爱吱声

标题: 美国会丢失人工智能科技高地吗 [打印本页]

作者: 晨枫    时间: 2022-9-20 09:08
标题: 美国会丢失人工智能科技高地吗
本帖最后由 晨枫 于 2022-9-20 09:40 编辑
+ e  S# x4 y) @' k) n9 [
4 Z4 Z/ I/ T8 }* u2021年5月,美国国会指派、有谷歌前CEO埃里克·施密特和美国前国防部副部长罗伯特·沃克领导的人工智能事务国家安全专门委员会发表了长篇报告,指出美国在硬件、算法、人才方面领先,中国在应用、整合、数据方面领先。报告认为,美国的算法领先在5-10年内会被中国赶上,但美国在总体上还略微领先。
0 j. y' F: v/ B6 L! J5 V" v/ z4 y4 W0 o9 n( ?5 t5 B$ ?
9月12日,委员会发表了竞争力研究特别报告,再次强调美国的人工智能优势正在迅速消失。
4 M; }/ _. Z" X" {$ ^  _/ N& u4 l( V
美国的担心是有道理的。
/ e0 j- j3 B; I# x. A8 ?& |5 w% M$ ~; |. k" ]
人工智能还是野蛮生长的领域。各种应用搞得热火朝天,但缺乏统一、严格的理论框架,理论严重落后于实践。最大的问题是难以分析、预测、设计系统的性能,使得人工智能的决策难以理解,难以信任。“阿尔法狗1.0”和2.0在与人类棋手大战的时候,都走出一些匪夷所思的步子。事后分析好像是好棋,又说不出好在哪里,更是想不出什么思路能走出这样的步子。这只是下棋,看不懂棋路不是大问题。要是人工智能用于国家核导弹自动发射控制,也给你来几步人类看不懂的反应,那问题就大了。7 B8 m( X: y% S8 s, O$ F6 g; l5 u

$ S6 e) F+ M5 P2 C在缺乏理论指导的情况下,算法成为各家的“手工艺”。手工艺不可怕,可以在大量实践中精益求精,很多工业技术(包括尖端科技)都有这样只可意会不可言传的手工艺成份,事实上成为技术壁垒的重要部份。
7 D/ m( x& }. B+ G5 Y
9 T# }2 Y/ Y. M( q: B问题是,人工智能的最大量实践是在中国,不是在美国。在美国和西方眼里,中国的人工智能就是用于大数据人群监控的,这是意识形态偏见。中国的人工智能应用正在野蛮生长中,头条、抖音的推送就是人工智能,这只是冰山一角。形成商业利益后,人工智能不再是纯学术或者纯政府行为,具有强劲的自我增殖能力,不仅引发更多的应用,也推动算法的发展。( B' O( z1 g0 \# T: j* J
1 ^) e) V2 @! s. W; O- S: k' `
在美国,人工智能应用依然主要由军方拉动,商业人工智能缺乏自我发展的动力。美国试图把私营资本拉入人工智能竞赛,但风险较大、没有明确的盈利前景,私人资本没有理由加入。华尔街能承受风险,但风险大,回报还慢,这就没有干劲了。这是美国各种“公私合作”设想的共同问题。
! m4 l9 P% Y' M% }8 u6 O$ c3 e2 ~% T
片面依靠军方拉动正是苏联科技发展的问题根源,大力依靠民用需求拉动则是美国的成功经验。有意思的是,美国在走苏联的路,而中国在走美国的路。
8 y( L' k. V# p+ r/ d/ a  k1 H" Y/ ]0 [7 U8 q/ t1 A* L
所以施密特-沃克报告清楚地看到,中国将迅速赶上美国的算法优势,如果不是在理论框架上首先突破的话。& o5 p, }' k; ^

! T; q. z6 V" d7 `( e5 }理论突破需要人才,但美国人工智能人才是否领先中国,是一个一言难尽的问题。如果把具有中国血统和教育的人统统排除,美国人工智能人才圈大概立刻坍塌一半。同时,中国人工智能在大量实践中,中国人工智能教育、科研、人才形成良性互动,中国人工智能人才赶上美国不是梦。
9 ~' [1 n7 F5 N8 L8 Y  l# Z
4 y( Q! n! u7 ]4 b# S3 C3 W! M0 Y! T有意思的是硬件。中国还在先进芯片困境中,美国对英伟达和AMD高端芯片对中国禁运,就是冲着人工智能来的。但这些芯片在本质上是图形处理芯片,并行处理能力恰好与人工智能运算的要求符合,但本身未必是为人工智能优化的。1 Z) w  e9 ]4 c( J6 j+ `

: M+ a) g5 w# B/ o+ g; t中国芯片在闯关中,一方面是7nm、2nm等更高集成度的硬技术,另一方面是在专用芯片方面实现架构突破。中国超算就是通过精巧的架构设计,在较低的硬件技术水平上实现世界领先。尤其重要的是,这样的架构突破需要在实践中得到思路,在实践中检验成效。; ?7 R9 C3 B8 Q1 [# Q
1 J3 E- e- s5 B2 g7 p# Y
在现在,中国还在大量采用来自美国的算法成果,硬件上也对美国有依赖,但历史上有过先例:要是在总体实践上掉队,核心技术的领先并不保证持续领先。
2 {6 Q4 o! n+ F+ m6 [2 h& `5 C5 u+ y* W6 b$ P( b
在40年代,英国与德国同时发明喷气式发动机,德国抢先一步,首先将Me262投入使用,但英国紧随其后,只是因为战争大局已定,就不急于将格洛斯特“流星”战斗机投入实战了。但罗尔斯-罗伊斯的“尼恩”涡喷在40年代末代表最先进技术,苏联引进后,用于米格-15,从此苏联航空科技一骑绝尘。
1 ~$ H. W6 V$ x0 R. v5 N$ R2 _# ~3 i; b& ~. o3 h  Z. r* D/ I. G1 p. V
发动机是航空科技的核心。苏联战斗机借用英国技术起飞后,在大量实践中迅速将“尼恩”改进为克里莫夫VK-1,以后克里莫夫和留里卡一起,成为苏联战斗机发动机的哼哈二将,罗尔斯-罗伊斯也在进步,但英国战斗机再也没有赶上过。) Q9 P$ }# X, ]8 i

; q& b' j3 i& v5 s8 n8 ^  n! ~( l4 o另外,人工智能现在一根筋搞大数据学习,是存在“数据困境”的,尤其是工业应用。要使得人工智能有效、准确,需要大量历史数据;但产品一直在转换,大同小异但毕竟不一样。等训练出来了,也该转产了。绕了一大圈又回来了当然很好,但这是可遇而不可求的。单纯靠学习,可能跟不上变化的现实。这是大问题。
" D1 [3 j  D3 k7 {+ }0 D
% k6 p" D+ M% i0 _: W. N7 a; p但变化与变化不一样。大部分变化是变表不变本的,本的变化缓慢得多。这也是人类思维善于适应变化的环境的道理。在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,无视了变化的环境。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。2 V' z1 }; E8 h6 D5 G2 n3 [2 u% W

- h+ V# ~# J7 ^9 j$ s6 c$ A; N! j人工智能需要在框架上形成演绎能力才好。这是巨大的挑战,但很可能不是从纯理论的空想中产生,而是从大量实践的摸索中完善。9 Y# T7 u4 U  l$ g
5 F% [- O. r: e4 }
如果说芯片、软件是当今科技高地的话,人工智能是未来科技高地。美国很担心中国会抢占这个高地,担心就对了。# F+ @) p- w0 Z5 U& u/ v) z
6 e! e, E! `- e, d- E
报告还提到,中国在5G、商用无人机、高超音速、锂电池方面领先,美国在生物科技、量子计算、商用航天和云计算方面领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。4 [0 d* R" G3 V* k* f! d0 ^0 Y
+ N5 h* {( G8 [2 p

作者: moletronic    时间: 2022-9-20 09:51
美国在生物科技、量子计算、商用航天和云计算方面勉强领先,但这些领先随时可能被中国翻盘。2025、2030年是关键节点。
( m8 W4 \: N# k( `: H, d$ d5 Z
这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就starlink,还是生造出来的。
作者: 晨枫    时间: 2022-9-20 10:59
moletronic 发表于 2022-9-19 19:517 O- Z4 `! p( i/ \. N
这里面,生物感觉短期内很难翻盘啊;商用航天也很难,关键国内好像就没啥市场。米国的商业航天其实也就sta ...

$ d6 t1 `; |$ \6 C为什么说中国生物很难翻盘呢?4 N' H5 I5 O8 b% l% X# U

& g! [$ g7 u0 \6 @商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。
作者: moletronic    时间: 2022-9-20 11:07
晨枫 发表于 2022-9-19 18:59
( b5 h! k2 u9 r3 s, ~7 s5 ^( t为什么说中国生物很难翻盘呢?
6 P4 z1 w$ p) |4 W6 W6 y) a( }: ]
商用航天不止Starlink,图像卫星也很热门,中国在这方面发展不错。 ...

0 ]& H1 G! e. t* J0 A俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。
作者: 晨枫    时间: 2022-9-20 11:18
moletronic 发表于 2022-9-19 21:07* G: p9 k* f: A: ~6 w* W* e; L
俺在米国认识的老中千老回国的不少,给俺的反馈不咋的,当然俺不是那一行的,只能听他们的。 ...

; G7 L; m+ i$ Z3 s这事要一分为二地看。回国多,说明国内机会多,上升空间大;另一方面,要是国内已经很强了,反馈就该说国内已经很卷了,回去的人反而也多不起来了。
作者: huma    时间: 2022-9-20 12:56
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已经后悔回去了,准备在出来。
作者: 晨枫    时间: 2022-9-20 13:09
huma 发表于 2022-9-19 22:56$ ]) y: U& [3 w! y! N' W
还是人才,美国还是吸引中国大批的人才,清北留美预备校还是大批的出走,尤其是这次疫情很多我认识的人都已 ...
4 M4 G. `9 T7 M6 i5 ^' {
然后再后悔又出来了
作者: testjhy    时间: 2022-9-20 15:34
一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是多品种,小批量。当你收集到足够的样本的时候,流水线说不定已经转产下一品种了,图形、花色都可能重大变化,当然,你可以慢慢累积成样本库,但企业特别是中小企业是不会有兴趣陪你长时间玩的。我们在考虑根据少量样本,采用瑕疵产生原理生成一批伪样本,目前对质量要求不太高的产品可能有效,但对高质量产品还感觉不太成功,前者比喻开始瑕疵检出率80%,然后几天内提升到90-95%,后者如果一上来就要求95%,大概率要失败。8 u) V( F. }) m, ]- D
其实,最好是传统计算机视觉方法与深度学习相结合,前面偏原理分析,但非常繁杂,现在年轻一代都想省事,找一批样品扔进学习平台完事。我这个老古板属于看人挑担不吃力型,没办法。
作者: 晨枫    时间: 2022-9-20 22:17
本帖最后由 晨枫 于 2022-9-20 08:21 编辑
0 x4 @6 S5 i% [: T$ [1 L4 y/ q
testjhy 发表于 2022-9-20 01:34
! |+ x7 P+ n+ Z' X# A6 q5 |一直在思考人工智能与工业生产的结合,深度学习在工业生产中最大的难关是最初样本获取,目前工业生产很多是 ...

  e# z& {: @0 Q
9 x9 a! _+ X1 r! B太对了!- X9 e) i" @$ y- i$ l6 ]
) N! R% c7 p6 J; A' ]7 V  V
人工智能现在一根筋搞大数据学习,正是数据问题。用自控术语来说,这是对有历史积累的时不变系统有效,时变系统就抓瞎了。
, ^- U+ \0 T6 O: x, l5 z9 S( F0 L) {1 j7 u7 U  u# l- {
在思维方式上,有演绎和推理两个方面。一味依靠归纳是经验主义,不看变化的条件。归纳最终是为下一步演绎提供基础,从现有边界拓展一步才是归纳的目的。
2 \+ ]1 g8 N9 Y0 }1 N* r( J
) |$ I2 s; b( U9 \1 R& ~  F9 F% C; E人工智能还需要在框架上形成演绎能力才好。怎么做到?嘿嘿,我要是知道,还在这里瞎耽误功夫嘛。
; o& n  ^$ \. u; }) p: P' n. y# E, ~7 a
4 |8 q+ b1 d# \在自控和建模中,也曾经流行过纯数据驱动的黑箱模型。后来发现不行,robustness太差。后来转灰箱了,在具有机理背景的模型结构上,加一个黑箱尾巴,用机理模型解释大部分数据,黑箱尾巴只管“扫尾”,情况就好得多。不过实施也难得多,可以丢给“数据绞肉机”就不管的好处没了一大半。
1 Q  S; f* x  |0 I
/ m  l2 U( N8 ^$ f这就回到我一直在想的“复杂性守恒定理”。复杂问题如果存在简单的解决办法,一定是把复杂性隐藏到另一个方向了,最终还是绕不过去的。
作者: 老财迷    时间: 2022-9-20 22:44
“罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。”
( b8 W5 z( e# g" W$ z& J" w, @少了一个“没”字吧?意思不对了) S0 K" X' i0 H* Z; ?2 L
罗尔斯-罗伊斯也在进步,但英国战斗机再也赶上过。
作者: 方恨少    时间: 2022-9-21 02:31
晨枫 发表于 2022-9-20 13:091 k3 n2 b" n9 ?- P
然后再后悔又出来了
, l9 f, T5 j' [/ ?
你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据
作者: 晨枫    时间: 2022-9-21 02:47
方恨少 发表于 2022-9-20 12:31
& F% K3 M  M$ n$ u4 d( C: x" J你们这来来回回出来进去的,我怀疑你们在开车,但是我没有证据

! B5 |, [5 h. t( r* l开车?开什么车?




欢迎光临 爱吱声 (http://129.226.69.186/bbs/) Powered by Discuz! X3.2