爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 3 m% r+ i) @9 Q) i3 K6 F3 `

: E2 a& R" _+ \解释的不错0 ^# ^! k, C, s, e3 j0 z2 H

( y" K( @5 t; }2 b, j! x递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; b7 k$ i% g0 R
5 |2 ~2 ]) S) c& a
关键要素/ O4 v; q! X' Q: `3 V& m1 b2 C+ M
1. **基线条件(Base Case)**1 J1 ^6 A, y, q' s
   - 递归终止的条件,防止无限循环3 r& o" B8 l: C/ I
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1/ j0 p( V( W7 z* h+ D

- i1 l! n4 G- b# [2. **递归条件(Recursive Case)**
; P% ]; w1 K5 w+ e7 [* H" l   - 将原问题分解为更小的子问题5 S& H. @+ ]5 W5 t- i: k) ]
   - 例如:n! = n × (n-1)!8 Z+ ^; P+ |7 h+ F2 V! \

$ c% a+ V: f  P' B/ F, Z 经典示例:计算阶乘9 n* o3 B1 z) p) G3 R- s
python
  n& G( A& H* |: z0 Q3 R5 }def factorial(n):
/ T5 V" M3 m; C  q    if n == 0:        # 基线条件- C% k) A7 n2 Z$ v6 y9 ^
        return 1( R% q& C7 b; G; s: `
    else:             # 递归条件
2 A9 w$ a8 E# ^4 I1 D# B/ j+ y3 S" R        return n * factorial(n-1)
3 b0 T" ]5 r1 n执行过程(以计算 3! 为例):
: l) \7 g/ [* b; M1 [& |+ xfactorial(3): i: D' J9 R5 e" `) m# l2 I" k
3 * factorial(2)$ H- O8 J0 O9 c
3 * (2 * factorial(1))! h# [* o; b7 }7 f; Q
3 * (2 * (1 * factorial(0)))+ l+ n" f1 z4 i' Q$ G4 U9 l3 G
3 * (2 * (1 * 1)) = 6' P. O. K, L* X0 P' R% V, P! Q

' D* D4 j' C; k+ A% i% g! O# H 递归思维要点, @1 ?( R' z  }" u* {
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
" A4 J: c( L% g5 Y* a2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
4 F2 |1 {" s; H3. **递推过程**:不断向下分解问题(递)
6 m7 h6 D8 L' U5 S  {+ a4. **回溯过程**:组合子问题结果返回(归)
/ X- L  }( p2 y
. s3 B& `( Z  Z- X" x+ U 注意事项
: X& H! b! }" B) H必须要有终止条件1 m' t# H; h9 w/ E
递归深度过大可能导致栈溢出(Python默认递归深度约1000层), S  z3 H1 a' I7 x' }. t. Q+ c2 I! {
某些问题用递归更直观(如树遍历),但效率可能不如迭代: u; K& v0 I; B- b' E2 |3 B5 B
尾递归优化可以提升效率(但Python不支持)2 q; ~, k2 v1 a8 n) V2 H& g

$ D- l$ S' |0 j# p6 D 递归 vs 迭代' C, m( T* j! e
|          | 递归                          | 迭代               |7 b# [$ ?) Y* c: E! W
|----------|-----------------------------|------------------|/ R" B7 I3 l% d6 z. ^, \/ H. k1 y
| 实现方式    | 函数自调用                        | 循环结构            |
2 Q% T: W- N7 _$ }0 j/ w| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |# f/ p" y- p) K7 f- Y$ `5 l
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
8 t' M2 @" N2 r/ j| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
3 O- e0 u! H3 N7 q1 ]. m9 r2 b- y
经典递归应用场景
# O1 x8 C9 U6 R/ B6 C" D1. 文件系统遍历(目录树结构)6 C! ]7 f) \  a! Z! |8 i
2. 快速排序/归并排序算法8 R; f' n. z: x& {3 F
3. 汉诺塔问题
3 t6 `0 F: b' P2 V1 X# O4. 二叉树遍历(前序/中序/后序)4 Q& X) p( P6 X* P8 O" d- L
5. 生成所有可能的组合(回溯算法)
+ U( y: {* W7 w. c- q" K
0 D% l1 l- X) p) `- b试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,4 _7 `1 p; @# a$ X6 C
我推理机的核心算法应该是二叉树遍历的变种。
. L% j9 \- o9 ]1 S另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
; l0 S1 z# q5 y; u0 LKey Idea of Recursion
4 r  Q7 S! }+ v# F2 v5 X* e: v& w- z6 [
A recursive function solves a problem by:" i' D+ w' J0 x; |* i: z( K1 F
3 }0 j2 {& n2 Y; T9 B9 ~. J
    Breaking the problem into smaller instances of the same problem.) _( M$ X; S9 s" _( [$ x5 ]
& h2 H; T# V: ^  b: Y! h
    Solving the smallest instance directly (base case).
* q' r. \9 o5 D0 S9 B
3 W2 R6 s; g9 R9 ], l! C    Combining the results of smaller instances to solve the larger problem.
' O( e2 ]8 m9 r8 C) K( _0 W& Q/ v( w+ K  w- j9 l% F6 m
Components of a Recursive Function' q  @( d; V- d7 N  `0 p9 y
9 ^+ Q! ?3 j. f2 P, F
    Base Case:
7 j" h* b: k6 ^+ F7 b" r: W$ j
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
# ^" [, H. e- R4 L0 M) \7 J
: k0 |0 U3 R# d8 r, O* Y        It acts as the stopping condition to prevent infinite recursion.% L* V# O0 S6 k: J9 R: O8 I- D; T

( e9 W7 @9 q% z' X        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.+ R" U' A" E0 G. |/ j
4 x. s! i* x% ^+ g' R7 g
    Recursive Case:- j4 J& @4 x" R

4 U/ ]% N  x0 Z. T! |7 p+ Q        This is where the function calls itself with a smaller or simpler version of the problem.% y( ~  Z6 Q1 p
0 T, E0 ~" }. z) s
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( d! J9 T! E" Y

9 i/ L9 i* y# G/ {: [Example: Factorial Calculation9 o, S7 X& b( D" V: A7 O4 H

  @* h: ?1 [$ {3 I  CThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:: s7 s+ R2 ^: i" p& c) y6 }
) O% M6 l. T; r0 |, F6 b5 C' G5 E6 ~
    Base case: 0! = 17 F" i4 N( Y/ w6 k0 ~7 Y

1 i& }" J- d! w4 ], }  C    Recursive case: n! = n * (n-1)!, y5 e# X/ c) I6 F
# x7 U3 S6 B! J( p; }; Q- N5 h
Here’s how it looks in code (Python):& R& y; `, t( ~
python
' B9 o( z* z( D6 `: h+ {
) C. p! b5 D8 @* l; n; h% z- J
def factorial(n):
# E3 S( ~; v+ F- a2 X    # Base case+ q7 T' v/ e- D; S8 B: Y
    if n == 0:1 l- S- Z7 {6 I* Y5 [0 c* N$ W! U
        return 1! X9 L# F% f/ v& X
    # Recursive case" L/ a: ]) q0 q) z( ~' Z4 S1 r+ C# Q
    else:7 P& x; @% [* @6 W$ v3 Y( J! {  G
        return n * factorial(n - 1)8 \, O# y! e" z5 Q' V8 T) T

. J$ M$ j' z2 J4 B# Example usage
3 ^" a, u: P' j; [5 Bprint(factorial(5))  # Output: 120* r! f; F$ Z% s" M( Y  w  q- H
4 z" k4 m& ^& f) D$ D
How Recursion Works' Y( Y* I  t6 y
( {: D2 K& l0 ~1 i- R5 n" D- s; ]& A
    The function keeps calling itself with smaller inputs until it reaches the base case.
2 s# A( @, S5 P9 R# Z/ |3 S% p% G6 m1 P% e& K8 z
    Once the base case is reached, the function starts returning values back up the call stack.
* Q' a* J0 `( u& C/ M
8 \! U3 t6 X, `+ d/ l    These returned values are combined to produce the final result.
7 _: Z0 s; ?) w& Q& H3 x1 D1 h) Q5 A
For factorial(5):- y/ S9 a* ?5 y% h

; o$ W3 Q0 w7 h4 F; N; b; O! w* z6 D, y# _4 A' B9 E
factorial(5) = 5 * factorial(4)1 r0 _) `  o* @* T
factorial(4) = 4 * factorial(3)
4 x0 c* T8 u0 c" ?+ k9 X; Gfactorial(3) = 3 * factorial(2)0 V) q) N) i% P  V1 j
factorial(2) = 2 * factorial(1)
: f3 M- Q9 ]2 o0 w, D8 X% \factorial(1) = 1 * factorial(0)
. c: d% K8 I8 Y5 i7 {" ifactorial(0) = 1  # Base case0 q$ {# H! a$ d3 \; c

0 o$ @2 W" `8 X% a* JThen, the results are combined:! e4 A2 s2 u8 s  M7 A. R
0 V- @0 m; x/ A7 y9 h

2 z  d6 j3 S% Q0 m" b- e" g# q. Dfactorial(1) = 1 * 1 = 1: V, W. z2 d( a+ @
factorial(2) = 2 * 1 = 2
6 A$ r+ U8 t% M+ t0 x( gfactorial(3) = 3 * 2 = 6
+ ?& f  L& U  H# kfactorial(4) = 4 * 6 = 24
7 T% \& a# U0 `: i! ?" b- v2 mfactorial(5) = 5 * 24 = 1200 h4 n1 n' _1 y5 V, t" m

3 G( n# F6 I+ c' |4 ]Advantages of Recursion
9 g, h0 Q3 C' k4 G
. K9 d0 i" `) j9 W    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
$ c' E+ K4 r6 G3 u' x( U8 F
% }% y! P& Q  i) ~    Readability: Recursive code can be more readable and concise compared to iterative solutions.4 R) T9 r3 C5 K, L/ d# R
9 V" f6 b; c% E8 `
Disadvantages of Recursion$ ~; \1 K% \; I5 j9 i! L. g
. j! d6 k- d. M  l- B% H
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.# r' \. G% Y. V2 d4 g4 a5 E
; s3 x" t5 S7 _# S( `
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).% p" H5 g6 j$ h! n. R3 e" K* R
1 y$ b2 G" k9 V5 M# x5 ^/ n; v! r, l. n
When to Use Recursion  W( y9 a/ m# ^  q9 f" P8 m

# ^1 V. _; K, m    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
$ O1 W- v- K. c* H5 l! G* b* w+ z& W* D9 ]# ~  P3 p( z# F
    Problems with a clear base case and recursive case.
( |0 ?/ i6 h$ b# Z0 L/ Y  R1 n; u$ }+ v8 \: M9 X8 B
Example: Fibonacci Sequence4 A, v; U/ }- k! q8 D
1 t# w/ V" k# M: e$ B( j4 ^  d
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
- M1 b& e" L9 r6 s& [2 v$ p+ T& i# }; ~; g% V$ P- C) c5 @; g. C& f
    Base case: fib(0) = 0, fib(1) = 1
/ P) H( [+ `! n# S" r1 |$ v. A. p9 v
    Recursive case: fib(n) = fib(n-1) + fib(n-2)% I, s) P8 o* |% d+ o, E
  I) l6 v+ b8 J' F+ ^+ o6 ^- V
python) c/ O) j0 n% P; k
6 A* s$ e6 Z* {8 C* g5 [7 u
5 I  a1 G0 h. P0 {
def fibonacci(n):
9 o& T1 I+ M! J! P$ ~3 h" I    # Base cases' }7 b9 H2 x- K% K8 u
    if n == 0:9 r4 K$ }$ t' y
        return 0
# _0 C$ R, I! N* C  m    elif n == 1:
" Y1 W7 b- F# E: Y5 |        return 1
4 n' u4 Z0 N3 J: M    # Recursive case
. W/ ]9 y/ h) x# T    else:; n" K9 B2 G& M# k5 g
        return fibonacci(n - 1) + fibonacci(n - 2). f6 s1 K4 Z5 V+ h6 L7 W0 Z
2 N4 r; T0 E- i1 U" Q. m
# Example usage
! n* B3 f6 p9 w& J, k8 u! lprint(fibonacci(6))  # Output: 8
) Z& e3 G  p! x: V$ a4 ^- W
* p. k- [7 ~8 o: FTail Recursion
0 ]: ]# H) a) f6 M2 S8 \! s( _' \9 i. {
, o* Q4 B8 |( {! e- ?1 YTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).& m. Z6 k  l* b6 _4 l6 A: q
9 f$ l, j" B0 N7 h6 b
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2