2 * factorial(1)
- Q6 _5 [- A7 Vfactorial(1) = 1 * factorial(0)# |( `9 T' ]6 U: N
factorial(0) = 1  # Base case0 G8 [6 A; y. E) y
5 D5 n5 j0 V, L+ y
Then, the results are combined:
1 f- P- d2 ]* f
# u2 A$ {* F5 i6 H1 @" e6 ?8 ]: m6 s- _* L8 [9 G* i/ H
factorial(1) = 1 * 1 = 1
/ O; w$ K/ X/ A0 ]factorial(2) = 2 * 1 = 22 Y9 i7 Z3 |1 n! b
factorial(3) = 3 * 2 = 6
  {% |2 e! p6 }! @+ j# H2 ffactorial(4) = 4 * 6 = 24
" U, x- \- u) A" u" K* ifactorial(5) = 5 * 24 = 1209 v) Z: X! L( F* x5 C% c. P

/ |+ h' B9 v- [, O2 nAdvantages of Recursion% s% D5 v4 b5 E" [( g" V4 ]

/ d" b) z7 g( K* }( n& r& f; e    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)./ @( N! d+ W- [# _$ ^- _
& c  I1 E+ a6 P2 ~" G0 B9 y( N
    Readability: Recursive code can be more readable and concise compared to iterative solutions.  o" V; `  d" a, `4 F

, ]% G' l+ E) ^; mDisadvantages of Recursion
5 S" x6 s: G8 }. S7 ^! m
  g$ [* M' K) r# J: A    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.) d% r; t1 l  d7 I; y

9 r2 \5 l7 A, D. I3 F    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
' L  U( B5 Y. X3 C5 N! m5 _' s7 |" ]- ?" X+ z; F6 Q) H! H/ S7 V
When to Use Recursion
0 ^- V5 X$ [( e" z0 {( N, E* ^7 R6 `7 u: R, Y6 R" u1 ]
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
. `5 l9 D7 i3 H' s9 C# [/ r/ a% t& N2 e: ^/ B7 e
    Problems with a clear base case and recursive case.
' {3 K* O1 H6 t2 ^2 s: k6 r2 B  O. H' y
Example: Fibonacci Sequence3 |: ]0 H% h5 b! x+ @, [6 Y
+ ?% ~% a4 J* U3 `' M% u* i( D& p
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
  [  z; T# C; N% C+ h5 L: D
$ p/ Y5 e. W1 ^: ^5 Q    Base case: fib(0) = 0, fib(1) = 1
$ g. Y/ f. S/ j2 G8 q
, `3 U! z" O) Q  u    Recursive case: fib(n) = fib(n-1) + fib(n-2)
  }4 p5 F& O5 ~) K9 [/ g2 c: A/ i' O: o( |  @' F2 `% `: W) n
python
$ j# h! a+ p" V% M( l
. D( `/ `: l3 d3 }
* F% P: l7 m, n, kdef fibonacci(n):+ o5 O# C0 n, s; g7 ]" {% x8 d
    # Base cases
" d! |; k3 f% U0 q- P& L    if n == 0:
+ M% u9 L; R5 j8 Y8 i$ T- B5 d        return 0  k6 Q7 W- T5 @+ m9 v
    elif n == 1:, c4 j$ X9 D2 ]* l+ o9 X7 L' x7 A! g
        return 16 |: [( Q( `' X! S. w
    # Recursive case/ X% W/ J9 f  P3 s4 v7 x
    else:9 c7 b* ^# ?; q  o
        return fibonacci(n - 1) + fibonacci(n - 2)% _1 D- t, d. [: X6 u9 D/ ]
  Q7 o4 S; ~$ Z
# Example usage
* W! f; W, F" `( O* [7 S7 sprint(fibonacci(6))  # Output: 8! x, ?; p+ A9 X9 V. ^% H4 e
/ i' q7 V' M+ ~$ ^2 H
Tail Recursion
5 a! [& V( n# |) k/ |/ i0 t8 K$ Q. p8 ]9 [
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).. n- r4 q0 }# p
, _. A" e% [8 C' u2 G: ~5 n: n! V$ x( y
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2