爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 & J# {- a, L$ c5 L8 D$ r. S, v

0 \* j1 U/ q# _# `8 v0 q  F解释的不错' J1 ~2 c7 k  X( f6 i
$ a' n! W+ n7 H% `: C
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。4 R; e2 a5 i; Q- C: F
9 B% t! W  S9 x
关键要素
& E1 g( Z- e$ V1. **基线条件(Base Case)**) \4 I' f  v2 E) H; r
   - 递归终止的条件,防止无限循环" d( m0 O; C6 G! k+ S
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 15 Q& E% k2 C5 P6 @# N3 {+ W! [( P

- ^0 j8 G9 V& u7 F% _2. **递归条件(Recursive Case)**+ h4 N3 J( x, J0 j- K. Z9 F
   - 将原问题分解为更小的子问题1 N! B( ~( Y5 }9 a: r' b* K
   - 例如:n! = n × (n-1)!" I' I- l7 w; T8 X% R
9 c/ ?" t) N" `" V
经典示例:计算阶乘
6 V. a. k  y# \2 }& u# _: [python
4 }+ W/ l7 R* B# E$ l4 k" Ndef factorial(n):9 r& I. N& t  u+ P3 K/ D8 V
    if n == 0:        # 基线条件8 ^1 e9 ~# Z1 B2 V( f5 n  y
        return 1# @( e1 h/ a2 @5 b! j$ ~9 i/ M$ w1 Q
    else:             # 递归条件, E) G( M# q- }4 u
        return n * factorial(n-1); H5 ?& k$ l  C' A
执行过程(以计算 3! 为例):
; T/ k3 y" ^6 h1 x9 ufactorial(3)9 p6 C6 ^# M4 {
3 * factorial(2)' R7 e6 a( w0 M0 v+ @
3 * (2 * factorial(1))
  e7 W: v  ?5 z- ~3 * (2 * (1 * factorial(0)))0 f/ t6 O+ h9 d2 k; D5 X& t
3 * (2 * (1 * 1)) = 66 f& N- H1 B) S0 o: A3 O% K: t' S

, ]2 g% _  k* t& H 递归思维要点8 ]' z) E! X6 Q5 W
1. **信任递归**:假设子问题已经解决,专注当前层逻辑8 L7 C% ?8 M' U3 n; n
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
: n+ U+ w+ c, D$ \6 Z* x! R3. **递推过程**:不断向下分解问题(递)5 I/ l+ x4 `# b& ?7 L
4. **回溯过程**:组合子问题结果返回(归)6 B8 U" T$ U6 N

/ o. F; s1 F8 I1 r7 k( r8 v3 F 注意事项) W- \7 x. m6 P1 O+ _- l4 w: s
必须要有终止条件
0 |* G: ^* u- I7 d递归深度过大可能导致栈溢出(Python默认递归深度约1000层)% s7 c% G; k- a/ l0 W$ R
某些问题用递归更直观(如树遍历),但效率可能不如迭代
# U5 ^+ z  X2 q尾递归优化可以提升效率(但Python不支持)
! Y1 b; _6 A( t
+ l2 q# `% K/ F& \ 递归 vs 迭代; p  Y9 w) a' W% Z' p
|          | 递归                          | 迭代               |0 G7 L* t3 `+ f- G8 C- O
|----------|-----------------------------|------------------|8 e3 Y$ T. k# @- X
| 实现方式    | 函数自调用                        | 循环结构            |! B; ~6 d6 r) p6 ?
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
5 s: P( s: x9 Z0 |( d0 _| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
5 c, O. R( N7 E! m| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |- o3 b- F2 _8 w! A* t

# W  g9 s" k4 d" u8 Z 经典递归应用场景
8 g; `2 c% n0 H# K0 j) @1. 文件系统遍历(目录树结构)
% K9 M2 W- G; h4 p) q2. 快速排序/归并排序算法
+ J( k  E  Q, g/ u- s/ d; p3. 汉诺塔问题( R/ o; B1 k6 ], {: r
4. 二叉树遍历(前序/中序/后序)/ |# D, |, X7 M+ i& E  `
5. 生成所有可能的组合(回溯算法)4 ^9 z/ P4 b9 \$ K- O! V
4 {: z4 i" d6 L
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
/ o3 }4 N# f3 j- O1 \) R* C我推理机的核心算法应该是二叉树遍历的变种。. p( J1 z) \* Z- B% z+ d
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
, c% y5 `. ?6 ~: d8 S) Z3 }8 \' uKey Idea of Recursion
0 }: z/ m( A$ X1 p8 }
4 h& V- K; h2 G; N  p6 QA recursive function solves a problem by:! l! J8 v( s5 D

( F- T4 h* h- R* [+ A7 `1 J  a    Breaking the problem into smaller instances of the same problem.
9 H# X# b; q) k* J5 \1 e3 A# S4 ~* J4 e# e- {  e
    Solving the smallest instance directly (base case).
0 p8 M3 E. U6 i- T# Q. n) H* [0 J) E9 O
    Combining the results of smaller instances to solve the larger problem.
9 x0 D: t8 V7 c# a9 s3 |
1 q4 F  |5 R0 H& ~# Z1 J7 Q# kComponents of a Recursive Function' [  H, Q% F& E' Z$ r0 m; c

; n4 [8 q0 ]$ e7 ]: l    Base Case:
% }* U! Z7 n6 O8 m% S+ Q; n' `( C
/ ~; p% m( D9 x7 t' y8 B        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.& _, H9 H3 T& T: T% s

; V- V- ^* m5 P  z7 E! g! O        It acts as the stopping condition to prevent infinite recursion.
* @7 |9 u4 N9 Y$ N" t& R; ]0 z- h3 x9 k
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.: }( e! E9 Y6 K0 |/ `+ ]

1 b' I5 h' R9 d& k5 s) S4 j  C    Recursive Case:" j0 ?5 t/ ]8 V4 ~4 j8 n; z# b+ K

; H4 d: o6 v4 K9 r        This is where the function calls itself with a smaller or simpler version of the problem.2 I: h) L. v) {$ |  R% h( D
$ d2 e) u, Z! ?- u4 c
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
$ w# [! t8 w9 k
  W0 R0 X. p% ?9 VExample: Factorial Calculation; J+ U* Y! W! b. @7 P0 N
- R! l, `7 y( R/ q3 Q
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 ^- B# T. I. I! H6 y7 E
: a; f+ e% z" C( b* y
    Base case: 0! = 1* @- R9 F# r4 K* h! W, N3 ~

! E, O% P2 z7 k    Recursive case: n! = n * (n-1)!
) {, t( s" f' M" j' H$ P
" o* f8 n7 r. B3 H$ M# Z& eHere’s how it looks in code (Python):1 J2 j% \9 Q4 O" Z3 C6 {+ \
python
0 C. p" S" p8 X4 j
) N9 k* s# ]; o2 ~8 C/ @- v: A5 P/ j: M0 I& A
def factorial(n):/ }6 _% ?# m9 S1 x
    # Base case
/ j! R- s- W9 Z6 t; P/ ~    if n == 0:# q' v0 E% w9 i: k( H+ n
        return 1
7 `/ p% X$ b9 t3 c    # Recursive case
$ l! R& x- S! [$ P; z; O    else:9 g- V% ]$ G' ]" E$ Y
        return n * factorial(n - 1)) U/ R: E7 w2 L- d+ v

2 M% o0 D. ^% k# w# Example usage5 H2 W" @4 w* `; y3 p( r% [9 y* `9 v
print(factorial(5))  # Output: 120
0 Q. r0 d0 L1 K9 d) V8 A
, [8 ~  I% t4 b4 L- ?2 v; B2 ?How Recursion Works
# y+ J9 q* ?( ?- @' C3 r. U, q
8 h/ w" m' }0 l2 Y. Z2 u1 s$ H    The function keeps calling itself with smaller inputs until it reaches the base case.
5 c# e1 g) l9 G$ T9 \9 ]0 A4 R; ~4 }+ W& H' @2 E
    Once the base case is reached, the function starts returning values back up the call stack.) w4 f. M8 F# ^) C% X8 b
0 A5 R. r: n. n. s4 w
    These returned values are combined to produce the final result.
4 n& v+ j: G" ]5 \
* B9 S4 R9 U* j/ d7 |For factorial(5):6 X" T; z: u  P7 l1 P: T

: e. o2 T% ^* p" k- ~. F; P% Q, ^
factorial(5) = 5 * factorial(4)
+ \$ w+ n7 a; ^* Z* Nfactorial(4) = 4 * factorial(3)
7 z7 i! e- N+ G1 V$ F% Qfactorial(3) = 3 * factorial(2)
+ h4 R# P( O! w/ q- ofactorial(2) = 2 * factorial(1)0 e$ `; {* G$ `; V( O1 L
factorial(1) = 1 * factorial(0)8 |2 D  _9 S! C$ m
factorial(0) = 1  # Base case
* o; r$ s# I7 L& q& M* o
0 T* V4 S, G9 c  V4 n/ OThen, the results are combined:# \1 u- U8 O/ M3 I
* K5 ^2 W* [; V- @( M& g0 E) h

3 d6 H: Y. Y  P: |factorial(1) = 1 * 1 = 14 W# z) M( c( _! x& p6 k. Q* [
factorial(2) = 2 * 1 = 2* v7 B& e' }8 }/ e2 m& ?
factorial(3) = 3 * 2 = 69 r+ L" M3 B/ B, a$ `5 U1 ?  O% L
factorial(4) = 4 * 6 = 244 r+ b& m9 u  Z7 U7 h! m
factorial(5) = 5 * 24 = 120  b& D% G+ e8 X. g3 G1 A& _1 Q3 T
8 R- P$ C" `- g' s/ K0 b8 o7 B) `& g
Advantages of Recursion
. {/ j6 p. X; M4 h8 l5 K& j! U6 y! q( L& f. l( D0 A$ R/ R! S
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
: U2 O+ U2 ?- s  w% M/ L
9 K  G2 k6 a, d! |  w& ]! w    Readability: Recursive code can be more readable and concise compared to iterative solutions.. Z, U8 \  ?+ S1 a  K8 M
) E; A' q) r! v! K: ^. Y
Disadvantages of Recursion
: o" V4 n! o0 T7 ]  T7 u& B- w/ D; a5 e/ m; U; E' V0 M4 y, _/ V
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.: e. s/ Y1 ?" a5 Z6 |0 q7 c
$ L# r3 _; [( |# \3 K; h
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).& R: d  C+ W) }% q  ]1 w
8 `7 W9 O4 h0 t$ D; R! i  r: i' g
When to Use Recursion
9 E! m  q% W9 `# B$ \0 V
2 t6 ]+ n8 ], m* z3 W/ d    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
8 _4 T# d  Q0 ^8 ?- t, @; x
+ \( y% C# @8 V" _* g: e    Problems with a clear base case and recursive case.
7 A* [4 s8 f/ ?4 F+ s  N0 Z8 v
) e+ D7 R$ M% ~" [Example: Fibonacci Sequence
2 ~  T7 H) }3 a* l* l5 `9 K0 P
% Z/ r" M6 I  _& Y( ]- I* k8 oThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
) }1 ]! C, _; [6 G" E. S6 O
* h8 p2 A  x) a4 U: J. K- F    Base case: fib(0) = 0, fib(1) = 1' I- J1 b/ M! B) Q& A
7 V( s5 h4 q2 S7 K  E
    Recursive case: fib(n) = fib(n-1) + fib(n-2)
5 x# F# _  l' R) ^
# i: W. {8 `3 ^4 A- [3 Kpython+ B+ H5 r/ w) r" w# V; _( H
" k6 B* p8 t0 U1 J) t" i0 l5 \$ g# \

& w8 T4 t4 J7 d5 X* y. k7 z: |def fibonacci(n):
, s( e3 I; ]* l+ \9 P: r    # Base cases/ M9 P$ ?9 h% ~' X3 t& s
    if n == 0:
6 i4 M- g; N# Y. C& X! j1 P+ T        return 09 P, r5 |4 Q2 i8 l7 {8 l. p
    elif n == 1:
9 k- {6 }; x: z3 L2 e5 a        return 15 u% s, N- K; o( I- {7 o3 ~4 B
    # Recursive case
6 Z+ @3 r" N. {+ a9 `    else:
+ C# r% o! Q8 S8 W        return fibonacci(n - 1) + fibonacci(n - 2)$ K0 K6 C/ d# Q( O

+ l5 v$ l5 j" ?" C. u( \# Example usage
0 [* r4 P, ]' p0 {1 Gprint(fibonacci(6))  # Output: 8
, r  X1 O9 |' o# A& |: H! P
" B! N' i' a4 s5 a& vTail Recursion% H6 V" |* ^0 B8 u& ]9 X+ S1 H

. r, n. s% `% n( pTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).5 M  z) P4 X  ~. A" K/ ~3 O1 _

9 q1 K3 {8 m0 J9 i8 ~, M8 hIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2