爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 2 y, E- l5 W/ ~+ I( U
$ g/ H% J6 y" c  j" D+ |
解释的不错
1 M; j) D+ x- r0 h7 I) x7 X: [
; @6 m8 f8 w. f, H' x' h递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
5 g$ S- C1 z) U& J* G2 W$ U$ x. {4 o. g" D/ b2 A' ~/ K% Q
关键要素2 a& }9 B, L6 e+ ]8 i
1. **基线条件(Base Case)**
3 m) V: O2 w) H3 M& G5 P   - 递归终止的条件,防止无限循环
0 C* _$ ?' j" O/ r+ S6 l4 r4 |( }   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1" M# l3 W8 J4 i3 [  v+ ~
. N2 m& `! V% t8 K% R2 w
2. **递归条件(Recursive Case)**$ B5 k; A! a0 b! K1 x6 Z
   - 将原问题分解为更小的子问题
6 T7 O) A9 R: `# X   - 例如:n! = n × (n-1)!
  e( e  N. ]0 M" G: W: C" P# n
; D  n/ V7 |* t+ G' B 经典示例:计算阶乘
% h0 S; I  u6 w6 kpython2 D0 y6 N: a# _. p' Y; ^: f7 J$ o" f. b
def factorial(n):
2 V$ q& ]. K" I2 [6 Z3 j- B: h    if n == 0:        # 基线条件
  j# j. Y" Q# d        return 1
. n% ~4 K6 y6 \( k! Y0 O& A2 L    else:             # 递归条件8 A& _  g% V% n0 p
        return n * factorial(n-1)
2 |% p* G6 ~% |1 U执行过程(以计算 3! 为例):8 _6 ~( n# e0 J0 J& R7 w0 Y
factorial(3)
/ L4 ]1 b0 {( X- I; d3 * factorial(2)5 |, _  B, B5 z- _" i* w
3 * (2 * factorial(1))
. n. ^, M/ W3 }4 K$ o3 * (2 * (1 * factorial(0)))9 b5 j, {% S1 A: |# o
3 * (2 * (1 * 1)) = 6) P+ i9 d# r( p# K$ Z5 K1 j) \- h2 J

/ y% G& ]1 [' ^8 O  W! n, }/ _ 递归思维要点  ?0 I* Z6 s5 Q! F
1. **信任递归**:假设子问题已经解决,专注当前层逻辑- N0 X! H$ g4 O$ O8 k2 q1 u
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)7 N7 g" D4 d" [7 M* ~; ]
3. **递推过程**:不断向下分解问题(递)
7 Z* |: c/ ]$ e4. **回溯过程**:组合子问题结果返回(归)2 @/ t, e4 A- _
4 B, @0 M% D0 n2 L2 ?5 a
注意事项" ^/ @# \$ ^1 p: V* ^9 ~& w
必须要有终止条件
$ j. U* Q6 Y/ D* Q/ k# L递归深度过大可能导致栈溢出(Python默认递归深度约1000层)6 Q8 u* q+ ~& s( A! u8 M8 x
某些问题用递归更直观(如树遍历),但效率可能不如迭代# ~* m/ [! `! x& `$ ~) @
尾递归优化可以提升效率(但Python不支持)
" ]/ s( T- c) N; K" E- v, ^0 M
递归 vs 迭代2 U& }6 b) J* I! |5 u% f# H3 J7 z* `
|          | 递归                          | 迭代               |& b8 d) W: U$ b8 F" U  k; V
|----------|-----------------------------|------------------|8 _5 D2 p% V. r$ G9 C
| 实现方式    | 函数自调用                        | 循环结构            |# z2 r' N8 ?0 A% D! ]2 Q
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |8 Z& ~; m5 j# k% w% @' u- O, I0 C
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |) q1 m) K2 F4 Z0 D! u3 v
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
" ?0 ^- Y5 B$ y& j6 Q7 M9 \1 i2 h$ G: b( b
经典递归应用场景- O2 T8 W2 o/ p& k3 J4 o) y& d
1. 文件系统遍历(目录树结构)) _4 c, e- T2 v
2. 快速排序/归并排序算法, S3 R" g7 {  h4 M  c$ F
3. 汉诺塔问题+ ^& [4 R9 S$ V" A$ D8 e
4. 二叉树遍历(前序/中序/后序)9 _0 o& E/ {5 q( t  H# {; {3 }
5. 生成所有可能的组合(回溯算法)
5 v. p( u5 Q) {( y& O  U/ m8 ~
& ?/ `) f! N1 i: {6 Q0 w试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,( D5 {6 z* e" E" z" C6 N
我推理机的核心算法应该是二叉树遍历的变种。
& n$ J3 e  j; ]0 x另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:, w  E$ q& [; H: @# a
Key Idea of Recursion- X* k7 |0 Y5 V" @& d8 L- n( W
0 d5 i3 j. z2 o  D
A recursive function solves a problem by:
2 ~0 n; x; P) k! Z9 X' i4 U$ U7 B+ ?# L- ^: O" S0 L
    Breaking the problem into smaller instances of the same problem.
' f- w. k' c, s
3 T+ _3 R! \6 H$ N    Solving the smallest instance directly (base case).7 Z; K  K) \- M6 K/ X' b
+ L# t) f0 K7 @, w4 Q  F9 g2 ?0 [
    Combining the results of smaller instances to solve the larger problem.
# a. _. s6 ~; d' P( t: x9 {. X" o: V  \
Components of a Recursive Function3 H) {0 b3 W* y, O5 D9 F
  x. X- c6 n) J* D+ R
    Base Case:4 K/ o5 J) s5 e/ O/ ]

! n8 ]+ w. v, W        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.. A- w5 X/ m* l1 i/ R. _: t$ _

/ }) U3 u1 E" a        It acts as the stopping condition to prevent infinite recursion.
& w2 s$ W9 t2 W1 @9 }1 u: W% V! Y+ l1 \& i: f: X  y/ t/ F
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* K6 K5 W5 k0 ~  i
+ a4 z4 {( c7 b+ Q: i
    Recursive Case:
5 B: p1 v+ W2 r2 t3 `) ~6 K
5 N% N2 I6 b8 Z! d        This is where the function calls itself with a smaller or simpler version of the problem.# \: G5 ~# j: p5 U4 X
" \, ?, ?( Q3 H
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).8 o  I9 |% d4 W% P% D! a' c

6 d$ K5 Y+ d: c' HExample: Factorial Calculation4 T; g3 q3 ]$ l) X' ?3 e+ |; ]

' b  ^$ I. z, V# F/ CThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
$ g  y7 w# R, G1 D0 P
" ]9 R9 ?0 g6 `2 F  o    Base case: 0! = 1
2 W* S% Z, }* |3 p$ }' C3 N' J  y1 X2 b' P% Q
    Recursive case: n! = n * (n-1)!& e$ p8 g/ ~: Y4 r2 _9 {% r

; s( ]( x7 l$ g0 Z, VHere’s how it looks in code (Python):
" h+ J# ~! i6 u) X: u9 B4 O1 Gpython/ O" P# b" L2 J* N* F

$ H; t8 Z$ f- {! Q" v) s/ }* k; k2 ~- Y! Q2 L
def factorial(n):
' ^# T1 B3 J( X+ j    # Base case
) m0 v* M# Q2 E; t" w    if n == 0:
+ C& f1 D( v6 z! A: U4 ]        return 1
: j, d& e0 G. J$ Y/ s6 h  {    # Recursive case. s3 v; R2 @5 E6 X1 o
    else:. z3 n% X/ n" A/ a) u: D* g# ?9 c
        return n * factorial(n - 1)5 R& J. F, `, j/ G  q

) v0 v' F; r1 }2 s( I3 R# Example usage3 T. S& n( v4 Y/ _
print(factorial(5))  # Output: 120
) p4 Z# n/ C! C  O/ ^, N; S  V
- y, o2 f* P& b1 G/ ~/ C) k9 I; zHow Recursion Works
% L2 D5 ~5 [, [" z5 F' [4 l+ x4 z3 g, M- b, R# ]
    The function keeps calling itself with smaller inputs until it reaches the base case.! V) @; B9 G; W- O. S
9 f% \4 m6 ~+ F$ f
    Once the base case is reached, the function starts returning values back up the call stack.
( m2 f" B' i* \8 E
8 A, _7 r  m4 U! T2 R& t: r    These returned values are combined to produce the final result.3 ^, k' G: g- V. r: r

! i  F+ R( ?( k" D% bFor factorial(5):1 Q0 [+ n( G# p1 K; P8 Z
, f( k+ _; J3 }: Q8 N% _2 @( f

' s5 ^8 ^; b+ T; X. |+ Z# zfactorial(5) = 5 * factorial(4)
- `0 _8 t/ N+ t- ^+ i# f9 E6 Pfactorial(4) = 4 * factorial(3)
6 C' d( a8 c5 Y$ U  Gfactorial(3) = 3 * factorial(2)2 o' \3 ^- W  h; m( v0 i8 T
factorial(2) = 2 * factorial(1)1 B+ l+ x3 D" z* a: N
factorial(1) = 1 * factorial(0)
; w8 i  H, L8 zfactorial(0) = 1  # Base case
3 l: p& a* m4 ~$ q- X5 c1 m2 d& s% Z  l
1 W: a# q% `0 uThen, the results are combined:
: F. |7 _; {1 y& S- y0 Y$ a2 L
5 w) a+ j$ g$ a% I1 e/ M; v4 y$ ^2 N7 i+ P) o  M2 p+ S$ p
factorial(1) = 1 * 1 = 1, I/ L/ o6 K' b+ H+ `
factorial(2) = 2 * 1 = 2
. i+ @0 f, d: u( j4 G! Bfactorial(3) = 3 * 2 = 6
! q. T7 Z0 B# p! W; r6 yfactorial(4) = 4 * 6 = 244 W/ y) z0 f. C8 A- t) K
factorial(5) = 5 * 24 = 120% L1 W5 |0 n0 i5 {. @+ F; @/ ]
  D: s7 m0 M: d# r
Advantages of Recursion
8 I4 o' T" m. y. s! s! {0 z. ?1 S2 F! Y6 ]5 \
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).' K5 o% d( H0 [

% j( @4 c8 Q1 t( e- |. U% g1 c    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 t8 _" A1 G$ @% r- w- u- K
: _% r& B' K& @* o9 Q: }) l/ s6 S
Disadvantages of Recursion4 c- k' u4 ]3 B6 w" _9 G
. z6 Q: {( w) a! W$ A7 A/ x
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
2 g. ]3 ~: b# @& }4 h  h& g/ L' U/ ?( h! Q6 U
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
7 e8 k( `3 t. H& Q* b. M  c% h1 g" y
When to Use Recursion# V$ }, @/ @  w- {( P3 s) {7 G+ b3 T

7 b$ E4 t7 Z$ X( ^0 k" B' ^    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).* v. [6 l$ ^0 [4 |  [
1 H9 V& t  I) ^; O
    Problems with a clear base case and recursive case.
4 }& z3 Q% w( p& b) H; {2 q( o5 L1 q5 W. c& J6 e0 m; x; T0 L
Example: Fibonacci Sequence( A5 Z7 Y* e" a/ [$ F# z
6 ?6 B( U* @5 A
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
6 W, v" z% z; }( O3 B3 }  O( ?, P, A  j  ^
    Base case: fib(0) = 0, fib(1) = 1
' `1 f+ X/ F, s0 ~) A
7 ~7 _* N5 P3 R; r2 u    Recursive case: fib(n) = fib(n-1) + fib(n-2)& E* p- s0 \! B4 Q" e

7 v# l; f, Z7 f! Ipython2 `" J8 a& C& _% v0 K4 N* b
! i. T) W* `1 I( r) q. w
3 t' w" l- ]# f/ u
def fibonacci(n):( p* |) g, `; C) i
    # Base cases
4 W& d% u# v# A4 I9 j8 @    if n == 0:/ `& n; r9 U5 p$ r  j
        return 0
& e  K1 }7 W7 n7 F- q6 q+ Q    elif n == 1:
7 h' a8 ?. y# {" _) r& V4 w0 K7 y        return 1
0 X& m: B- @! o$ d    # Recursive case
$ c4 H6 ^% k) z+ n7 t) p    else:% `# ~4 u) U. N+ @
        return fibonacci(n - 1) + fibonacci(n - 2)% s5 i6 l) S; Z- ]3 F: v+ b5 I

! ~) X7 o2 J3 Q& b  d# Example usage, X$ r0 O% S' n; v# r
print(fibonacci(6))  # Output: 8# o1 W2 r4 x6 B6 V
! ~7 t( C9 @3 @5 s3 M9 G
Tail Recursion5 x8 |* V7 p7 L. `/ {
, W, P/ v, J% b5 S1 H1 ], _
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).+ {( @* J9 D! u% l: {" @7 c, L
6 I6 }( C: R# E1 y( e/ ~7 i& w
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2