爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 : K/ c9 Z% r$ @0 O' A

$ W$ H0 C1 M5 X! Y0 l解释的不错
3 V$ q' y7 \  p! j" [) M
- \3 C8 Z+ V7 B5 [( x- @递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
8 y9 H1 l3 d/ ?8 V" H1 P3 W
0 U* ]9 F1 q' h" W 关键要素/ p* E& G8 Y1 f5 j
1. **基线条件(Base Case)**
( y) g7 ^& F) I- c9 r   - 递归终止的条件,防止无限循环
; }, o" q/ M& P% c2 a6 T   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
' L, o) u) r" ?" Z/ M2 g$ S* g- n  i% x. k- U
2. **递归条件(Recursive Case)**! r! J+ U5 c& p/ D+ G
   - 将原问题分解为更小的子问题
4 k/ n  A7 G8 c   - 例如:n! = n × (n-1)!  e! X% L4 ?$ ?) Z2 }' N& L; C
5 x* k4 {* Y7 O6 R1 G1 k" n
经典示例:计算阶乘
- `5 O+ z- A% I1 {) m# ]python
; Q. v0 w% _- `+ s; rdef factorial(n):: K* W$ Q" C3 D' G; O+ P9 N$ u  |( E& X
    if n == 0:        # 基线条件) e+ {& {2 |9 `7 n& K
        return 1
& w3 v) [" z/ L# p4 X# ?: c7 u* E    else:             # 递归条件4 |+ S5 E; u1 X8 k
        return n * factorial(n-1)
$ V' x: ~: r9 H* ]! \. g0 I% S执行过程(以计算 3! 为例):1 Q, J' d3 c4 X1 p9 j1 n
factorial(3)# k$ c5 q" z& ]  U; g
3 * factorial(2)0 t& C0 m' f; p1 B
3 * (2 * factorial(1))9 m) {" _# ~% J6 r/ a
3 * (2 * (1 * factorial(0)))% C3 M* c2 W7 h+ f: T3 b' n5 Y
3 * (2 * (1 * 1)) = 6& T- `9 W; x3 H

; ~, x8 F7 [2 B% \1 K 递归思维要点4 d) b6 B3 _+ D" h* W: ~# s
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
; I$ o9 H5 z8 Z9 j$ R( u' k2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
4 {& U: O. F  x% @3. **递推过程**:不断向下分解问题(递)
* ~4 h  F) D6 s1 K4. **回溯过程**:组合子问题结果返回(归)1 I1 r2 ^* W7 ^. I+ ]& m* B
9 ^0 F. v1 I/ H! P, B# R5 Q. o
注意事项8 n) j8 d! O" P0 K! X( U8 ]
必须要有终止条件
0 o1 E* t) I+ T% ~8 z7 o! E; v- k递归深度过大可能导致栈溢出(Python默认递归深度约1000层)1 {  x# n- c4 W- x6 G
某些问题用递归更直观(如树遍历),但效率可能不如迭代
- o2 i% U! `) V3 S, A1 `& {尾递归优化可以提升效率(但Python不支持)
# W" m4 v+ b; g4 \
2 D3 C# O  l5 F# f* T: i+ s' b 递归 vs 迭代
* o; v' _" `1 \7 e) g0 R0 B|          | 递归                          | 迭代               |
1 Y) x1 ]! s: }|----------|-----------------------------|------------------|' i1 Q- c. n" y( _, w
| 实现方式    | 函数自调用                        | 循环结构            |
2 P1 N2 ~9 z; n6 k  R! a$ i( X. A| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
/ t1 _. \: m- \0 p| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |. ~  x& R7 r8 Z! @
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
. k7 a! ~1 d# `" @$ i% R+ p& h. V8 M" I8 u: U+ d
经典递归应用场景
& U; U- p; [. ~. W1. 文件系统遍历(目录树结构)
) B, h+ |; U1 ]3 C2. 快速排序/归并排序算法+ M- Y* ]/ X7 b! j9 [% e+ U" J5 v% N! e
3. 汉诺塔问题% ?# j, T+ m& A
4. 二叉树遍历(前序/中序/后序)8 @3 a( L$ ^# q# i5 f& ?
5. 生成所有可能的组合(回溯算法)
1 C* i. d! H7 O1 s' d5 @2 ]6 e- E2 t+ ?) }! i( Q/ B
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# M! x% K3 y2 s7 N& }: O9 ^
我推理机的核心算法应该是二叉树遍历的变种。
2 }( }; N% g% {+ Y7 {4 P& S另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
: H) h& v6 o% u$ |% E& i: }1 Y, A! [Key Idea of Recursion
) K. ?* \# I! ~6 {9 M- Y2 ~9 x% a/ \" w# u
A recursive function solves a problem by:
/ O6 p8 m& L) a1 l! Q: T9 J+ D3 u$ J' m" h: l
    Breaking the problem into smaller instances of the same problem.
% ^( a9 F6 {' I, t6 {5 g# {  ~' Y% s4 }8 h2 }
    Solving the smallest instance directly (base case).. B( @* ~' C, l  Q4 H. O( a8 \( Z
# W/ p1 y2 d6 g" E3 }6 j0 q4 N: d
    Combining the results of smaller instances to solve the larger problem.
4 |7 F3 _' k% b+ b. m. H! I
. r, s$ g1 w9 o& kComponents of a Recursive Function% F8 X  O3 i$ Y" r1 k! l7 C
$ K$ |9 T9 D4 w- i! f% ^. ?3 w
    Base Case:: A5 a* }3 q" i, M

( p( t8 [2 ~7 a% ?8 D6 }! {        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.% w! w8 D6 n( K3 R5 I% a" w
/ Y% l: N+ A# x4 h
        It acts as the stopping condition to prevent infinite recursion.# {) l! u+ b! c+ J" F9 a

* j3 S5 r: w  T" K' _/ m- T" c# j        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
7 Z5 O) Q3 Q% x& X1 x& R+ u$ J9 C9 j! O& u! T/ \
    Recursive Case:
6 {9 k' g7 f9 i2 p& i
: i# @) F# i+ v) b8 O4 y; k        This is where the function calls itself with a smaller or simpler version of the problem.
4 @$ ]4 G, m$ F$ ~& }
: A" y1 o0 Z  z; s+ o3 W" ?5 H        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).+ m+ O6 Z" m) y  a- M. {
+ b! Z! l, H8 ^: M/ B  w# R
Example: Factorial Calculation, I$ z. }0 H6 a0 T, g
3 j3 N  S9 O+ h% k0 y1 i
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ U* L" W. h3 X- L

5 b- h3 R3 J8 J' s8 [$ w9 r' f    Base case: 0! = 1) G- J+ Y' e# L- \* ~4 C/ Q+ O

* r3 b1 z' U1 z4 C    Recursive case: n! = n * (n-1)!
6 Q. }4 z, l3 x9 y7 {( ~1 \" }9 ~1 a* U' t- a' _
Here’s how it looks in code (Python):1 U! x4 G+ o! D" o
python6 g4 B2 x& R1 m

( A# N/ y$ D4 e3 O1 {- j
9 g/ G9 m' \* o. X1 Udef factorial(n):
1 r" [! T6 }6 P# f    # Base case
" W. }/ p$ K+ m0 a4 M+ X    if n == 0:1 ]& ?/ {/ {, _
        return 1
, W. M7 B4 b/ m    # Recursive case: D% j! R: f: S5 I( G2 W. ?3 H
    else:# v. U; q. Q. p9 L. S, P
        return n * factorial(n - 1)
9 |1 ^5 K4 b) r- Y6 M& p. M6 O! E6 s7 u; K9 e. G5 [
# Example usage! g' D6 b. v) X9 {
print(factorial(5))  # Output: 120
" A3 ?4 R) b' X0 ^6 ~9 |  {3 @8 W" F3 H
How Recursion Works
3 K0 b! S; b. ]0 c9 I  x( r) I
    The function keeps calling itself with smaller inputs until it reaches the base case.
9 B7 e- y3 q* w$ ?' `4 |# L0 b/ T" E4 l8 G2 [7 S+ a9 B
    Once the base case is reached, the function starts returning values back up the call stack.) i" h6 j( H# E3 m
" M% k) g5 ^' I0 B1 |
    These returned values are combined to produce the final result.. R6 q9 l6 o, W0 W6 D

( d) I; O( c+ G0 r# B; r6 }For factorial(5):
% |* [4 N( K( W- x& `: m$ c1 b3 _0 y& A. Y* d* n+ x; w
) ?! s6 M+ C+ O$ ]  p5 i8 n
factorial(5) = 5 * factorial(4)2 N* Q2 j- F4 B3 [" x
factorial(4) = 4 * factorial(3)( X5 `9 B, m* B8 G. J1 K* i) G  y. S
factorial(3) = 3 * factorial(2)
# ]7 N: J  q3 o3 i/ K+ X) \, afactorial(2) = 2 * factorial(1)6 Z9 Y& z7 b/ z+ ^$ q( [) w- H5 m
factorial(1) = 1 * factorial(0)* F5 H: m) J: W  V7 {
factorial(0) = 1  # Base case3 p3 Q, H$ S" ^: Z9 T
  c6 r% S8 k0 I+ Z. |: T6 e) n7 |
Then, the results are combined:& }# U5 p4 Z5 \6 E' l5 a
. p3 n. o& Z2 @( p- k

) p# h9 u0 z/ b5 Sfactorial(1) = 1 * 1 = 1/ J1 e! X9 }5 o" e- p
factorial(2) = 2 * 1 = 2
3 r2 v/ W+ d/ A  k! ]- X  c7 ~factorial(3) = 3 * 2 = 6( [7 S, v+ C! x+ I
factorial(4) = 4 * 6 = 244 a$ j" n+ e4 _+ @6 Z
factorial(5) = 5 * 24 = 120- m: C9 X5 s6 L: ^

, D3 T; y  H4 y- O9 {  M2 sAdvantages of Recursion
& S, t5 B6 T7 `$ T6 y2 i
; T- Z# }7 ^3 ~" Q. B0 `. e    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).- F9 O5 W; R, f  ?/ _" v
3 a; M& ?# I; u2 {+ q% w
    Readability: Recursive code can be more readable and concise compared to iterative solutions.( H/ M2 W5 M$ G' k4 D+ ?

2 j2 s6 k1 B# l9 H  ^1 [Disadvantages of Recursion5 }! g8 _( @2 d7 W7 u$ S: g

3 ?, _$ c3 D0 F1 R. ]    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
$ Z- C7 r; c; O
1 D+ ^: m7 u$ X8 f    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).0 j% s$ [  B3 E/ j: s

  v. T* K( |1 ?/ P8 ]  rWhen to Use Recursion
" o) `1 R: S. q7 ^
& r" j  f7 i% H! J. ^7 j    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
+ r/ a8 C7 W( U# x
; Y* f: `' [# p. x    Problems with a clear base case and recursive case.. K# p" x# ^' x- O3 P2 V2 g
0 v/ y2 M8 M& x. k( Y, I; X) _
Example: Fibonacci Sequence% n: o& P( _1 m/ u7 |" t
, @) C! x, T$ t* n
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
% q3 `1 `% i! B$ C5 T3 G& r) s5 `" r8 S; p
    Base case: fib(0) = 0, fib(1) = 1+ T* ?  ~" {; o- A
1 ~. R6 c7 x8 N2 V; Y% b
    Recursive case: fib(n) = fib(n-1) + fib(n-2)/ C  k( o+ l2 P8 l
/ a5 a5 w" C" j: z; q, t8 s
python
) w/ w4 A8 u$ {# A9 u2 _" {& P4 L, p/ O7 O6 J% U$ Z. Q- h

; m- L; r1 N; _- R; d  }$ Ndef fibonacci(n):, W" r: K, F9 u' d8 N: {9 r
    # Base cases3 w. O, c  J# b" k- }" c: ]. C( _9 z
    if n == 0:
) C8 h- b+ f. J  `* M/ W( U& f        return 0# h% A2 c: b( ^( p
    elif n == 1:
% V* j4 B# f* c        return 1
8 c- ~$ @* o7 T% K    # Recursive case
. I/ I/ l% }' I8 s    else:
( o! G, B+ f# o0 M9 Z2 s: \' {        return fibonacci(n - 1) + fibonacci(n - 2)7 A9 j; b$ x3 ?1 @8 o& U& q
0 R0 C  c5 o3 k) b8 c$ k! u
# Example usage
7 T) s# ?5 N0 }/ }print(fibonacci(6))  # Output: 8, F/ O3 v# H/ A2 s4 O

3 j6 N# L) j+ w4 ^* RTail Recursion3 c* ~) O2 N+ D# |) X8 F" G

7 ~; R: f8 B9 ^- Z0 _2 ?* @Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 H1 [! i. P* P% [2 B9 v0 Q/ i1 D4 c
; W" M/ k; T' u1 W% Y9 n) l5 k  C
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2