爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
5 k# J" p3 s' j! B3 w
- u1 y; ?+ K$ k! Z解释的不错
* T* r& k, R7 S9 o4 A3 m# z5 V  X1 M# `! T2 I" h# _2 n# c
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
/ ~9 ~, U0 Q+ W/ r6 e: K- x: M" H! K0 O3 e" Y: S: a5 |
关键要素! E* q$ I0 j+ J4 P6 k
1. **基线条件(Base Case)**1 K. u% |8 t% K" A
   - 递归终止的条件,防止无限循环
2 L9 @% ~) ?/ T& y1 x/ @   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1) i8 F+ a- e! Q" {

9 V( t! x) `5 e: y2. **递归条件(Recursive Case)**1 G* L5 T* x$ D8 u% h- [
   - 将原问题分解为更小的子问题
& l; o, V9 f/ e   - 例如:n! = n × (n-1)!
- j# S4 `" Y5 y: H6 T) I; t, _
% ]1 Y# N9 ~3 N& z0 y. w2 L& J7 d 经典示例:计算阶乘% ?- e& @* u- f$ @% B& F8 i! b4 `
python5 F7 L, N9 }! E8 q
def factorial(n):
0 S$ Y, o& l& |  f0 [3 Y+ X" H    if n == 0:        # 基线条件
0 Q4 k$ N+ J5 n* i        return 1) l! s% U) m0 D: p* S5 }2 R3 k0 v
    else:             # 递归条件# n$ O8 L4 n5 W( }6 B% Z
        return n * factorial(n-1)$ i4 w3 Q1 Q/ e
执行过程(以计算 3! 为例):7 K! g4 C$ I# B: K6 y' H( G
factorial(3)& e4 M' E7 e: D/ ~
3 * factorial(2)
5 L  ~4 K& ~! {! }/ c( W# G$ n3 * (2 * factorial(1))! s/ B" e0 D+ h, A$ `+ ~8 E
3 * (2 * (1 * factorial(0)))# ~' x6 q* s( ^
3 * (2 * (1 * 1)) = 68 j% g1 k% ]5 Q7 j* }  F
0 G) y' ~; U# H3 K3 g/ B6 R
递归思维要点  l5 ^* p" t8 `4 S2 W
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
9 I' Q0 n3 p( v7 J/ M  z8 Z2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
1 n- u- l& k% @) ?* V! E2 @/ p3. **递推过程**:不断向下分解问题(递)
( f- O1 S7 G2 K4. **回溯过程**:组合子问题结果返回(归)% {1 J( h# S+ v! P
- }# n9 P( ]2 m
注意事项  W( h) d1 M! ?" Q: y7 q* V
必须要有终止条件
3 F9 u/ k( P, @. Y$ M" ^递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
1 ^8 ?* u% B6 J1 Y* z( g某些问题用递归更直观(如树遍历),但效率可能不如迭代' Q, f$ {' I, i; U
尾递归优化可以提升效率(但Python不支持)
$ N+ J* n8 X  R: I% h
# f! s! x7 J  R$ l 递归 vs 迭代
7 Z. G$ d3 P% z  k) l' A9 }|          | 递归                          | 迭代               |4 l+ p7 u  u7 \8 w- S
|----------|-----------------------------|------------------|2 i/ \: e& e6 _4 f
| 实现方式    | 函数自调用                        | 循环结构            |& m! x$ U  ]: G5 Q4 j7 \4 w
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
# |3 h2 W3 ~5 W! F( h' g| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
- K6 |  w) I1 i* R2 N) h# G| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |6 Q4 U3 `3 ]: g

& ]; v* A( p$ J7 e7 A 经典递归应用场景$ D& O4 ^4 z! x1 ^5 E7 i4 B' X! a
1. 文件系统遍历(目录树结构)
. I* {) S2 y: Z2. 快速排序/归并排序算法
' U2 U/ I. B9 @6 {3 T, M3. 汉诺塔问题: b" |$ M& c& K" k! _+ f" o
4. 二叉树遍历(前序/中序/后序)
  g/ f1 I3 i2 w- K0 U$ p5. 生成所有可能的组合(回溯算法)8 T6 ]0 A2 ^3 l  F) c: P" J: C" a. ]

' r2 T; Q( f' k* e0 ?9 u7 m试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,# |: Q- D* |6 O. O  q2 h$ Z
我推理机的核心算法应该是二叉树遍历的变种。7 `* K$ h6 @. B4 \2 c! o0 p+ @& [
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
3 M0 X. G+ S$ Q7 K0 E2 \- X8 J# [0 sKey Idea of Recursion
6 L  c$ X: {+ f: m
( A7 \! k) |8 n+ JA recursive function solves a problem by:: \3 U0 k! F$ `5 R' e( d
* Z4 c, I* A! r9 L5 M
    Breaking the problem into smaller instances of the same problem.( Z/ o9 O/ m. r; S1 |+ w

. G7 l. }2 r/ ~% J" B    Solving the smallest instance directly (base case).
4 k  I% f9 h; D8 ?1 ]5 k( x+ d9 E: Z0 v8 R$ e- j
    Combining the results of smaller instances to solve the larger problem.
$ {. g) A: {! |$ Y: A* Q- f- x, n& C! d% f6 ?+ j( C
Components of a Recursive Function
! u( L' q# d8 \( Y5 H3 x; H% L8 x+ f* l- i# t  [# m/ q& H6 H5 f
    Base Case:# f- d) t) p# q$ c' V
# h% r; h$ b. m1 v7 ~" n9 Q# e; ^: @, O% U
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.; i; c: H: k) L: f1 F( N

% X/ [4 q- _' ]# N1 A) q; \        It acts as the stopping condition to prevent infinite recursion.
/ Y3 l; |4 E# N! N. L$ ]. Q$ ^  o$ g9 l1 B
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.$ h! g) s/ c/ A5 d  O5 O

0 c7 M# Q+ B" I    Recursive Case:
3 K6 K" b1 _  P, z; Q
0 `# W: {  U; s* h! b        This is where the function calls itself with a smaller or simpler version of the problem./ i2 y2 d8 d1 R7 I. q. i  k

' K0 P8 ~  A) y        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).; R8 C2 {6 \! t+ A& S7 `) p# b

. i( P! }- Z  k+ zExample: Factorial Calculation# I' u$ U/ S7 I2 c# a

9 o; }$ N' C' n0 @+ N/ K# |: lThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:, A- K" j  J* q% K+ r4 g- [
1 N8 z% M+ B  b
    Base case: 0! = 12 v1 ?+ h) d0 f. X

  C' t6 |7 G. |) Q+ L    Recursive case: n! = n * (n-1)!. x4 F) Y  D8 `/ l, N3 {
- h6 e1 V4 n. ~6 C
Here’s how it looks in code (Python):3 H0 ]+ V" E, ~' O& c! H0 r
python0 @# h$ `* ~# P2 M% l: ]6 {# _  p

+ t2 O! q+ P" j) W2 ]
( X* N. Q" b0 f& a4 [2 u4 w3 Xdef factorial(n):* D+ w& r7 {$ ?6 K+ S/ Q
    # Base case
! i* l4 j' k9 w0 ~; V    if n == 0:
9 `  {/ n# L4 R- e; [9 j        return 13 j; ~% f* S; P( N1 o0 J
    # Recursive case
4 Z" r, s# X- @/ T1 X+ W+ P2 q    else:
, c: t3 d+ ]( Z$ F4 y+ H& T9 ~% H% \        return n * factorial(n - 1)
" }8 s4 [3 t% Q* G3 Q) t5 B9 J6 Q3 e. _/ @
# Example usage% Q' P6 \6 B3 t2 o3 l
print(factorial(5))  # Output: 120
- B, e$ s2 k  _; ]; H4 p' F- \) t% I8 r
How Recursion Works
, M) J4 J! u# A3 H6 H" Q8 J. X' J0 X) n+ U% q5 m# b* u0 q
    The function keeps calling itself with smaller inputs until it reaches the base case.
) }3 v4 x2 ?) Y. O* ~" U
. t4 i9 @$ Z1 P7 \6 D    Once the base case is reached, the function starts returning values back up the call stack.' c; B# J1 P% w3 W/ N! X; p

) t9 x: B; D, e7 N    These returned values are combined to produce the final result.
4 y+ n) n% ~7 n) ~8 f8 N9 Z* Z# G' {5 ~
For factorial(5):) n% z  {  D, `! g& T1 ?+ J

+ j& t6 F# g! C, a
! y6 p. g& I" F$ pfactorial(5) = 5 * factorial(4)
. P" R3 j1 M' i$ ~; u2 d" s; B" ?factorial(4) = 4 * factorial(3)* F- A% r2 V, B: d; D
factorial(3) = 3 * factorial(2)
/ b; a( S* H! c7 bfactorial(2) = 2 * factorial(1)6 Z8 r% C, M2 c# e/ q" h
factorial(1) = 1 * factorial(0)
0 j+ q4 _8 X- d' O* h% u, @factorial(0) = 1  # Base case" A9 N7 [, I) I; }+ V( Z9 I
5 B" N4 E: G/ @) `9 p
Then, the results are combined:7 p, n9 P9 Z# z8 l, C
* W$ N/ z' l  a+ t: A) g

+ }5 j! X- G  \5 R9 Wfactorial(1) = 1 * 1 = 18 h4 D) |  O; d! {  p5 g5 w. \
factorial(2) = 2 * 1 = 2
' Z+ I* [3 G' z  i6 L0 Hfactorial(3) = 3 * 2 = 6" Y2 l2 Q% u) Y8 i2 e* P/ Y
factorial(4) = 4 * 6 = 24" a  g: u( m5 Y( N
factorial(5) = 5 * 24 = 120. A& }" I; t% ~7 m

! P& y8 r% M3 S4 nAdvantages of Recursion
  R9 _, }" `  y" u& w
1 E5 n( r6 J7 C4 E2 ^/ R    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
. J& N! E& C, b, d4 u- d2 N# N  C9 J, z: s# |4 D
    Readability: Recursive code can be more readable and concise compared to iterative solutions.. S# g9 D% s" O5 L, r+ q

2 C* S: U: V) XDisadvantages of Recursion" x/ T; a4 Y8 J2 F/ \
1 S2 _; U$ q* w0 ^% v+ ^7 P
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
7 d$ B1 i$ A, @0 @$ r2 G- ^, q% U9 b3 g, A/ h' C
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).) v& O, C3 K. R

- q1 t6 b. W8 {When to Use Recursion
0 m6 J- ~1 M' c! K. n8 H9 a" I2 L" \2 Q! M4 m  u0 I2 D1 |+ r
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).; s: B  |6 K  C: S

; Y& ?8 y* j( N4 o. r    Problems with a clear base case and recursive case.
" u$ ^/ U; Y0 g+ s4 J% J
8 j4 Z9 N% l0 q# b4 g5 aExample: Fibonacci Sequence  B( `8 r0 b; m1 D& X

  Y+ y2 U- i/ s3 u6 G3 K: eThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
  e6 x* n2 }4 P6 w! t, ]* q
# Z. F0 |1 q9 k7 t7 x% z* v    Base case: fib(0) = 0, fib(1) = 1
$ ?* d% ?7 Z- ]. |' M0 U/ |$ t8 k+ Z
    Recursive case: fib(n) = fib(n-1) + fib(n-2). t1 J- n5 f6 [' b* G/ S5 l

" D! Y! G1 U! T) S* n; \! S7 Epython
6 d  A8 R. q5 Y/ V- \$ k4 K9 P' ?. U% V- l

" a1 |; h5 v+ x, m. P# Sdef fibonacci(n):
$ V3 g) @# P0 r  r/ p" v    # Base cases- O5 f* o/ ~$ G; D1 A' k; n
    if n == 0:
& d1 p, g- a/ k, J        return 08 Z1 g2 [# H5 n# B" j, j$ Q$ y# P; b
    elif n == 1:: P/ B* d6 d& B5 y* `  q  o: P1 U
        return 1
0 k  P3 n- q: e6 l8 l* n    # Recursive case# k" p- }1 h+ b( g5 Y/ \
    else:9 r4 O) [6 h8 q( [+ h9 F3 i& |
        return fibonacci(n - 1) + fibonacci(n - 2)
: b0 {- u# R- c) Z- p' d( Q
2 p: O9 N$ \8 p. r) d# Example usage( M$ U. ]" P% M- q
print(fibonacci(6))  # Output: 8
- J& N+ S2 Z! L* w& _2 T* ?! d+ g. Z. b' H
Tail Recursion8 A% y( Q, Q  H
  {3 B" p6 @: p5 t# K
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).( A) |% e9 k% ?- S0 R# ^
7 f! b: X; v/ G; d
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2