爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 , r7 N: j. `# V& K2 J4 E

& }1 J# Y2 e' a5 M( e% P  {解释的不错/ i5 E4 d/ _% _" g7 r# F

7 j+ Y3 C* H. [: R# f递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
+ s; z! v5 R( u: t. l8 R! v& O0 h6 l+ i; I
关键要素
5 k1 P1 _: E& v# ?/ u1. **基线条件(Base Case)**: x5 Y4 V) L3 s" w' l2 T
   - 递归终止的条件,防止无限循环$ @2 K' V; S& `6 ?
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
3 u1 \( f5 e1 {. S! ~  j% `) w! }/ j& y9 k0 H- \
2. **递归条件(Recursive Case)**
9 z( \, }* a/ Q1 j# Y5 l  [   - 将原问题分解为更小的子问题
9 `* T2 t. w0 E! K& i" X: N2 W   - 例如:n! = n × (n-1)!
/ k  T8 a) C9 |5 \* R; j4 ]" \* ]  E$ t! Q# e8 b( @; T( m( q
经典示例:计算阶乘( N" o8 a! Z4 O" Q: A/ f& d' ~
python
" `9 ?8 q- W+ L: G! Y6 g1 Hdef factorial(n):
! a9 i9 B3 C, \    if n == 0:        # 基线条件
) \( `( |$ V3 f5 G1 n        return 1
) J0 W( n* e/ F! N* X! R0 d3 R2 N) j    else:             # 递归条件
  ^% ]' s7 s# ]7 r        return n * factorial(n-1)$ m6 w) C; H6 ]) q) j5 i
执行过程(以计算 3! 为例):' u6 h/ W  I0 c3 P8 T
factorial(3)
* B6 C. Y) j- M' y& L, X) k3 * factorial(2)% I$ l. Y) d5 ?' ^" C( O) X
3 * (2 * factorial(1))+ a+ w. c# A, H* L: @: k
3 * (2 * (1 * factorial(0)))! j% W0 c* e, E4 p/ x
3 * (2 * (1 * 1)) = 6
/ v& z# J( |4 r  q, W' C  C. _: `3 A# l
递归思维要点
. r  r! B1 S5 M1. **信任递归**:假设子问题已经解决,专注当前层逻辑
0 z' K& Q2 f3 N/ c# R  Z2. **栈结构**:每次调用都会创建新的栈帧(内存空间), J) r1 i; E4 p
3. **递推过程**:不断向下分解问题(递): [9 T  |4 ?. W6 g* s
4. **回溯过程**:组合子问题结果返回(归)
/ B" t& r. x3 u2 [% f# s$ C# \- C9 ^. C. t
注意事项; U0 B# b; J8 e/ ?1 ^
必须要有终止条件5 h, X) r- K8 ~& d2 l
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)+ z/ c: d% a7 e
某些问题用递归更直观(如树遍历),但效率可能不如迭代
: F2 v7 l$ {( M& s尾递归优化可以提升效率(但Python不支持)
! i7 ]  M; C# k  j5 D
) f+ @4 t! e% S+ D* X$ N  h/ _ 递归 vs 迭代
4 }/ Y. m; N! n( h5 g|          | 递归                          | 迭代               |; v6 F4 y1 P9 o
|----------|-----------------------------|------------------|" X* z7 V/ \4 s8 z  i
| 实现方式    | 函数自调用                        | 循环结构            |4 p9 ^0 g* M9 b+ q9 J& U
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |7 a5 F; ]# f1 U/ t" q8 p! Q7 D
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
+ V: C, y) b. L8 p| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |, [) v& a- u2 m9 g: G  T( k6 a

: r- J2 H% d# F% G& R1 A) Y3 H 经典递归应用场景
9 y  F; ?6 B( D2 B  j1. 文件系统遍历(目录树结构)
* W0 E1 S5 p9 B5 a. k$ g/ m! O2. 快速排序/归并排序算法4 u! v" R0 B" q4 r! K3 y
3. 汉诺塔问题5 ^! ^& q/ s, ^. b* @2 h' x
4. 二叉树遍历(前序/中序/后序)) r% O( u: |  o; o  Q
5. 生成所有可能的组合(回溯算法)
5 }, o1 R$ M8 {% Q7 j* d( c) Q6 J- X4 _+ P# @
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
# n& r8 Z% U7 M我推理机的核心算法应该是二叉树遍历的变种。
" Z; @9 I& I! s0 l另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:3 }2 p  ~; P3 W
Key Idea of Recursion
# \9 P% ^; S" D1 G  h
* h; `! r/ t! i: P8 z: ZA recursive function solves a problem by:
7 f& B2 K  |# @% ]
$ H1 L* N, N: s- a1 m; K, b    Breaking the problem into smaller instances of the same problem.! W4 x, o) P/ K3 v' x9 n

/ K# l7 f, \& J- f    Solving the smallest instance directly (base case).5 i/ b. N! U4 r* A
7 k$ e. Q+ c, b+ _* n/ r1 ~" ]4 L
    Combining the results of smaller instances to solve the larger problem.
- E' y! R' S" m& x! d) J, l' G, F3 @3 ~; n- E
Components of a Recursive Function
8 _! A3 P8 Q8 j) }+ I5 o) d
3 r) ^/ S3 s0 w# D) m    Base Case:
) x9 t: Z6 V: }  w6 _7 ^
7 l) g! g5 ?6 v! e, a        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
' }4 Z, ?: w: f1 U4 A0 P: _$ X6 X8 ~7 b) @. ^! }/ U8 W
        It acts as the stopping condition to prevent infinite recursion.
$ e8 f% Q9 O/ Q* \$ H9 z* U
! ?+ l" T+ z5 p5 K" i4 h( X/ S$ Z        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
& J& _4 F3 K) s" e
0 j/ W4 }9 g% C2 ~) T' c0 N0 [    Recursive Case:
8 V7 g' D) p' p/ n( f
4 q6 J7 R3 g' ]0 [1 h6 m4 ~: G        This is where the function calls itself with a smaller or simpler version of the problem.- m$ d1 h) m' |. ~2 s6 w
/ }, O% x/ v1 t. J; p
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
; S6 B3 C% d9 W, u+ C
! i, h# m2 V1 c$ h. hExample: Factorial Calculation( K$ ^) h1 l9 Q9 d
2 r5 \- o5 }+ z0 z
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
3 _: I) M. K: L- K+ l; B
. ^, i. I* j1 T$ v1 y    Base case: 0! = 1
4 x* p4 l0 f+ S/ F1 ~( \4 J6 y& \7 Q  D
    Recursive case: n! = n * (n-1)!: G+ W. c4 T3 I# b

* w& Y+ u% c/ M( }Here’s how it looks in code (Python):7 I6 x  o1 E2 U* M' \6 N0 H
python
. Q/ l$ ?; I3 V/ `& V1 y4 Q* |* l) H

0 t0 ?' o& q/ a1 F% G/ C; fdef factorial(n):
3 {6 y4 x1 }. Y7 h4 o    # Base case
0 R) V  Y) M3 X# E    if n == 0:$ Q' ?* G9 H1 _. f* g, v3 E
        return 12 g9 O! M6 G6 V* T
    # Recursive case
6 j9 w; [. F+ i  f    else:8 b  O  @. O& A" K8 I
        return n * factorial(n - 1)3 |& f- |! R$ Y6 k  S0 r
9 M. W  V9 t9 h2 U% o
# Example usage4 C! p3 I5 `  n5 X* k, ^
print(factorial(5))  # Output: 1209 _; a0 ?* n# d! x- {5 T

1 Q, m! G  u; z. J/ t" N; {+ V& nHow Recursion Works
" N8 }9 B$ `0 b/ g# b0 M* I0 ]2 x) q( ^. i& A1 {7 o) u6 O, r! z8 ^% \
    The function keeps calling itself with smaller inputs until it reaches the base case.4 ^4 ^7 U) f' h/ \
1 I/ \9 R, w) Q- q
    Once the base case is reached, the function starts returning values back up the call stack.7 ]) W& X/ r' b5 r

- J  a5 a4 ?$ Z' F) }: h" y    These returned values are combined to produce the final result.' e6 a" u5 q2 c! i& v1 O8 l2 W

# d4 f4 V* [2 m- zFor factorial(5):3 a. R* F3 p/ [. w

) f& P2 _  }6 }- ?( N, `0 a
  H8 p1 b  t) {- |5 I& Vfactorial(5) = 5 * factorial(4)) V: i( p9 W4 x3 K* u7 _: }
factorial(4) = 4 * factorial(3)
% E) c7 D  }7 l1 e" {, pfactorial(3) = 3 * factorial(2)$ z6 z& e/ |. _1 g6 L* P4 B
factorial(2) = 2 * factorial(1)3 i$ s$ u/ v( f" r. I+ a& s- V
factorial(1) = 1 * factorial(0)
' c0 M6 W, @+ p' L* `factorial(0) = 1  # Base case
' t4 O" I5 c3 B. D4 C2 }# s8 S! ?4 }$ Y! D+ K* S* [
Then, the results are combined:
% Y* T( `( Q7 |& `' a7 B; j& I2 o! b1 E/ L
3 F: ~2 u) T$ l# ?3 ]
factorial(1) = 1 * 1 = 1
. @9 T$ ]% D- Q/ ~0 Lfactorial(2) = 2 * 1 = 26 e7 a" U) ?7 W1 |
factorial(3) = 3 * 2 = 63 }2 R- k( I! g+ K% \& w/ g" H
factorial(4) = 4 * 6 = 24
( W0 n/ m, _4 O# _$ Wfactorial(5) = 5 * 24 = 1203 R8 ^* J" o1 A: h: P7 Q
( o: X3 d1 S5 M7 O' l9 ]
Advantages of Recursion
/ `. n& W4 y" i; N
# X3 u: Z- Q) B$ Z& z: |5 ^- x    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).9 ^$ i' {' U4 f  u, ^5 V4 p# n3 x! s

) {6 d9 k: F6 H) V    Readability: Recursive code can be more readable and concise compared to iterative solutions.
" A/ r: U1 ]2 |$ @* W  @" `+ c# k. V" X) r) D* ]
Disadvantages of Recursion
" c' N- \4 u& n( n9 d. [
. k0 b* z; H; L8 @! V    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
$ R( ]; f# e2 \9 s/ ^: F: O; d" E0 c; {
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).2 [9 r) H: d; P, S" J. R* V6 E

% Q: W7 k* H+ ~5 ~& ^4 V9 c. FWhen to Use Recursion
% h  b+ \) a' |7 y6 y  k/ O6 ^* I: Z
! \$ E+ j9 ~& J4 a, M    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
# X3 x' O# @* ?. B* U$ Q/ W' ?3 X
' T; E5 h- a6 ?, x3 o    Problems with a clear base case and recursive case.7 ^! }4 S) |) t! S

- |4 W# U0 @; cExample: Fibonacci Sequence" [# J+ F2 [& A

; V& A' U+ d8 z) E) G# ^. zThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:+ q7 o% z9 E! K+ j- x  G

$ i2 J2 U; _2 T) p: F    Base case: fib(0) = 0, fib(1) = 10 V& a) ]! u/ r( g* |+ Z
7 H' x9 m6 H7 l# Z$ x+ J
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
7 ^+ |! `6 w, ?- b) h. m% j
& h* B7 [4 B- j+ b$ jpython' n: y6 J) f0 ^# n
- J" M5 y. n# n* ?, n" S
; t) q/ Y& e) ~6 L
def fibonacci(n):5 {+ `! F# ^# w
    # Base cases. v; m9 c! ]* C6 ]: d: N& R
    if n == 0:* ^1 H2 M1 y! Y4 e8 h
        return 0# U1 z( [1 W& K/ L5 }, `
    elif n == 1:$ M% P0 Y; O+ t8 Z, k8 o1 D
        return 1- C0 R2 U& g8 l, f
    # Recursive case
0 T- i7 O- `5 |% A9 W2 _+ j    else:/ Q2 U# o& d6 ~  E. D, P2 z
        return fibonacci(n - 1) + fibonacci(n - 2)
& J4 R1 M1 X  B+ }" a9 V$ l6 S, [4 u8 r- M! w. q
# Example usage. z$ _9 G, t$ h  m
print(fibonacci(6))  # Output: 8
; v, z. A- j  F5 ~8 |1 P0 t( Z' K% V% u
Tail Recursion. N1 w* Y5 v$ p3 X) C" f% b
1 p/ T- }* N& q: I3 c/ }, q7 Q# E
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
+ Z/ @% p: g, C9 n  m7 d; R1 ~( C1 K& [1 D* t' U
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2