爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 : \6 p' j* I  k+ Q; J) Q) j

1 {6 Q" o$ B7 ?) Z解释的不错& U4 G$ v, U/ ^# j

9 A" B% j; g' o$ \) _! P递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。, |% x8 A7 ^% _% C
( ?6 p8 z& Z1 O: H) V( A( J
关键要素
% E  I) e2 I, h# b1 @1. **基线条件(Base Case)**/ z1 ?. S/ n: n- C4 \: t& l0 [
   - 递归终止的条件,防止无限循环
6 m& E) {# S9 _: \9 {/ P   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
& |# v4 I7 [% Y. K0 }: d) y; H* E9 O
2. **递归条件(Recursive Case)**/ m" v- `& N# l* ]
   - 将原问题分解为更小的子问题
9 D/ l9 c5 I8 x* j5 b   - 例如:n! = n × (n-1)!
( }2 a* I, Q, ]" E" S
" [( o8 Y: F0 F$ `; X: s 经典示例:计算阶乘
# |! x' J8 ]3 @( Ipython2 q' _3 X" W$ |; X1 e* d4 b
def factorial(n):
* r0 [' U$ q5 S: O    if n == 0:        # 基线条件
2 l( j% a  s" w5 S        return 1& t1 e4 ?9 C6 m6 q
    else:             # 递归条件8 c+ @* K  ~1 E$ s* s+ D
        return n * factorial(n-1)% W1 z$ t7 Z  U/ C8 Z
执行过程(以计算 3! 为例):
' G0 r# f: }" M2 R4 I2 Ffactorial(3)  _: O; a" Y% W* ^' X: e- r
3 * factorial(2)
5 m( L" b* l, K# Q/ c! a3 * (2 * factorial(1))
5 j( J$ ]' ~0 c4 T) I3 * (2 * (1 * factorial(0)))1 k6 j2 G. ~1 k3 [8 t) |
3 * (2 * (1 * 1)) = 6
3 x3 O5 V4 x5 J3 y: j: L: H0 a3 V+ d( E/ a0 W" H
递归思维要点
: `1 ?- x; C5 A3 G/ R1. **信任递归**:假设子问题已经解决,专注当前层逻辑
" s9 }' j) G$ |- V5 u" v4 ?+ r2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
8 X  @9 p/ U* @2 e" O0 t; ]8 ]5 S# f3. **递推过程**:不断向下分解问题(递)% U- g4 j& Q0 v0 Z, Z" ~
4. **回溯过程**:组合子问题结果返回(归); \6 Q- ^  L" f8 c8 K
% W! p9 ]; _2 ]2 v
注意事项
2 x1 f" @* z4 v, {必须要有终止条件5 {! h% {1 Z& r8 N# Y  P, c( W
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)# H$ I& O, Y+ `7 O/ O  c2 O9 m
某些问题用递归更直观(如树遍历),但效率可能不如迭代! L$ S7 f9 j4 P5 r6 x' O) x
尾递归优化可以提升效率(但Python不支持)
, J( h7 F2 D, j& f! y! n) S( l, x; }" U: ~
递归 vs 迭代
: b4 j" H  M1 T! k2 @|          | 递归                          | 迭代               |- J3 Q2 \4 e0 P% s
|----------|-----------------------------|------------------|
, J' b9 q4 d+ u9 V+ D| 实现方式    | 函数自调用                        | 循环结构            |
! \6 d' ~& j  S| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
" C, L, Q8 r( q| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |* Z: i7 [# N; g3 X: G
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |1 g% s) s9 L3 k0 b, H- m' H9 _4 ?

+ S& ]( z6 Y/ D) w3 l 经典递归应用场景3 j3 K: K7 y3 [  E, |0 @7 @+ r
1. 文件系统遍历(目录树结构)6 k6 f& O+ l4 w: T/ [$ n
2. 快速排序/归并排序算法9 y" A: ~) n; Z) v/ O6 ?
3. 汉诺塔问题$ l" h; f( O, O% i( \, k- ]) g% o
4. 二叉树遍历(前序/中序/后序)4 v& u7 a# @* W. d
5. 生成所有可能的组合(回溯算法)
$ r0 }. }, M8 U! \) Z& L! N
1 i) x" q: p8 Q3 E+ q试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
% r5 J4 J5 G$ o. m  `- ?3 p我推理机的核心算法应该是二叉树遍历的变种。9 _( Y' w4 d" p6 M/ v0 L
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
' [% n$ p$ a9 g/ m0 sKey Idea of Recursion
3 {- O! c: `( @! |$ R5 o& j- }9 D( M. V: W
A recursive function solves a problem by:% w+ G1 [3 c6 n. N: v# ~2 M

7 M' a+ V  Q8 E) ?+ f( ]1 N! C    Breaking the problem into smaller instances of the same problem.
- V4 |( _0 X7 M* o$ C! D
, c8 U% G4 Y/ E3 a    Solving the smallest instance directly (base case).- R9 x& u) j' t3 }
, w* r  E/ s! u7 O& M( s' }
    Combining the results of smaller instances to solve the larger problem.
* K. V2 Z1 V1 y3 s' R  `* M- G$ g  J
Components of a Recursive Function
+ B& g! E( G& G7 v7 k
: _5 {% C. M; q% M2 r    Base Case:- q4 i6 m+ g% ~

( S4 W5 h: j' p3 o3 Y  |# c( @        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
7 \1 o8 s! r7 e0 e- |4 B* Q
! O' D$ i) h. T7 g        It acts as the stopping condition to prevent infinite recursion.
' O/ h' R  `9 J  c3 R+ ]
. {. C1 V9 W+ Y7 ?2 I% n. Q" ^: N4 S        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.* V" d% U9 Q' W8 `+ I9 I& T

+ s9 d  s% h) m1 _; k8 o    Recursive Case:
3 A( h& l( P- M: u
: B! T- v( {- H* I+ M        This is where the function calls itself with a smaller or simpler version of the problem.
$ B, l: d, ]9 ]' `2 [  e1 n7 C4 M& u
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).# R0 D* Y' Q+ Z0 m" B- a0 I

/ f1 [4 u: j# j5 {# a3 sExample: Factorial Calculation% \' ?4 C  I0 ^+ x7 A

  o+ _- F' M1 VThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:6 T* J% F  X* y( P6 Q/ ^. V7 n
7 L, i7 i+ V3 Y1 S$ e! x
    Base case: 0! = 1% U9 {7 B0 ^- E1 {8 `9 ?+ ~$ p6 b

; f) a) C2 e2 ~* N* H3 t* {    Recursive case: n! = n * (n-1)!7 F% e9 d$ P! H3 |- }5 Z/ {
& X( i4 U1 H: d& I4 m
Here’s how it looks in code (Python):
) c. _: C- R7 ~/ a* |8 ^) epython0 ^" B9 V, I1 s: B! o
3 u8 Z( y4 E% H, t/ O# f: Y8 p
% ]4 A/ {) m1 e3 d: J
def factorial(n):
6 O" p2 ]/ q% c1 N+ y% Z! X    # Base case
4 C: L% Y1 {3 R) N3 m    if n == 0:
5 R& Z# F! w: O3 }( Q* G        return 1
4 h' b+ S( B9 k# @/ S    # Recursive case
" m$ W) ]) W" R" L6 m# M    else:
8 ^1 ]7 z: ^1 @; ?& g/ L$ t        return n * factorial(n - 1)
1 H  o' v# F0 }* `$ _  ~, J/ d+ o2 ^! U! G
# Example usage8 R- _; _, u/ J' @
print(factorial(5))  # Output: 1202 o9 }+ {# H+ x/ ]  Z

$ k3 P1 [; `5 o8 [$ KHow Recursion Works
) \+ N7 ~$ M6 r  d3 ^
1 }, i3 L8 m, _: [    The function keeps calling itself with smaller inputs until it reaches the base case.- ^; ?) Y& r( U0 W' D0 e7 k
' A$ j( {( K9 _9 b+ \
    Once the base case is reached, the function starts returning values back up the call stack./ L- g* N( C* ?7 j1 U: c

8 ^3 R: x4 P6 R: i) @- w' H    These returned values are combined to produce the final result.
% {: b5 I, [* l8 c9 l. r, j+ O4 ^  }" A9 N1 W
For factorial(5):
) [9 j, r& j; _
) P3 V9 R. K% K, ~3 f1 I
, r/ _9 Y6 E8 S  i1 Q7 _/ tfactorial(5) = 5 * factorial(4)
, T3 @% w: ]1 [% Ifactorial(4) = 4 * factorial(3)2 ]8 ^2 X! V/ W# D' N
factorial(3) = 3 * factorial(2)& L5 |2 D$ |. [( T2 P
factorial(2) = 2 * factorial(1)
, W/ ^7 d, U$ \- |- Hfactorial(1) = 1 * factorial(0)7 s/ Q4 \& K. U5 G* P* U2 _
factorial(0) = 1  # Base case( @  I1 h2 g% ^( H* `

6 m% c0 ?! M; c" {5 T" CThen, the results are combined:6 f& D- U) E9 c: O- l& H& x3 t9 l

% x5 S/ S& [# e- w- y5 u$ v5 K: _
# |7 |8 q6 C( R' t$ [9 X% \- j6 r8 [factorial(1) = 1 * 1 = 1
6 G  t8 _- D8 ^' D( Hfactorial(2) = 2 * 1 = 26 h: j  C2 ~( D
factorial(3) = 3 * 2 = 6/ c  ~# {& a- C4 _0 f0 S- q( {. f% _
factorial(4) = 4 * 6 = 24
" A# o( W: b' wfactorial(5) = 5 * 24 = 120
2 s' c6 w5 y  j* p1 X  R
9 ~4 B) c6 e, c1 c* FAdvantages of Recursion
7 o2 k4 W0 j4 l# j, z9 z: @7 G# Q+ [" [9 T5 @
    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
" p% O; W0 o7 m: _) @+ e
+ O8 ?, d9 F& d+ |' k/ |    Readability: Recursive code can be more readable and concise compared to iterative solutions.
4 C- y- n* J$ I, v: ]: `
' s* ^  z5 k! O5 qDisadvantages of Recursion
. ]  V* s: @4 E( H) o2 D
& L1 I+ M4 S' |8 u    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
* \  R3 s$ I0 Y" G& u/ F7 j3 F4 c1 j
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).5 S0 l; @+ L! l6 c0 V

6 g7 g' h  B) H& a3 \When to Use Recursion8 `5 b. q( f+ J( {: y9 v
( r' q$ [0 k4 ^; U/ [) d: G/ a
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
$ L+ S# |' R0 T: D! E/ v; o; l
* e: C) W6 ?) B/ y    Problems with a clear base case and recursive case.
* ?1 m/ ?6 `1 p' c- n, t. y
/ c+ `' b: G7 z% L% ~5 fExample: Fibonacci Sequence( _. X' H: s3 O$ ^  v6 W

3 j3 ]6 k: w5 v) H) E9 wThe Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:) U2 ]2 i4 C5 Y: |- W. }

: ^& n+ u) Q' G/ W8 E& y, g6 Y    Base case: fib(0) = 0, fib(1) = 1
- _9 h; b6 J4 m8 M5 v; h: W* I- M; l5 j2 `
    Recursive case: fib(n) = fib(n-1) + fib(n-2)$ E9 s7 [5 [( W( S# B

: `6 R$ O) \0 N# ~2 `, b& |python! t/ T6 j* f+ y8 i. y
  D0 i1 {9 Z2 T7 w+ e  B& A7 w

- }5 Z$ Q- h: D( [) pdef fibonacci(n):
+ ~- P: r" L$ N5 ?    # Base cases
5 k% j- j+ z# {* ~$ e8 ^    if n == 0:
" H% ]; |" ]- O/ k6 e" j        return 05 L# ^" b2 ]1 o# B9 A0 K& a
    elif n == 1:2 t0 a6 M2 l+ \) t$ l, u
        return 1# X( }6 U* x( p# E6 {! c0 x# j, ]
    # Recursive case
& L% K) P; e* Q* D4 x2 M, m    else:
: e8 ~3 c% f1 U; x        return fibonacci(n - 1) + fibonacci(n - 2)
  e+ K3 |2 T" U& f5 j, Z
$ \0 h) L# E0 e, Q. v# Example usage; {: s5 o( f7 O9 e7 p( t
print(fibonacci(6))  # Output: 8
9 z! E& M4 s- W, v
5 N  G* j# D( X  _Tail Recursion
2 M! J* `0 p0 ~7 s$ N9 n/ I
6 p# P( V7 T. a0 JTail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).2 v+ O3 K% A+ }, a4 T4 V& |; @
# p4 v  o% U  y' L4 b- e% A% K2 i2 y
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2