爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 . q6 M* S. {4 E) f% S
8 l3 W, A' q# P6 q  k
解释的不错* M4 N' F8 E1 q% F& d7 R6 ?" `1 X  s
; l, c# C/ h) ^4 \" d5 E  B/ \4 p
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
0 o9 e/ l# @3 G0 l0 q7 r
8 i+ Y( O8 Y/ u! ~4 H2 S# H1 g; ~ 关键要素( w' e. H9 a! [% E
1. **基线条件(Base Case)**6 D1 `* Z% d: p9 Y
   - 递归终止的条件,防止无限循环, j, i$ W4 T2 t  E: o: ^
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1, Y  l# O% O4 Q# k: J
; n: w( D! |) F& v& j
2. **递归条件(Recursive Case)**
$ \4 G9 K6 J/ M) u  n+ `   - 将原问题分解为更小的子问题
/ R$ |  q. s0 q  E+ U" C   - 例如:n! = n × (n-1)!2 b; ^" l- N/ e8 C" M* W1 I( N* h

$ `9 }2 z' g6 T2 _; e 经典示例:计算阶乘
5 k) |) r9 u9 b' E: D' L  A3 H% b0 Npython
) R: S3 k) _3 n3 m4 _2 s- u4 Mdef factorial(n):
2 D8 \- s" b; \( @( L0 [    if n == 0:        # 基线条件
* z6 C" J  |9 O, E/ q# Y        return 1- a* E" K7 \; A% X* v; ~  K
    else:             # 递归条件
. I7 P$ f, Y. [* F# v, u: ^9 m3 l7 v        return n * factorial(n-1)
& x  C" [% j. z: D9 U执行过程(以计算 3! 为例):
9 U" R8 h) G# zfactorial(3)" `0 X- A1 [# D( j. ^
3 * factorial(2)- y* S* @2 ?( A2 g7 g
3 * (2 * factorial(1))
5 r! T  i, M- y0 `$ _3 * (2 * (1 * factorial(0)))
" W  a* H2 l! [: A3 T4 W3 * (2 * (1 * 1)) = 62 U8 _( v# R/ U2 @

9 M! k# p% |  Q# u5 X( g; u7 Q 递归思维要点( m9 [' `7 u! _, K/ o
1. **信任递归**:假设子问题已经解决,专注当前层逻辑! h& P& T- k4 I2 N( P
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)4 S& n0 q8 {3 E" J
3. **递推过程**:不断向下分解问题(递): [" G3 W+ H! a
4. **回溯过程**:组合子问题结果返回(归)8 [7 m2 _& o2 o2 h: f& l
  _) F0 R/ V9 Z$ z/ W
注意事项  {! A( u1 u* K# i# T- K! h  [
必须要有终止条件5 O$ c% g+ q* F: f
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)
. }6 ]1 G6 ?6 |( l: G: j某些问题用递归更直观(如树遍历),但效率可能不如迭代$ |! z4 a6 \! Z9 G  H9 ~
尾递归优化可以提升效率(但Python不支持)
- `" Y$ V2 o" T! F, |
0 s' q8 o+ l0 i' h& y 递归 vs 迭代, S) ~1 D  r) x8 \! S
|          | 递归                          | 迭代               |
7 [- Z0 J( @" z* D$ s! v3 k" O! ~|----------|-----------------------------|------------------|1 f& j- N6 N$ T$ D. _: j3 n' D" _
| 实现方式    | 函数自调用                        | 循环结构            |
/ n; n# W2 ]2 y, k9 w$ ^. b7 [| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
9 S  X- z: C' w| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |+ h3 _4 d3 l/ s* r/ u) a1 Y- l
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 z. N2 V1 l  j' [; U# [

/ t2 V. y& ?+ u0 B( G 经典递归应用场景4 W+ ~' {/ |) [& v' `1 \& K2 l& N
1. 文件系统遍历(目录树结构)
0 L+ J8 x) z2 u% ?9 d8 W5 Q& r2. 快速排序/归并排序算法
+ P( B$ n0 ?: h  Q' p% v7 U3. 汉诺塔问题: v# ^2 H: S4 ~4 }- R
4. 二叉树遍历(前序/中序/后序)
  I) {+ y/ d" W6 D2 o  V& G5. 生成所有可能的组合(回溯算法)$ O/ m& p0 x1 ?
9 W8 d8 @& q! L" I3 q
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,9 Z: ?$ S/ B# `# s+ `
我推理机的核心算法应该是二叉树遍历的变种。
1 G3 R9 t5 I4 B另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:$ W2 L1 }' M, L1 S' n* Q' s
Key Idea of Recursion
& a4 f- w2 G( l$ r. A2 s! c- `" |7 o6 {. R6 Z
A recursive function solves a problem by:) G+ T/ @& q  M
+ y  b6 e% ?$ R# F! Q2 m# v
    Breaking the problem into smaller instances of the same problem.
+ {: x- ~1 t1 T8 |% S0 O5 n. S& n% [' A
    Solving the smallest instance directly (base case).5 ?) R: e/ |& n; C

. ^) R( M' o; W9 r    Combining the results of smaller instances to solve the larger problem., C, Y6 b7 u$ x- b( Z

+ I/ t3 s& C8 |- k3 W+ r# LComponents of a Recursive Function
) Q5 u, U# H# M7 I% _' L2 H3 T: c0 g9 t
    Base Case:
; v5 ~+ ?% E9 \3 B0 ^
9 x. F4 R' a% J  M1 Z        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.9 o" c1 v' p1 U* I0 K
1 U4 F4 f( g. F  R
        It acts as the stopping condition to prevent infinite recursion.* ?8 ~# y2 ?) U6 C- b7 D7 Z0 R" f
: E5 u2 J! s3 Y
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.9 X! @# D, n! b
" B' b, O7 |1 c) I" G
    Recursive Case:. A$ C; R( H3 N
& b1 [+ p% |: H7 x
        This is where the function calls itself with a smaller or simpler version of the problem.# f3 o/ r/ N- H6 J

4 @# B# \6 c. L8 V- v9 z; s5 Q+ |        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).$ D1 [" ]7 \4 |7 \1 x- B
# x! a5 }0 U; J) ?% Z! h
Example: Factorial Calculation8 _6 ]0 d+ g% l1 I# X

. ]& F- i8 q: V# f! R: T% xThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
9 ]. X$ a, i/ |! @  `' `8 `- B/ L4 j. W% z
    Base case: 0! = 1( A% }: x. B, r3 ^/ W% i. Z  X

; x5 |( n" p1 \" I0 y, E) w3 [, O    Recursive case: n! = n * (n-1)!
( o* I5 R# [* b9 X4 N9 e7 x4 c$ }: i4 ~0 B$ H2 p
Here’s how it looks in code (Python):2 t; m* b) g+ H" l  [7 G
python) x, X$ [. c6 ~
( R) z5 P& }2 X, C6 E, o3 X

- r2 b3 i6 W4 U! _% Z7 h8 [1 b9 z( Mdef factorial(n):
+ a4 P$ O9 j' _# J2 o  c- a% _2 x/ o    # Base case
" w) J3 g" u/ e. Z1 _) e    if n == 0:
) Y; K1 a1 W% \6 {, j* Q$ Z7 o$ n        return 1
8 @& ?8 B2 K3 s# {% q- g    # Recursive case2 c1 }' B. w, y4 @0 ~1 N) D" P
    else:: g2 ?0 H4 W& K& k) \, m
        return n * factorial(n - 1)
; L2 `# o; ^3 G' E3 K
! p' t% Q  A4 p8 h0 r# d# Example usage5 x5 b/ Y$ x; k* V
print(factorial(5))  # Output: 120- y3 m, t$ e, H
- L7 _( n' ?3 }8 [
How Recursion Works: {0 M  Q/ C2 h7 g3 @, C0 k& i

. f* r7 B& ]' f/ o    The function keeps calling itself with smaller inputs until it reaches the base case.
7 O' t) w0 R5 }- |; x% L4 M
# l0 L. z+ [+ X9 j$ F) o    Once the base case is reached, the function starts returning values back up the call stack.: F  {9 l, `: u
) n5 j. K% U4 q  p9 m/ l. _
    These returned values are combined to produce the final result.
, z$ P1 D1 ?# ~
! V7 p! b8 _  \* lFor factorial(5):
  U, O6 B# Z- ~" H5 h* G3 C* _
! t. a7 T+ O0 ~- G% X3 j0 e
& ~. f# W- W$ O2 j$ s* V, Afactorial(5) = 5 * factorial(4)0 N" Y, Z% u. u6 z/ E
factorial(4) = 4 * factorial(3)2 i0 d" W" D1 J2 C5 i: c
factorial(3) = 3 * factorial(2), y  _" {! q! E. S
factorial(2) = 2 * factorial(1)1 y' j% u4 r. w1 i, |' F7 ]
factorial(1) = 1 * factorial(0)! d/ {- A; T7 v/ A2 S7 J$ ?  }9 X( Y
factorial(0) = 1  # Base case
9 s+ i1 v; o+ E% H: H8 R: o1 D  W3 D. v$ P/ }
Then, the results are combined:
1 C1 v$ [; \. r/ U7 _
$ d0 y  d9 }+ I0 Q- h: M: U& F  k, |
factorial(1) = 1 * 1 = 1
4 x" G7 B2 M2 w+ R( w6 v# I# T5 Kfactorial(2) = 2 * 1 = 2
( M5 P/ b9 E0 tfactorial(3) = 3 * 2 = 6
, u9 m9 q+ `, rfactorial(4) = 4 * 6 = 24
- Q7 i  i5 R* }) R" m0 ?# Kfactorial(5) = 5 * 24 = 120
  q, ^  W" b; M0 h1 e, |4 N
% X7 E$ P# J/ \% G% JAdvantages of Recursion
8 P; M% E! R$ N; I
" i9 D4 T& n+ Q' s$ N    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* _7 {/ M2 u9 Z! u; W

* f4 m% O% f! ~9 h& e    Readability: Recursive code can be more readable and concise compared to iterative solutions.# Q: l8 t: F' L' E6 j& p

4 z5 v* s) J$ FDisadvantages of Recursion
. Q$ ]7 y: B; d/ z/ i/ V% u5 }( H: X8 N( V' W2 Z9 m) r; }
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
* G5 K2 o0 x8 i6 y9 w
  X0 S8 ]) z9 ^    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
: x$ g) f6 k* ]0 q# m+ \' \* Z$ T8 K- I4 U+ L7 Y/ b
When to Use Recursion
$ U0 I  V' W2 J' ]  {  e( s4 Z) I! d7 h' Z, v
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).- _" @+ M/ P2 I2 i; w" d% l! x
" N, ]$ z0 `% S" u5 G7 O* z
    Problems with a clear base case and recursive case.& L. y% c+ H9 z' u: H% G  g# T; W
5 A3 t6 Y. u' ^" M- e
Example: Fibonacci Sequence
" W4 K5 F9 u- D" B/ q" W5 T& @( q1 B% K7 b
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
- x, n# `) P# R& l; C' L
' \) n; i9 C/ W  F    Base case: fib(0) = 0, fib(1) = 1$ q# Q4 g" [, I2 h3 q: N# Y

+ x! ^9 V4 I/ v5 q* O/ T+ i& n    Recursive case: fib(n) = fib(n-1) + fib(n-2). t6 `, Y' p4 ^, q$ y
& |8 c  O( Y8 }' o
python6 Y! W+ g. a5 C2 F2 i! H

5 D2 G1 \" S) e- v2 |+ C3 T+ h: \' ?! u9 D9 k3 V
def fibonacci(n):- d( t4 M& W+ Q
    # Base cases: k# v9 P' L+ D! b
    if n == 0:
  X# _! y# }/ A$ P! O        return 0
. H1 T3 x6 V! n4 B    elif n == 1:
* v, B/ Z& d) q" {$ `2 U        return 1
! R+ Z. _' j! y2 a+ o    # Recursive case
* v6 x- o) M% v! l: p4 F8 E7 O2 b    else:
# a: v  R, N" T! u/ G6 p2 f5 n        return fibonacci(n - 1) + fibonacci(n - 2)+ @* m4 b( W% p) d5 n6 s/ V# p# X
/ [' A& Y9 M7 g5 t# H, M
# Example usage' R) D2 {$ e6 d; b3 ~3 p- x6 ~3 p  q
print(fibonacci(6))  # Output: 8
( C, D& E" _2 Q  ]9 ]' d8 R! M. q, E  ]2 g* j
Tail Recursion( T6 I5 B8 |2 A% N
+ B; P% h2 G* Q
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).8 J+ P/ t+ {, H/ O+ T  z$ L1 J
& [+ a7 l1 P% z4 D- A* e8 F
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2