标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 % Q( G8 [. y. M8 j5 q- n9 x t
解释的不错% e5 U6 f, `/ a' {# N% l" Q6 w
) ^1 n. m, {2 [+ ?递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 1 Z9 e+ i2 |6 I- U, S X Q: M8 f' m4 a: R) u
关键要素" [' F# N# z0 ~9 i( n2 r6 U0 Y
1. **基线条件(Base Case)** ) Q* [, E; b9 ` L( S" T1 `: }* B - 递归终止的条件,防止无限循环 n! n) N) `! A5 ^: i$ r
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 8 g Y- c1 J- I1 x+ k 6 w% D7 A$ X3 t$ @2. **递归条件(Recursive Case)**, t) f) ?9 g1 P# ]' ~2 ~+ W
- 将原问题分解为更小的子问题$ C6 c& Y* n& F" d8 ^
- 例如:n! = n × (n-1)! ) o# {$ E$ t m5 B( H y c" [4 ^6 h/ K! `# w
经典示例:计算阶乘8 ]9 S( z1 {) o
python Z! C1 N( S" kdef factorial(n): ' G8 t/ z1 C2 Q9 f% g* G& }5 r0 U/ W; q if n == 0: # 基线条件 * a+ }0 j( j' [4 \8 m$ Q return 19 F" T, {/ v8 _' Y1 q" x) I
else: # 递归条件 * Y6 {4 x/ e! i3 h: p$ d return n * factorial(n-1), G2 ?$ a( m- K- J0 ?4 x
执行过程(以计算 3! 为例): & s7 B% u8 @ H( C8 s4 M9 Y9 ^2 v nfactorial(3) # b+ Z/ S) J1 m* J/ Q3 * factorial(2)7 ~ Z2 @/ l0 s6 P- }
3 * (2 * factorial(1)): ~# D( q( \" S1 ?' L
3 * (2 * (1 * factorial(0))) " g' V! N4 D' N3 * (2 * (1 * 1)) = 6 6 r- S1 R* z q/ O: p5 m2 } ' F* ~2 V3 y- A6 ]3 u- ?+ I 递归思维要点 / x( f' k0 x2 ?2 J; d1. **信任递归**:假设子问题已经解决,专注当前层逻辑3 u4 o" \% R8 Y9 ]1 ^4 q3 I
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)$ }; D3 x4 _+ T+ ^) a3 n
3. **递推过程**:不断向下分解问题(递) . w7 S! ?" Y% v; Q4. **回溯过程**:组合子问题结果返回(归) ' h' V2 @0 m( r8 S: b' D8 T O- C" p8 `8 L+ Z 注意事项5 f: F8 z. g/ c' A' T
必须要有终止条件 ' _4 z4 s9 C3 M' W% D. o: o. p$ K递归深度过大可能导致栈溢出(Python默认递归深度约1000层)( \# d3 H: o# G+ J) x
某些问题用递归更直观(如树遍历),但效率可能不如迭代 $ a: |5 h+ N# b6 f# E, ]: b' k8 V9 C尾递归优化可以提升效率(但Python不支持) / r3 I4 t: z/ _4 [/ M$ E( r7 S( j8 M
递归 vs 迭代: ^% d1 }& G( P; _# D i
| | 递归 | 迭代 |6 E, W2 s0 y, e' t& S
|----------|-----------------------------|------------------|. u* b+ G; ~7 g7 q8 W" c" ]( R
| 实现方式 | 函数自调用 | 循环结构 |% h! _3 ?3 s0 M, S8 U2 C
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | . K5 O9 f+ e3 s6 k( @ U( j# ~| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |6 z. J" m5 O: p8 o
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 |6 w/ n& O! V' F9 z: ^
& N1 E' p3 a2 w* o, a: `5 ^5 T 经典递归应用场景, _2 }! n. \: M0 G! ~
1. 文件系统遍历(目录树结构) % o! E( G2 \+ E! J2. 快速排序/归并排序算法$ @# `1 w0 t, C$ O
3. 汉诺塔问题 $ R5 _" Q5 ^6 q5 I; `0 |0 W' X) A4. 二叉树遍历(前序/中序/后序) # J$ I$ p1 X5 ?* w( ]. Z5. 生成所有可能的组合(回溯算法) ( B# k" ~4 J; f: o. ]) i 9 I& y* _% {: p" b) Y4 Y+ B试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, ( Z; Z; \ D [& L: y我推理机的核心算法应该是二叉树遍历的变种。 8 y" W" o. q# a9 R! d另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:. `; Q) C, i2 X
Key Idea of Recursion 8 w9 G. }6 K8 ]: P U1 A1 C2 J; P3 {, [& B, ]8 |8 Y; i y
A recursive function solves a problem by:2 P- h8 x+ X, ?& M6 X
3 e5 D* S! x# m! \
Breaking the problem into smaller instances of the same problem.8 l1 |6 k/ d6 [8 W1 ?' q. R
. b8 l) R1 g3 T J# i& G Solving the smallest instance directly (base case). . }6 L$ n9 f7 `3 q' l9 x# X 7 X- e4 A, T7 M% ?% p6 U* y5 ~7 w4 M Combining the results of smaller instances to solve the larger problem." a5 c1 o+ B4 i& _
5 z& a" x& K$ D+ p. T% c' `
Components of a Recursive Function 2 D, ?# P `- [ 5 i1 e! a7 X: a$ K7 [ Base Case:! ]9 {* g6 y2 @3 T; m+ v* e0 p
, y# k" f* P+ Z* j
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 9 W" s( e7 @- f! F( R o6 n6 A* I4 k p" c, F, l2 l6 C
It acts as the stopping condition to prevent infinite recursion.* P( f7 J. }) I0 m6 ~* v$ F, p
! A& P9 L0 T7 k" B; V$ w4 H3 z Example: In calculating the factorial of a number, the base case is factorial(0) = 1. : J8 f6 }; H9 S $ o6 V, V" p r' e# `* c/ a Recursive Case:% o' ~, f! f+ h A4 }8 a
?7 }$ ?$ F5 h! `
This is where the function calls itself with a smaller or simpler version of the problem.% g* q* L: j. Q8 I0 Z; K4 o
+ j @- N, V3 Y) T* @( H
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). % E b, {1 R$ ^1 U* W 1 x ~' r; U" o9 @# q# g2 iExample: Factorial Calculation3 Y$ g, J! w" n
: W; t8 a% ?9 |: |, @, G j6 r: W
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as: ^& l, P) M* {. J6 K5 K6 ]" o% n5 [( s" m& s$ e
Base case: 0! = 1 * l1 ^2 O0 Q; z$ H+ e0 E" N1 }7 _8 W+ K3 o
Recursive case: n! = n * (n-1)!/ W* s6 k9 S, {% T( V- u9 F. v
; C7 I g- L5 x! y1 I( G& \( [" S
Here’s how it looks in code (Python): ! r9 }: k3 x) T( Opython, Y8 r o' o7 u; S0 u
9 N* [. ^* `/ C
1 T8 U1 Q( e) e" o. m5 [
def factorial(n):( ^1 u$ Z9 N7 l( c) i4 \
# Base case% M5 f4 u ^- F- {; j. {
if n == 0: 7 @! ^( s+ ~0 J& C$ C return 17 f$ p1 D/ N( R2 ^& S! i$ ~
# Recursive case( n9 }' z- e9 p; }7 F
else: ' a. s/ g# G2 A( f return n * factorial(n - 1)5 d. x8 G7 s {% C
- p' _0 _6 a, \. y7 Q# Example usage. N/ G# c4 Q0 e9 `+ c' `: _7 n
print(factorial(5)) # Output: 120 ' U# V9 { C; U * z' @9 t. r! F4 Z5 \4 d4 OHow Recursion Works 3 d1 v" g& P% \' a9 V3 b1 v+ e" Q( M: y. Q+ O/ T
The function keeps calling itself with smaller inputs until it reaches the base case., F" x5 d# n! s! d
; q! T4 C7 D9 q
Once the base case is reached, the function starts returning values back up the call stack. 8 R6 @ |- X- ]0 E! o0 V% z* n5 G: ?: R+ d+ x
These returned values are combined to produce the final result. . L7 q1 z; O* P' t$ m) g+ `* V0 m : A8 W% C/ A8 }0 g$ ~$ s% W2 B% OFor factorial(5):+ ?4 v2 T) v7 Q8 N) x% e
) n0 Q. H8 x {# ~' d * M0 s. l n4 h f( \' ]" Hfactorial(5) = 5 * factorial(4)1 q! i4 J ^. S1 [* @
factorial(4) = 4 * factorial(3)) W8 x6 u; Z( v" `# q" ^
factorial(3) = 3 * factorial(2)8 e6 x7 w2 h6 X$ k
factorial(2) = 2 * factorial(1) + @$ g7 @9 K* P n& t# Wfactorial(1) = 1 * factorial(0) 7 X* J5 {9 q9 Q# o8 b7 ~factorial(0) = 1 # Base case 9 j2 }6 k' W: F0 K H: q% v0 R9 f2 v# o! K+ [- L
Then, the results are combined:1 _2 Z* I) k0 S8 F- n- r
+ g2 ~7 t" b& v
/ W3 V+ T: ~6 Z& e1 c0 {+ ffactorial(1) = 1 * 1 = 16 F9 ]0 S$ C, ?' s2 y- M
factorial(2) = 2 * 1 = 2, x. @ c- o/ h* `7 O$ N N
factorial(3) = 3 * 2 = 6; a3 g) O1 `( p; ^5 J( F4 E
factorial(4) = 4 * 6 = 24 0 ]% `. a5 b7 _) r) m5 Y' Qfactorial(5) = 5 * 24 = 120 ( y" v0 l# G/ Y* ~4 K 6 f. l- D$ M6 YAdvantages of Recursion 8 M$ J7 b; f* S' k. C' X5 h" d) F0 A. p
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).) h& p% p# X" W$ i% F
! o9 w/ q$ O# _ Readability: Recursive code can be more readable and concise compared to iterative solutions. $ @! S. Q! r" G; K: Z8 I # g B% p) k" C- v1 KDisadvantages of Recursion & f1 {0 T- f7 }2 W# A9 I8 v: B: n
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# P9 v4 e% ^% D9 F( Y& B
0 H( I8 n( I3 [. J
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# ?, l$ b3 \3 I4 Q2 V. ?3 _
! E% y% r \% P/ a( a$ R' wWhen to Use Recursion , z$ k: @# }, m6 Z6 f6 ?- H5 z$ v7 n; a, q
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). 0 B0 [5 E q& s7 h1 F0 }6 d. N3 A4 e9 o0 B$ ]
Problems with a clear base case and recursive case. 8 [! d5 ^; M* p" E ( q2 L2 t! {! Z/ h- r5 W( Y0 i7 {Example: Fibonacci Sequence ; Y/ J/ z$ k; Y) j$ ~& ~" r: \% C* d; Z) O( p* O
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones: g, ?5 G k: {* H7 J3 W; b" j $ ^# ~" r9 N( P+ x# P, N8 Q Base case: fib(0) = 0, fib(1) = 1 2 Z5 v# f3 X: d8 l0 x+ L7 B0 b9 P4 r6 Q- k+ s7 e
Recursive case: fib(n) = fib(n-1) + fib(n-2) ; ?7 O9 N6 A- y4 H7 x4 z1 |' r o8 n7 L3 F5 o6 q) k- x
python) G- j/ I8 v$ ^' l0 O2 b
: g+ E7 s _7 ^" e! h, y# A% h3 y
def fibonacci(n):' }2 r, z" Q3 A$ Y- z' c$ I( v v
# Base cases : C- t8 i# Y- C if n == 0:+ h: A$ o3 e/ c& P; x5 O% w ~7 i
return 0 7 Y* g2 Z* L: {' L* e elif n == 1:. d# q+ _, q; n* R! D
return 1 ' z3 H: U1 u4 T. { # Recursive case: a2 N4 X* N1 O& @
else: : @; G* V& S) v' {; U( n return fibonacci(n - 1) + fibonacci(n - 2) " T2 t4 U! T3 x4 X J ( n: t2 d, Y+ Z4 O& L+ T3 R# Example usage ( h W1 w: x% c Kprint(fibonacci(6)) # Output: 8 3 b9 F! x8 ]& B& t; p, l. B , B- j5 _ a) p3 ~4 u* ?% Z) s/ Y$ pTail Recursion 3 o# u& P$ q& q0 E9 ]' H. ?/ W/ A; X; y+ Z6 [
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion)., S% Q& }: |6 X" F
- M* h3 [6 o4 I4 H+ I4 t2 K, uIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。