爱吱声

标题: 想象运30 [打印本页]

作者: 晨枫    时间: 2024-7-3 08:21
标题: 想象运30
运20是中国军用运输机发展史上的里程碑,从此中国军用运输机迈入世界第一梯队,换装涡扇20后,运20也将达到全规格能力。但光有运20还不够,中国还需要先进中型运输机。$ ], H# {$ N, q$ P: b. m/ z8 l

6 h4 f6 j7 Q4 c* O9 c现在,中国空军中型运输机的任务由运8、运9承担。运9可以看作运8的深度改进型,两者的基本设计都是苏联时代的安-12,已经很老旧了。同时代的C-130还在用,最新改型C-130J也将长期使用。但这是欧美技术路径依赖的结果,而非最优选择。! ~& U+ `6 u1 D  r
( U+ _8 m# R5 M# L
在2014年珠海航展上,出现了运30的模型,在外观和定位上接近空客A400M,但航展结束后就再没有后续消息。运30也是厂商自定型号,并非中国空军正式的型号。近来又有“新中运”的传说,但还是光听楼梯响、不见人下来。8 U# ^( I" I, q+ q+ s0 M3 s7 r# y
8 i/ n  I" L/ f6 O  j
A400M是不错的设计,相对于C-130而言,其货舱尺寸更大。一直以来,很多欧美新型战术装备为了能用C-130运输部署,只得削足适履,很影响性能和发展潜力。A400M也增加了载重量,这也是C-130的瓶颈。先进涡桨则提高了经济性,使得A400M具有更大的航程,适合现代战区空运的要求。7 I2 M, i+ Y' E# ~
5 D$ @. O& K1 P6 b
但A400M还是传统的筒体-机翼构型。一方面设计、制造、使用经验成熟,另一方面“机翼管升力、机体管运载”的分工成为气动效率的瓶颈。换发动机还算容易,换机翼都可以做到,但除了拉长,换机体就基本上不可能了。
0 t/ ?# j6 V+ {+ v9 {0 ]4 c$ d- S- }* h) g" P" J( v
很多年来,航空科技界在不断探索新的气动构型,没有找到能全面、完美替代筒体-机翼的构型。但这其中,翼身融合体(BWB)用于运输机最具潜力,美国空军已经指定新秀JetZero公司研制BWB技术验证机。8 K. J9 s7 h5 c" D
3 l1 S- Q+ z1 G- ]) }
BWB介于传统的筒体-机翼布局和飞翼布局之间。飞翼的整个“机翼”都既产生升力,也用于承载有效载荷(人员或者货物、弹药)。飞翼具有最高的气动效率,堪称“没有一克重量不产生升力”。这意味着同样的起飞重量可以得到更大的载重-航程,或者同样的起飞重量可以大大降低油耗。8 z+ Z2 n1 z+ K8 b4 s. m% M
/ y; ~4 G5 S; u5 j4 b
升力是飞行的关键。机翼是“以阻力换升力”的装置,升力需要克服重量,重量由有效载荷和结构死重构成。机体不产生升力,这就是死重。飞翼消除了机体的死重。减少升力需求降低了阻力的产生,这是飞翼具有最高气动效率的基本道理。
; b- ?# B* }: {4 @7 _1 d; Q( P8 J! `
BWB具有规则但不一定是圆筒的机体,但机体与机翼之间高度融合,形成饱满的翼身融合体,在外观上和飞翼十分相似,只是“中央体”特别宽大、肥厚,也相对规整。规整的中央体包含运载有效载荷的机舱。与飞翼相比,BWB的机体也产生升力,只是气动效率没有飞翼高,但由于相对规整的机舱,运载有效载荷的能力比飞翼高。; E: r$ L3 z9 }# r) ^! |$ U6 p
6 O  X0 U5 s# j. i: |
B-2一般认为是飞翼,其实也可以看作某种BWB,因为有效载荷并非分布在整个翼展,也是集中在中央体的内部。只是B-2缺乏明显的中央体,中央体到机翼是完全圆滑过渡的。典型BWB还是能隐约看出机翼和机体的分界线。
8 k) {" s5 q2 K/ E, h% K2 M6 J5 ^6 {% E6 C. a% C% A/ Q5 C
BWB在80年代后期就得到研究,波音曾寄希望于BWB成为下一代客机的构型,还在NASA资助下研制了X-48研究机,获得大量有用的数据。BWB作为客机的问题和飞翼客机一样,中间旅客的感受很糟糕,正常登机离机的路线不顺,紧急疏散的问题更大。1 n* k6 N$ t" ~. I0 `

- n; }# C; ^  }; ~' r/ @  x! j9 V* B7 w. w
但作为运输机,这些都不是问题。宽大的机舱还有便于运载尺寸大但是重量并不大的货物的好处,很多军用装备正是这样的,如机动雷达和机动导弹发射系统。
; A5 x" i* |1 w! }7 |) v4 c
; P. V7 h! x, }8 C9 ?! Z更重要的是,BWB具有更好的隐身外形,可能成为下一代加油机的气动构型选择。
0 B0 M5 z5 k, ~" A. o2 J: ~' u" K
& w6 Y& I1 c' Q说一千道一万,隐身的关键在于“一小抵三俏”。隐身措施可以掩盖庞大的雷达反射特征,但更小的物理尺寸才是更好的起点。最理想的隐身飞行器是圆盘形,但飞碟的问题比飞翼还要多,离实用化太遥远。飞翼对于装载不友好,BWB就是退而求其次的选择。* j7 X# K6 G& K2 j8 b, z

1 f; c, _' ]; x" A隐身对运输机很重要,但对加油机更重要。
/ f+ h; i  i. W% B' ^# Q
' |1 F: z( y/ R; W* Z! b( a1 v加油机对空中战场的重要性不言而喻,不管是战斗机、轰炸机,还是运输机、长航时无人机,都有旺盛的空中加油需求。但加油机的战场生存力越来越成为大问题。
! ^6 s( Z8 O0 O1 {. o
" s1 k) \  c! \) }" t" d% x) h9 U! U所有飞机都有起飞后立刻空中加油的需要,以避免最大起飞重量对多载油还是多载弹的困扰。已经飞起来后,速度大大超过滑跑起飞状态,机翼升力大大提高,增加飞机重量不再是问题,但航程增加是显然的。起飞后的空中加油还补上了起飞中的耗油,这是最耗油的阶段。
/ `6 J3 _; D0 ~2 R% b/ C: N( c( T2 P* P% \2 N3 ]
起飞后加油只需要量大管饱,生存力没有特殊要求,什么加油机都可以。但对于战斗机来说,典型的战区空中加油方式是在战场边缘。战斗机在战斗间隙脱离战场,空中加油后返回再战。对于轰炸机来说,空中加油可能在出击和返航的中途,往往超过自己战斗机控制的区域。
3 I0 W+ T7 m& l  e, F+ G- U/ y- {, H8 `* N# r
传统加油机以效率为基本考虑,民航客机为基础的加油机大行其道。军用运输机为基础的加油机具有野战机场起落能力的优点,但经济性不及民航客机为基础的加油机。然而,这两类加油机在空战战场边缘几乎没有生存力可言,敌人战斗机既可以奔袭,也可以用超远程空空导弹吊打。前者还可能通过战斗机护航应对,后者就很少有办法了,即使护航战斗机舍身救主,具有较高目标分辨能力的先进空空导弹都未必上当。
5 v2 f' j3 p' H, \
% @$ T% }1 E- V  r* z1 [加油机一旦被击落,很多亟待补油的战斗机就可能因为油尽而坠毁。加油机安全已经不止是加油机的生存问题,还是整个空中作战体系的生存问题。3 Y8 z% v$ j$ o+ R, i

$ a5 G/ E+ h: D3 ~2 W4 ~隐身加油机成为美国空军的研究话题已经有一段时间了,但在战略重点转向亚太后迫切性大大提高,BWB成为优先选择,JetZero的BWB技术验证机就有隐身加油机的背景。隐身加油机对中国空军也同样重要。中国战斗机要前出到第一岛链甚至更远,很难回避加油机的生存力问题。
1 S' S  |1 E. t4 k
' X5 @8 H" T6 b4 n4 k: T, W1 d1 y- \% `JetZero的BWB技术在Z-5设计方案中集中体现。这最初是从民航客机入手的,定位于波音“新中客”(NMA)的要求,也就是说5000海里(略超过9000千米)的航程和250人的载客量,与波音767同级。Z-5翼展为61米,与A330相似,但长度只有波音767的2/3不到,结构重量和动力要求只有波音767的一半。换句话说,可以用波音737一级的动力(比如通用电气LEAP或者普惠PW1000G)达到波音767一级的运力。5 K. c4 D+ H  w( Z% ?) o. g2 l
$ a8 j6 C& O4 p. `) @
作为加油机,BWB提供宽大的机内容积,较低的结构重量和油耗也意味着更大的可转移燃油量。JetZero声称Z-5为基础的加油机可以达到KC-46一倍的可转移燃油量。
, v+ T  S/ z  @5 l9 m* ?7 W( f8 ]( ?7 r: F' J5 o" X4 Q
宽大的机内容积还为未来氢动力提供可能。氢动力最大的问题就是难以找到足够的机内容积,来携带足够的氢燃料。
! i$ g( R2 k* Y4 ]/ N2 i
8 T9 f4 S  {3 c& lBWB特别宽大的机体意味着很宽的主起落架轮距,特别便于采用降低对跑道压力的多轮起落架,有利于提高起飞重量。传统运输机要采用多轮起落架,只有安装在有利于受力的机体下。但机体宽度不够,只得在机体两侧设计巨大的鼓包,在气动阻力和重量上都要付出很大的代价。4 s* a# o! R6 ?

" j+ Q3 `- j: f  b$ p! UBWB没有这个问题,可以直接在腹部安装多轮起落架。如果只要求在高标准跑道上起落,也可以采用更加轻巧和常见的支柱式起落架。
9 m. \3 e- T5 R3 l" M% ?; m! N. ?
3 L* ?+ F: [6 a1 `5 {1 yBWB有一点“机体”长度,所以后掠翼翼展较大也不至于出现翼尖远远超出“机尾”,导致升力中心在重心之后太远的问题。大翼展、小展弦比对升阻比的好处是显然的,大翼展后掠翼BWB比大翼展后掠翼飞翼在气动上容易安排,洛克希德“暗星”无人机采用平直翼,部份原因就是没法解决后掠翼的升力中心和重心相对位置的问题。
3 M/ d6 y0 s  o7 ]" B- @# T+ Y* O) g8 b1 Q; P# [. }
宽大的中央体还使得发动机位置容易解决,扁平、宽大的鸭尾体上方正好可以方便地并排安装发动机,单发、双发、三发都不成问题,完全看动力需要。发动机尺寸也不受限制,大直径的高涵道比发动机没有翼下离地净空问题。
3 t# P6 ~+ }: F2 R  o/ }  U, W. |2 O
背部发动机还有利于抽吸BWB上表面的附面层。附面层是空气粘性导致的机体表面的呆滞气流。在理论上,气流速度在机体表面处为零,随离机体表面的距离而增加,最后达到自由气流的速度。速度分布可看作抛物线形,附面层的厚度则为机体表面到自由气流速度的距离。9 q- P3 O" l8 R  I5 b

5 q7 E; j: O# Z/ U$ H附面层内气流速度与自由气流速度的差别意味着“拖后腿”,这就是阻力。飞机的迎风阻力不仅由机体和机翼造成,还有附面层这个肥厚的虚拟套子造成。由于空气粘性,附面层沿气流流经的长度逐渐堆积。因此,机翼上的附面层还不是最大的问题,长长的筒形机体的由前向后的附面层堆积才是大问题。
( J2 g& k4 A1 H. \4 ]+ D* w9 x6 V" e2 ~& E' W& a! A# r
飞机减阻的一个热门研究方向就是附面层抽吸(BLI)。BLI把机体表面的附面层通过抽吸而拉动起来,动摩擦低于静摩擦,附面层的阻力就小很多。流动起来的附面层也因为速度差异减小,降低附面层厚度,同样降低阻力。
. @6 ]2 Y( l0 h) M# n# A: X8 x0 O- f7 v  i* d) C8 Q
BLI通常由环绕机尾尾锥的超大涵道风扇实现,将整个机体的附面层一起抽动。退而求其次,可以只抽动机体上表面,这还有增加上表面气流速度和产生一点升力的好处。BWB的机尾上方发动机正好起到一定的BLI作用。: m+ P  |( A  m* _: ?
! T7 |. U& S* e  }0 I
理想BLI需要更加均匀的抽吸,但有总是比没有好,80:20才是工程上的正道。
4 y: u# D, ?/ Y# \9 {! [+ c4 W) d  g+ E1 j
BWB的鸭尾体也使得运输机尾门比较容易安排。传统运输机的筒形机体必须有一定的长度,才能提供足够的载货空间。但运输机为了地板低,起落架只能尽量短,反而由于尾锥的离去角限制而使得筒形机体从中后部就开始压扁,形成机尾下方的斜坡,便于安排尾门和装卸斜板。6 i& V4 a( P1 [% K1 t5 M4 E
' P4 j% u; @2 S+ T2 O
这个斜坡使得机尾气流十分复杂。下表面气流沿着斜坡往上爬。另一方面,尾门和装卸斜板的尺寸使得尾锥的“双肩”很宽,最终的气动整合使得机尾的“鸭尾体”实际上略高于机体顶部,形成不大不小的“驼背”。机体上表面的气流流到这里,被“驼背”一劈为二,向侧下流动,与沿着斜坡往上爬的气流混合,形成复杂的机尾涡流。
8 Z" Q) Q# R& q! B" s
( B! t0 h( ?* h! [( p; l0 f8 m对于飞机来说,所有对升力和推力无用的气流搅动最后都反映为阻力。有研究在C-130的机尾两侧增加扰流片,梳理复杂的气流,降低涡流阻力,也改善空投时的机尾气流流场。# X' [7 h3 ^8 N

; {9 S7 e1 M: j8 qBWB的“机体”短得多,离去角的限制也小得多,尾门和装卸斜板与机尾的气动整合简单得多。宽扁的机尾使得后体气流主要向后流动,向两侧的涡卷减少,额外气动阻力也相应降低。
+ T: k5 n! O" P4 R. F" g鸭尾体的后缘正好是俯仰控制面的位置,因此不需要专门的平尾。如果飞控与发动机控制相整合,垂尾也可以省略,降低飞行阻力,也进一步改善隐身。" v2 q, A4 }9 o
  \+ \4 F' K# {, D* l, |# W
鸭尾体也对发动机噪声和喷口温度形成良好的屏蔽。屏蔽噪声对军用运输机和加油机不太重要,但屏蔽喷口温度对降低红外制导防空导弹的威胁有用。如果鸭尾体两侧再增加浅V形尾翼,可以进一步改善屏蔽,并增加偏航安定性,降低飞控难度。
& K& b, n/ ]' ?/ B7 ~2 }, k* R% _: A. x# ]! D+ H
但是BWB俯仰控制力矩短的问题比飞翼好一点,但还是存在,起飞时拉起困难。为此,JetZero采用像法国舰载“阵风”战斗机的可弹出前起支柱,在起飞时弹出、伸长一米,使得迎角增大6度,帮助起飞中的拉起。" @) Z9 [- V/ Z1 F' U+ _+ d& m

6 @2 P2 c* w& _$ K% K$ NJetZero的Z-5是BWB客机,为此进行大量研究。在解决旅客憋闷感方面,除了尽量在前缘开窗外,还利用宽大的“顶棚”大量开设天窗,增加透光。这降低了舱内的憋闷感,但不解决向外视界问题,只能用更多的数字技术通过虚拟机窗来补偿。" K+ R6 |7 E6 @  E( |, c

' P8 f. F% v% d* y  `在登机、离机方面,较短的机体和多条平行的走廊实际上加速登机和离机。在紧急疏散方面,只有通过机顶紧急出口和自动放下的短梯满足要求了。
/ o8 \% {' }/ K9 {8 ~9 k* z' L6 `: B* X
但BWB客机还很遥远。空客的A321XLR达到200座、4500海里的水平,很接近NMA,暂且不会上马BWB。波音NMA则由于技术问题和737MAX危机而搁置了。) x3 c0 m- k' J; i, r9 ]
- Y7 |3 N2 N" w) g
美国空军的着眼点是加油机,中国空军加油机和中运都需要解决,BWB是值得考虑的切入点。尤其是中国已经解决了涡扇20的量产,这正好是LEAP同一推力级的发动机。中国还在研制CJ1000,这不仅在推力级方面和LEAP相当,在省油和技术水平方面也相当。; X9 }2 P: k) c& n

* B' Q2 H; J9 i0 ]: `- @BWB需要解决非圆筒复材结构的设计和制造问题。中国在2009年购入奥地利的FACC公司后,起点大大提高。FACC是世界上航空级树脂传递模塑(RTM)技术的领先企业,也是空客等主流航空航天企业的主要供应商。# {. R- d3 j, n4 ~! V  S# E
7 v; I6 R: H6 A6 k3 z- Q
RTM用于复材成型,将树脂注入到闭合模具中浸润增强材料并固化,不用传统的预浸料、热压罐,有效地降低设备成本、成型成本,而且适合大型件的制造。
, R5 c0 t' M! v4 W% s3 v! W
, h8 k' l9 F4 p3 W3 U) N在多种军机和C919的设计、制造中,中国已经积累了大量的复材设计和制造经验,RTM是如虎添翼。C919没有采用复材中央翼盒很出业界意料,但C919是中国第一次独立、完整地设计大型民机,在技术上走金属中央翼盒路线是稳妥的,没有必要一口吃成胖子。但一顿一顿吃下来,是时候吃RTM这顿大餐了。3 Q$ c& Y9 G! [+ f" D/ _

) W. o; @1 j' I" d1 o运30也是中国航空由赶变超的契机,运油结合更是是独特的机会。加油机已经进入新思维,不再是越大越好,而是适中、高生存力为好。少量、大型的加油机人为制造空中拥挤,也容易成为敌人打击的节点。分散化不仅是作战平台的需要,也是加油平台的需要。% M. z9 m" l  |* u' ^) F
$ n" Z9 v% r4 A5 I/ w7 N. j$ i, i/ F
中型、隐身、节油的运30更是海上巡逻机、预警机、远程电子战飞机等特种飞机的理想平台,宽大的机舱特别适合容纳任务设备和机上人员。
7 o& p" p( _6 O
) c5 y" F/ ]- b+ n( P9 n  s运30,值得期待。) ^: _; B7 i8 J! a! U

作者: 鳕鱼邪恶    时间: 2024-7-3 09:20
呼唤教主~
作者: 沉宝    时间: 2024-7-3 11:40
本帖最后由 沉宝 于 2024-7-3 11:42 编辑
) l( ^8 D% I, W3 C: W8 a& E
: q- J3 Y( E( P给晨大配图
" K5 @6 f1 a( N) Z8 f5 s
# \9 X- D- ~* ^. S  c! m0 [- P* I0 Q$ V

0 N" a# c1 G! }+ B* {2 e1 a2 A. M3 |

作者: 晨枫    时间: 2024-7-3 12:07
沉宝 发表于 2024-7-2 21:403 Q' m& _5 a% d0 y. d* y
给晨大配图
( ^; c9 |# F! P- T( a, }# P4 q
图看不到
作者: 沉宝    时间: 2024-7-3 13:58
晨枫 发表于 2024-7-3 12:07
  L; x3 l) b& w7 E图看不到

, e/ r) y& [2 M& ?6 m你描述的鸭尾体两侧再增加浅V形尾翼的设计其实更像这一架
作者: 晨枫    时间: 2024-7-3 14:35
沉宝 发表于 2024-7-2 23:58' l# S. l7 D  f+ G# `
你描述的鸭尾体两侧再增加浅V形尾翼的设计其实更像这一架
2 H; K" i  z8 d0 o: B; `
确实挺像




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2