标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 : T/ W+ q% P% a5 C$ o5 s4 c; q
7 b6 T2 v1 a8 }0 O; t7 d$ [) e0 m( a
解释的不错 % q9 v$ m& b$ V5 u9 | d $ s" ^9 ^) f) P* @递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。* _9 g3 |9 R' E0 e
7 U4 f+ ?$ b3 {& e
关键要素 # I/ M, Y, [: K/ A+ {5 ]4 e1. **基线条件(Base Case)** 7 R0 n' u- n H' T, s O4 b! S - 递归终止的条件,防止无限循环 9 r; K$ j3 o" o; J/ h - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1 7 E* r( l9 P% a" o, h# l* F' C 5 x+ C/ _# D/ C" G$ l2 S1 b2. **递归条件(Recursive Case)** & ]% _5 X( d. n+ _2 v8 V - 将原问题分解为更小的子问题 0 d' Q# o) n2 H, ?9 U - 例如:n! = n × (n-1)!) a' O9 c& ]1 c
* ]) q! _7 e" D% B& b8 w
经典示例:计算阶乘$ S% t! s: R3 Z% |, T i" a
python ; O' W! C2 H$ Q" y. Hdef factorial(n): ! {9 V% A) F% k if n == 0: # 基线条件- ]3 G) x4 m7 N8 Z5 m! c$ C2 \
return 1 : L$ W8 C! F8 Z) M4 { else: # 递归条件* Q0 [5 r* @0 P7 D/ S
return n * factorial(n-1). T6 U, Q& u' a$ r d [3 b, L
执行过程(以计算 3! 为例):- w& E3 d4 m# {
factorial(3) 9 d+ f5 K" u+ z3 * factorial(2) 3 y `( N0 o, k7 H0 g7 [9 m3 * (2 * factorial(1))1 N/ x7 Q6 x R, `& ]6 m" W0 K
3 * (2 * (1 * factorial(0))) 1 Z7 p) _; k; ~0 J3 * (2 * (1 * 1)) = 6 ! H3 B; I, D7 M6 ?) D% u+ C' Y5 p( D+ Q0 a0 k- [. q
递归思维要点 4 j8 n# s- X# ]$ D. p3 b3 U# ~6 I1. **信任递归**:假设子问题已经解决,专注当前层逻辑 ) f m p, D; G2 f3 Q# k V; j- R5 D2. **栈结构**:每次调用都会创建新的栈帧(内存空间)) d- [$ o8 Q5 }" U' s; G
3. **递推过程**:不断向下分解问题(递) 6 F/ `% d- j+ I/ ^, ? z" Z4. **回溯过程**:组合子问题结果返回(归) 9 \: _4 n. Q( G" w' L$ g . m0 G' w/ q6 @( B; G! i 注意事项- P. W: t: v4 t1 l" l* z
必须要有终止条件2 _. Q6 @6 }' C! F Y: w6 @. i% G
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)8 ^( }" B U7 ~
某些问题用递归更直观(如树遍历),但效率可能不如迭代$ e d, D7 d6 R$ @- t9 T9 E# h- S
尾递归优化可以提升效率(但Python不支持)6 q; p" p$ i, G2 ~8 h p8 K2 O
( r) G; @( u, e6 y
递归 vs 迭代3 j8 o( f0 G8 D, G, D4 N4 D
| | 递归 | 迭代 | ; p1 J, k! h) W) w5 p7 w|----------|-----------------------------|------------------|8 p* w' p. q2 [) K# @/ Z9 m
| 实现方式 | 函数自调用 | 循环结构 |; J2 B+ F# O& c. V( \
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | 9 A7 z( ^, f" T* k& B| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 | 2 t3 _& |: w& E& ^4 l| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | + Z* k" F3 Z9 R6 U% {9 i H4 i% I& n0 _' P: J5 ] 经典递归应用场景 5 S' E, g1 {2 n1. 文件系统遍历(目录树结构) , O4 l, E6 _7 N* [ V* B/ p2. 快速排序/归并排序算法" n5 ~# f( S2 w' \
3. 汉诺塔问题 # [& V) k+ r" {' k! N4. 二叉树遍历(前序/中序/后序) ( Z0 r$ P' n' t$ y6 i; \: F8 X5. 生成所有可能的组合(回溯算法)' T7 H ]5 h# X4 L- F* p
7 ]' _5 V- K C, T" w4 `3 ]试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, ; r+ I. }3 z3 e- j: s我推理机的核心算法应该是二叉树遍历的变种。! {, V" b: Z3 [5 L, r
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:9 s# B; N7 D8 H7 y
Key Idea of Recursion d' ^- M- o" r5 Q) c" _+ D, S$ G5 u& i+ ~* W) [
A recursive function solves a problem by: ; \; t- l7 [2 [6 }0 ~/ R/ r% B& O' W$ F& m# L9 E
Breaking the problem into smaller instances of the same problem.1 s/ N0 l& @: f5 ]
) l8 n# r/ m/ z9 Z8 w
Solving the smallest instance directly (base case). . T6 ^' a4 Y. ?" l* @! [' N8 E+ N
Combining the results of smaller instances to solve the larger problem.* e5 g* O) p5 Q% Z X% M# X
2 E& N0 r2 l2 z7 Q- E9 @0 Q, ~3 iComponents of a Recursive Function ! s4 G6 q6 O, ^8 o k- _9 p& } / Q6 w B$ Q$ A' `) S2 x Base Case: , r5 G. B3 H- m" P, _: W: T 7 l" n0 H( k2 O# Y! s" p This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 j# [2 ?7 H( A9 s* E$ o! O
8 a {, m' \* D1 \7 e
It acts as the stopping condition to prevent infinite recursion. # f) Q3 ?( i9 g- t& N9 f! T# j & ?& F$ P5 Z+ t! q; _ Example: In calculating the factorial of a number, the base case is factorial(0) = 1.& p; O/ j: D8 Z4 a! |! n
: T7 k1 f! g9 X5 H0 g- K
Recursive Case: * Z/ n" K% C) X 7 _; d% y# J4 h" r4 W1 S( B7 z This is where the function calls itself with a smaller or simpler version of the problem.( Z- u0 g: B! C0 n! \ ^
# E" K# Q; j4 |$ M! } Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).6 q- }( O. g) b- R6 I
3 I* P6 Z4 O }" D( U; E* |Example: Factorial Calculation % Q2 u r8 \- Y) k , q8 ]: `3 z. u9 p) M2 vThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:7 Z7 ~/ I! ?2 |
# Q& @+ e/ O2 L" y2 x
Base case: 0! = 1 $ U7 v0 C9 l% X8 i# ~ P( j8 F/ p& A3 n. k8 u
Recursive case: n! = n * (n-1)! & f* F1 L5 A1 W: T* @4 ? D: Y/ @: g$ Z
Here’s how it looks in code (Python):* ~ ^% T" |. R1 w
python 5 S" q6 _/ b! E) m ' \! P* W& u! d! S $ b* I! D2 d' @. [3 |5 J* K5 ndef factorial(n):* E; s! z, W$ b+ q0 ]5 d
# Base case # q) l5 Z- v, q if n == 0: & H! Z2 M) N4 }0 O# E4 S( h return 1 6 O& y) Y! @0 q3 v& x- y g( i # Recursive case ) ^# U( h! T0 q9 K2 O1 v else:4 V9 Y2 e+ h8 u. @
return n * factorial(n - 1)7 z: b/ W# i j# }# W5 b7 I, g
! E6 W' V' q0 w! L3 q
# Example usage( _" J6 L6 }+ `7 Q, c" k1 [
print(factorial(5)) # Output: 120' @$ t5 R! z! |: b
, |7 X& r/ y' ~" A9 A* Q& CHow Recursion Works6 j9 n2 e/ l, F/ {% H7 w3 O' p
/ y* i& c* D( Q# q9 v. L
The function keeps calling itself with smaller inputs until it reaches the base case.1 y% r$ S. } X3 E0 k
9 L4 s$ T. b: ~: X
Once the base case is reached, the function starts returning values back up the call stack.3 ?! j$ _2 B. ?5 P3 q5 {
' {; ?% H9 F% b' \9 t
These returned values are combined to produce the final result. t0 O/ o' D5 q7 D3 R # E! T# A( {* v6 t( N' Z: x8 q" h' p( uFor factorial(5):( [) w f2 O0 h4 |, K( Y$ a
* H% ]& l2 J" w+ L( P M& G' ` ! R8 }7 r/ k4 H1 R/ o0 S. E/ Q+ f0 Sfactorial(5) = 5 * factorial(4) : V9 I* r3 G/ t" y* e7 V% {. Mfactorial(4) = 4 * factorial(3) 8 g. v7 l# i0 R# ^1 ~9 v" lfactorial(3) = 3 * factorial(2). M) l' P& S" z( @3 z& A) B
factorial(2) = 2 * factorial(1) 0 B. n Z! e) ~$ Jfactorial(1) = 1 * factorial(0) ) m% ~! {3 `' Wfactorial(0) = 1 # Base case$ q+ G. _- s; z) u i, E
3 [1 a+ l0 b8 j6 f% E( @4 XThen, the results are combined:7 a) x( S5 [2 O: @' Q2 G# T
6 O, @+ I; Z( j( L2 y/ w2 e& H7 R" G9 G$ R3 d0 B t
factorial(1) = 1 * 1 = 1 $ K, G0 Q. N3 hfactorial(2) = 2 * 1 = 2. q1 M* L! s7 H H2 a M [7 u
factorial(3) = 3 * 2 = 6 5 G& B# ]( ?# M" O5 t- n% R3 T% Dfactorial(4) = 4 * 6 = 24. o: h+ v- g; Q3 w
factorial(5) = 5 * 24 = 120 ; ?! u: A5 i* K1 q6 J$ a# J3 Y" I! [: X/ X
Advantages of Recursion , ^) s' h% Z7 ]6 q2 |% ?1 o/ f& `# Z7 W! ]
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms)." n ~# a4 F: l; t" W6 J
0 G# w$ ?% @' `0 D" y5 ~$ n
Readability: Recursive code can be more readable and concise compared to iterative solutions.: w- M, P& |7 z' z% A v
0 u: h; L) \* t
Disadvantages of Recursion 0 b( L* u$ w1 r# H) \. H5 u( T ^$ ]- [7 Z
Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.5 G) |7 m! E5 P2 A c! e2 b
9 t* v/ m7 j- ? Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).* Q( J7 q8 a i }( h0 Q
0 t: s- E% J9 N; S2 g5 O7 i' n
When to Use Recursion0 F0 f, ~ I1 u, S/ V
! H, q8 G- J& G* |: @1 z+ C7 r
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).7 r# c1 L: ]* v" j
; s/ j5 o7 l$ Y8 I: J) t Problems with a clear base case and recursive case. 1 e2 e0 M/ Q$ o / D) S7 D* Y+ j% t2 uExample: Fibonacci Sequence& i0 j8 r" `# p# n
9 W+ h" ?. r; i) lThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:1 [. U0 L1 G7 `9 }
. A( j { i6 D( e% `/ {8 {8 L Base case: fib(0) = 0, fib(1) = 1 7 v9 `. m. }* R0 N6 I- q! c' z! Z% Z8 t1 R: g# z/ ? E
Recursive case: fib(n) = fib(n-1) + fib(n-2), T2 j# s! z8 r! A
) x/ s* E1 q5 h+ G3 P2 {# d: D
python - G9 L9 N& Q7 U , E2 ^, X5 G0 D% {) `) E' O% F+ [! d# a7 ]1 K% c. d; {; p3 ]3 P
def fibonacci(n): t, W1 a: p9 L
# Base cases + g( D) b$ N) r, n# E if n == 0: " @6 Q9 m) t' N/ R" K( X6 Z return 0 9 T0 m; c* c: i+ v4 Z) } elif n == 1:4 [- R L3 `3 o1 i7 L6 B
return 1 0 t0 W. P2 w7 p2 J1 O4 ~2 y r # Recursive case 6 U* W. n$ l: V; L5 O- f9 t else: 3 E0 `! u* d2 Z9 e/ T% p5 z2 c$ h return fibonacci(n - 1) + fibonacci(n - 2). w2 y$ K; ?. A7 B
% X- L5 E ^5 j
# Example usage ) D# @% \/ i. i1 l/ ~( n6 Hprint(fibonacci(6)) # Output: 8* r5 |4 |% O4 `9 _4 ~' G/ _" p
/ W8 d. U! L* z6 B# ?4 U' s
Tail Recursion 1 s* Y1 {' g6 C b" s/ N" t- k: R0 y$ }Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). 8 ?- W* `9 \3 @& j ! i0 U/ }2 R" ]1 ^0 i$ rIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。