爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑
) H5 L* M5 e( A& u8 c/ d6 @3 m6 ^* ~- K! v8 D6 P9 b
解释的不错) a4 P! k1 Y1 z/ {$ x' y# I

$ e# q7 M7 N2 V2 l5 E& H递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
  L. Y; j5 D: [. K! L# q
2 u5 a% h1 f$ F/ V 关键要素  |9 ~8 c0 J6 Q9 A- N8 I, p
1. **基线条件(Base Case)**
: g: G/ l$ N8 U   - 递归终止的条件,防止无限循环
! v6 e, g& r8 i   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
4 ?+ ^2 N3 k( T& B: B) n
( m4 e. r5 T) o2 L/ V7 u2. **递归条件(Recursive Case)**
# L$ @% ~& t2 W! M; c' l- K, L   - 将原问题分解为更小的子问题
" O, U& q8 C& H! a" i1 D   - 例如:n! = n × (n-1)!
. {+ M  F2 R+ |1 l6 d' W- \5 p( i# Q" E* K  a1 M
经典示例:计算阶乘
1 ~' p) ]2 ~$ [! P' t& t" vpython
6 F0 Y. A6 p# X# `* Q: t2 X2 hdef factorial(n):
* L8 H+ J; ^+ l! Q    if n == 0:        # 基线条件
  f/ s  e3 R) K, x/ x7 F        return 1: L. a* v% h4 Q; R: H1 r  [
    else:             # 递归条件8 _  E' i6 ]0 R
        return n * factorial(n-1)2 h2 s3 _3 T, @' q7 f- N0 [2 K% D
执行过程(以计算 3! 为例):
5 S4 Z$ a  I) g9 G) _factorial(3)! b$ V" n+ o" `, D# ^
3 * factorial(2), p! \  n  ?7 [
3 * (2 * factorial(1))! m( [2 p; P8 O) n% C& S
3 * (2 * (1 * factorial(0)))  J( y! F7 ~, H7 D
3 * (2 * (1 * 1)) = 6" ]8 }; p- T8 P. T4 r/ B6 h
$ x, q; M* |$ e2 \
递归思维要点
/ V9 r, ^) ]; P. Y( h2 i1. **信任递归**:假设子问题已经解决,专注当前层逻辑( n. f3 o% W: E& ^& M# S2 J. n
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
; x: [& N' p1 x3. **递推过程**:不断向下分解问题(递)
: U: Q) ]; G3 ~4. **回溯过程**:组合子问题结果返回(归)
2 s6 L2 l# u) I- ?. L. c
3 Y7 B" l  D: P# W! B/ E  f( G 注意事项7 G# K2 K4 L4 [, g# c
必须要有终止条件0 K- \# e( b3 [9 W7 E( W; N2 J4 R, [
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)0 }( G$ q1 U  m
某些问题用递归更直观(如树遍历),但效率可能不如迭代: n& G2 s! k, @/ N
尾递归优化可以提升效率(但Python不支持). j( q2 S( B5 A4 K2 e7 M

$ S; w/ o0 B; A" j( |" H: t0 q- s 递归 vs 迭代
2 p- x( h: N& J2 `, }% x2 N' T+ Z5 a" a) n|          | 递归                          | 迭代               |
$ ^1 H- t# N8 X/ V3 n' T% N) z# ~: G) M' n|----------|-----------------------------|------------------|( L! Q) ~0 L5 C  u4 W+ j  _
| 实现方式    | 函数自调用                        | 循环结构            |
% R  d# A) E$ l- }| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
" i0 I% G5 Z( H. C| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
8 [; O+ r: F% S- v8 y$ Q| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
/ r% n+ |0 ^7 G  N1 L0 t+ h
! D( A, F, o( t$ e/ h/ E 经典递归应用场景
( k  w2 ]# Y/ Z+ N' O1. 文件系统遍历(目录树结构)1 _" i  L) P1 H! t
2. 快速排序/归并排序算法1 J0 h) L* W2 `# _
3. 汉诺塔问题0 U3 j5 `' o$ t. E7 K0 g
4. 二叉树遍历(前序/中序/后序)) w5 r& ]6 K9 j- Q* \1 g4 z) v
5. 生成所有可能的组合(回溯算法)
+ z) S9 q# t8 O/ P% ?+ G: p5 U. E9 z- u
* g0 q# M3 z) ]+ P试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
' ]7 P* d% p, }0 m) I2 f4 U我推理机的核心算法应该是二叉树遍历的变种。
5 t; c4 E% i2 `9 A9 p+ S" t# g+ r另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:  r, w: A/ ?* q$ X* W
Key Idea of Recursion5 {0 }7 u) r1 R
9 G- H8 z: B7 Z* Q
A recursive function solves a problem by:
& R/ L& o" q$ a8 q
7 F% f* ?& k% R9 ^5 x! k/ d    Breaking the problem into smaller instances of the same problem.3 J' h; S+ ]1 D$ ~

/ k$ ~9 K; K4 ~0 S! y* J    Solving the smallest instance directly (base case).# Q7 N0 X0 i- S
2 @2 y% [! D9 N
    Combining the results of smaller instances to solve the larger problem.
7 y  V  Q  P" N. N" H7 k( f5 X
' u' a8 b& q: r% a5 {8 D! ?4 IComponents of a Recursive Function# ~- W4 ?2 l2 H  j  |( Y  _. l# O

/ \+ d9 V* m9 L    Base Case:
$ \( A6 R  r  H1 K2 W; k9 Q" D: n( o, o8 n
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  P9 P& T/ |' v5 |

' j; g% u& t" J2 C4 U4 n        It acts as the stopping condition to prevent infinite recursion.
  w0 n& l9 Q9 y2 g& _: a" r
5 m# D. j: L  Q! Y1 Q        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.
# {0 |4 E! x  t8 N) R) r; h. b3 _, W$ y$ E5 e  F7 V/ a" a# j" {
    Recursive Case:8 K! B, r$ u& s5 E! n3 a
1 o' l4 C8 }- C4 ~2 h$ v5 f
        This is where the function calls itself with a smaller or simpler version of the problem.) M' l- d* B+ o9 U# l
8 G8 s. X0 N$ q
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
3 [2 V/ {3 Q' p  E0 i5 g: O
3 K9 `& U8 Z1 ^: Y3 C- SExample: Factorial Calculation
2 U' Z# ^' n/ j6 z
. J( o; P: V  t8 i4 e7 xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:4 z" D8 U! H4 V

/ B" g8 g, ~3 a5 C. I( k& [    Base case: 0! = 1. t$ ~& r; _! g; V0 ?- _

1 H. |7 k/ E( ?1 Y" b: V    Recursive case: n! = n * (n-1)!
6 Q- h5 t. T0 H& K+ U' S: D$ ]% K. @) p2 O
Here’s how it looks in code (Python):
7 H+ o8 U5 e+ J- B* ~python( N+ h, K! B. K9 M6 T3 X
, m& @* c. e) k5 m0 s

/ C  v: Q: B- U( Z: u# xdef factorial(n):
# M5 ~- Y+ L: u# E5 `( x    # Base case! w! s2 E8 j7 [% t) _/ _: K& F
    if n == 0:
7 @7 e0 Q' s( ^! d/ s7 T) V        return 1
9 {: [# f) ~: t. G3 p$ I5 e    # Recursive case
6 y( Y3 ~5 }' x  s    else:
: D0 c2 {% [3 Q7 F& S* W        return n * factorial(n - 1)4 L3 s% u3 k7 a4 Y

" H3 d+ d1 X. z; I* r5 ?; {( O# Example usage8 p7 k" R& y. g( U# G( T
print(factorial(5))  # Output: 1204 S  J  ~/ v' t
+ ]! U5 ^$ \% [9 u3 d
How Recursion Works5 O3 S3 W/ l% B  R, t  z
9 V6 S9 Y* @3 s" E3 f
    The function keeps calling itself with smaller inputs until it reaches the base case.5 d4 o! W* t6 q( {8 s* k  n# V

. w* B4 M* A, b/ o) N6 Z6 V2 U    Once the base case is reached, the function starts returning values back up the call stack.0 ~6 G* ?9 v! f, P

9 f+ B2 [3 p/ B    These returned values are combined to produce the final result.+ P* k2 _% r* D. ?7 ?
6 R! ^5 V* o( }
For factorial(5):
/ \2 r) p' D$ j& |4 E
$ x, m' u* Z' R* m5 e
" B' x# {4 d  G% O" Vfactorial(5) = 5 * factorial(4)
, j# X9 E3 Q0 {, afactorial(4) = 4 * factorial(3)
4 `( b3 `6 X0 V; F3 c* afactorial(3) = 3 * factorial(2)
+ h& a* m4 Q! K0 _# \1 o: @factorial(2) = 2 * factorial(1)
, G# S7 H& n" ufactorial(1) = 1 * factorial(0)7 q) k. `$ Q# G/ O
factorial(0) = 1  # Base case
' M) u7 c( G  _6 H
/ \- ]3 G+ u8 l& @2 Z' b1 R/ |Then, the results are combined:8 |$ l/ h- F5 \3 X. K3 a1 e/ U5 N
+ g7 w$ m5 B4 g) R2 Y
7 ?& I0 M1 A- ?7 H9 p
factorial(1) = 1 * 1 = 1
8 K$ w+ Y5 ~  M, D: |- Cfactorial(2) = 2 * 1 = 20 V# v9 S0 T+ T
factorial(3) = 3 * 2 = 6
* V3 C+ j# t, ^% m* D3 hfactorial(4) = 4 * 6 = 24; f2 O: ^, I, N% S& C3 o5 A$ J
factorial(5) = 5 * 24 = 120
% a2 ?/ t  A3 E/ @% H
* N- y0 x! V6 Y. V% X! p) \Advantages of Recursion
  D+ K( Y7 ^: S7 e9 s4 Z, n* W0 k, W& D1 _4 X; d) _+ I
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).# p4 R$ K, P) a
1 g9 r, A2 m7 a/ q
    Readability: Recursive code can be more readable and concise compared to iterative solutions.  f. h: H/ C1 |2 U( L) ?

3 Y+ ~4 c! D9 L2 p8 Z: mDisadvantages of Recursion
$ e: b( v) d+ D0 y3 }* G. r* I  q4 t# n, X* C+ c! `* P
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.! F8 O) o- M6 _3 C) U( A$ N

4 N6 ?. R  ~2 U! b+ h& }    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
* v4 r0 ~* s& w4 l/ X8 F9 V
! V7 K3 W- |( @When to Use Recursion
3 \. d9 G# M  Y$ V
/ c, T% e) \+ ]' d  ]5 ?- M    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).6 j- \- {& Z: B( D3 a/ P" g3 p7 P

9 E& E- a# O5 y( |1 @    Problems with a clear base case and recursive case.; I& ]9 [  T3 l- V: ]

3 J: `2 N( w- i! mExample: Fibonacci Sequence
0 u- q9 [$ ]5 R
0 K! x5 z+ C3 j2 j1 V- x$ x. QThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:" U! P/ x3 Z5 E$ \  D7 K

" M8 ?3 ~+ v0 z    Base case: fib(0) = 0, fib(1) = 1- G  o% ?  s# M9 I; P: @7 ^

* y- P% T( r! l' M    Recursive case: fib(n) = fib(n-1) + fib(n-2)
9 |+ z' x6 J. p/ d- ?0 r
& I, K) `! m) P. ~( u# p7 d' Jpython2 T( E9 G# x* g! g- b: I& l: O8 m6 \
3 g) [/ a# K  O4 N+ ^1 v- X
& d* V$ C* e1 V1 G
def fibonacci(n):* l; S& s8 i( Q% U2 c
    # Base cases. D- n9 p$ Q9 A" H/ y: D
    if n == 0:3 T# l2 w# y) y: X; Q/ D  u
        return 0
- _  x+ f7 U4 ^5 m6 k7 D    elif n == 1:& N( S- I# F# `% I
        return 11 g9 r, r4 C" S! ]) O
    # Recursive case
4 V0 t! A& t# P) g: n    else:8 s# _# m7 D; K" \6 W. J" N8 @
        return fibonacci(n - 1) + fibonacci(n - 2)7 y' X, k7 `; Y3 r4 h7 y$ \
" j; |- Z, B3 k* y$ q6 l& s
# Example usage3 C& W/ h# z0 N
print(fibonacci(6))  # Output: 8. Q9 s' T/ N0 G

4 l1 L' e, A7 q) |Tail Recursion
& t1 L& h5 z" i. ^/ ?0 K8 M! f4 b$ C
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
6 [! R% z! P2 ]3 f( Y1 L$ \; F1 F7 \. G
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2