爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 3 _2 B: \2 D& U

/ w3 I6 s& h7 ~( k解释的不错
7 T/ M0 |+ V, _+ q1 f, y  L0 G5 R# K9 I% A" c
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。  i3 D/ i  \6 R- f6 @
& s/ o: l3 U! E, \
关键要素
9 t' k3 `/ b+ S+ G: f1. **基线条件(Base Case)**$ W4 z( g6 l) I" a8 D; F
   - 递归终止的条件,防止无限循环* F! A$ u) C- @0 C  B0 t* J0 v! Q
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1% ]6 _! w8 v, ^; i: K- t- ~

# w" \; M( W. J4 T2. **递归条件(Recursive Case)**; l9 K' R5 h- X3 `! O/ S
   - 将原问题分解为更小的子问题
9 s  Q( P* J% E0 X+ ~   - 例如:n! = n × (n-1)!
4 h: C* y# A" P: g4 ~0 N; t4 \7 e
经典示例:计算阶乘
( a0 d5 H; _. qpython  z9 ~$ C5 Y; S3 l( e, i4 ]
def factorial(n):6 @3 I$ h! h! e% _5 {
    if n == 0:        # 基线条件
, P8 {7 o3 H0 X, W9 m        return 1
' m+ e& y% {& a! p9 p2 w% M    else:             # 递归条件& o8 H5 d; i4 X4 s, {
        return n * factorial(n-1)% D* C' N# J* r7 F* M
执行过程(以计算 3! 为例):7 _3 A, F6 P: c9 \% C( p8 @, s
factorial(3)
: c8 W( ]; v1 `$ s/ Q5 v3 * factorial(2)
+ K5 n, j! |' x( K$ @3 * (2 * factorial(1))' _+ N) n/ x: o
3 * (2 * (1 * factorial(0))): \3 `7 d& t7 \4 d
3 * (2 * (1 * 1)) = 6
* Q6 l- r/ d( Q- _1 m
7 k3 u# U8 O) X$ W 递归思维要点9 Z7 V; w6 [7 f3 @" Y
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
  b% Y! E2 x+ K. y2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 e4 q) W/ X, y
3. **递推过程**:不断向下分解问题(递)
# ?4 {9 w* K9 u; r: p- R# d4 b7 v+ ?4. **回溯过程**:组合子问题结果返回(归)+ C# e& ?5 i3 I
( X; E& H) I" N4 J, v5 S
注意事项) a) t% ?" {! g
必须要有终止条件- e: C1 M2 k- D7 o& s
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
: D) S5 g7 h6 D# _, _4 Z! g某些问题用递归更直观(如树遍历),但效率可能不如迭代
& V  k; o0 \0 M6 q. H; @尾递归优化可以提升效率(但Python不支持): Y9 s/ X2 }, `/ H* S3 q
$ e* X1 }# u6 _9 \$ e* h
递归 vs 迭代
. y. v* R/ q: b* S|          | 递归                          | 迭代               |
3 i( O0 B# F9 G$ s- N|----------|-----------------------------|------------------|
0 u( o- ^1 _9 M4 O$ y6 m7 s| 实现方式    | 函数自调用                        | 循环结构            |5 D. e$ s9 a( h7 ~$ Z  U7 \* H
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
3 `  k  g& e; o, G| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
5 [" w3 `) x: i- d" H| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
( p5 T/ b, G$ I- V4 |8 Q: J
, X! j8 I3 F5 Y- l) B* ?3 r, h 经典递归应用场景
" Z' y! }1 J0 m6 v% `+ t0 c( u1. 文件系统遍历(目录树结构)7 W! `4 k7 y% ~! ^1 u
2. 快速排序/归并排序算法3 c3 v: ]1 z/ q
3. 汉诺塔问题* O& G% [, N  ]. S) `: H' Z
4. 二叉树遍历(前序/中序/后序)
0 H- L( L( S! a( y5 V5. 生成所有可能的组合(回溯算法)' i& t3 @( A, H

+ b6 k( ^: d- s2 ?$ n试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
9 [8 d8 D7 f" I1 B) g& a! r  O( F( G我推理机的核心算法应该是二叉树遍历的变种。
- t- s' @; A5 i' C另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
( m' K, k9 ~% {6 d, ~Key Idea of Recursion  u# I! Q  W# V: X) w1 V* j4 A% H
" e# H- J; W' r
A recursive function solves a problem by:% ~$ |0 a; L! g7 w, V+ |4 A

9 X; Q. M; h0 s$ b. N1 c7 u/ ~    Breaking the problem into smaller instances of the same problem.
) F; f7 k+ q$ C3 ^. ^6 L7 B$ T2 T% q3 r0 {4 z: R' y" s
    Solving the smallest instance directly (base case).
" ~# P, u- j9 M- D1 s9 E
4 F* ]' w, |9 f5 @* Q    Combining the results of smaller instances to solve the larger problem., k0 f2 w+ d2 H- S  V7 S/ C! M  x
9 }+ A- a5 y4 u5 M
Components of a Recursive Function7 N0 B) [0 z- v% [1 J/ A

# e& {! l# V3 }    Base Case:
6 R" g5 r; [+ c: ^0 f  N& K  }0 R% [0 P% @# T8 N
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.* R8 L2 D( R! }  k6 a9 e* s
$ U3 Z' X; e* i% I# c6 p. V
        It acts as the stopping condition to prevent infinite recursion., [0 ~, ?( }4 s4 D8 A
1 \# O% b7 ]: Q" Z6 |' u
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1./ Q$ N, P$ D3 @" y7 o* \8 t
7 h9 R8 a" P7 y
    Recursive Case:
: @6 ^7 R1 z1 R8 j8 j  _5 k* o: t
        This is where the function calls itself with a smaller or simpler version of the problem.
/ f$ l4 ?+ E, E6 R( M7 I) F5 i. o/ P2 a) L/ z
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).- |& X# B6 u/ S5 I% B  {4 y

; Y9 _0 k" Y+ d. t6 M9 j" z2 @7 I3 OExample: Factorial Calculation5 T# i! g% _, k4 I$ F  n$ d

- M' W8 V: N; |7 oThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
# E9 G, C- w6 C- [' x
; S" }4 k  \# }: x( ]    Base case: 0! = 1* d( M$ o5 `2 p8 i' Z& ~8 o

. T8 \5 Y: _& t6 p! z7 M1 j% ]* T    Recursive case: n! = n * (n-1)!) {) N) c1 ~/ x+ F# t
. T3 G$ M+ R& K1 ~* G
Here’s how it looks in code (Python):
8 G& e) R9 S5 zpython8 ^4 k- |% a8 v' p
' J* ~& R+ z/ \. ]2 p& y0 n- d

8 j' M( r4 `8 B% v7 Bdef factorial(n):
1 w9 Z# U: `$ c; A' G7 N+ l1 F/ R/ y    # Base case
# d7 \4 e! @- l6 Y4 j    if n == 0:8 k% A+ I* ?, V: z; \
        return 1
! p% {4 z* N( M2 ], a) h    # Recursive case
% V. E: Y7 F/ D6 M: ~% b5 |1 G    else:
+ v& P# F' `) T0 W% j9 N* f  b        return n * factorial(n - 1)8 H. b' P$ r% `6 R+ E8 i+ P" U* I4 p

; r. ?8 P, N* [' N# Example usage
9 I5 |( n0 ?: qprint(factorial(5))  # Output: 120( J1 m& d7 X6 k- `. Z

/ d; Y. e. N8 A. ZHow Recursion Works
0 u" ?* ~$ o; e# M& B/ H1 X. T+ J9 u4 b5 ?
    The function keeps calling itself with smaller inputs until it reaches the base case.& q6 Q& e$ Q. G+ p, w0 C- _

: U- n- B& z; h* K3 h    Once the base case is reached, the function starts returning values back up the call stack.6 ~: y0 k1 x- O) w# b

% ?0 _/ @& [7 p. ?! b! y+ s, m    These returned values are combined to produce the final result.1 O( E& k; l- p$ H" m9 R

7 E; R+ z+ Q' X+ u# fFor factorial(5):
, v! z7 w( L) a/ w, u5 w
; ^; L  o+ f+ `8 E9 B9 R8 J! J  ~
4 q( a8 n( \/ c$ rfactorial(5) = 5 * factorial(4)
! f: S* r5 e: T9 M# i  O- o3 K; |  `factorial(4) = 4 * factorial(3)# f9 }' h. O2 S, z  Q( s9 `
factorial(3) = 3 * factorial(2)8 Y2 ^: Q  p! u% F4 C
factorial(2) = 2 * factorial(1)( q6 G( k8 [- S  i5 a% M+ t9 T
factorial(1) = 1 * factorial(0)* B# k1 n" e9 z& T7 K& a
factorial(0) = 1  # Base case1 J0 u7 s  z5 d- S; w* G1 y

# H  G, n# g2 b% S- |0 NThen, the results are combined:: R# P% P+ S$ z* u, a

& Q0 d. i* \  ]8 O: s; \3 p/ Y/ [8 \' R1 Q, L: g
factorial(1) = 1 * 1 = 1
0 W0 G) }" S9 F% Ofactorial(2) = 2 * 1 = 2
0 Q3 {* @( P- ]( J7 rfactorial(3) = 3 * 2 = 6
4 A5 _/ g( N# C5 W; efactorial(4) = 4 * 6 = 249 f# l# U8 E$ h8 `3 W, f* L. R
factorial(5) = 5 * 24 = 120' T/ b0 y7 I2 Q% ]

/ ^$ Y) Z/ v; ~% B' G' m% aAdvantages of Recursion
6 B' R8 y# L5 f3 W; \
0 g% S& X. O  C# o5 O9 L7 y( D    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).8 _6 f1 t8 T6 n& |9 D9 d# o" m
( }+ f: E4 H2 V- Z5 m1 m
    Readability: Recursive code can be more readable and concise compared to iterative solutions.! f5 k: @/ L; R2 w

. D% ^, N8 J( H0 s+ V/ L/ dDisadvantages of Recursion
# H3 T' n) G* U4 }4 D4 ^7 m( G+ ~9 }6 P, R2 a# d- a
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.( x6 o/ \$ \4 V, j% R

2 @# j/ n" C3 O- t7 J# {. ?    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).8 L+ V& ^( M% _' v; n/ _% U% j
2 j- S9 \" u7 }0 x
When to Use Recursion
& w1 k( ~; P6 H2 D' y
3 G5 T. b" a0 c( r5 L    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
3 N6 S4 D8 F: Z1 t: c) Q0 Y3 Q! G! P- i3 \# D  m3 Y& ^8 `
    Problems with a clear base case and recursive case., ?6 K9 f* U( n
) Q9 m4 B/ C5 d
Example: Fibonacci Sequence
/ h, S! a3 L* o  ^! F$ [/ N
9 K- |% E. I/ Q0 l' IThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
5 s' S  s3 m  |7 Q1 [
# r+ c/ J# [9 [1 q( T. L3 |( N    Base case: fib(0) = 0, fib(1) = 18 u( r/ m" \4 o. C9 d! }0 K  O0 \6 j

2 S, B3 ~+ X) L9 K/ ]    Recursive case: fib(n) = fib(n-1) + fib(n-2)
: q* O* V* i5 k$ l) X1 C! B
; Y" U$ w* m' zpython! R$ \$ r4 G* {* A7 N
% ]+ _3 j3 P# v
2 @9 N  ~: E  x) G/ N7 G
def fibonacci(n):# J; L, _2 \& l0 K
    # Base cases
, d/ Y& X3 Q( F6 j' v+ I    if n == 0:5 j7 P$ T/ w; g2 ^
        return 0. Y: \9 L& B) Y( P: t6 _! _1 Y
    elif n == 1:
2 F4 T4 K9 b& ]        return 1
2 M0 X2 Z! \, b    # Recursive case% Q5 R0 f$ m9 _  ?' Z9 e' M% b7 G% M7 P! G
    else:
! A* J% w* I3 y" n9 d; P& z        return fibonacci(n - 1) + fibonacci(n - 2)
/ ~9 m. Q* g0 K' g4 ]+ k# p
; G2 o7 ^3 m/ U: p& p8 \# Example usage
9 u+ p# U3 ~* U( T) \8 nprint(fibonacci(6))  # Output: 8
4 ~* i; v/ P. w* @! T! B2 [3 m: ^0 L/ q( B
Tail Recursion" B! h8 L5 `6 a

1 A: n* {+ R* {8 |+ ZTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).- `, x, L0 h) _
  ]' m8 G8 z3 j8 a9 k
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2