标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 - m: h# N1 k, P3 B* }( I, V, O2 D: C3 ?+ ?. F; y
解释的不错/ X$ b- h' G' L0 N7 r$ X
( m/ H$ ^7 p9 v
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 / }7 G. w- t; @' G6 m3 b: p+ J. E' k5 \9 G4 }
关键要素 , Q. B7 y% J( p1. **基线条件(Base Case)** : I; Z# }$ `7 d! l7 p4 v0 }; d2 e6 N' V* ~ - 递归终止的条件,防止无限循环* h* i$ G7 K" b7 i, b3 H
- 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, \* E5 E8 _4 N+ P$ k/ d
6 D) V- \$ \% `0 {# ~' ^2 F% O7 u
2. **递归条件(Recursive Case)**) a" |6 F- @ p7 V) K& W
- 将原问题分解为更小的子问题( |1 B8 H$ k; }! m q
- 例如:n! = n × (n-1)!* r/ v% m/ Z% |, }! y
|( e7 F& `) q# x0 I% G 经典示例:计算阶乘 * L5 d& U" W4 f$ `/ e, vpython. N6 E, i+ h# I2 K) l% F
def factorial(n):; l7 w) X. d) X- i
if n == 0: # 基线条件 , E4 _( J: L) w3 m9 w return 1; |- L$ E% I0 v) t
else: # 递归条件; s/ J- I3 S! o
return n * factorial(n-1)7 ~, N( x. R. Y* X9 L4 C7 i
执行过程(以计算 3! 为例): G5 A, s6 x: q* \, I# f- I+ W$ [factorial(3)7 y0 U3 [( w' y, F1 i
3 * factorial(2)* W, F$ R* `( @
3 * (2 * factorial(1))/ e3 j! I5 X, \
3 * (2 * (1 * factorial(0)))' g/ U! v6 V1 _! ?1 \/ N
3 * (2 * (1 * 1)) = 6 : |9 G( F9 ~( e; L ; j! }2 c* v" { ?+ e8 b 递归思维要点 0 J6 [2 ]# S# W, P: X* @0 A: c1. **信任递归**:假设子问题已经解决,专注当前层逻辑 ; l: c2 c# j' H; z- p* g2. **栈结构**:每次调用都会创建新的栈帧(内存空间)8 S: [& K" A- |$ f `5 h
3. **递推过程**:不断向下分解问题(递) . ^3 \! u4 Y6 n7 N; x4. **回溯过程**:组合子问题结果返回(归) 1 [" s+ p$ P3 q; C" ^ % |* i+ F5 h; g$ F 注意事项) X7 I& T6 a1 Y
必须要有终止条件* ?! e3 r* {1 e4 j
递归深度过大可能导致栈溢出(Python默认递归深度约1000层). x. E# w- L5 s* A
某些问题用递归更直观(如树遍历),但效率可能不如迭代 0 R. m0 j3 Z/ }0 q尾递归优化可以提升效率(但Python不支持)8 w" C9 ?: `) v Q) a
2 R: V. H; h* t I. A, p9 U- Z# F
递归 vs 迭代 9 O6 \2 G! H! u0 I4 S| | 递归 | 迭代 |( u& d5 Z1 K {' x4 F P8 V
|----------|-----------------------------|------------------| & x, C0 E$ x, W( D2 g1 @( t| 实现方式 | 函数自调用 | 循环结构 | 0 A6 C- d* l3 H0 S+ ]( U) m| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 |* }4 c) q/ D( r( R( w* R/ L$ s
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | * h! W) X5 V* U! r; h- W| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | $ L+ Y8 Y: J9 p5 ?+ I8 x B$ ~& g' F# k# x 经典递归应用场景% @' g2 Z A, }; r+ D
1. 文件系统遍历(目录树结构) 4 m |+ ^ u+ p: m; ]; c; X; J2. 快速排序/归并排序算法 ' X4 [4 [' Z. s; g! J# H z3. 汉诺塔问题 0 m4 w! u e2 d4. 二叉树遍历(前序/中序/后序)& L$ d5 W4 J2 E
5. 生成所有可能的组合(回溯算法)! G5 ?9 y, o T( }# z" u& ]
. m5 @4 p6 M! n试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, 9 i* x0 s$ _5 c3 G. Q9 w6 R我推理机的核心算法应该是二叉树遍历的变种。 _6 o9 `6 l0 M& y! F+ |, e0 w另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation: 1 H y% J0 V4 e7 A+ A+ x0 D! rKey Idea of Recursion# e; H6 x+ x H8 `& v
( W4 ~* w5 a4 R) f& P# |) C
A recursive function solves a problem by:& ^% j$ n1 C2 C- |3 E& X6 @" B4 \
# m% J/ i3 }. G; g6 w, F& M* ^- D
Breaking the problem into smaller instances of the same problem. ) @5 P4 p) g8 c) s% V) {) c" v: |& L9 q* L9 P
Solving the smallest instance directly (base case). 3 p. [0 N. R ]1 r7 Y! p8 n$ y. k% K' I8 W0 C9 v0 }
Combining the results of smaller instances to solve the larger problem.6 w. C/ q* |: j6 G
( U/ g$ {! g; v: ^% G: SComponents of a Recursive Function8 F; Q* J5 e" Y6 ^
, c% ?0 ?0 T1 | Base Case:2 [4 A8 b. p4 |* M. k+ S/ B% V- m$ c# I
* i$ o+ q- w( T# ]* i9 F
This is the simplest, smallest instance of the problem that can be solved directly without further recursion. 0 z2 F- a, V( G* M 9 P0 Y5 z3 o0 I( U It acts as the stopping condition to prevent infinite recursion.2 I. M+ |3 N, J- w
* p( R' }4 F+ r2 m: I' N* x3 J
Example: In calculating the factorial of a number, the base case is factorial(0) = 1.) @: V5 s3 ?, Z' p7 u, b
& J1 \# f$ G; b( O( L/ d; | Recursive Case: 6 H6 s% c8 G+ V/ d# G. { & @6 d& F. a" ]/ d; h( J) E This is where the function calls itself with a smaller or simpler version of the problem. 5 K3 O: E8 C z# ^5 a, r( p! \3 m/ \' a0 n# W) v
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). 0 F8 V- w( j8 R, a% l( Y1 w; R2 \4 ]# t
Example: Factorial Calculation) ~" ]* b S) f$ _# w6 v: L
/ C/ B) B8 h# l5 [1 f* A6 H( NThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:. A o0 w8 x: T. L I+ U* O7 N% V
0 u& d. @2 l. A' V Base case: 0! = 1" N d2 R. x2 R9 z+ y' C+ B
$ `" V' j, @# E+ P4 A2 B Recursive case: n! = n * (n-1)!2 A9 x# r$ E2 Q9 \! b; ^
8 k5 U: \" I: g! r# P9 ]4 s0 w% D
Here’s how it looks in code (Python):4 L2 Y. }. M0 O
python& f- r, I- J: F8 f4 h
. `+ Y5 ]8 X" f8 e1 Q: h' ^
' i' Z0 S9 f( f- X
def factorial(n): $ U2 Q* p5 Y7 P; m: ~: R! S # Base case 8 e+ a5 E& E% N+ v if n == 0:/ @- b: d; H7 B2 s+ W
return 1$ t: n5 I/ ]0 u$ w/ i' U2 L
# Recursive case- B0 H; _7 A8 ^3 J G5 z
else: * b3 b1 g% z J return n * factorial(n - 1), Y/ E' w1 k: n6 n
! e1 {# |: b8 ] W# z# Example usage , L* f$ H( H' b, G2 ]. i5 ~print(factorial(5)) # Output: 120 : h8 V+ q) V2 ^6 S6 v! _, _; ]( p' a5 G) V0 O8 Q- ~
How Recursion Works n1 d4 y* u3 t! m - X7 [# ?) p- a The function keeps calling itself with smaller inputs until it reaches the base case.; L6 b, E2 M* R' p4 j. v2 F, @
+ Q8 F6 \* o/ N* r4 q
Once the base case is reached, the function starts returning values back up the call stack. % W& J' r3 G8 b) Q) L9 [$ \ I) i: _# A) H" t4 h, K# |
These returned values are combined to produce the final result. ! b8 @- T. i8 H7 @) W 8 O2 C1 X( Z0 Q: l& P5 L$ uFor factorial(5): 0 I O: O; k- @' ^$ }0 B/ P$ u9 R$ j, H
) E" ` Z; c2 l; \6 Wfactorial(5) = 5 * factorial(4)6 z# _7 d4 L) _" l4 O# Q
factorial(4) = 4 * factorial(3): q) w, s9 K V9 Y
factorial(3) = 3 * factorial(2) % b$ z# K6 Q' w- h' V8 ifactorial(2) = 2 * factorial(1) ) f; |2 ~' G m; }. Y$ W gfactorial(1) = 1 * factorial(0) : S3 m& M1 I" M8 i8 kfactorial(0) = 1 # Base case9 w5 q4 P4 E f; X7 c4 g
- f7 c. f# j: J" k: q
Then, the results are combined: ; l- M$ T, B. r8 {; }# v $ q+ @0 T6 {+ `* s" @7 O" C1 B& u* K$ J8 J; p
factorial(1) = 1 * 1 = 1 ' J: ^- N$ V% y; Zfactorial(2) = 2 * 1 = 2 4 Y% |3 [) @! R' g0 B( I. p2 ]& o) N& Jfactorial(3) = 3 * 2 = 6 ' \; T ?; e, u1 J* U+ c& jfactorial(4) = 4 * 6 = 24 % Q/ w1 e) Y$ v) M; [( Z( R+ K9 Q( bfactorial(5) = 5 * 24 = 120 4 }7 H% f- }7 Y7 i! l% q9 z" u1 q- v0 ?& O' ~' V4 {8 n
Advantages of Recursion - v; V7 [! m/ X4 C; q7 o0 |" j: |& n1 O) |
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms). ; b" l3 K3 e, L ! |) W ?: A6 v* I Readability: Recursive code can be more readable and concise compared to iterative solutions.+ k( P" }2 _. u$ Q- _
) W, I6 n4 }. T# Q- `% L8 eDisadvantages of Recursion & j9 Q3 T* c% ]3 T- X# ?/ A( k- b, W+ y
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion. 0 \0 j9 G$ d/ f# ~2 `9 w5 t# y' S" T5 B1 ^! w0 V6 x
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).4 f0 ]; r: R1 n! c! m: p8 `* j7 L
$ }# |0 s" _, k% l& GWhen to Use Recursion2 x) V1 n0 p7 V3 M& w* b! M
; P' R1 [1 p! }! X
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- o! V" w7 K; N% Q( a0 J% a$ J
* ~% ~0 h/ ^0 } Problems with a clear base case and recursive case. 3 n$ l V( X: r- g6 ]) |' T( L. m2 S, O4 W7 f' Q: F
Example: Fibonacci Sequence 3 F, r- n+ j# d0 p, F2 t) | e. y) J; E, V: J& f% R
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:% B$ |& d2 Q/ |, P A: \$ n/ t/ @
* j. L" _8 T" J. Y. J; n# d. d5 Q Base case: fib(0) = 0, fib(1) = 1 9 p2 h# g+ x; T8 ~/ e6 J" I( \$ G1 \2 J) w U
Recursive case: fib(n) = fib(n-1) + fib(n-2) ! P4 r) O, A; L7 I% Q& z4 n a8 F+ t$ i e
python! \$ H7 T0 Q, B/ K: L2 ~+ E
+ d' O5 Z! \& z( ^/ D# q. s
! w1 m# p ?0 m# ^0 ?
def fibonacci(n): b p; T/ r; B; L) R # Base cases* s3 F- }' ~" X. {
if n == 0: # w9 j* e8 H9 l# b! [ return 0' A/ L: y* C H) A$ m+ c! b& g, `
elif n == 1:6 i: J* I3 Z% Z) w1 `% f+ G* I
return 1 ' g3 z( {9 ~; Z- `/ a" u6 w- H # Recursive case : E, q# Y6 Q& _1 \ else:4 P8 u5 ?, V1 Q. F# i: g9 _
return fibonacci(n - 1) + fibonacci(n - 2) 3 p" P' ~) P- Q s, T. u; I5 h* V& S" o) o
# Example usage 5 D( }( [& M4 \/ g$ dprint(fibonacci(6)) # Output: 8/ f3 |/ u- ~( Y* b6 p5 N
* b4 ]1 m$ Y9 y
Tail Recursion 5 v' S* r" ~( m: M 3 M5 L6 Z5 ^+ x: VTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 5 l% A1 {) }/ E7 Z c" V& I# U / U! O$ ]6 P$ ^' H v! _In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。