2 ~- I, \+ o5 A S$ B# ^ % S/ c( \% v$ I+ F“全球鹰”当然是美国的RQ-4 2 T( w6 N* w3 Q: ?9 O% w( ? ' f# x; |/ r& B! N无侦-7被戏称为“全村鹰”,这可看作低配的美国RQ-4“全球鹰”。这是世界上唯二的高空长航时(HALE)无人机。相比之下,“全球鹰”长度14.5米,翼展39.9米,巡航速度570公里/小时,航程22800公里,留空时间34小时以上,实用升限18000米。 5 F' n6 g: F: J6 P: ^* U Q% n+ ?
无侦-7无疑是够用的,18000米的升限很有用。F-18翻肚皮,赌气比有用性更多。导弹可以上射,但还是有限制。在特别高的高空,导弹为中低空优化的气动控制显得不足。还记得气球事件吗?那时失控飘飞进入美国的中国气象气球在18000-19500米高度,美国F-22要拦截,可是费了不少功夫。* m* e/ G2 S: v4 H. k E
0 k( \" i4 ~1 ^& f! r" s
这当然是因为气球很难用雷达制导的空空导弹打有关,红外制导的空空导弹也必须靠近了才能锁定。无人机的雷达和红外特征比气球大得多,但采用足够的隐身手段的话,依然不容易打,何况无人机还可以配置自卫干扰和反制手段,并在航迹规划上主动躲开高威胁区域,增加生存力。 8 _( N: I% ?% H( l+ \6 r$ q + C4 `% F6 F. t8 c* t) H超高空有大用。 ( ^' h/ I9 x7 g6 w' U( D ; v8 J/ X$ P" A% D6 y; A2 T作为侦察机,站得高,看得远。在18000米高空,地平线在480公里以远,监控面积达到73万平方公里;降低一半到9000米,地平线就只有340公里了,监控面积降低到36.6万平方公里。 ' r9 ]$ U( Z. c" l- d+ r; O% E% X0 |7 B
对于日本海来说,无侦-7只需要在日本海中线,就可以监控整个日本列岛。在南海,从西沙周围的巡逻位置,就可以监控从越南沿海到菲律宾沿海的整个南海北部。在中印边界中国一侧浅近后方,则可以监控新德里以北的全部印度北方。 q* Q- }: n5 X# B, w 5 E2 E( A8 f. g) j I M在大国对抗的场景里,高空长航时无人机的作用还超过侦察。由于巡航高度高、覆盖面积大,在通信卫星、导航卫星容量不够的时候,可以填补缺口。在卫星被打掉或者因为故障、损坏而暂时失能的时候,临时补缺更是意义重大。2022年河南水灾的时候,一架翼龙-2H无人机在空中担任5-6小时的手机通信临时基站,就是类似功能在战争时期的预演。9 a# [* \( a( |
0 Y. I* q: \9 ?9 R# s" P
但无侦-7要好用,还需要大大增加留空时间。4 j% p5 ^" S& Y
5 `4 R T8 z, v' r0 f1 O. CRQ-4的留空时间长的多,是因为采用超大翼展的细长机翼。机翼是产生升力的主要手段。翼面积越大,产生的升力越大,但这是有条件的。( H& \2 d0 O$ X7 g
% @# D! N3 l) P8 C3 g+ y! Z" R3 N
机翼产生升力依赖气流的连续性。气流流过粗短(小展弦比)机翼时,气流流经上表面的路径较长,首先摩擦阻力大大增加,其次容易发生气流分离和各种复杂涡流,产生升力的效率大大降低。气流流过细长(大展弦比)机翼时,很快在后缘汇合,连续性得到很好的保留,上下翼面的速度差形成升力,摩擦阻力更是大大降低,产生升力的效率达到最高。; y. J( Q, v8 a# l0 m6 N, `
7 @7 S' [* R" Q大翼展,细长机翼,这才是高升力的密码。滑翔机就是采用细长机翼的典型,可以在无动力的情况下滑翔很远的距离。 6 S( y: C. D5 \% y+ w% ]9 Q$ h ( H, }# ^, z2 E3 u: {事实上,高升阻比还需要小后掠甚至平直翼,因为后掠角导致迎面气流沿着后掠的机翼前缘有所“溜肩”,降低产生升力的效率。后掠翼本来就是接近音速时推迟局部气流速度超过音速、导致激波阻力而采用的。对于以长航时为主的无人机,降低速度并不是多大的问题。因为后掠角而降低升阻比才是问题。 3 j$ b' i6 |" u6 n 6 ~0 n5 K% D8 j( y5 d在极端情况下,采用超大翼展的平直翼无限接近于平直翼的飞翼,气动效率达到最高。但相对纵长也降低到极限,容易发生俯仰控制力矩不足的问题。洛克希德RQ-3“暗星”就是失败的先例。' }' t( V3 e' B1 g1 P