爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 - R3 j: W3 B. a. \3 h! f' `

, E3 W; @# A4 t9 T, N7 T( _解释的不错7 [6 o# Q9 f4 W" q9 ]

; D, k6 }4 a# l  ?0 [' L/ o2 k递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
" }4 N/ n: _! l) M
0 F* @+ m4 t3 W1 ~ 关键要素
  M6 r0 @4 f4 C4 U& o1. **基线条件(Base Case)**
6 H% M% m9 |- p0 f: K8 o% C' Y   - 递归终止的条件,防止无限循环# g8 h+ b# ~0 H; F3 P* w7 L" {# e- S
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 D4 |1 U* K; Q1 v' N5 ~! t

( c1 V3 Q$ w9 }- [5 c) Z! j2. **递归条件(Recursive Case)**5 j9 z% _* L# G! y. a) s( T1 x
   - 将原问题分解为更小的子问题4 K+ U% _+ R9 m1 ~& R% |2 d5 \+ S+ q
   - 例如:n! = n × (n-1)!; b; o: G; |$ e& @
, }+ R+ t/ \* U% ~' ]: [$ o
经典示例:计算阶乘8 ~% l3 g) w5 s& M+ v" N
python8 X+ |6 k* L. @5 _
def factorial(n):6 ~  j0 l8 s3 P# ~1 |& ?6 ]4 c" l
    if n == 0:        # 基线条件1 l0 p. O  i: b' x8 I) l+ h, c1 k
        return 11 Z6 H8 g2 E' I$ {, i
    else:             # 递归条件( n2 N. q/ K( e# c8 @
        return n * factorial(n-1)
9 t& @& Q# W& C& U) ]执行过程(以计算 3! 为例):
+ T  L0 _. i) ^factorial(3)
+ w: v1 g. i: _3 * factorial(2)
  C* |1 q( i! t3 * (2 * factorial(1))
2 i2 T% W4 O3 f" Z3 o. P$ k% B$ ~* ?3 * (2 * (1 * factorial(0)))2 K0 U' f- H7 S0 L5 p* o
3 * (2 * (1 * 1)) = 6
. C) `" \: g* G1 [4 ?
! e, h/ K: Z- x1 ]9 F4 j) m 递归思维要点
" _7 G* I5 E" [  Q: B1. **信任递归**:假设子问题已经解决,专注当前层逻辑; U2 x; Z! a! d+ o7 W# M
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)3 s1 v6 d4 Z- }5 a0 }( R
3. **递推过程**:不断向下分解问题(递)
( i: L' B& X! r; Z4. **回溯过程**:组合子问题结果返回(归)
1 S4 s- ^& ]$ W( U0 n# Z4 Y9 ~4 l* V7 Z1 e8 L" D
注意事项, r7 ?* D3 t( }" U
必须要有终止条件
" i3 l, O4 Z. v递归深度过大可能导致栈溢出(Python默认递归深度约1000层)! t6 S  |/ k+ ~$ ?4 {+ a
某些问题用递归更直观(如树遍历),但效率可能不如迭代
- I# I; A7 @9 N- Y/ E尾递归优化可以提升效率(但Python不支持)
- p' V; m$ r- k0 I( G3 t" @
5 Y  s/ ?* s& _; Z' v  u1 I' b7 p 递归 vs 迭代
$ a3 Q( g% q: ]4 e' d* [* x8 B|          | 递归                          | 迭代               |
. x8 G+ R$ C7 r* y|----------|-----------------------------|------------------|
1 w! k4 K/ V" }" k) @8 _0 Y" o| 实现方式    | 函数自调用                        | 循环结构            |
4 m7 H. Q2 ]( l9 U. s$ R9 W. @| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
$ t, e# z6 q9 Y& K$ G; C4 o* P; y. o| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |$ d9 e; W* ^) z
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |" Y* N/ ?' @5 p* x* [) J  `& c
7 e2 N( ^9 a" k1 t7 W1 N
经典递归应用场景
( U" i+ S/ u2 P$ D3 R1. 文件系统遍历(目录树结构)+ i/ P4 B7 Q* f9 R) O
2. 快速排序/归并排序算法, w- q2 U/ M/ q5 g, k* c
3. 汉诺塔问题8 d/ _: W; u) d, P% D3 p* `/ [  H
4. 二叉树遍历(前序/中序/后序)
! y/ J/ b0 x% y  v0 E. _: s( S' m5. 生成所有可能的组合(回溯算法): u- F. [1 e9 y( U

/ b. L% K7 S2 ^9 h( p# _试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
3 P4 Q0 u" k% k; T我推理机的核心算法应该是二叉树遍历的变种。
/ M8 }) ^5 I* K2 a另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
5 ]& i- L' q) u: @Key Idea of Recursion
# n" `* }+ R  s+ [  n, ~! y/ z# R
* p" e) h7 X9 _7 X& FA recursive function solves a problem by:
2 H3 A3 ?8 |, k4 y5 }% o6 [% N' a# W
    Breaking the problem into smaller instances of the same problem.
, ~/ p4 P3 R6 f9 d
7 ?/ I, ?, G8 g  r. U, l    Solving the smallest instance directly (base case)., |) C) T% y, o2 [' t" q& ]
5 p/ L7 O2 h& g* O' _
    Combining the results of smaller instances to solve the larger problem.) q9 Y- _8 P2 e8 P* t

* V5 w: g  ~6 A  z4 l# ]Components of a Recursive Function5 ]3 ^; X: J# ]" K

0 m0 f% [2 }+ Y: i+ }, [    Base Case:: a+ O) s6 n1 a) a) \; \
( J. H" V8 I8 `1 B, z# C
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
8 W- Y# X5 H; ?( k! E2 i
9 `/ U, y7 R1 |        It acts as the stopping condition to prevent infinite recursion.
3 F& e& |# E# j2 e7 }. Z
! T0 t4 k- y# n; t- i        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
- B" l7 ^* |8 ~' ~" e( V8 F9 `$ o/ S8 k3 y3 q
    Recursive Case:
1 R* ~( ?* c0 z2 u' d* \
+ |- _3 Q+ w* F4 W& k  N        This is where the function calls itself with a smaller or simpler version of the problem.; e  J  v9 ]3 w# Y# G: {$ h( e" @2 F

0 v, ~) k! l2 E5 U. G+ `" d8 l/ v. ^6 R# n        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1)., X5 C$ ^9 |  ?; y# G) k$ A

1 b" F4 k/ E* p: q% cExample: Factorial Calculation6 L: G  L5 Z' J9 P

! j$ i8 V! u, X6 ?# IThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:! |% d% j8 @9 h8 I* e
  v3 s+ T  ]0 s! T. R. x0 r5 A  \  i" t
    Base case: 0! = 1" k! [5 r: _+ o4 x8 o! G
( G2 H8 |9 r6 w% J9 o8 S/ u% p, ?
    Recursive case: n! = n * (n-1)!
2 w* @6 e+ `) Z: m
1 b6 f* x9 V0 X2 m" eHere’s how it looks in code (Python):* b" @  ?( a/ `! M! W* ~
python( i. B9 j# \& f; \

# y; }5 Y- R# ]. Y8 l/ y9 S" P. `( }6 G# n! _3 W) @
def factorial(n):
: Q* r- ?/ N4 ^  m; D6 J& ]* N$ E8 q0 _    # Base case. b! K2 z( r+ y# [& e5 M! P
    if n == 0:! O+ k9 p3 P6 _/ s+ y. U) X
        return 1
6 L& y5 X) ]& E# z) w* @6 L6 k    # Recursive case% N3 b: S* S# M; V* `4 `
    else:* N. ]4 }  M. I  D
        return n * factorial(n - 1)
/ `8 @' E$ [8 q0 p2 E$ d- ?+ B' M2 h, l) p* f
# Example usage5 u" X$ l; ~4 y
print(factorial(5))  # Output: 1202 |  ?1 f! ]6 I1 i, b2 `  \* f" e
# K4 _5 Q; X$ E; o# E" G
How Recursion Works
3 m4 |9 {1 ^1 y- i. U' z
9 V  ]6 C8 B0 p- d; w  r/ H% l6 r    The function keeps calling itself with smaller inputs until it reaches the base case." N# S, e4 S) [# s+ U# P% n. [
: w8 R# u: v2 k3 p# T1 E$ e
    Once the base case is reached, the function starts returning values back up the call stack.8 ^& D9 k1 Q( B. e

8 }: g, X' ]  a4 E5 B) U' {    These returned values are combined to produce the final result.
6 C( H3 i$ g( X9 d) ?. z* T) b, [
For factorial(5):8 j: D! ^0 f! D0 ^$ r$ F4 o+ n/ r

: y! e! w; P/ A8 _6 I, [
6 l% q, r5 R) L1 i% l1 rfactorial(5) = 5 * factorial(4)! N- N9 {- L% x$ A' o
factorial(4) = 4 * factorial(3)
. @6 g1 E# f( _9 I; f4 `9 P% Qfactorial(3) = 3 * factorial(2)) j7 p: Q* e* b" @3 m7 P
factorial(2) = 2 * factorial(1)
+ Y/ ^2 F) ]+ h$ I9 P& `7 B4 Vfactorial(1) = 1 * factorial(0)
/ a# @( s; Y8 T2 u, `factorial(0) = 1  # Base case6 P( h1 R9 ^% B% ?3 H
& m8 e2 l+ C- ~  c" @* T4 i7 E
Then, the results are combined:
) P9 \# [  S, M% y% c" J) M6 q% c) [4 E% b1 L& a' y1 L# V
% L' J2 ^3 k9 g4 h
factorial(1) = 1 * 1 = 1/ n& x2 u$ g* W2 D7 |8 Z
factorial(2) = 2 * 1 = 2
7 w8 X  `" }; X% G4 G0 S8 Pfactorial(3) = 3 * 2 = 6
( x+ Z' m8 S8 g+ ]& {factorial(4) = 4 * 6 = 24
5 z( s* X5 K8 S. u" ~factorial(5) = 5 * 24 = 120
4 c. x. b1 r, |) m, N9 |$ b. c/ n  ^  A' I  r1 m
Advantages of Recursion
$ J4 J2 e2 a* F# w* }
3 Z$ f! f$ o1 p    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
! g* q$ m: E( Y) i' P+ r
  N/ y& o5 v6 P: i. S6 ]+ t, V    Readability: Recursive code can be more readable and concise compared to iterative solutions.1 v7 U0 E$ T1 C* o
" m( m) b+ G/ K6 D" [! ]3 S
Disadvantages of Recursion
  S' `/ A8 M2 n. X+ ^2 @, k' X1 @" s* P$ F$ X) d; p3 I$ s  N" D$ }
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
# N3 n  {, b) _% ~4 P+ Y4 X* g$ p1 g% K! G
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).: x" m% A- ?' X/ a- Z2 G

$ v0 M- x0 c/ y4 P4 u5 k# \, mWhen to Use Recursion
9 l2 r  M! v0 P) r( b" l
- e: S, h* L. D3 H    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).# ~) W; B3 F1 f; Q" d& y1 y' @# w3 t
# y% u0 s6 n8 n8 G) c
    Problems with a clear base case and recursive case.
3 `: w; B! e% V  \, B% }$ ?' u7 @: ^) @5 Y2 W! X+ ^
Example: Fibonacci Sequence# K0 {) ?; L- c/ X$ x- I! T

7 ~7 ]! P) o" r" q) y/ LThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
1 B$ }2 ?  v$ m- e; Z. k3 d
: N3 u( D0 {- `) ^9 ~    Base case: fib(0) = 0, fib(1) = 1( N. I0 H4 {* u* l5 H& \8 x  s' P
6 h! D4 w) u  P  H
    Recursive case: fib(n) = fib(n-1) + fib(n-2)8 l5 ]5 t; K7 K& x
0 n, n1 c6 s/ B* B
python
, ^* [6 f4 I$ l5 Q" v. E# V; f" @; D) C7 N4 Q) v
) ^" N5 {: Y8 ~
def fibonacci(n):  ]% m& b* h7 y. @
    # Base cases8 y+ @) j) X& F; z) N) O
    if n == 0:( H2 R6 [; v+ D6 E( N
        return 0
: E( r/ l0 r3 t; U% J) y# `* R    elif n == 1:) S- m# \' _5 x# }/ B
        return 1  M' i4 Q6 F! n0 ]
    # Recursive case5 F" x# m( u! e/ C
    else:
3 ]8 g- n( n1 H1 d9 M$ O4 u. T        return fibonacci(n - 1) + fibonacci(n - 2)- X" \4 ~# i5 s5 m# B, |! a
: k, C! U9 s: z7 D# K9 r5 F
# Example usage
9 M8 h+ W. q. L7 Z: g8 Xprint(fibonacci(6))  # Output: 88 Y& y2 F4 a! Q# _
- M+ A) o8 ]* C6 g% ?! F+ n- y4 b
Tail Recursion& \! e% S8 }8 C1 s- e/ r
- K% r1 y/ l* L5 x
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).6 f: [+ L$ _% n6 i7 _) }4 ]
/ ^6 c1 n* g4 F. V' P; B2 v4 z
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2