爱吱声

标题: 突然想到让deepseek来解释一下递归 [打印本页]

作者: 密银    时间: 2025-1-29 14:16
标题: 突然想到让deepseek来解释一下递归
本帖最后由 密银 于 2025-1-29 14:19 编辑 ! Q+ n; t: _& K3 _; `. v7 P/ I
% G" m3 s6 ^8 l8 n+ M3 F
解释的不错
7 j- D; K+ W7 ~# p4 s9 L& Z! P, z  j2 a& y5 Z( J
递归是一种通过将问题分解为更小的同类子问题来解决问题的方法。它的核心思想是:**函数直接或间接地调用自身**,直到满足终止条件。; |$ R8 \: y4 U4 U$ Q; m

& V" U  k% N* i! A% I/ ? 关键要素
# ?1 r4 {! Z) E1. **基线条件(Base Case)*** G8 {/ B# D8 ^. d6 n
   - 递归终止的条件,防止无限循环" L. B& B4 P& n
   - 例如:计算阶乘时 n == 0 或 n == 1 时返回 16 @. N9 q, u% [

/ E0 L1 N6 M8 e+ ]8 {2. **递归条件(Recursive Case)**! R6 E) ^1 T) w
   - 将原问题分解为更小的子问题' ^. S, U: R1 L4 l  h, J# U
   - 例如:n! = n × (n-1)!
. [# h7 _* a; O! `& N7 D( T2 }6 ]0 l. V4 `0 P
经典示例:计算阶乘
6 |3 a9 p2 D: b& x5 w0 O; x9 ?python- ?0 y$ }* L& w$ }1 Z' E
def factorial(n):6 W1 J: @/ M5 ?6 K* F" F
    if n == 0:        # 基线条件
7 G( r  H: I5 J        return 1
- I7 T7 _& B# J/ d1 V    else:             # 递归条件
5 E/ Y4 e% l4 V; M+ i2 ]        return n * factorial(n-1)2 W$ f. z  S* i# p% s2 K
执行过程(以计算 3! 为例):
3 J& x7 G# I  pfactorial(3)
  ]9 |% S- j2 L1 _3 * factorial(2)% W, r; t. Z% V1 \4 _
3 * (2 * factorial(1))
) J" \, Q) [) D3 * (2 * (1 * factorial(0)))
' Y7 x" @+ J) Y# x  i0 T% D3 * (2 * (1 * 1)) = 6& w5 e& I( e& A# S+ h7 N

2 T; R; t0 }6 X6 S4 N8 H7 O" r# Y 递归思维要点
" C/ Z, ?8 Z( l) m) ~# V" N2 {1. **信任递归**:假设子问题已经解决,专注当前层逻辑$ t0 R5 Y& n+ d6 a$ u
2. **栈结构**:每次调用都会创建新的栈帧(内存空间)
$ v. q8 }- G# k3. **递推过程**:不断向下分解问题(递)& w" y  l2 w  K& B5 d. Z
4. **回溯过程**:组合子问题结果返回(归)
% Q+ l" ]) T5 B2 H7 W6 C2 [* Q: H$ V5 N5 p# X) }; W
注意事项
( ~0 b( ~# e6 |: @必须要有终止条件4 N+ i& N" R- q5 Z
递归深度过大可能导致栈溢出(Python默认递归深度约1000层)/ e, s$ m" R) n! k
某些问题用递归更直观(如树遍历),但效率可能不如迭代9 f! o- s' M' J. R0 _9 k3 e7 b- W
尾递归优化可以提升效率(但Python不支持)) @: b; D4 c5 r3 i

# n  e& y. I1 t! R, ^5 d4 g 递归 vs 迭代
) @, C" x9 k( e9 r' p; |. _) x+ X|          | 递归                          | 迭代               |( }" x* N5 T0 I- ^+ q! s2 Y) x9 v
|----------|-----------------------------|------------------|- G; ^9 W2 F' d4 S* |1 l) U
| 实现方式    | 函数自调用                        | 循环结构            |- G+ i- K; h* ~5 x2 A
| 内存消耗    | 需要维护调用栈(可能溢出)               | 通常更节省内存         |. z! [' w3 M- e' x. X( W# c, [
| 代码可读性  | 对符合递归思维的问题更直观                | 线性流程更直接         |
# A+ ?$ k* k* a% r) e| 适用场景    | 树结构、分治算法、回溯问题等               | 简单重复操作          |( X& U4 Z7 p1 ^2 f0 H9 l; F1 L

( k- ^! }& @, j1 r. ?4 k. q$ x 经典递归应用场景  N# M0 ]7 V# n; O
1. 文件系统遍历(目录树结构)
& C  J3 r# n2 i2. 快速排序/归并排序算法2 E! T) |4 O4 c* @) u
3. 汉诺塔问题
& g* C- R9 V; t5 x2 q! x& T' u4. 二叉树遍历(前序/中序/后序)
% `& U& Z: L& v* M; l5. 生成所有可能的组合(回溯算法)* v+ _+ H7 u% D. D, h+ o( N- J# ~

' y3 ]6 V, c5 O1 T* ?5 s试着用递归思维想象:你站在一面镜子前,镜子里有无数个逐渐变小的你在照镜子,这就是递归的直观体现。但记住每个"分身"最终都要有结束的时刻,这就是基线条件的重要性。
作者: testjhy    时间: 2025-1-30 00:07
挺好,递归思维要点与我能够回忆起来我当时写递归程序的思路很一致,,或者被它唤醒,
8 E* K/ H* V( L- Y; r" h4 S% E9 A我推理机的核心算法应该是二叉树遍历的变种。  o( R- D* }7 f; W$ Q6 s5 d
另外知识系统的推理机搜索深度(递归深度)并不长,没有超过10层的,如果输入变量多的话,搜索宽度很大,但对那时的286-386DOS系统,计算压力也不算大。
作者: nanimarcus    时间: 2025-2-2 00:45
Recursion in programming is a technique where a function calls itself in order to solve a problem. It is a powerful concept that allows you to break down complex problems into smaller, more manageable subproblems. Here's a detailed explanation:
& H  E% B# A: y6 g9 GKey Idea of Recursion+ |& Z! A& d( E" e) S: Y/ p8 ]4 L2 G
1 A5 _) z; ~( _1 Y
A recursive function solves a problem by:
  Z2 V) k7 V: ]7 }8 i& i0 o- J1 t% p5 a6 |- b
    Breaking the problem into smaller instances of the same problem.9 P/ n5 ]' P# M4 m6 n

' V" ^6 }# @& D4 ^. p- e    Solving the smallest instance directly (base case)." o7 `% d: H. v$ E2 J8 ?

: s2 X, D% v& K    Combining the results of smaller instances to solve the larger problem.* w9 }2 e! _7 n" w

) Y: ?2 G" a1 y9 N7 MComponents of a Recursive Function" l& h' i; o, f0 H4 x" N

/ Q" D8 f7 ]" ?; \& ~! V; h    Base Case:4 I- ^. b, p# f0 i5 X5 Y0 ~
( W/ A4 I( ?# |3 Q
        This is the simplest, smallest instance of the problem that can be solved directly without further recursion.
3 F7 g' @+ \8 v, j) q# \( B  Z8 \# h7 s/ @- q0 Y! |2 w7 d
        It acts as the stopping condition to prevent infinite recursion.2 r) A$ X- j# n1 C! r) l
7 U' c5 {9 n& L- P) z
        Example: In calculating the factorial of a number, the base case is factorial(0) = 1.# k8 |) u: h5 R8 X3 n  J5 Z% }" z
$ ]. E/ }/ F  m7 |" ]0 F) D
    Recursive Case:9 r1 v8 E" e" S, j
; b* M3 @8 a8 ]1 G
        This is where the function calls itself with a smaller or simpler version of the problem.9 ^% L9 R; x+ x7 I7 s0 b4 d, e

, J3 W. o( u6 T. B        Example: For factorial, the recursive case is factorial(n) = n * factorial(n-1).( X. t/ U3 H" A3 v

* o2 a# t; _& D" yExample: Factorial Calculation
( l# m) V8 k  Y# D) \9 e4 `1 I1 ]
The factorial of a number n (denoted as n!) is the product of all positive integers less than or equal to n. It can be defined recursively as:5 q& ]4 l3 d' V, h
3 w& U0 Q4 U' }
    Base case: 0! = 1
; V2 h5 N" v+ z2 D. @/ ]$ \: K
( u3 [1 Q2 z  e$ E1 e8 z- y; l    Recursive case: n! = n * (n-1)!
/ O* A: A3 C" h+ ^6 R, |( J9 a+ Z8 N. q  P/ F' C% E
Here’s how it looks in code (Python):6 Q; @' k  k1 w
python8 F8 u% m6 k- T* H/ S
  r2 x5 u" h/ [; t
' x+ `8 g* |5 [6 Q# ^  R; m
def factorial(n):
: K4 K2 P3 ]) Z$ ^. N* i    # Base case8 W% W2 [( j  O& j6 q
    if n == 0:+ n: i4 r  v' A2 x( v  T
        return 17 l: d2 q. \  T# P- }8 m/ D6 A) P
    # Recursive case- q1 h5 U8 A- A
    else:
2 T' C' c# L- Y+ [9 X1 N& B2 H        return n * factorial(n - 1)) p' G* V' O% K2 a; Y

! x  E4 a4 Z. L0 X. M+ K  g# Example usage& d) g3 U( E1 R- L. B2 D9 n
print(factorial(5))  # Output: 120
* U3 b! l9 u8 e( t% [+ j) x- R, |5 j$ ?( e
How Recursion Works# s2 T" e& y1 j
! q: y+ g/ o: i4 N6 J
    The function keeps calling itself with smaller inputs until it reaches the base case.& c$ X# c, U2 P; K
7 k; D; \* A, s
    Once the base case is reached, the function starts returning values back up the call stack.) I/ G+ a! u6 L: y' o
, K( x  h% \3 |- [
    These returned values are combined to produce the final result.
5 e: T+ X; f# W  i. L
+ @9 ~8 A4 Y$ I* D, ?For factorial(5):
# @, O2 q' H7 B& W5 m. y2 M, O/ h

7 B0 ?6 H, R0 {& l2 z3 Vfactorial(5) = 5 * factorial(4)1 K- \+ V3 E/ z6 v! B2 A2 E* E
factorial(4) = 4 * factorial(3)4 P" m- e0 p/ Q' Z( c8 {. ?; g, ]; b
factorial(3) = 3 * factorial(2)% [2 W! H, @; q$ z" l  n. R
factorial(2) = 2 * factorial(1)( R5 a$ s# y5 A* n. B. [$ A
factorial(1) = 1 * factorial(0)7 o/ V) i% f5 c; [1 S  ?) ?
factorial(0) = 1  # Base case
; X+ S- R) z0 D% a- I, R4 s% {: Y7 a) d6 b8 i: |
Then, the results are combined:/ C* I5 K$ S! z0 U

/ P" T# F5 I. v8 O$ U& |7 c) f( b  d% q8 H2 J" _1 s$ \& ]
factorial(1) = 1 * 1 = 1
' P. s3 W0 o* y- [6 }1 p; ^+ f4 zfactorial(2) = 2 * 1 = 2
8 U) N" t- x+ G% t( R2 u7 E9 Tfactorial(3) = 3 * 2 = 6
% g: e% f- ^/ s2 E: R: Mfactorial(4) = 4 * 6 = 24
; ?8 E3 |+ `7 x# ~+ r! }) g0 Ffactorial(5) = 5 * 24 = 120- o# T2 p/ w, O$ q% K2 ?

; B# w4 m9 y) E4 eAdvantages of Recursion
% C# X1 n* w/ L7 I
* Z7 I+ T6 t8 \- q1 q8 G    Simplicity: Recursive solutions are often more intuitive and easier to write for problems that have a natural recursive structure (e.g., tree traversals, divide-and-conquer algorithms).* y9 g3 _3 x3 v* Y1 }0 Z- E: ?7 B+ o

# i& m" u4 g& P' V& F5 ~. s    Readability: Recursive code can be more readable and concise compared to iterative solutions.
& D# E6 t0 E) h  P6 w" J- o; e6 P: U/ h, y% q% b2 n
Disadvantages of Recursion, _: U; W9 p0 c* |" `, G; f

/ o  o; c  i1 \# B    Performance Overhead: Each recursive call adds a new layer to the call stack, which can lead to high memory usage and potential stack overflow for deep recursion.8 |: }2 T7 T1 b: Z1 h9 n9 y
3 @! H$ `: J9 e$ x0 M) W
    Inefficiency: Some problems can be solved more efficiently using iteration (e.g., Fibonacci sequence without memoization).6 ~# G( h6 q2 u% q
5 d2 l% k7 @3 a) P
When to Use Recursion
. p" o9 ^7 G. {5 Y3 T
( H" q, r3 D1 k0 D    Problems that can be broken down into smaller, similar subproblems (e.g., tree traversals, sorting algorithms like quicksort and mergesort).
) A$ l) X) m* j+ z
  W3 T6 ]1 ]5 \# Y: l3 W    Problems with a clear base case and recursive case.& i# Q% m# z! i6 P/ f% B& R
! ?" R' P3 e4 ?) W1 m& X
Example: Fibonacci Sequence  z6 w8 y  K. l- k. Z
" X3 m  i& r* `7 K6 U2 l; I! z
The Fibonacci sequence is another classic example of recursion. Each number is the sum of the two preceding ones:4 J8 n# n5 j. {' L
$ ]( V" e2 j+ v7 \9 _4 |
    Base case: fib(0) = 0, fib(1) = 10 R2 d/ k6 o  v

) U/ s7 r: a1 b9 b5 a    Recursive case: fib(n) = fib(n-1) + fib(n-2)
$ C8 j# T; U1 b( Y  I! J! J3 ^
# c9 J" z; ]3 s6 w: hpython
8 n# E' E8 Q  }( C! D! l& X
1 W, ]6 d  o( f; D5 g$ m% d+ P
, i# }1 I8 P+ m5 p6 s. U4 b! idef fibonacci(n):8 I+ K7 T- t" v+ \# g
    # Base cases$ }, J9 l9 r6 f) K
    if n == 0:
4 i- K: S0 Q4 u* m. [: w        return 0
: r. t/ O% }/ B# e0 F8 X7 u    elif n == 1:$ J9 ~' r( D6 ^. V; ]' J+ U
        return 1, q) s" m" Y, T
    # Recursive case: g0 x! r( k) I
    else:
! F% a1 d0 T6 }% E; k: h        return fibonacci(n - 1) + fibonacci(n - 2)
2 ]: U5 K* x: G
8 o: @6 H. H6 C- T# Example usage
  F, f" C5 u. A& jprint(fibonacci(6))  # Output: 8
0 d% d) c( o9 E. W
% Y0 u$ _; ?4 I' x- gTail Recursion
+ m7 f0 v0 t" u; k4 a# h1 w0 t+ d7 ]3 m8 r& \% D4 a
Tail recursion is a special case of recursion where the recursive call is the last operation in the function. Some programming languages optimize tail-recursive functions to avoid stack overflow, but not all languages (e.g., Python does not optimize tail recursion).
% ~! h' f; z+ x! A
; o1 S6 O6 D6 j  RIn summary, recursion is a fundamental concept in programming that allows you to solve problems by breaking them into smaller, self-similar subproblems. It’s important to define a base case to avoid infinite recursion and to understand the trade-offs between recursion and iteration.
作者: nanimarcus    时间: 2025-2-2 00:47
我还让Deepseek 给我讲讲Linux Kernel Driver 现在的开发流程,让一个老同志复习复习,快忘光了。




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2