爱吱声

标题: 美国会丢失人工智能科技高地吗 [打印本页]

作者: 晨枫    时间: 2022-9-20 09:08
标题: 美国会丢失人工智能科技高地吗
本帖最后由 晨枫 于 2022-9-20 09:40 编辑 - u* N+ _, |, g1 N& W
: s2 f. N1 D+ f' w
2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。
* S% @7 g. f$ K- ~1 {* h6 C5 O' n) P) _% J+ ^) S
9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。
' g; S  R, N2 @5 M, c3 ?1 y: b% F7 w" G' `6 v6 A% i
美国的担心是有道理的。
! w/ V. t. F: n- D6 W
+ [* g5 ]$ {3 g, h. O. u* ^+ C人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。+ U# O1 L# Q+ J- N% U4 [4 x

* d5 B4 Q$ F9 b5 y8 ~% A在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。
1 Y: _/ m# M8 L, ^/ j
4 d" ]( k  }- ]8 s, p1 [3 q问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。$ e. F0 B) x1 E
1 X( k0 P# {0 G( L" R5 O) c2 l6 c
在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。
) c2 ]: G+ s1 B9 a8 M
. b: w1 G' f. E) C3 I片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。* K: K& D# I5 N0 Y4 \; L
) i2 R( Y  O% H; |, U3 Y
所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。% m8 e  q& Z% L3 t$ n& U
7 L- m  ~* @+ I2 h. ]
理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。
4 n5 z" e+ i8 {& a% N
3 [( C" z3 d$ l& V' I0 h有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。" Q2 H( y8 x! d; k$ W2 V% ]

- n1 K/ R' _1 Q1 B5 N. V中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。4 C  X* }  l, N7 Z) O
6 V- q: g& ~" w9 o$ _
在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。$ N. k( x  X* D1 r1 u
: W# M9 \$ v5 l- l
在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。
( U: M5 N2 F. M: @+ B, r& i9 s( X9 H3 K: ~% [7 r& ?
发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。) M1 ^1 U  p" B* y6 h

; N# X. T. `$ ?; z$ U; n另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。, \6 ^  x# ?$ T+ q: |
% H" O* V$ E! l9 C( \' E  F; E7 q
但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。
* z) [8 Z% e. @( N: f. j6 {2 W1 A- R% K( [. _+ R! i9 J6 {' m0 L
人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。
; M- ?/ @/ k+ u& H6 X3 ?& ?0 L: q5 h- j& n
如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。8 ^1 ]7 T8 ^5 H, b+ i  L

2 O! v! U7 E% x0 L1 G1 ?报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。% O" v, V% \4 U

) a% r) n, e/ K
作者: moletronic    时间: 2022-9-20 09:51
美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
. h! f/ O" @; b  U8 v& x0 B0 L
这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
作者: 晨枫    时间: 2022-9-20 10:59
moletronic 发表于 2022-9-19 19:51
! l6 c; R4 A' Z" E# _这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...

9 b7 o! u9 B2 W为什么说中国生物很难翻盘呢?: g0 j8 _; k$ E7 p: A* u5 X
" X' J) G% G, R7 w* R
商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
作者: moletronic    时间: 2022-9-20 11:07
晨枫 发表于 2022-9-19 18:59
- W+ K  l, t* a) z为什么说中国生物很难翻盘呢?) e: A, f, \: h3 i& e
# L$ J: ?( L+ S6 f
商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...
0 ]' A5 I9 h7 B0 @5 @
俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
作者: 晨枫    时间: 2022-9-20 11:18
moletronic 发表于 2022-9-19 21:07# |# {+ M& T$ h2 V; k
俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...
/ s2 h9 o$ H7 ]7 K& Y
这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。
作者: huma    时间: 2022-9-20 12:56
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
作者: 晨枫    时间: 2022-9-20 13:09
huma 发表于 2022-9-19 22:561 y* Q* w6 u9 s9 z
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...

' S$ N* l8 D$ T然后再后悔又出来了
作者: testjhy    时间: 2022-9-20 15:34
一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。0 V/ K/ W! ?0 g& R: s
其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。
作者: 晨枫    时间: 2022-9-20 22:17
本帖最后由 晨枫 于 2022-9-20 08:21 编辑 0 C6 P) d/ s% W7 B0 E
testjhy 发表于 2022-9-20 01:346 i2 j" o( M% L! ~/ y
一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...
) o) N  v- n# ^8 \

% B* K5 n; @1 p  ?1 o. l, T太对了!. Z- V3 m" D* m  e" U: v( G

: ]8 G  g) s8 l' }) [7 X人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。9 x7 i% Z( w, b+ G$ H0 {
5 \; B0 ?9 n$ U" Q& i! M& A- d
在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。
; c; l/ Z7 h$ O5 e7 `" l
& J. J2 j% N0 Y, T. y' ?' {! V人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。1 `0 [6 m5 s. k! q& {* O/ W

: N$ e2 q5 [# W在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。
! `( A' Q) k+ }: m' @; e- F, S2 k* P& r3 I  M, K8 @
这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
作者: 老财迷    时间: 2022-9-20 22:44
“罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”$ ~" A- q' E/ V8 c( @
少了一个“没”字吧?意思不对了
- B. u( e) A$ Y! v1 ?) @ 罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
作者: 方恨少    时间: 2022-9-21 02:31
晨枫 发表于 2022-9-20 13:095 ?) J: O% H# V: E- t
然后再后悔又出来了
" {" V0 K3 o8 T/ |
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
作者: 晨枫    时间: 2022-9-21 02:47
方恨少 发表于 2022-9-20 12:31
- p8 v8 R) s$ m" q+ C你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
* ]) i3 c8 k* `" k1 l5 W* U$ ?
开车?开什么车?




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2