爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 8 {7 W8 v7 p& Z' y$ {, Y
- D. p! I5 ?  y- T2 \4 o+ G
解释的不错9 F& v; R5 b: o* A6 |
, a; F+ m9 }- i. D" B, g& }
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。
0 n2 m1 ~  {& x- l& Q, j) [1 \! @9 `
, ]" R* M" Q( Z( Y3 K1 n2 }3 G9 _ 关键要素# O& ]& X. `; g+ Q1 X% g
1. **基线条件(Base Case)**6 U) i8 l3 k+ G( _  d2 L
   - 递归终止的条件,防止无限循环
; i$ C1 s3 x: E4 C, {   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 1
: ^! A+ c" W1 h7 X7 Z- ]) A% @8 M5 B5 E" [0 l9 O- w* i* W0 V
2. **递归条件(Recursive Case)**2 A2 ^$ O8 y4 S. a, n
   - 将原问题分解为更小的子问题) b% J/ k  F3 o9 C* z3 Q/ d% J. n; I
   - 例如:n! = n × (n-1)!
6 ]* F+ _. v( U- ]3 [" U6 M$ s) ~+ q
经典示例:计算阶乘
& Y. A4 b/ B' V: F6 n; M# ^python
! ]$ }5 W5 s" g- \, G7 r+ T, Edef factorial(n):
9 P- H9 m' p- E! e    if n == 0:        # 基线条件3 @' E) a8 m. P$ r0 d' `- G1 f- B
        return 16 b" ]" K) X9 x1 k
    else:             # 递归条件
0 Z4 S1 P- @. W5 j/ O- _6 n        return n * factorial(n-1)
' v0 k% J5 G, T% i执行过程(以计算 3! 为例):) {- \' `; [2 ?  ?/ f! h% {$ D
factorial(3)
: }0 @0 c1 H( \3 V  Q6 u1 @$ _3 * factorial(2)
; r+ G: v+ t! Y/ t3 * (2 * factorial(1))/ n2 q: ?) r; _9 o1 M8 L
3 * (2 * (1 * factorial(0)))
8 W" p: G2 U& x# C* d- [: [! E3 ^3 * (2 * (1 * 1)) = 6
4 C! l+ P4 i/ Y2 o0 q- }) d- I
: l. ~% J+ ?# p: [, p 递归思维要点  }+ L, x- T; u' L! r% b3 L3 B( J
1. **信任递归**:假设子问题已经解决,专注当前层逻辑
$ a/ L; W/ x" z& ~+ `' _6 A/ u2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
1 h7 v' n+ \! C  j3. **递推过程**:不断向下分解问题(递). x5 H3 o" ?5 n6 \" q" Q, a! Y7 F
4. **回溯过程**:组合子问题结果返回(归); o  z0 X7 j" S8 ^" d
2 d8 `( |$ ?% B0 B% h$ x8 s+ \
注意事项! w7 B3 z+ s0 T+ R0 n! I% _
必须要有终止条件
. D) k6 }( ?  \: h递归深度过大可能导致栈溢出(Python默认递归深度约1000层)* _7 ?0 g$ }7 b6 t; X" G9 _% e
某些问题用递归更直观(如树遍历),但效率可能不如迭代
. r1 w* x# m: f! ]) J. [尾递归优化可以提升效率(但Python不支持)$ U  V5 |  o5 ?7 w5 G( @

5 |+ u0 E; x7 D! k/ ~  {% ? 递归 vs 迭代2 w0 L$ k# s# I$ y6 O
|          | 递归                          | 迭代               |# f. _4 o! A3 G; x& }' X3 @
|----------|-----------------------------|------------------|
  y2 J5 }2 E( O& _# z| 实现方式    | 函数自调用                        | 循环结构            |2 [7 ^, o: d) Z( v- X8 N/ L
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |
0 r- A( T  f2 g) `. N3 I: v| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |" [  X( q& Y" E- y
| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |
' r$ l: I2 Y$ J$ c; s9 r; Y" m/ L& O
经典递归应用场景
0 K' `! n0 [% i1. 文件系统遍历(目录树结构)
, B4 a' D# ?4 b) u* ~% k2 C- b2. 快速排序/归并排序算法
8 v! g% a5 s; L  A+ U3. 汉诺塔问题2 x2 }8 }; a/ R: X8 O1 k
4. 二叉树遍历(前序/中序/后序)) i/ y2 c. k* r4 n. r
5. 生成所有可能的组合(回溯算法)
9 M3 b0 u: g% q) z; K+ ^3 c* o; W3 |" ]7 z
试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,+ w8 O0 F+ ]8 u$ O' v: a# n( i1 P
我推理机的核心算法应该是二叉树遍历的变种。( C* t2 U+ B: S
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:; B! g3 f- F# |$ Q6 S
Key Idea of Recursion' R# p8 c  S$ c$ h9 \* m; X

1 W$ I0 l" B4 h/ i6 ]' k6 nA recursive function solves a problem by:# d4 y% t5 N1 d7 u% t

: c; S" w, A# C  F. c    Breaking the problem into smaller instances of the same problem." p6 p9 c! ]* `' l8 P

3 {1 Q' e" M3 h8 c    Solving the smallest instance directly (base case).2 B7 M. ]$ I& j7 j3 R5 M
$ L: W6 T9 m9 `
    Combining the results of smaller instances to solve the larger problem./ K8 Y2 n1 f( l; J1 w& {; D

- w& _- X, l8 O. g5 ~( p' l1 ~' ?Components of a Recursive Function
) R6 p$ Y* |, g9 u8 m- p/ K1 v/ V$ {# W3 s
    Base Case:4 o) F% R8 B; p# q" \4 P. ?
2 m( O. `6 P. u4 B- A
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.  I2 w" D% Y# v

. a' a1 `1 l$ O& p6 i4 V- ]        It acts as the stopping condition to prevent infinite recursion.
' w3 g9 t& C" h4 B$ p1 D
* U; z( K" Q6 I        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.0 _. C; t7 N7 v; l& y

4 P' s) o4 v" Q9 F  y) M4 k: m    Recursive Case:
& C7 f( ^! t. H" {1 Q: E
) Q( L! O, T- X* Q4 P/ c3 o# P/ g        This is where the function calls itself with a smaller or simpler version of the problem.
. y& y0 G# m0 A; y' ]0 y. ?6 o2 E! D% ?( K# z! B5 h0 p$ c
        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).
& S; j: ?6 D' x& S( I% T9 s: Y' N) t6 {' X
Example: Factorial Calculation
$ d/ {  [% Y" d, I* t
2 @* }9 ^4 @  p- i/ lThe factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:
7 T( H0 ^8 @& Y  M; \8 E) \4 a& e" E; D; t) r9 p
    Base case: 0! = 1
  ~; _; _7 ]9 K* |
, l+ w8 o8 Z/ Z' s! M8 b    Recursive case: n! = n * (n-1)!8 ?' z/ ~( F5 [

* a; C' S$ C9 a7 [% AHere’s how it looks in code (Python):
7 f4 w* b, J! Z( J1 E; f+ Rpython- R! I; E* F: t, e
6 d* \% U: J# L- Q. F! @& }/ D

/ t& F* k5 b7 \: |def factorial(n):) o% f9 c+ ]* K  L- \5 M
    # Base case- |  p9 i8 {/ d
    if n == 0:
* n, t# ^0 ], g+ E" a1 H. n        return 1
7 Y% Z' w) y6 t+ X    # Recursive case& y& |3 r2 N( V1 ]) c  N
    else:
7 I$ n9 }0 t! h0 d        return n * factorial(n - 1)
; t; T* e5 S  B5 B! R6 i3 i! L* Z4 B  P9 ?
# Example usage
" C3 l! O* B9 c5 m/ R1 Oprint(factorial(5))  # Output: 120, R% P; p" q  F; V6 _
# q2 i% D9 J$ T2 S. p
How Recursion Works
4 _$ E. z$ U' O. @5 w- N2 a" y+ ~- p  o: u" ]
    The function keeps calling itself with smaller inputs until it reaches the base case., o# q) D  K. X0 n1 C% ]
, o3 z: P: z* i# a5 o
    Once the base case is reached, the function starts returning values back up the call stack.
4 V8 O% Y, ~( f  K# m9 T. j; `# X. U+ z. Y! p( Y
    These returned values are combined to produce the final result.' @$ H" s' Y7 G- l9 }

9 e" e! C; B* \# ~For factorial(5):
7 ~$ A! C1 ]0 w% P8 s+ u& m
+ }+ C  M4 k, k7 t3 \( ~8 g. i5 B" V7 V: D
factorial(5) = 5 * factorial(4)
* l: F- g0 e; qfactorial(4) = 4 * factorial(3)
, Y6 `& w6 S/ \factorial(3) = 3 * factorial(2)7 R0 N5 N8 `( C1 W
factorial(2) = 2 * factorial(1)% _( Z2 K4 U5 k$ |' g4 K
factorial(1) = 1 * factorial(0)
3 U6 j$ A2 B, }# I+ Nfactorial(0) = 1  # Base case: S; ?7 l! b# Q& F
# z1 ?! v4 ~" h5 i7 f1 K
Then, the results are combined:# ~" H: b' i- X# K

; D8 k! }* {0 l& h; |
- d+ x5 M; i6 A% L7 W+ s" _9 yfactorial(1) = 1 * 1 = 1% @: c3 r2 O* ~! i6 Y/ o
factorial(2) = 2 * 1 = 26 e: g; r3 x  J9 J/ Q  p
factorial(3) = 3 * 2 = 6
* s) T9 M, ^! O8 Sfactorial(4) = 4 * 6 = 24
% Q. k/ U. P  p: |* `) Tfactorial(5) = 5 * 24 = 120/ G" M8 `# g4 J9 _
. W- Z  ~  j4 r3 Q7 }# A5 J
Advantages of Recursion8 U2 U3 W* Y  M0 s

3 L- p% U8 S4 R: e. L    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).
! Y' B& p) S% R+ `8 w" ~" {0 {8 Z
& w/ K& o! e8 x, t" U/ y9 u! w    Readability: Recursive code can be more readable and concise compared to iterative solutions.% v! z/ X' X1 E" @: |% @
' o: C; f$ p+ u) @
Disadvantages of Recursion
. J* o6 b4 W0 }& e  b$ Z& a$ m* s) `$ Z' e( r4 \5 T% r
    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.
0 f2 K! p0 q1 V* y0 }8 T+ y; {; y, Y4 E! z  i
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).
8 U+ t) M9 C. {* A0 n5 {- W( ^* o" [+ G% _- r' t9 Q
When to Use Recursion
7 m1 ]- Q8 D- r5 N7 i9 G( k) |+ V2 I, l4 j: `! a. S
    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).  A2 B8 y- \# }- I: J

3 i* ?+ X  W6 _' r    Problems with a clear base case and recursive case.
  F& R6 O) d( g, f6 ?7 j, c5 Z4 ~: F% W5 s% _
Example: Fibonacci Sequence
  j6 [9 f& i8 _7 u! g6 \5 Y9 u7 _* J; ?5 F$ l7 N- I5 {
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:
7 _6 ?/ W) @8 d# p* @) ^: o, r9 R' P, p* |! O% ]
    Base case: fib(0) = 0, fib(1) = 12 J, o1 b! m/ j6 k! R' f" `( h

( ]/ M% Z9 |7 u    Recursive case: fib(n) = fib(n-1) + fib(n-2)
* A# s; T7 C5 B  ]4 x8 ~8 }: I3 L" H$ C$ J' ?4 l# [
python
4 Y# O- Q2 ^6 Y" O% b5 I  ^5 S) ?% D4 m
. N7 A0 n. {( C( N
def fibonacci(n):
: i& ?1 a( B" }9 f/ Q9 e5 y    # Base cases! P! O7 F, B) a9 d: k
    if n == 0:
* O, N! }) d. `* S% x        return 0
' j) O: C0 k7 L3 k8 H3 O. D. R    elif n == 1:- a& B) k! g9 A, J5 O
        return 1) l4 [) E" K' x* k3 R9 W
    # Recursive case
& K4 r; o* M; z: i1 l    else:. g7 x. r- M4 ?+ ]# ~1 y
        return fibonacci(n - 1) + fibonacci(n - 2)+ I# ^# V; S' w8 u) M1 y6 ?

9 X: `& B) O: \  H  b, l8 `# Example usage
- k' {4 E" O& \0 g6 tprint(fibonacci(6))  # Output: 88 Z  w/ m1 U7 N& z
4 E, Z: y) q, {  v- }+ W/ l6 g
Tail Recursion, \) x: v+ p/ h( @' U: a; e
" a. i. p; H' _9 U$ }; T
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).1 C/ _2 Q6 ]4 c- e% @! d# J0 ]
7 S1 i8 g( d* S& D! G
In summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2