标题: 突然想到让deepseek来解释一下递归 [打印本页] 作者: 密银 时间: 2025-1-29 14:16 标题: 突然想到让deepseek来解释一下递归 本帖最后由 密银 于 2025-1-29 14:19 编辑 8 ~4 S* g; w2 v0 }+ t; ] N: k; h+ _
2 T' V0 r* M+ u, N
解释的不错 k# L) B" G+ \
3 c' K7 B q# ^& J
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。 ! Z* h& s/ C' D8 ]' I$ O6 m+ P- J ]# x0 Q# N
关键要素/ D% m1 p- p/ I/ t* k( G
1. **基线条件(Base Case)**% s8 b2 m1 H( m$ e; c# G
- 递归终止的条件,防止无限循环 & m& i' }! D2 H& ` - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1: B& H. R K' ?# \) ?, I- {
. O; k/ g9 T4 i2. **递归条件(Recursive Case)** + C: M% P. l E( f: v! d: k1 q - 将原问题分解为更小的子问题 - ~- m) W' {- e, i) ~* \ - 例如:n! = n × (n-1)!$ ]5 J+ X1 O1 A( A# e, w I
4 v9 W, U$ E/ j3 J; y3 t 经典示例:计算阶乘$ Q1 b6 s: \4 V
python 3 P9 x8 y1 K5 n4 Jdef factorial(n):$ a1 I. z) a8 @% a9 o
if n == 0: # 基线条件 6 F! }6 {7 d3 p. W" q0 t4 r return 1; v/ l- H& M& n3 c2 G, _0 e; C
else: # 递归条件' c! ^3 l4 m: ?
return n * factorial(n-1)7 ?/ Y) b% G8 J5 U8 s' s
执行过程(以计算 3! 为例): L, y6 V) M6 |* z$ n3 |
factorial(3)+ `7 k0 \2 o2 c; q
3 * factorial(2) i2 v: U8 ^, r2 H6 i! f" s7 n% {$ g
3 * (2 * factorial(1))2 t; _2 Q" D& v R* Q/ q; k
3 * (2 * (1 * factorial(0))) 0 Y: h* w7 p+ B) H3 * (2 * (1 * 1)) = 6 ! |) d( n) R8 |; o3 t7 A! T1 o' [; J B. y2 w& u. d2 m4 R# s9 ? 递归思维要点- K- U# b# h5 c( _# v! E
1. **信任递归**:假设子问题已经解决,专注当前层逻辑 9 D" c$ e, q9 h# h2. **栈结构**:每次调用都会创建新的栈帧(内存空间)0 ]3 q {8 z6 E4 P, H8 {
3. **递推过程**:不断向下分解问题(递) . P) L2 \- A, \4 C: ?" V6 z4. **回溯过程**:组合子问题结果返回(归) 4 U& f! X7 O$ x i. a) R% s: k7 ~( T: r" P+ o
注意事项1 m6 n8 z! a( `( @$ O9 U6 D# Q
必须要有终止条件4 `1 _7 x; b+ s5 C# P' `) m
递归深度过大可能导致栈溢出(Python默认递归深度约1000层) ( @5 ?) x0 ^/ W某些问题用递归更直观(如树遍历),但效率可能不如迭代4 \+ m4 ] D6 {. v
尾递归优化可以提升效率(但Python不支持) , \5 g* w+ O! z3 S) v8 A0 V% s; j7 N( B
递归 vs 迭代 6 |3 e' M: n5 l4 o! q# h, o( D& b| | 递归 | 迭代 |4 T5 O, u( U0 ~8 j7 d/ F
|----------|-----------------------------|------------------| 0 W5 B% C8 ~5 y| 实现方式 | 函数自调用 | 循环结构 | h" {+ g+ _* M1 Z1 A
| 内存消耗 | 需要维护调用栈(可能溢出) | 通常更节省内存 | n+ N0 i1 M1 X9 q' Y' Q
| 代码可读性 | 对符合递归思维的问题更直观 | 线性流程更直接 |5 m0 u7 @2 n# F& ^/ e* b3 a
| 适用场景 | 树结构、分治算法、回溯问题等 | 简单重复操作 | 8 o j9 C4 B& v3 M/ h# k/ D. h9 b" j( m* a( J k* A P( o( A, k
经典递归应用场景 - `6 s7 w) D7 i# \5 x1. 文件系统遍历(目录树结构)+ F! P9 l: O4 b% F, L0 U% r
2. 快速排序/归并排序算法 ' A$ ~' `4 W. l! V3. 汉诺塔问题- }+ r4 M. Q, p/ E" J
4. 二叉树遍历(前序/中序/后序) * D! E1 e. N- K0 s% J( m5. 生成所有可能的组合(回溯算法) 3 F( [. G9 H: Z1 U " z! e0 h0 L1 Q/ K' l' o* S/ T: j3 c$ U' d试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。作者: testjhy 时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒, 2 ~* ~+ g/ s$ N( B我推理机的核心算法应该是二叉树遍历的变种。 / J8 Z5 }" V; r! ?' U* j另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。作者: nanimarcus 时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; J" Y# z# y, `& P
Key Idea of Recursion9 p9 e& s( [" [: a# G8 T
* Q% s. P% ^# l. M( @* zA recursive function solves a problem by:: J, U _! t( z2 ]
! P4 F! `: q$ C: x2 ]- K5 [ Breaking the problem into smaller instances of the same problem., z5 l* k8 s7 p' H/ _; E8 B
$ Z A7 _4 s0 M4 }) s, C
Solving the smallest instance directly (base case).& X$ J; _+ T; [+ h& {# [
1 j. m% v& m5 i" a* }
Combining the results of smaller instances to solve the larger problem. " r- v ]# d( F; ~( q$ H. u% F1 \( b- \( C( V
Components of a Recursive Function1 S3 F2 M, \7 ^* q& t
4 m2 ~& n/ S- M1 J Base Case: * r" _; v. a& v- H. O( Z 9 z$ ]/ }$ t1 W" b! j+ V& N This is the simplest, smallest instance of the problem that can be solved directly without further recursion.7 c W# @2 j8 Y3 j1 k: f# O
9 t, d# i5 r- b
It acts as the stopping condition to prevent infinite recursion. 6 p- A7 s2 t5 d7 ] ' N8 }5 e0 O0 @" ~. N3 R Example: In calculating the factorial of a number, the base case is factorial(0) = 1.' Z; Z7 M5 ?& [3 K3 Y+ d( S
, O9 o! X3 v# p; ]9 \5 p9 C" H
Recursive Case:+ u" b4 i5 y$ _+ d# T
% X Q. L/ X8 i This is where the function calls itself with a smaller or simpler version of the problem.6 i) d: f! l6 g* R# ]8 z: W2 F& R/ b9 ?
/ E3 o7 z4 S. ]! n2 \3 c2 B
Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1). # b4 F4 A& b% a8 [; B" d3 V- C- t3 K- T! @. P3 L
Example: Factorial Calculation. b+ |6 P4 C, [' _( y X
+ H/ J7 R ~& C; ?* O1 i3 r* YThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:& v( }' h# W: ?2 z
5 g/ W, s- t( Z7 m8 T6 r Base case: 0! = 19 u' w( Z( w' L
8 W. X* n6 }1 h( I& E Recursive case: n! = n * (n-1)!# g( Y! b2 d3 r+ u9 }
5 \* N2 n6 V9 H! l" xHere’s how it looks in code (Python):' G+ J6 q: f6 H
python3 K5 y5 O- {; U' Q+ q
. i3 J9 G+ Y; m, ^& `" m H: a" y1 A# k+ v! b8 M" t5 j% t& W% G
def factorial(n):6 {) T3 z. j1 M& m8 |0 h
# Base case 4 f1 k. k% z/ D( H% q" d" q$ ^ if n == 0: " t' U1 U4 ^# j8 f9 v( \0 k return 1 2 k; x) M. G1 \7 }* I # Recursive case% {* J1 R, j* v( r% [( A5 X: I9 g; C
else:- v" W( t. H$ ]
return n * factorial(n - 1) ; a4 p1 t$ @6 f! a; d0 M' s$ @* d8 y/ Q& i4 K' i$ h6 n1 u
# Example usage1 w# f l/ O/ I1 K% n" L; y
print(factorial(5)) # Output: 120 : j' @% O2 ~2 q7 ^8 ]) l) `& T. u8 k- _
How Recursion Works / p. z2 E2 V$ g! i 8 r8 b# @/ A: H3 s/ h. v The function keeps calling itself with smaller inputs until it reaches the base case.8 K7 @9 h/ G, d0 q$ J
( o+ p4 _) d# ?5 X Once the base case is reached, the function starts returning values back up the call stack. % L2 \! L; R0 q6 n1 k+ n& ? % g9 V7 z) b0 V& E' V a' n These returned values are combined to produce the final result. e9 M# J! z8 T; k# I* G/ t3 y & W1 {$ n; B+ e3 `* QFor factorial(5):! G2 N" P! {1 I3 e9 a9 B, B* @% F
8 r4 e( y- C' P, M- o
7 G. ^, c5 T7 N/ [1 ]/ K9 D
factorial(5) = 5 * factorial(4), ~4 W) B* S' z: |% D9 N
factorial(4) = 4 * factorial(3) 4 g! z. H# H0 E. h. y2 Efactorial(3) = 3 * factorial(2) b: m+ Z, k K6 E
factorial(2) = 2 * factorial(1)$ K, q) g" P# I" {# ?" c
factorial(1) = 1 * factorial(0) 6 x: s! i8 h0 u+ Q: X( Ofactorial(0) = 1 # Base case - m [" A7 l4 U7 d3 x" G, {. P ! g* b4 `( Y; v' JThen, the results are combined: 6 q$ X( o$ C) Q. l# i0 S - a7 }! z0 @2 N4 C/ a Z2 o* w1 @9 L) G4 ~$ ifactorial(1) = 1 * 1 = 1 : N9 T/ t6 z5 t t( e H+ k2 z4 nfactorial(2) = 2 * 1 = 2 5 b6 l6 f; T- _, Lfactorial(3) = 3 * 2 = 6 $ d2 O! b* A. M7 s% M( z: \factorial(4) = 4 * 6 = 24 6 _. o4 l- D4 G6 d! Y8 h! cfactorial(5) = 5 * 24 = 120) ?2 U; x$ j$ e: y/ K& S1 n% Q8 @8 }
3 I2 k8 C2 [. E& X5 ^Advantages of Recursion( i6 M& X5 I m
; ]$ J6 |, z6 e2 U% }$ R
Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).0 w- U# J v# r- a0 L
7 U6 T3 r1 d# z3 C9 m2 R. o+ V* v, J
Readability: Recursive code can be more readable and concise compared to iterative solutions., ?% k, h3 C) o
o% B, J& s T! T/ F. m- C& [( {; Z
Disadvantages of Recursion, Q1 S# T, ~. [6 ?$ E; Y% g: C
% B& B, {# ~8 }/ H9 R Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! z; j0 ^% p# t
' ]$ K' E& f& q& O z
Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).# V4 M! P) p$ s4 X' o$ x
1 B' x3 ]5 N. ^3 A8 m7 n% D3 e
When to Use Recursion2 }5 }$ N$ @# A- p& o1 T! g! P% k. s
v) \) y' w3 _3 J
Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort). ! Y1 j; |/ x$ k6 e$ o; M6 ]4 B* i$ r
Problems with a clear base case and recursive case. ' r' F; U) Z' X * f0 b; ]" r7 @1 e# E. }Example: Fibonacci Sequence 0 B' t# S* ? V6 I: R" v! @( V3 b/ j3 R' h) H7 B0 ]5 F
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:$ C2 R5 w- j3 k1 E* `7 s
, \- s! `& z2 [$ z0 ]* L
Base case: fib(0) = 0, fib(1) = 1 1 M2 x F1 [" D# m- h; U o; G) F
Recursive case: fib(n) = fib(n-1) + fib(n-2) ) j# R- |+ [& i 9 K4 c; |7 ^; C# Cpython : K6 I) ]2 ^* s, ? : P1 B5 x; Y ]1 ~ , H6 N) ?; l& h' @; y" h, [6 [def fibonacci(n):; o' o" l/ ~: J+ n+ ^ { J
# Base cases 9 [7 ^7 j2 m7 R& G$ v# j+ r# z if n == 0: ' _; K5 S8 q0 y, }4 F return 01 }. g5 U* `% e* O, d0 p
elif n == 1: 7 j9 V1 n8 U( F' X+ f return 15 F' X$ w$ P5 {
# Recursive case! S$ N) M2 B3 P* l
else:2 f/ K! }: }' C
return fibonacci(n - 1) + fibonacci(n - 2)3 W1 Z& x; x, q3 h1 [
5 ^2 D/ K' q1 ~; g4 B1 Y1 u# Example usage$ G" C q7 Z! V% z' Y) ~" j
print(fibonacci(6)) # Output: 8 5 |! D) v, [5 L: K4 p% ~4 c ! l6 i# Y. M: I( n9 }Tail Recursion' H8 u. a+ ]2 S; ~) d7 H5 S/ D
8 u9 A" u6 `! I1 U4 n( H! ^& Z! `Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion). # o: ~# p' a; M! r- Q * O' M; _0 T- ^7 H# BIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.作者: nanimarcus 时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。