爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 1 ]/ J8 a* \7 S; J
3 |9 [$ U& y5 W. B7 n
解释的不错9 `  Y) R5 _7 u$ [" Y+ |6 D
% T/ {3 E  _# g7 t" g9 v! r& X) m
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
3 i( j/ t7 f9 ~2 G6 ~
$ a5 s8 ^' _/ Z1 z1 |- M7 V- x 关键要素
2 ^6 F7 W4 f: E% q& W) a8 _1. **基线条件(Base Case)**8 R) H( Q3 w; v, C7 j2 A( |* |
   - 递归终止的条件,防止无限循环) |3 N) E) n. P0 [9 v
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
( C# f2 z+ {9 s) a7 `
; C5 S/ A* I/ K# _4 F6 \2. **递归条件(Recursive Case)*** w* E! b+ @$ Y2 \9 K
   - 将原问题分解为更小的子问题
' ^% w) @9 ?# y3 l7 j   - 例如:n! = n × (n-1)!# x/ Q7 a5 B& u7 a2 J1 {2 v6 m
0 P; m1 {, [/ \! L: v: ?1 W' s
经典示例:计算阶乘& O, I1 f" Y# \) n4 L
python
7 ^' V5 R6 C8 G2 K5 Udef factorial(n):" E, F4 P7 ?1 f* O4 z6 {
    if n == 0:        # 基线条件9 V$ ~( c1 B  Y- K9 w! ?
        return 1
1 W" }9 D* {0 N( b- T3 r    else:             # 递归条件
: g  q  P" m: U: n' E        return n * factorial(n-1)8 m  L9 }6 b( z2 H
执行过程(以计算 3! 为例):3 M4 q3 b3 ^! C; f) y' g* S
factorial(3)) w0 t+ `5 T- ^# x. b1 r
3 * factorial(2)1 }! c7 [! y8 b; \0 Z+ M3 h
3 * (2 * factorial(1))
1 [# s' ?& L( |8 s3 * (2 * (1 * factorial(0)))
  j# u3 M( t: }' P0 ~2 a3 * (2 * (1 * 1)) = 6, b+ |  f$ Y6 i
. x" A+ l( g  Q
递归思维要点
; z* g% p. m3 O  {: v! y1. **信任递归**:假设子问题已经解决,专注当前层逻辑
, `# G! g( n! R8 {2. **栈结构**:每次调用都会创建新的栈帧(内存空间)" c% ~" }) `' K: _
3. **递推过程**:不断向下分解问题(递)
* P# Q  K/ F5 L! O) Y! E. |2 W4. **回溯过程**:组合子问题结果返回(归)% }' |/ x* f& w% E3 m" `$ [
0 x' G. L5 [0 \/ G# z
注意事项9 \+ o& v1 l% |  _7 _3 D. ^
必须要有终止条件& d% j" @: F4 {1 R' ~$ I
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
3 @: f# I1 T. ?2 F" I) v1 l某些问题用递归更直观(如树遍历),但效率可能不如迭代: f6 T6 _4 x5 z' ?# s- p- H3 Y
尾递归优化可以提升效率(但Python不支持)9 t1 ~- E6 z; F! B
7 C& Z" W0 w1 a4 U
递归 vs 迭代
3 E# i" o. Z/ s& b# P8 q|          | 递归                          | 迭代               |/ {! o1 u6 c6 l5 g/ J( f
|----------|-----------------------------|------------------|; C; ^! T  R! C0 P
| 实现方式    | 函数自调用                        | 循环结构            |: s5 Y& O/ }. N
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 f/ i* H! H) q
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
4 Q! s- h( v! }4 V2 n& j| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
: X. J* ^9 [5 q4 {
8 V& [# z8 V- H/ {5 }' N; _. G 经典递归应用场景
, J+ B- ~$ F' h4 B0 h$ D8 n1. 文件系统遍历(目录树结构), \7 e/ X3 q4 [) A: L# ^% Q
2. 快速排序/归并排序算法5 N# h8 @0 k2 i+ t9 D4 [% i# f
3. 汉诺塔问题" r- |! |& w0 N; u. h$ b
4. 二叉树遍历(前序/中序/后序)
4 o0 f/ R! j' F: w: H# S5. 生成所有可能的组合(回溯算法); F" D& c. J9 A
, }! P% p- k& `
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,8 ?& K) s$ C) `  \5 v
我推理机的核心算法应该是二叉树遍历的变种。- z6 Y* U9 ]7 r" b
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
* F2 w0 I- P. q! V& E/ e  @/ U) _Key Idea of Recursion
! c1 f& L/ n- A
3 [3 U* t7 A* HA recursive function solves a problem by:
* |; Y, {$ U6 r: l$ d
0 t3 {- d) n. r4 W6 a$ o    Breaking the problem into smaller instances of the same problem.6 _( C6 t* I0 d5 x2 F, G6 j) F

- G* a0 v7 w# x    Solving the smallest instance directly (base case).+ f7 `( l! A8 K
4 S; ~+ k+ r5 Y; [0 w
    Combining the results of smaller instances to solve the larger problem.5 x* ^& b+ k* l( W3 o/ ?# h
/ Q; f8 Y- C6 W* `
Components of a Recursive Function; p7 l" b: m6 U" Q  r
* H& b* [6 r& k3 h- W' n
    Base Case:% d7 ~1 |* o* U. x

- w: `- [  W- ^" R$ O* b: x        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.( V6 N& s5 {( ]: {' d% g$ F* D

# S: u- n( F7 y+ Q  I7 t, N        It acts as the stopping condition to prevent infinite recursion.( y. K& s$ F3 B6 V; h

- R  ]8 g$ r7 t$ b6 b. ]        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
* Y" P. ~1 I% R3 \# S3 R  N# _8 A/ K5 L8 {9 |5 z' _
    Recursive Case:7 H$ d# r& o# G! k0 s

1 y5 c) J0 K( A7 K) W9 c        This is where the function calls itself with a smaller or simpler version of the problem.3 ?5 C; w7 H9 W+ j

. U4 D0 L) A& \9 [1 ?        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).' e+ i# i# r6 V4 s6 A
5 E- Q3 t: N- _9 u, a
Example: Factorial Calculation
( C: U' z9 w, T+ n- [; E/ g6 Y
; J9 S1 u) _' z4 J6 |9 V! P: _8 zThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! J* C' U: s7 {

( \( U/ |8 @# {. j* I0 Z    Base case: 0! = 1$ N5 _. n6 l9 d4 f4 ^" Z1 G
! T5 k, _: f  T4 w, y
    Recursive case: n! = n * (n-1)!. R. R% d3 _1 X" m: M! Z, m7 `4 }6 E
, y1 \5 f* F3 i- K. y$ [/ y8 T
Here’s how it looks in code (Python):
! \8 W( q* J/ z+ j  Gpython
6 o+ e4 J  w3 f" Q1 e- ]8 C( [, S. @5 ~2 ?

1 a' H( c: N. Q3 ~7 hdef factorial(n):% {" Y' L: a! m2 Q
    # Base case
0 ]8 S8 M+ ]! z+ T2 w    if n == 0:$ P: k2 ?, w+ Y/ J; `5 y/ n
        return 1
5 V, O3 u4 k& W- z$ [5 j" t& C    # Recursive case5 t6 ], @/ S+ |# i- n. X  a' d
    else:
* C# e% s: |2 F$ ?) V        return n * factorial(n - 1)5 P/ A, T$ h$ f. o/ G  x
* w/ V2 N' _) t6 e3 p7 d4 A
# Example usage+ V/ ?8 }% g; r$ f( h+ d
print(factorial(5))  # Output: 120! [5 f( ^. i/ u4 {" N
" M( t2 t4 q6 P8 ?8 U1 S2 V
How Recursion Works9 i* I) q, v5 S" m3 p$ V
5 D8 `3 S* W+ z5 k, T# O9 w; J
    The function keeps calling itself with smaller inputs until it reaches the base case.
: p+ L4 l: Y( e) F9 ~0 H8 s+ ], E1 x% _) N+ \
    Once the base case is reached, the function starts returning values back up the call stack.
  @, t' u# g; k( y) j9 g9 |6 p( z, m" Y( {, [) B- o. ]. i
    These returned values are combined to produce the final result.
& ], ]4 f% S) E" h( i
( m* z3 s9 d5 m* I6 ~" H- eFor factorial(5):7 J* v1 q6 K; C" ?

' C$ q; I; |1 u5 E5 e; P4 n9 ]- Z' N
7 C0 H; ]7 i5 L4 D, B& Pfactorial(5) = 5 * factorial(4)9 h, y" U$ u  Q. E
factorial(4) = 4 * factorial(3)
% p5 N& {- I9 u& i9 Cfactorial(3) = 3 * factorial(2); [2 z) V" H/ n5 r; V
factorial(2) = 2 * factorial(1)
* R+ u% |9 ?2 H" Y  _* o( T" ?# `factorial(1) = 1 * factorial(0)
: p' o" n/ R8 E5 t& {& Qfactorial(0) = 1  # Base case
: F+ N" k  c. K" F, }- t/ h* G3 ?/ a+ G7 q4 |5 |3 O4 W9 j. N% X
Then, the results are combined:
. {+ m- ]0 l- z4 |% w, _' o7 s
9 r2 r) i3 b; P) h- Y8 ]4 _3 i5 I
# `9 A0 Q/ l; \8 C- v7 |0 Ufactorial(1) = 1 * 1 = 17 _9 U+ M8 B. U% ^% j3 @4 r7 X. i$ [
factorial(2) = 2 * 1 = 2
! c( A& ]- W& Bfactorial(3) = 3 * 2 = 6
1 B3 I7 ]! Q& \factorial(4) = 4 * 6 = 24/ ~8 a3 z" h- W5 J
factorial(5) = 5 * 24 = 120
0 Q& n# B4 n5 o+ D8 c" X2 M0 s( P2 a! q- }, i& d( m
Advantages of Recursion/ _1 z( q4 c' J+ n$ P% B" j. h
! N2 J) y: }$ `0 ~; I% Q
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
& j. K" y3 O% @" G. g+ G/ d* p% ^- ]' `5 J- {* [
    Readability: Recursive code can be more readable and concise compared to iterative solutions.' P/ ^8 b0 v: j7 o1 c5 `5 v& }

6 D4 Y% Y' o' I" i7 |5 v. E% QDisadvantages of Recursion; \1 p% ~  i+ n  ]# J$ ?
; k& Z& s/ C$ W; e, c
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.7 _- K7 T0 H7 Y
9 i6 u; V' t( n7 L# d+ ]
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).9 T# [4 L& T' f8 F/ X' j" O- |
) T  v# F5 v9 {$ l7 ^: W" ?0 X
When to Use Recursion4 ]( l% d8 ?0 b) [' s$ D

% u1 p" O' D3 p5 H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).& P* N  o6 y# f, ^1 J

9 O7 f8 i0 J: q+ S: Y4 k    Problems with a clear base case and recursive case.1 e0 O7 e% u, Z, l, y+ z- D1 o

9 k5 W* t+ M+ vExample: Fibonacci Sequence
" w9 \0 Z7 a; j0 r, \& T' Z' C# s  x
( ]0 ~6 @: q% a1 A: t/ e+ j$ Z$ p7 lThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
- F( E: g" n7 b: M
; g5 r3 P) ]4 G. [) N1 [    Base case: fib(0) = 0, fib(1) = 1
* Q$ H1 K. G1 O1 u1 B5 L' X
$ S: }& M+ e* \    Recursive case: fib(n) = fib(n-1) + fib(n-2)
, p/ A& t" m2 u5 `$ u4 v0 V; W! A  Q+ }7 f
python3 F& s$ p: ]& i, w9 ?- R3 l

/ X6 l3 D: o8 ?& o
* _% g5 J+ d! qdef fibonacci(n):7 n+ h% e- F1 V& o7 s! a4 B
    # Base cases
8 i1 ~8 Z/ j: a  s# e( L, e    if n == 0:$ q; S. Y1 v) `
        return 0
  z/ ^: Q: [  K5 y    elif n == 1:8 e! P# ^6 \% k8 G
        return 1) p! V3 _- K! M5 s, ?. Z6 c
    # Recursive case3 F* i7 h$ \! R6 g7 B* d0 w
    else:
; Y: s) v' I, Z        return fibonacci(n - 1) + fibonacci(n - 2)1 W8 z. X: J" `$ v0 T# P) G

# C3 e6 p) Y( R$ y# Example usage
6 P, ?& K- m/ }5 ~0 wprint(fibonacci(6))  # Output: 8! Y: X/ ?: s* O- M% d9 w6 S
3 V1 {) _$ m* r4 Q, d' `% X& a
Tail Recursion
7 U- {% n! s' t8 p* M1 K  u
4 u" |' X9 |# Q: `7 qTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 E5 l' C( d( H. ?4 I: l; X6 x

1 Q  M9 m; F2 r$ u! R& `In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2