爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
/ V+ k1 y2 V. |! W/ `# l
& K, Z. x# i0 O; i. a9 ~% H解释的不错+ @8 g' ?' @( |' ]6 m7 y
6 I+ ?3 @& R/ I+ H
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
: r5 P$ k6 R" _- k' d& o+ i7 ?6 g5 R
关键要素
4 d+ E9 t; b  o0 J# h1. **基线条件(Base Case)**$ S- R0 W2 n7 p- h/ k
   - 递归终止的条件,防止无限循环3 F. b2 b6 s* a2 T( @- I
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 10 `- u5 ~5 v7 c0 i) S$ h4 ]; w

$ i9 _, K  v% c- w) z3 a# U# W2. **递归条件(Recursive Case)**5 I( g# c4 l; V2 D# _7 U' y
   - 将原问题分解为更小的子问题
4 Z9 P' ~# W5 r# O1 q9 m( t   - 例如:n! = n × (n-1)!
# q; e9 s+ Q, W# r* \/ }' U; l9 k* u, z" f
经典示例:计算阶乘0 A# }4 g! a5 ^. K: _0 y
python! ^( C; t* p9 B4 A
def factorial(n):' F5 I8 Q8 F3 O) _0 j
    if n == 0:        # 基线条件* ~: U7 X* m, Y+ z5 j
        return 1
; ]2 s) B; v9 p1 l" M1 Q" T2 n    else:             # 递归条件
. p6 C- z. W/ m2 y3 c        return n * factorial(n-1)2 o! M0 V1 x8 q
执行过程(以计算 3! 为例):
# d5 z! a0 I" e" [& \. q( p" mfactorial(3): ]9 J: B) w! w) u* g: j! D
3 * factorial(2)% H% w9 d$ W6 b! M
3 * (2 * factorial(1))$ i4 X* F0 I7 D# b# [- Z/ i9 W
3 * (2 * (1 * factorial(0)))7 R! E5 W* B2 p4 a+ e! a" P8 V0 f
3 * (2 * (1 * 1)) = 6
6 d( s( V& }6 Q/ p0 z. i9 K
! l& p1 S" F) _7 `' ^7 a 递归思维要点
9 r3 m) Z2 w2 Y; [1. **信任递归**:假设子问题已经解决,专注当前层逻辑! ~' u7 U; q  ]4 g0 y, X/ v
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
3 B/ o! K: m0 c3 P( {* u2 ]3. **递推过程**:不断向下分解问题(递)
# c* J0 i3 j. b. b4. **回溯过程**:组合子问题结果返回(归)1 F+ }3 g- v6 X% C5 s
6 r2 ^5 h. |( X$ d: a
注意事项
* y" U  d6 P) N( [2 X0 A6 A必须要有终止条件* d' }; I6 M" Z+ R
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
! [4 B8 i% ~  s# M" L0 B某些问题用递归更直观(如树遍历),但效率可能不如迭代& p2 ^5 P8 j0 d5 m8 v: t
尾递归优化可以提升效率(但Python不支持)
2 Q. V% g4 R$ w, X9 B7 S1 F" t3 F
9 j- i" t4 v% x: U 递归 vs 迭代& @& k" }: C/ S2 Y3 k, Z3 j
|          | 递归                          | 迭代               |$ N+ Z. J9 J; K' Q$ K" T: Q
|----------|-----------------------------|------------------|1 H! Y1 `  i9 j: I- i/ i
| 实现方式    | 函数自调用                        | 循环结构            |% O- p* X: h7 e3 @( D+ R# y
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |$ h/ T- v3 ]' E
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |6 g/ {/ k/ ^* ]9 L. o
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
3 {. Y: E" r: j/ _0 X6 T/ m
* H7 x, k3 Y/ U* [3 g5 _ 经典递归应用场景0 p! U* ^) ^; t+ z
1. 文件系统遍历(目录树结构)' I  ]/ ]! m- \6 Y
2. 快速排序/归并排序算法$ _" Y0 F9 \: z& _
3. 汉诺塔问题2 ]. @! r/ c3 I3 ?' B& [
4. 二叉树遍历(前序/中序/后序)! t' U+ X, N+ p) M. W  K5 Q
5. 生成所有可能的组合(回溯算法)
8 F- h2 M+ L2 I/ i+ W/ w5 p; i; l' G1 K: B2 y* Z- Y
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
' D$ U# x8 J* q" R  y我推理机的核心算法应该是二叉树遍历的变种。, E! ~) v  i% B
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. a: `) t7 l0 m' X/ I* z0 R
Key Idea of Recursion  `7 W% Y" @) I+ {
7 Z" B) Z1 p% O0 k) F8 ~
A recursive function solves a problem by:
" M# \! l: Z$ x" q* [5 H( k/ x2 L! x0 }: s' z5 V2 Q0 `- X
    Breaking the problem into smaller instances of the same problem.
0 ]- E6 W. v* S. a, |* e$ B/ I. R# ]1 C* C: R$ T
    Solving the smallest instance directly (base case).) L+ k( D- U: B1 i) n1 U

& |2 H! C6 W9 t    Combining the results of smaller instances to solve the larger problem.
8 W& U2 R4 b; y9 ]0 R9 e( s: M0 w1 t) ~" A2 q6 i( D
Components of a Recursive Function
6 Y3 a; ^& Y0 T: g$ m9 r" W) f
  _7 m9 E: x4 ?- h3 E/ m2 |+ U; I    Base Case:
) l+ y1 A/ W3 L+ u. Q: {  T8 o6 B2 Q0 n9 e) w" z8 Z/ T% y( `+ N* T
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion./ @8 J- l' `, K

1 ^7 I% L4 [1 N% a$ i6 k! P        It acts as the stopping condition to prevent infinite recursion.
4 s$ {+ G% k/ j9 _. A. e( U% K$ @
# z* N$ ^$ i; B* X& M        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
$ l/ k6 t& Z" a4 F3 B5 V
- q! G1 f6 k2 Y5 Q$ e# D    Recursive Case:
( }  e. d$ x2 D3 N: v+ P" C- D- c( a% `% [* ~2 l3 D8 p
        This is where the function calls itself with a smaller or simpler version of the problem." K4 U- B3 P9 u/ K( ~, q' M
$ r% \+ z9 ]( ^
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
/ f: S( u6 S) Z# r- F$ n3 ~, a) O# T0 C0 l; p, Z
Example: Factorial Calculation7 I1 w4 A6 q3 m. U1 ?2 R1 P
: G6 [4 U: r6 e& i
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
* ^  J+ m; A# Q6 O3 c* [, B
: G; ~2 d* C: z/ [# o7 Q9 H; B    Base case: 0! = 1
6 X1 e; f' v9 e- i% F: s% k% F0 s' ]2 S4 o, ]6 w, G5 A' [
    Recursive case: n! = n * (n-1)!
5 p  t& `; y; p2 f" s1 B+ N4 V8 K6 ~
- S8 ]. ~; g* F4 x: ]$ ZHere’s how it looks in code (Python):
2 A: d# _" \" K1 ~python! s: x; h9 ?5 l4 c0 I' G

/ |8 O5 m6 K# L2 A  ]; V! O/ a/ b+ B: r8 P3 @. ]
def factorial(n):
1 |; G% F  Y! G( E- v    # Base case  c. B% J4 l4 v( ]" t6 W
    if n == 0:
- g0 e0 L4 O! T& D        return 1
& k  @1 F% m: C* E    # Recursive case2 U* t, k. a( {" W, v
    else:+ M. P$ Y# `/ @2 \% L& @& e
        return n * factorial(n - 1), }- n! w( P$ {: Q, A$ d

# P6 ?/ P1 y. `& R+ F5 F. B9 i# Example usage
7 u+ W# S* C1 b% i* W! d: K3 |5 A7 [! V% zprint(factorial(5))  # Output: 120
' l" h) e0 Y3 W6 _# |
8 X: b( i) g4 `, J$ cHow Recursion Works
5 u, U* U# J' Q' o. \* y' _3 G2 j( ?7 @& y* D
    The function keeps calling itself with smaller inputs until it reaches the base case.
5 b# t3 S% Q# g( \+ L$ ]$ y
' z  {, B! B5 |% _4 }( [6 A    Once the base case is reached, the function starts returning values back up the call stack.
! ?2 A' [; B8 e2 D+ `# B' h0 \' E% a. s3 A2 Z$ K# g
    These returned values are combined to produce the final result.
: U. M" J" y6 e8 i5 S  ^: Y/ w  r. x$ O4 e
For factorial(5):* I$ |# k  \; V3 z6 U5 \, J4 c

( \2 K$ o8 x8 e! W* I
" S! Q* x& J+ l! h7 k  \factorial(5) = 5 * factorial(4)
9 |# W* T, {6 jfactorial(4) = 4 * factorial(3)' G+ u5 H# z; d
factorial(3) = 3 * factorial(2)9 B. r$ i; d1 `/ x( ]* y0 u
factorial(2) = 2 * factorial(1)$ Z! ]; v7 s9 B
factorial(1) = 1 * factorial(0)7 Z0 C7 [; _) e' C: U+ m. a
factorial(0) = 1  # Base case& w0 x9 U& Y6 n% h& c' z

5 f$ `8 Z# N7 @1 EThen, the results are combined:/ h: Y. \; L# q+ u

$ L  |% K. ], r: d$ t  x, j
0 o, b: X: X+ Bfactorial(1) = 1 * 1 = 12 x. g0 m: D7 B4 ^$ z; c% N
factorial(2) = 2 * 1 = 2
7 E# r6 R; i$ j  Wfactorial(3) = 3 * 2 = 6" X. k1 u0 {( N& e+ A% ^
factorial(4) = 4 * 6 = 24/ {9 W, g& A7 g0 l; t7 p
factorial(5) = 5 * 24 = 1209 ]' p6 X6 t& Y) _
' i; P; t) D0 r1 I8 j9 ]/ ~  D6 e
Advantages of Recursion
2 q% j' Z5 s$ R8 n: v# M8 i. Z+ w- d- {# m. j, ^
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).7 W; b8 U( ]9 K2 h4 {8 N

' i/ ]( w4 k  L6 G# m    Readability: Recursive code can be more readable and concise compared to iterative solutions.8 b' @' c1 `4 {, ?) p3 ]) I7 @

) N$ o. G2 U4 A$ g2 C5 ~& i& k$ nDisadvantages of Recursion2 I! Z8 z! I1 @! }' }
5 L( K" X( d: x- ~( p
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
5 c) s% Q4 K8 J6 {, H, l2 a
" p$ P" t5 z1 m2 o; _    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 T* ]# m) g' L! [$ e

- [# N( n  N" c# M7 q) f! k6 GWhen to Use Recursion
7 m- h# Z0 N# v+ t+ A$ N% Z* G9 d" o! U2 S3 c
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort)./ O7 r6 h* k( o( l; Y! c
# _6 a; Q/ |3 P- j( w0 |3 O7 g6 w* a
    Problems with a clear base case and recursive case.
: S" q& W4 C) v  T+ W+ t% A( T! f
5 @$ U! f6 _' G2 d( T) o5 XExample: Fibonacci Sequence: A$ h6 ]; `: `9 f  D

* J& f* G) V5 }/ MThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
& _" V& b1 ]- A! S! O
4 _/ }0 J2 U  f' n" h$ [    Base case: fib(0) = 0, fib(1) = 1. G/ k; H6 ?1 x% \  u! k; B
9 x) T( w* r# x! ?8 y. F3 W
    Recursive case: fib(n) = fib(n-1) + fib(n-2): C+ ]" ~$ _8 u) q. u/ [

3 g3 `1 i7 [  c: t$ O' h9 Npython$ v0 K6 j& u; ?, ]1 c/ G4 g

% x% ]+ }0 B2 D' _) o8 u8 N/ q* k8 [0 ]% l8 K* O. F8 N
def fibonacci(n):
2 M: n7 I' o% z. c6 b6 z    # Base cases' w2 q% m% B! g+ S9 G
    if n == 0:) z3 |. q8 Q9 S: s& r3 l
        return 0
7 j" _" ]% @7 h    elif n == 1:* _( L- R2 D! {3 {0 H3 z3 _" ?# d$ O" f
        return 1
2 p- u  d" F  p0 _    # Recursive case2 |4 I6 c" l) Z
    else:. K% C9 H  C4 @. j' A" s- ?$ B3 E
        return fibonacci(n - 1) + fibonacci(n - 2)& r0 f# d' L8 U- _9 d
% f) Q5 C7 Z5 i1 s& ]8 Z
# Example usage
& ], q% S" ^) g6 B$ a, F  Kprint(fibonacci(6))  # Output: 84 [. r8 b/ a: B" z$ ?4 m

4 T- f0 i4 @) C; M: e4 c" b8 o! pTail Recursion7 l: k' H# @, R# G7 x& G0 K: U
6 f2 G' C' _2 }, C  [% l+ o
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).0 o# u) i0 _1 m2 M5 n
7 f3 N. q% k& E# F  ^
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2