标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 : c6 C7 H0 T1 H/ v t8 @, p M9 G3 T ]% v& b# x. h3 ?7 t6 o% m
解释的不错, g! ~. d- o: k2 c
6 c; n0 g# `9 }6 l" c% M- Q递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。. R3 ]% J1 G8 K& {7 A8 i$ `+ L
8 X# x) T5 J" A* U) M* B6 G* S
关键要素 % W1 b( M* A; u) N/ Z" ]# s2 e5 s# e- i1. **基线条件(Base Case)**8 I+ W0 W( }) {2 Y4 g
- 递归终止的条件,防止无限循环 ' ~% v) r2 ^6 {1 u - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 " _+ o8 l' F8 }; f1 d7 d1 k$ l6 R" S" M3 L
2. **递归条件(Recursive Case)**- \6 v# l. q% o. @/ t
- 将原问题分解为更小的子问题 1 {# q& B( a. q8 q" l - 例如:n! = n × (n-1)! y6 q8 G0 s3 `/ p F5 \8 f+ e( L- ~( p' v2 S
经典示例:计算阶乘 6 J3 u8 r' N. u& I$ r, i- Spython, A8 V6 |1 A' b: J( Q0 w5 F
def factorial(n):2 X+ }. @! y, G
if n == 0: # 基线条件9 Y; [$ z5 I9 ~2 A# m
return 1 ! x6 u8 j& q% E o& Q* A) x else: # 递归条件 3 A8 J9 E/ |+ S( E# C& Y% j, W return n * factorial(n-1) & J) Z3 b* o; W4 x. Z) _执行过程(以计算 3! 为例): 8 u' Y7 |, K7 [* c8 _+ Ofactorial(3) , e5 N( p d& b/ L" |) x: x* r8 c3 * factorial(2) : @5 O. r5 U! Y( R" ]3 * (2 * factorial(1)) 6 I$ B: A2 E$ y8 L9 y3 * (2 * (1 * factorial(0)))! w$ d0 l% x6 k; P2 ~9 o8 h
3 * (2 * (1 * 1)) = 6 ' X5 O7 r3 ?) Z' f6 a" f + q* r( P! ]5 O3 k \ 递归思维要点 $ X) [4 a# U2 ?* g5 D1. **信任递归**:假设子问题已经解决,专注当前层逻辑. G1 @8 F" J1 R j- A# ^$ I
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)6 u0 J1 V3 {# o3 n4 f) i5 O+ M
3. **递推过程**:不断向下分解问题(递) , h& J/ @% ^$ t' \% B& m6 w# E4. **回溯过程**:组合子问题结果返回(归)8 Q; Y0 u4 e! K5 k
/ B; W7 K, n4 D0 R: N9 g
注意事项* G! c8 H; q) {" s A: d
必须要有终止条件 2 p5 g) [: x- Y2 w, s递归深度过大可能导致栈溢出(Python默认递归深度约1000层) k) @% P/ I V3 }
某些问题用递归更直观(如树遍历),但效率可能不如迭代# ]8 p/ e) S" H0 b; F! w" N$ H
尾递归优化可以提升效率(但Python不支持) % w: |- @2 M9 X/ S; q7 u' \ S _5 Q9 q9 c- X 递归 vs 迭代" v: A6 Z# i3 @) [. L6 l
| | 递归 | 迭代 | 0 [+ U2 G9 o7 v4 e0 S! T1 c, D. d1 q|----------|-----------------------------|------------------| 1 d' B8 T4 y$ }, p7 I| 实现方式 | 函数自调用 | 循环结构 |7 R5 t( h. F3 @) [" E1 w
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |1 [4 x' h$ a2 A% b& u3 x- I
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |) V+ z! J* H4 F, N; o
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | ' z: n( c1 O, L+ \$ b/ P* { O+ Q' n 3 H5 B: e+ v$ q' F6 \ 经典递归应用场景) D2 m3 A0 d" }$ n' g8 ^
1. 文件系统遍历(目录树结构) # q# e9 k$ I4 X5 ?% Z2. 快速排序/归并排序算法 4 Y, B1 x5 Z' p! d3. 汉诺塔问题 5 T+ M# |- F9 }1 J1 j& H4. 二叉树遍历(前序/中序/后序) 4 M4 T/ Y- N% ~4 ~& {5. 生成所有可能的组合(回溯算法) 0 K3 X( b5 k; a+ E5 @: W, X9 M2 @+ N1 H: b7 t% r
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, + J$ Z# e8 u+ o3 c8 n: s5 ^+ A我推理机的核心算法应该是二叉树遍历的变种。7 N7 W. ~$ h/ p9 p& U; ]1 m
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: * G& N5 f& \) b2 `# ?Key Idea of Recursion, W% t- E' D" I4 y0 k* e: H
( F4 u/ k, T; _+ c' V7 V
A recursive function solves a problem by:8 k) b' X5 }% x0 `1 w" |5 e
- T, y* h: f. ^! z. a
Breaking the problem into smaller instances of the same problem.' a: R0 s( y' P" O+ F
+ M& a, ?/ S8 e6 [5 h8 ]& n0 G Solving the smallest instance directly (base case). 3 c* s. e0 a4 G ! m4 p9 t5 u2 j4 f3 n: Z, y" G Combining the results of smaller instances to solve the larger problem. / J- W6 f7 v+ V+ u, T3 p' h3 G# o- {% K5 p+ T
Components of a Recursive Function5 m0 B" T9 d$ ?$ J& L+ V s0 z
- ]3 v1 C8 \" J7 x# c7 p
Base Case:+ r+ u' y2 |$ K/ e0 z3 g
$ P% q0 B5 F* o) p: {9 ` This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 1 F& k" k9 ^1 n6 g8 G" ?8 B% q * \8 f. v+ r8 [1 }4 o It acts as the stopping condition to prevent infinite recursion.9 A9 R) D5 V1 m3 `0 y" }% Q
. O& Y9 J% H t$ K' v' D Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' a6 h8 i8 G! i+ T$ H2 O, |
( S% ~& x* x/ V& o; a+ Q; M Recursive Case: & s3 @* W( r9 l4 X" Y2 m" ? 2 O) v' p; m) G. ]' M This is where the function calls itself with a smaller or simpler version of the problem.8 [3 y2 W2 u; w; g0 U9 W% C2 y
* c D6 T* o3 v5 c Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). ( ^. m' c! b* y$ ~6 D! P2 \0 M0 ^: ` d/ Q' P$ x
Example: Factorial Calculation& R; y- z8 o7 {, Q+ G3 Z
% i, c1 I, [& }3 \! \+ b: J1 X
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:$ G- q/ v$ o, [- A8 n& _
1 K4 F0 j$ X! }/ _3 [: a
Base case: 0! = 1. m& ]4 m7 g8 E
3 \- G! P% C; a# |% p
Recursive case: n! = n * (n-1)! : B" b' K! [# _/ Z3 Z0 T . X( ^3 \2 w c9 hHere’s how it looks in code (Python):7 j1 q6 y6 u' _+ k) S( {5 i
python% ^: ?: E6 f7 Q8 m
- m3 V: j! B1 E+ p0 F4 \8 W8 a1 d6 C R/ ?1 U$ R. z0 z
def factorial(n):3 c3 R9 d+ `3 `
# Base case( w* \$ `$ j- {: j% h
if n == 0:# s ~& r6 ?: Q3 o K
return 1 % r8 o$ E' x! H) w) a# Z6 R # Recursive case3 R) {# }1 {! Z" j0 W9 C
else:+ t" L) }2 T4 G. E
return n * factorial(n - 1) 4 |4 G D( d& f9 ]7 @( @; o2 |1 W, C- |! X
# Example usage 9 I) o. R1 \; T5 |+ J) \4 V1 xprint(factorial(5)) # Output: 120) d i: |% R' G s; n! j+ O, }
+ O4 m, U: _ x( ~! pHow Recursion Works$ O7 e6 u" {; B! v& K5 ?2 ]$ l
% t7 c3 X. {4 X8 t
The function keeps calling itself with smaller inputs until it reaches the base case.; f, x' T8 g2 T
$ T* L9 I/ V- m Once the base case is reached, the function starts returning values back up the call stack. 9 ~( i/ s q$ ?4 K0 r 2 a* E! N' |6 ^% V7 M- e! ` These returned values are combined to produce the final result. 8 y. N4 [# ?9 P6 C9 M% i # n5 v. I! \: m4 Y! t( [8 [6 G" u# O9 KFor factorial(5):" }4 x: D+ m9 {; x
: M L' Y+ ~" G1 h9 n8 G b5 y. [ R a; \. j. k
factorial(5) = 5 * factorial(4)" x# W* Y) S8 f# b
factorial(4) = 4 * factorial(3)6 |! h7 R4 _/ p# P4 q1 [; E
factorial(3) = 3 * factorial(2)$ s; R% G. w- g' g0 u& R
factorial(2) = 2 * factorial(1) 2 x, n6 ~, }) }% efactorial(1) = 1 * factorial(0)# @3 _1 f& Y/ D9 K, ]4 D; H, g
factorial(0) = 1 # Base case$ J/ x @; d& a" G9 j" V
# w; E w) S) R1 k+ \# k, k5 ]: q Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).( }, D; s7 q: K9 D
! n6 I- f r0 d: k4 O2 F" p Readability: Recursive code can be more readable and concise compared to iterative solutions.# S' r4 G" w# ?9 z9 f7 M4 Y
- n: p0 n* g4 P6 T: jDisadvantages of Recursion2 l8 Y" H( `, G" d
7 N# s" P9 s" H( s0 T
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. # @0 Z, u# G- n+ U {5 t# ?; \ 3 i6 z; s. m" k& O$ L Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).- b* s2 @4 I8 m Q; ~+ c! H9 A( q
+ E. h9 z/ d/ B6 V; E0 y. P: D
When to Use Recursion7 k- R1 W/ F7 @6 u) g* s
( h: O Q3 {9 n% {) r Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). U0 _% a/ y* Y3 o5 t7 J& s
5 x* o8 J% ~4 S) B
Problems with a clear base case and recursive case. ( b& t/ {6 M9 M6 R. N $ I3 B& u: w! o# h3 uExample: Fibonacci Sequence / }- Q' C/ w5 O4 H) F- Q' s: Q* A+ F/ ?1 o( G* B8 C# ~
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:2 n7 j( x0 X) N: A. d7 F9 Z
# r: k" x+ c1 b4 V+ M5 K2 f- }0 U
Base case: fib(0) = 0, fib(1) = 1 ! k$ I: S6 Z0 l$ c! ]* ~" X) _( n9 v% N1 m
Recursive case: fib(n) = fib(n-1) + fib(n-2) 1 @4 m: @( J( E5 j& @, ?" |0 z8 m0 U4 V: [, n: l: j1 d" Q8 v- x
python2 H9 t, w( {2 C# G) K- `
1 I8 o3 H/ i0 c! B0 D
7 X4 R8 X6 |+ m5 V
def fibonacci(n):- S x, m, y- s# N( K; H" P
# Base cases / @1 I; j8 m: i+ }0 M/ V, L; N if n == 0: 7 R9 I& [$ e# x9 [4 y return 0 3 R5 G% T# ]' `3 s* M elif n == 1: 7 J* h. {7 G5 {& F4 F return 1 8 X X3 `4 i0 M8 h% @* S$ N # Recursive case- ]3 T; {& f' q8 Q M! n
else: ^& U3 }, [9 }2 V1 E
return fibonacci(n - 1) + fibonacci(n - 2) * z u; F! d+ m! r( d" W - ~! |( i/ K/ }& v, b3 \5 h' @# Example usage( l, R/ z5 v9 P% V& y5 L! c0 N4 y
print(fibonacci(6)) # Output: 83 Z5 b: d2 a; q; k
0 e# y& D5 K, h# Z/ {1 ?1 a! S9 f
Tail Recursion , T( A. b8 E, J, G! d- N/ Z ]/ s5 I6 i% X! G$ L" s
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).; K$ l h. \8 I6 `) i# e: g
% s, {( Y# x: z
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。